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Abstract. Long-term atmospheric ozone observations in Western North America (WNA) provide essential data
for assessing tropospheric ozone trends. Backward atmospheric simulations based on these observations estab-
lish the source—receptor relationships (SRRs) to improve our understanding of the factors driving ozone trends
across different regions, time periods, and atmospheric layers. In this study, we integrated 28 years of ozone
observations (1994-2021) from ozonesondes, lidar, commercial aircraft, and aircraft campaigns across WNA,
spanning the upper atmospheric boundary layer, free troposphere, and upper troposphere (i.e., 900 to 300 hPa).
We integrated the multiplatform datasets using a data fusion framework to generate 553 608 gridded ozone re-
ceptors. For each receptor, we use the FLEXible PARTicle (FLEXPART) dispersion model, driven by ERAS
reanalysis data, to produce the SRRs calculations, providing global simulations at high temporal (hourly) and
spatial (1° x 1°) resolution from the surface up to 20 kma.g.l. (above ground level). This SRR database retains
detailed information for each receptor, including the gridded ozone value product, which enables user to illustrate
and identify source contributions to various subsets of ozone observations in the troposphere above WNA over
nearly 3 decades at different vertical layers and temporal scales, such as diurnal, daily, seasonal, intra-annual,
and decadal. More generally, the calculated SRRs are applicable to any study looking to evaluate origins of air-
masses reaching WNA. As such, this database can support source contribution analyses for other atmospheric
components observed over WNA, if other co-located observations have been made at the spatial and temporal
scales defined for some or all of the gridded ozone receptors used here. The entire dataset is publicly available
at https://doi.org/10.5067/ASDC/WNA-BackTraj (Cui et al., 2025).
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1 Introduction

The IPCC Sixth Assessment Report concluded that free tro-
pospheric (FT) ozone generally increased in the Northern
Hemisphere from the mid-1990s through 2016 (Gulev et
al., 2021). From a global perspective, Gaudel et al. (2020)
reported increasing median FT ozone trends ranging from
1.2 ppbv/decade over the Gulf of Guinea to 5.6 ppbv per
decade over Southeast Asia. Building on this work, Chang
et al. (2023) incorporated additional ozone data and iden-
tified a positive regional trend in median FT ozone over
Western North America (WNA), with an increase rate of
0.720.3 ppbv per decade (1994-2019). These positive trends
in FT ozone raise growing concerns about their radiative ef-
fects and their potential to increase surface ozone levels in
WNA, where FT influence is significant (e.g. Jaffe et al.,
2018). Therefore, it is critical to understand the processes
driving changes in FT zone.

Previous studies have examined key factors influencing
tropospheric ozone levels over WNA, including intercon-
tinental transport of ozone from Asia (e.g., Jacob et al,,
1999; Cooper et al., 2010), stratospheric intrusions (e.g., Lin
et al., 2012, 2015), wildfires (e.g., Jaffe et al., 2008; Jaffe
and Wigder, 2012), and transport from tropical marine en-
vironments (e.g., Grant et al., 2000; Cooper et al., 2011).
While global-scale modeling studies suggest that increas-
ing anthropogenic emissions contribute to rising FT ozone
levels (e.g., Fiore et al., 2012), detailed analyses of atmo-
spheric transport pathways and source attributions are lim-
ited. Such studies are essential to identify the drivers, such
as source regions, most closely associated with observed
ozone increases. This gap motivated the current study, which
applies a Lagrangian Particle Dispersion Modeling frame-
work in backward mode to quantify source-receptor rela-
tionships (SRRs) for 553 608 ozone receptors which span
altitudes from 900 to 300 hPa across WNA over the period
1994-2021.

A similar SRR framework was used by Cooper et
al. (2010) to explain increased FT ozone concentrations
above WNA during April and May from 1995 to 2008. That
study used an earlier version of the European Centre for
Medium-Range Weather Forecasts (ECMWF) model with a
2°x2° spatial resolution, generating SRRs up to 16 km above
ground level. However, Cooper et al. (2010) focused exclu-
sively on springtime. Chang et al. (2023) demonstrated that
positive FT ozone trends over WNA are also present in sum-
mer and winter. Therefore, this study extends the analysis
of Cooper et al. (2010) by simulating SRRs across all sea-
sons over nearly three decades (1994-2021) using an updated
version of the ECMWF model. The complete set of back-
ward simulations, described herein, are archived for future
use. Our high-resolution Lagrangian-based product provides
an efficient alternative to computationally expensive chemi-
cal transport models for quantifying SRRs in the FT ozone
observation dataset.
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In addition to supporting ozone research for WNA, the
SRRs calculated in this study are applicable to investigations
of air mass origins and source contribution analyses for other
atmospheric components observed in the region. These SRRs
can be used in studies with co-located observations that align
with the spatial and temporal scales defined for some or all
of the gridded ozone receptors used here. Further potential
applications are discussed in this paper.

The paper is organized as follows: Sect. 2 describes the re-
ceptor locations used in this study, followed by Sect. 3 which
details the settings for the SRR simulations. Section 4 pro-
vides illustrations and examples of the model products, and
Sect. 5 discusses additional applications of the data. Conclu-
sions are provided in Sect. 6, and data set availability and
formats are described in Sect. 7.

2 Reconciliation of multiplatform ozone
observations

To quantify trends and variability in free tropospheric ozone,
a gridded ozone dataset was generated using a data fusion
technique (Chang et al., 2022, 2023). We expand the previ-
ous fused dataset from Chang et al. (2023) to include ob-
servations from 900 to 300 hPa during 1994 to 2021 using
the same statistical method. This extension, which incorpo-
rates additional tropospheric ozone data spanning the up-
per atmospheric boundary layer, free troposphere, and up-
per troposphere, offers a more comprehensive characteriza-
tion of tropospheric ozone variability and further supports
the validation of previous results. By identifying and adjust-
ing for inconsistencies due to differing sampling frequencies
and measurement uncertainties, this fused ozone observation
product is expected to be regionally representative (Chang
et al., 2022, 2024). Original ozone observations were ob-
tained from various data platforms collected between 1994
and 2021, spanning altitudes from 900 to 300 hPa across
WNA. These observations were integrated into 0.2° x 0.2°
grid cells with 10 hPa vertical intervals over the WNA re-
gion. The new gridded ozone dataset (N = 553 608) includes
time, latitude, longitude, altitude, and corresponding ozone
values. Each grid cell from the data fusion product is treated
as a receptor to generate SRRs.

Specifically, the tropospheric ozone observations over
WNA used in this study include: (1) ozonesonde records
above Edmonton (1970-2021), Kelowna (2003-2017) and
Port Hardy (2018-2021) from the Canadian Ozonesonde
Network (Environment and Climate Change Canada, 2022),
and above Trinidad Head (California, 1997-2021) and Boul-
der (Colorado, 1967-2021) maintained by the NOAA Global
Monitoring Laboratory (NOAA GML, 2022), with a roughly
once-per-week sampling frequency; (2) lidar measurements
above the Jet Propulsion Laboratory Table Mountain Facility
(California, 2000-2021, NASA JPL, 2022), with 2-5 profiles
per week; (3) commercial aircraft observations operated by
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Figure 1. The distribution of defined data receptors from the data fusion product: (a) spatial pattern over WNA, (b) number of receptors by
month of year across 28 years, (¢) number of receptors divided by vertical layers with 100 hPa intervals across 28 years.

the IAGOS (In-Service Aircraft for a Global Observing Sys-
tem) program since 1994 (Boulanger et al., 2022); and (4) ap-
proximately 200 flights from the NASA AJAX/SNAAX field
campaigns (2011-2018, Iraci et al., 2021).

The observational methods that produced the ozone data
set have varying levels of accuracy (Tarasick et al., 2019),
however, according to the well-known concept of error anal-
ysis (Taylor, 1997), the random nature of the relatively small
measurement errors is not expected to impact our ability
to detect long-term ozone trends. For example, a sensitivity
analysis of tropospheric ozone trends, accounting for vary-
ing levels of measurement uncertainty (e.g., adding 10 % or
20 % random uncertainty to each data point), was conducted
by Gaudel et al. (2024). The results indicate that when the
dataset time period is sufficiently long, the observed trends
remain consistent. In other words, despite the fact that the
greater data uncertainty resulted in higher trend uncertainty,
trends can still be detectable under large random uncertainty
(i.e., 20 %). It should be noted that the modern ozone in-
strumental measurement uncertainty is typically much lower
than the imposed uncertainty used in the above sensitivity
analysis (Tarasick et al., 2019). Similarly, Van Malderen et
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al. (2025) assessed the impact of measurement uncertain-
ties on ozone observations in the free troposphere, assum-
ing 2.5 % for lidar, 5.5 % for ozonesondes, and 5.5 % for IA-
GOS. The impacts were minor compared to analyses that as-
sumed no measurement uncertainty. Therefore, we consider
this data fusion product, which integrates large datasets from
multiple platforms spanning nearly three decades, to be ro-
bust for ozone trend analysis over WNA.

Figure 1 shows the distribution of the data fusion product
across WNA, along with monthly and vertical layer counts
of receptors. For each receptor location, we conducted back-
ward simulations of historical air mass dispersion and trans-
port processes covering up to 15d on a global scale. We re-
tained all detailed simulation outputs for each receptor to al-
low users to select specific receptors as needed. Additional
details are provided in the following sections.

3 Configuration of the SRR product

In this study, we developed the model product using
a commonly-used Lagrangian Particle Dispersion Model,
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FLEXPART (“FLEXible PARTicle dispersion model”,
v10.4, Pisso et al.,, 2019), driven by ECMWF reanaly-
sis vS (ERAS) data (Hersbach et al., 2020). This product
is another key component of our SRR database and pro-
vides crucial support for understanding source contributions
to the overall representative tropospheric ozone trends ob-
served over the WNA region.

Specifically, the ERAS reanalysis data has high spatial and
temporal resolutions on the global scale, that is 0.25° x 0.25°
spatial and hourly temporal resolution, and 137 vertical lev-
els. The overall uncertainty estimates of ERAS5 have been
described by Hersbach et al. (2020) using ensemble spread
and comparisons with observations. Their analysis, for ex-
ample, showed that the global mean differences between the
nine ensemble members and the control member for temper-
ature, relative humidity, and the u-component of wind at the
500 hPa level were 0.006 K, 0.3 %, and 0.4cms™!, respec-
tively for the year 2018. They showed that the magnitude of
the ensemble spread is closely related to the quality of the
observing system, and also demonstrated that ERAS has a
significant improvement over its previous generation (ERA-
Interim). In an independent study, a cross-comparison among
three widely used reanalysis datasets, including ERAS, was
conducted by Wu et al. (2024). Their study indicated that,
when compared to limited observations from field cam-
paigns, the reanalysis datasets exhibited mean wind vector
differences ranging from 2 to 4.5 ms~ ', with ERA5 showing
the closest agreement with observations. Many other stud-
ies have evaluated ERAS from different perspectives, con-
sistently highlighting its strong performance. These find-
ings further reinforce the reliability of our source-receptor
database.

FLEXPART is a Lagrangian particle dispersion
model (LPDM) with the ability to study global trans-
port in both forward and backward modes. In this study,
we used the backward mode of FLEXPART to calculate
SRRs describing the sensitivity of a receptor to a source
(e.g. Seibert and Frank, 2004). We released 10 000 trajectory
particles from each receptor and simulated their backward
4D SRR fields. Stohl et al. (1998) simulated the long-range
dispersion of tracer gases using FLEXPART v2.0 based on
three large-scale tracer experiments. They compared the
model results with tracer gas measurements from various
locations and found that the model performed very well
under fair meteorological conditions but was less accurate in
the presence of fronts. Additionally, they mentioned that the
coarse resolution of the meteorological inputs at that time
limited the implementation of vertical wind fields, restricting
potential improvements in model performance. Forster
et al. (2007) evaluated FLEXPART v6.2 in terms of its
convective transport performance, finding good agreement at
higher altitudes above the atmospheric boundary layer when
convection was included in the model. At the time, they
emphasized the need for tropospheric profile measurements.
Furthermore, they compared forward and backward simu-

Earth Syst. Sci. Data, 17, 5903-5914, 2025

Y. Y. Cui et al.: Global source—receptor-relationship database for integrated tropospheric ozone observations

lations and found only minor differences, which could be
tolerated given the large overall uncertainties of convective
parameterizations. Pisso et al. (2019) provided detailed
descriptions of FLEXPART v10.4, including references
to evaluations of several model components, such as the
convection scheme and aerosol lifetime estimation. More
recently, Bakels et al. (2024) evaluated and compared FLEX-
PART vl11 and v10.4. While v11 introduces improvements,
many key features of v10.4 and v11 exhibit comparable
performance. Overall, in LPDMs, the meteorological driver
plays a crucial role in determining the level LPDM perfor-
mance, while differences among various LPDMs remain
small (Hegarty et al., 2013). Based on the results from a
wide range of studies, we consider FLEXPART-ERAS to be
one of the best current options for establishing our SRRs
database.

In summary, we expect that the uncertainties associated
with the multiplatform-fusion ozone product are primarily
aleatoric (i.e. random), a concept well understood in statisti-
cal error analysis (Taylor, 1997). The uncertainties associated
with the FLEXPART-ERAS-based SRRs, which are separate
from the random errors associated with the multiplatform-
fusion ozone products, are also aleatoric and not system-
atically biased. A scientific application for integrating our
native SRR database (combining the multiplatform-fusion
ozone product and FLEXPART-ERAS-based SRRs) at longer
time scale (i.e. monthly and yearly) with a focus on different
ozone level percentiles, which could further reduce errors,
has been conducted by Ryoo et al. (2025).

Our SRR product spans a 28-year period from 1994
to 2021, with native hourly temporal resolution and 1° x 1°
spatial resolution globally. We output 5 layers of SRRs from
the surface up to 20km to support the investigation of the
different source regions associated with different altitudes
and to understand their source contributions. The 5 layers
include surface to 300ma.g.1., 300 m to 3kma.g.l., 3km to
8kma.gl, 8km to 13kma.g.l,, and 13km to 20kma.g.l.
We used the default FLEXPART schemes such as the Gaus-
sian approximation of boundary layer turbulence and the
Emanuel-based convection parameterization (Stohl et al.,
2005). ERAS provided meteorological variable inputs. We
used Flex_extract v7.1.2 (Tipka et al., 2020) to extract ERAS
global products for the FLEXPART simulations. The output
unit of the SRR field is s m® kg~!, which represents the resi-
dence time weighted by the volume of air mass. FLEXPART
offers several unit options. The primary consideration in se-
lecting this specific unit is to facilitate users in quantifying
source contributions by region or atmospheric layer when
linking our SRRs with emission rates, in addition to conduct-
ing residence time analysis.

The implementation of FLEXPART and the resulting
SRRs presented in this database are thus improvements over
the previous methodology (Cooper et al., 2010) in three sig-
nificant ways: (i) higher top altitude and vertical layers cho-
sen to discriminate among potential sources aloft, (ii) up-
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dated meteorological input data at much finer spatial reso-
lution (0.25° x 0.25°), and (iii) expanded dataset of field ob-
servations, including all four seasons and considerably more
ozone observations in the free troposphere. The resultant
SRR dataset provides greater potential to conduct a more
comprehensive and accurate investigation of ozone trends
over a longer time period with enhanced spatiotemporal cov-
erage.

This SRR database was implemented on NASA High End
Computing (HEC) Pleiades Broadwell Nodes. The opera-
tional framework was set up on a monthly batch config-
uration, processing all receptors within a given month in
one FLEXPART-ERAS run using a single processor. Overall,
the Langragian model framework used here is computation-
ally efficient. Most individual runs required less than 100 h
to complete. Excluding the time required for downloading
ERAS data, approximately one month was needed to gener-
ate this comprehensive set of products.

The output field structure of the SRR product is a five-
dimensional matrix — SRR (receptor, lat, long, height, time).
Details of the receptor information are stored into a separate
file, as described in Sect. 2. Latitude and longitude are repre-
sented in 1° x 1° grid cells, and heights denote the five ver-
tical layers as previously described. The time dimension ex-
tends from the observational receptors back 15 d with hourly
outputs. Retaining detailed information allows users to cus-
tomize the five-dimensional data to select specific receptors,
geographic regions, vertical layers, or backward time inter-
vals up to 15d. Examples are provided in the next two sec-
tions.

4 Product illustration

Figure 2 illustrates maps of SRRs summed up at a monthly
scale for all ozone receptors. Pink dots mark receptor loca-
tions during this month, and the SRR fields represent the in-
fluence function values integrated across each vertical layer.
Areas with higher values indicate greater source sensitivities
to influencing the ozone values observed over WNA. Since
ozone receptors are primarily located within the FT, high val-
ues are concentrated with the FT from 3-13kma.g.1., with
additional influences seen from the lowest 300 m layer and
the highest layer (13—20 km). By preserving the FLEXPART
outputs in these five vertical layers, studies addressing a wide
variety of processes and emission sectors can be devised us-
ing this model product. For example, aviation influences are
expected in the 8—13 km layer (Ryoo et al., 2025).

The SRR datasets retain detailed high-resolution informa-
tion, which, when integrated over multiple years or decades,
enables more robust statistical analyses to understand trans-
port patterns. For instance, we present an example of SRR
patterns aggregated over a 28-year period across various al-
titudes from two distinct receptor subsets: those associated
with the lowest (cleanest) ozone levels (left column) and
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those with higher ozone levels (right column) (Fig. 3). SRRs
are aggregated monthly across various altitudes for cases
when ozone values at the receptors are at their low and
high percentiles, compared to those over the mid-year pe-
riod (2004-2014). A more detailed statistical framework is
outlined in Ryoo et al. (2025) to minimize the influence of
varying numbers of receptors across months and years. All
subsequent SRR illustrations given here are generated using
the same algorithm applied in Fig. 3. These visualizations
allow us to compare the SRR patterns across the Northern
Hemisphere during winter over the time period. The results
demonstrate that this SRR product provides a valuable tool
for examining how atmospheric transport patterns vary by
altitude and across different subsets of in situ ozone observa-
tions over WNA.

Our dataset of backward simulations can also be used to
illustrate atmospheric transport pathways as a function of
season. Figure 4 shows an example of aggregated analy-
sis of the seasonal patterns at all altitudes (from surface to
20km) for the entire 28-year period. A consistent feature
across all seasons is the significant influence from the west-
ern North Pacific Ocean. However, Fig. 4a shows that the
latitudinal extent of source locations for the cleanest parcels
(ozone < 5th percentile) varies with season. Transport from
the tropical North Pacific Ocean dominates in winter, but the
influence widens in spring and ultimately includes broader
mid-latitude regions during summer. In contrast, Fig. 4b
shows that the air parcels containing the largest amounts of
ozone (> 95th percentile) show some modest seasonal varia-
tion in longitudinal extent but originate from a wide range of
latitudes in all seasons.

5 Discussion and additional applications

The SRR database supports atmospheric transport studies,
such as examining airmass influences across seasons, alti-
tudes, and ozone mixing ratios (Sect. 4). Additionally, the
28-year SRR dataset offers the potential for correlation anal-
yses with climate indices, providing valuable insights into
the impacts of climate change on atmospheric transport and,
consequently, FT ozone levels over WNA (Ryoo et al., 2025).

SRRs can also be linearly convolved with gridded emis-
sion source fields to explore the contributions of both an-
thropogenic and natural sources to ozone formation. For ex-
ample, lightning nitrogen oxides (NO,) are a natural source
of ozone formation. By convolving the SRR fields with the
lightning NO,, source rate, we can identify specific lightning
regions that contribute to FT ozone levels over WNA. Fig-
ure 5 illustrates a related analysis. An increasing trend of
SRRs across altitudes from 3 to 13 km, associated with the
66th to 95th percentiles of WNA ozone receptor levels, is
shown in Fig. 5a. The positive slope indicates that air parcels
which contained ozone amounts in the 66-95th percentiles
spent more time at 3—13km in later years than did equiva-
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Figure 2. Monthly influences can be studied with this dataset. Aggregated SRRs of FT ozone over WNA during July 2016 are shown
for sources located in (a) the near-surface layer (0-300 ma.g.1.); (b) boundary layer (300-3000 ma.g.1.); (¢) a middle tropospheric layer
(3-8 kma.g.1.); (d) an upper tropospheric layer (8—13 kma.g.1.); and (e) a stratospheric layer (13—20km a.g.1.). The pink dots represent the

geospatial locations of all receptors available during July 2016.

lent parcels in earlier years. To clarify whether lightning NO,
sources align with the SRRs and whether the increased SRRs
bring more lightning-related ozone formation to the down-
wind WNA FT ozone levels, we calculate the global light-
ning NO flux rate using the Global Modeling Initiative (GMI)
model (e.g., Bey et al., 2001; Kinnison et al., 2001). We com-
pare the SRR fields with the lightning NO flux rate fields
over the Northern Hemisphere for the periods 1994-2006
and 2007-2019 (middle row of Fig. 5b and c). Addition-
ally, we computed a field of SRR multiplied by the lightning
NO flux rate to focus on the influence of source regions on
the 66th to 95th percentiles of WNA ozone levels (bottom
row of Fig. 5b and c). Changes in this field between the two
periods are shown (Fig. 5d), with higher values indicating re-
gions where lightning activity may contribute to WNA ozone
levels in terms of both magnitude and variation. Further de-
tailed scientific analysis is warranted.

By integrating gridded lightning NOx emissions with
SRRs, users can better distinguish contributions from various

Earth Syst. Sci. Data, 17, 5903-5914, 2025

geospatial locations. A similar approach, focusing on the im-
pact of aircraft NO, emissions on FT ozone formation over
WNA, is discussed in Ryoo et al. (2025). Another potential
application involves linking fire-related trace gases (e.g., car-
bon monoxide — CO) with SRRs to assess the influence of
the changes of fire events on FT ozone levels over WNA.

It is important to note that the analysis described above
does not account for chemical reactions (e.g., formation
or loss processes). Instead, these analyses simply provide
an initial indication of regions likely contributing to ozone
formation in WNA. Ozone formed locally in regions with
high NO, levels or during transport could be delivered to
our ozone receptor locations, and therefore, higher SRR-
weighted NO, emissions are indicative of regions with a po-
tentially significant impact on FT ozone over WNA. We ac-
knowledge that CTMs remain more comprehensive tools for
interpreting ozone changes driven by the complex interac-
tion between dynamical and photochemical processes. While
uncertainties remain, this approach provides a rapid and ef-
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Figure 3. Sensitivity of two FT ozone categories — < 5th percentile in panel (a) and > 66th percentile in panel (b) — are shown as a function
of altitude during wintertime. Air parcels reaching WNA with very different amounts of ozone have origins in different regions of the Pacific

and Asia.

fective means to identify regions associated with FT ozone
formation over WNA and to analyze how changes in source
regions contribute to variations in downwind FT ozone lev-
els.

In addition, our ozone receptors span from 900 up to
300hPa, and the highest-altitude data (e.g., 400-300 hPa)
shown in Fig. 1, together with the corresponding SRR val-
ues, may help elucidate how stratosphere—troposphere ex-
change (STE) contributes to ozone increases in the free tro-
posphere. However, 300 hPa is generally still below the al-
titude of the most active STE; therefore, the current SRR
dataset may be insufficient for fully capturing these pro-
cesses.

The SRR product in our archived database extends be-
yond ozone research, supporting transport and source attri-
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bution analyses for other atmospheric components observed
over WNA at the spatial and temporal scales defined by the
ozone receptor grids. For instance, IAGOS profiles (Sect. 2)
have included CO measurements since 2001, and AJAX mis-
sions (Section 2) have collocated methane (CHy4) observa-
tions. Therefore, the SRR database can be applied to attribute
sources contributing to FT CO and CH4 trends over WNA,
as well as to assess the sensitivity of FT ozone over WNA
to biomass burning (using CO as a tracer). Additionally, all
ozone observations are paired with co-located water vapor
measurements. For example, we can use the SRR database
to understand decadal-scale changes in the source regions of
moisture over western North America, such as variability in
atmospheric rivers.

Earth Syst. Sci. Data, 17, 5903-5914, 2025
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Figure 4. Seasonal sensitivity of residence time of parcels containing (a) the cleanest FT ozone level (< 5th percentile) and (b) the highest
FT ozone level (> 95th percentile) over WNA during the complete 28-year dataset, including winter (DJF), spring (MAM), summer (JJA),

and fall (SON).

Moreover, measurements not directly linked to the ozone
observation platforms used in this study (Sect. 2) but aligned
with the spatial and temporal framework defined by the
ozone receptors, such as dust-related aerosol measurements
in the FT over WNA, can also leverage the SRR database to
analyze the transport and origin of diverse atmospheric con-
stituents.

6 Code and data availability

The model outputs, associated receptor data, and post-
processing scripts are available at NASA’s DAAC/ASDC
(https://doi.org/10.5067/ASDC/WNA-BackTraj, Cui et al,,
2025). Specifically, the gridded receptor details are stored in
a CSYV file that includes columns for the year, month, day,
hour, latitude, longitude, pressure, and corresponding ozone
values. As outlined in Sect. 3, FLEXPART model outputs
from each monthly batch run are stored in separate monthly
folders in binary format. The 28 years of binary files oc-
cupy approximately 4 TB of storage. Post-processing scripts
to read these binary files in various programming languages
are available at https://www.flexpart.eu/processing.html (last
access: 3 November 2025). Additionally, we have attached a
MATLAB script with other archived files. For example, Ryoo
et al. (2025) used this MATLAB script to convert binary files
to NetCDF format and to reduce the domain from global to
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the Northern Hemisphere for further analysis. That 1° x 1°
monthly output for the Northern Hemisphere is also archived
at the same location.

7 Summary

Using the statistical technique established by Chang et
al. (2022), we integrated and reconciled a gridded ozone
database from various ozone observing platforms, covering
900 to 300 hPa, primarily focused on the free-tropospheric
and upper tropospheric layers, for nearly three decades
(1994-2021). In conjunction with this fused dataset, we con-
ducted backward simulations using the Lagrangian-based
transport model FLEXPART to calculate source—receptor re-
lationships (SRRs) for each gridded ozone data point. The
FLEXPART model is an offline model driven by ERA-5 re-
analysis data. FLEXPART-ERAS is designed to deliver the
SRR product at high temporal and spatial resolution on a
global scale, with the available SRR information up to 15
days prior.

This SRR database, which combines the multiplatform-
fusion ozone product and FLEXPART-ERAS-based SRRs,
was developed specifically to support multi-decadal analyses
of airmasses containing a range of ozone values to advance
the understanding of ongoing changes in FT ozone, as most
recently identified in Chang et al. (2023). It also supports the
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between panels (b) and (c).

analysis of increased FT ozone trends across a range from
synoptic dynamics to mesoscale processes in relation to var-
ious climate indicators (Ryoo et al., 2025).

Our archived product includes both the Western North
America (WNA) fused ozone data and SRR modeling output,
providing a powerful resource for understanding atmospheric
transport and emission source contributions to FT ozone lev-
els over WNA under various scenarios. This product also
holds potential for investigating other aspects of atmospheric
components which are relevant to the receptor grid chosen
here.
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