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Abstract. Permafrost thaw disrupts ecosystems, hydrology, and biogeochemical cycles, reinforcing climate
change through a positive permafrost-carbon feedback loop. Thaw can be gradual, deepening the active layer,
or abrupt, triggering thermokarst, thermo-erosion, or thermodenudation. Retrogressive thaw slumps (RTSs) are
a key manifestation of abrupt permafrost thaw. Yet, their distribution, scale, and environmental controls in the
West Siberian Arctic remain poorly understood, further complicated by their rapid evolution. This study presents
an extensive update of the West Siberian RTS inventory through manual mapping using high-resolution, multi-
source, multi-year recent (2016-2023) satellite basemaps (ESRI, Google Earth, and Yandex Maps). We devel-
oped an RTS classification capturing key environmental parameters, including morphology, spatial organization,
terrain position, and associated relief-forming concurrent processes. The dataset comprises 6168 classified RTS
landforms, integrating newly mapped sites with previously reported occurrences to provide a comprehensive
view of a 445226 km? region covering the Yamal, Gydan, and Tazovsky peninsulas. The collected data under-
went manual filtering and verification, leveraging local field experience and observations from key sites to reduce
uncertainty and minimize false positives. Accuracy analysis, performed by comparing the dataset with various
field datasets collected across the peninsulas, confirmed high accuracy (> 90 %) for RTS identification. The
dataset likely underestimated the distribution of small RTSs due to the resolution limitations of remote sensing
data, hence generally providing a conservative estimate. This dataset serves as a valuable resource for diverse
research fields, including ecology, biogeochemistry, geomorphology, climatology, permafrost science, and nat-
ural hazard assessment. Additionally, it provides a crucial reference dataset for machine learning applications,
enhancing upcoming remote sensing classification and predictive modeling approaches. The dataset is available
from Nesterova et al. (2025; https://doi.org/10.1594/PANGAEA.974406).
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1 Introduction

Permafrost is any ground that stays below 0 °C for two or
more consecutive years (Harris et al., 1988). It constitutes
about 15% of the Northern Hemisphere landmass (Obu,
2021) and is experiencing significant warming and reduc-
tion in extent due to global warming (AMAP, 2017; Bisk-
aborn et al., 2019; Smith et al., 2022). Permafrost thaw not
only affects the high-latitude northern ecosystems and hy-
drological cycle but also releases carbon into the atmosphere
and hydrosphere, contributing to global climate change with
a positive feedback loop (Schuur et al.,, 2015). However,
permafrost carbon emissions are still poorly integrated into
global climate models (Miner et al., 2022). Furthermore,
permafrost degradation manifests itself both gradually and
abruptly. Gradual thaw slowly deepens the active layer over
time (Brown et al., 2000; Luo et al., 2016; Vasiliev et al.,
2020), while abrupt thaw in ice-rich permafrost triggers rapid
thermokarst or thermo-erosion processes, leading to the for-
mation of various landforms. Prime examples of such abrupt
thaw events are specific types of permafrost-region land-
slides termed retrogressive thaw slumps (RTSs) (Nesterova
et al., 2024).

RTSs are slope failures formed due to the thaw of exposed
ice-rich permafrost (Fig. 1) (Mackay, 1966). These dynamic
features can develop in a polycyclic fashion (Lantuit and Pol-
lard, 2005). Usually, the initial stages involve active ice ab-
lation and downslope mudflows, followed by a stage of sta-
bilization and colonization with pioneer vegetation (Mackay,
1966; Kerfoot, 1969; Leibman and Kizyakov, 2007). Active
RTS can be considered as one of the clear indicators of per-
mafrost response to increased air temperatures and higher
summer precipitation (Lantz and Kokelj, 2008; Kokel; et al.,
2015; Leibman et al., 2021; Barth et al., 2025). RTS occur-
rence significantly impacts the environment by altering the
vegetation, topography, hydrology, as well as carbon fluxes
(Lantz et al., 2009; Thienpont et al., 2013; Cassidy et al.,
2017). The prediction of RTS occurrence and activity is chal-
lenging due to heterogeneous ground ice distribution (Pollard
and French, 1980; Makopoulou et al., 2024) across the Arc-
tic, limited observational field data (Ward Jones et al., 2019),
and the lack of models capable of simulating RTS initiation
and dynamics (Yang et al., 2025).

The north of West Siberian Arctic, with its predominantly
continuous permafrost distribution (Obu et al., 2019), is char-
acterized by a high abundance of RTS. The prevalence of
massive ground ice (Baulin et al., 1967; Streletskaya et al.,
2013; Leibman and Kizyakov, 2007; Badu, 2015) that often
occurs close to the surface contributes to the widespread oc-
currence of RTSs (Khomutov et al., 2017). Moreover, the ob-
served amplification of seasonal thawing and growth of per-
mafrost temperatures (Babkina et al., 2019; Biskaborn et al.,
2019; Vasiliev et al., 2020) presents an additional factor for
the mass initiation of RTS in the region. So far, the majority
of RTS studies in the north of West Siberia have only been
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Figure 1. RTS in Central Yamal, West Siberia, Russia. Photo taken
in August 2021 by Nina Nesterova.

based on fieldwork at local key sites (Leibman and Kizyakov,
2007; Leibman et al., 2015; Khomutov et al., 2017; Novikova
et al., 2018; Babkina et al., 2019). Long-term field observa-
tions at the research station “Vaskiny Dachi” in Central Ya-
mal reported the activation of rapid thaw processes after the
extreme summer warmth of 2012 (Khomutov et al., 2017;
Babkina et al., 2019).

The vast majority of novel large-scale RTS studies uti-
lize automated mapping with remote sensing data. This au-
tomated approach has some limitations for West Siberia so
far, including using only a moderate spatial resolution of
30m not sufficient for detecting smaller RTS, only a partial
cover of the West Siberian Arctic, the lack of high-resolution
ground truth data, a large amount of false positive detection,
and further feature interpretation ambiguities (Nitze et al.,
2018; Runge et al., 2022; Nitze et al., 2024). Furthermore,
the polycyclicity of RTS development results in highly com-
plex spatial patterns characterized by multiple overlapping or
nested RTSs (Nesterova et al., 2024), which introduces fur-
ther difficulties in highly automated mapping efforts. New
cutting-edge panarctic datasets building on automated detec-
tion methods are being released (DARTS, Nitze et al., 2025)
but still have some limitations in accuracy on the local to re-
gional scale.

In contrast, manual mapping of RTSs with high-resolution
imagery by experts with regional knowledge can provide
higher accuracy and decrease the amount of false positive
detections (Lewkowicz and Way, 2019; Ward Jones et al.,
2019; Nitze et al., 2024). A first manually mapped inventory
of RTSs in the West Siberian Arctic was performed using the
Yandex Maps high to moderate resolution satellite basemap
representing the 2016-2018 period (Nesterova et al., 2021).
The dataset reports 439 RTSs over both the Yamal and Gydan
peninsulas. Due to the different spatial resolutions of satellite
images used in the basemap (ranging from 0.4 to 15 m), the
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results tend to underestimate modern RTS distribution, par-
ticularly in areas where only lower resolution imagery was
available. Therefore, there was still no full understanding of
the scale of thaw slumping in the West Siberian Arctic, its
distribution, and environmental parameters, which are fur-
ther complicated by the rapid evolution of RTSs.

We provide an extensive update of the West Siberian RTS
inventory for 2021, which was performed by manually map-
ping RTS in the north of West Siberia using multi-source and
multi-year satellite basemaps (high-resolution ESRI, Google
Earth, and Yandex Maps satellite basemaps). We further
added all the RTS locations reported for this region in the
literature so far. The collected dataset was manually filtered
and compared to field data. This multi-source approach, in
combination with regional field experience and field obser-
vations, gathered earlier at various key sites, helped us to
minimize the uncertainty and decrease the number of false
positive detections. We additionally developed a classifica-
tion to describe each RTS, capturing their main environmen-
tal parameters such as morphology, spatial organization, ter-
rain position, and concurrent relief-forming processes.

2 Methodology

Our approach includes four main steps: (1) visual identifi-
cation of RTS and manual RTS point collection, (2) classifi-
cation and parameter attribution, (3) iterative correction loop,
and (4) final accuracy assessment (Fig. 2). Manual RTS point
collection, classification, and correction were performed in
QGIS software version 3.14. Accuracy analysis, plotting,
and statistical calculations were performed using Python ver-
sion 3.12.7. Chord diagrams were plotted in R, using RStu-
dio 2024.12.0 + 467. The resulting points were analysed for
clustering using Ripley’s K function. Ripley’s K function
determines whether spatial points have a random, dispersed,
or cluster distribution over a certain distance or scale (Dixon,
2002).

2.1 RTS point mapping

The study area in the north of West Siberia is 445226 km?
and includes the Yamal, Gydan, and Tazovsky peninsulas
(Fig. 3). To ensure the completeness of the RTS dataset we
reviewed previously published RTS datasets for the region,
all of which were mapped using automated methods (Fig. 3).
We manually filtered RTS datasets from Nitze et al. (2018,
2025), Runge et al. (2022), Bernhard et al. (2022), and Huang
et al. (2023) to verify the presence of RTS and ensure that
only true positives were included. This verification was con-
ducted using the same available datasets that we later used
for manual point collection, as described further below.

Manually collected RTS dataset published in 2021 (Nes-
terova et al., 2021) was also integrated: points were revised,
classified, and renamed.
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For our visual identification and manual collection of RTS
points, we created a regular grid of 3.9 x 3.9 km cells cover-
ing the entire study area (Fig. 4a). This cell size was cho-
sen as the optimal for visual inspection of the area and
progress tracking, balancing detail and generalization. The
ESRI satellite basemap was used as the primary source of in-
formation for RTS point collection due to the best quality of
its recent very high-resolution imagery. This included high-
resolution imagery (up to 0.31 m) largely with low cloudiness
and an almost complete absence of visual artifacts. In rare
cases, when the ESRI basemap did not fulfill visual quality
criteria, such as no clouds, summer time of the image ac-
quisition, and no artifacts, we used the Yandex Maps satellite
basemap instead. In exceptional cases when neither the ESRI
nor the Yandex basemaps fulfilled the visual quality criteria,
we additionally checked the Google satellite basemap.

The majority of the high-resolution satellite images used
in the ESRI basemap mosaic are recent Maxar images ob-
tained after 2015 (Fig. 4b). Over a third of the study area is
covered by satellite images from 2023 (Fig. 4b). Since the
ESRI basemap was utilized as the primary source, all meta-
data related to the satellite images (image date acquisition,
image resolution, image accuracy, min and max map level,
satellite description, ESRI release name) in the mosaic for
identifying the RTS is stored within the inventory dataset’s
metadata. Yandex Maps basemap presents a mosaic of vari-
ous satellite imagery taken in 2016-2018 with spatial reso-
lutions ranging from 0.4 up to 15 m. The majority of images
are dated July 2017 (Nesterova et al., 2021). For the Google
satellite image layer, no individual image metadata was pro-
vided.

RTSs were identified at a 1: 1000 mapping scale in the
satellite imagery based on visual indicators such as a clear
outline of the headwall, the presence of a mudflow, and the
sharp contrast in colors between the disturbed slump floor
with bare ground and the adjacent intact tundra vegetation
(Fig. 4c). Thus, stabilized RTSs were also identified when the
indicators were still visible. For each identified feature, we
created a point in the location of the RTS within the visible
outlines of the RTS with the best possible approximation to
the visual center of the landform.

Each digitized point represented one feature that would
be classified (see Sect. 2.2). Due to the complex nature of
coastal RTSs sometimes stretching along coastal segments
(Fig. 4d), we decided to identify each elongated contour
with visible semicircles embedded inland as one feature.
Such contours were often separated from each other by little
streams or watercourses. This approach allowed us to utilize
a single technique for all coastal RTSs, regardless of their
size and shape.

The RTS points underwent two visual corrections by the
first author. To differentiate the process of coastal erosion
from thermodenudation (Giinther et al., 2012; Nesterova et
al., 2024) and thereby distinguish other coastal landforms
from RTSs, a special correction was applied to all coastal
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Figure 2. Workflow overview. Rectangles with rounded corners present the datasets, and rectangles with sharp corners present the curation
steps. The four main stages are numbered: 1 — visual RTS identification and manual point collection stage, 2 — RTS point classification and
parameter attribution, 3 — iterative correction, and 4 — accuracy assessment.
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Figure 3. Study area in West Siberia with RTS datasets previously
published in the literature. Please note that none of the external
datasets fully covers the entire study area.
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RTSs and thermoterrace RTSs (see Sect. 2.2). This involved
verifying the headwall retreat of the RTS outline using the
ESRI Wayback Machine - a digital archive of the World
Imagery basemap of different versions providing multi-
temporal imagery (ESRI World Imagery Wayback, 2024).
The same verification procedure was applied for the identifi-
cation of RTS in the southernmost part of our West Siberian
study area, where no reliable data on massive ground ice dis-
tribution is available and thus permafrost landforms can have
different origins. The literature specifies the limits of mas-
sive ground ice extent in the north of West Siberia only very
approximately (Baulin and Danilova, 1998).

2.2 Classification

We classified each RTS point based on terrain position, mor-
phology, spatial organization, and concurrent cryogenic pro-
cesses (Fig. 5). The four main criteria had a total of 15 pa-
rameters.

The terrain position of an RTS is defined based on the lo-
cation of the object to either some hydrological feature (sea
coast, river bank, lakeshore, and gully) or just slope when
there was no visible hydrological feature. The location lake
was selected for RTSs even on the former shores of drained
lakes.

We further defined three types of RT'S morphologies: ther-
mocirque, thermoterrace, or a combination of these two
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Figure 4. Manual mapping of RTSs in West Siberia: (a) example of a grid cell with manually mapped RTSs (orange dots); (b) coverage of
the study area by high-resolution satellite images from different years in the ESRI basemap in km?; (¢) example of a lake shore RTS (marked

by yellow point) on ESRI basemap imagery and typical visual RTS

indicators: 1 — headwall, 2 — mudflow, 3 — contrasting colors of the

disturbed slump floor with bare ground and the surrounding intact tundra vegetation; (d) Example of coastal RTS (marked by yellow point)
on ESRI basemap imagery affected by coastal thermo-erosion, with white bracket indicating the full elongated extent of the coastal landform
considered to be a single RTS in our inventory dataset. ESRI basemap used in (a), (c), and (d) has the following credits: Esri, DigitalGlobe,
GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.
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Figure 5. RTS classification scheme with four main criteria (shown as brown blocks) and 15 variables.

(Nesterova et al., 2024). Thermocirque generally presents
a horseshoe-like RTS shape (Fig. 6a), while thermoterrace
is applied to an elongated RTS with mostly straight head-
wall outlines parallel to a coastline or riverbank (Fig. 6b).
The combination of these two morphologies sometimes oc-
curs when the elongated RTS landform also contains circular
isometric curves of headwall outlines (Fig. 6¢). It is usually
formed when a thermocirque merges with a thermoterrace or

https://doi.org/10.5194/essd-17-5707-2025

when multiple thermocirques merge in one elongated land-
form. The complicated shapes of these combined RTS fea-
tures make it highly challenging to distinguish between in-
dividual elongated and horseshoe-like RTSs (Fig. 6¢c). Our
decision tree to define the morphology of RTS is shown in
Supplement.

Due to the polycyclic nature of RTS development, these
landforms can exhibit a very complex spatial organization

Earth Syst. Sci. Data, 17, 5707-5727, 2025
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Figure 6. Examples of the three main RTS morphologies mapped in West Siberia: (a) two thermocirques (yellow dots); (b) a single large
thermoterrace (yellow dot); (¢) a combined RTS morphology of merged thermocirques or merged thermocirque and a thermoterrace (yellow
dot). ESRI basemap used has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid,

IGN, IGP, swisstopo, and the GIS User Community.

of nested and amalgamated RTSs (Nesterova et al., 2024).
We identified two types of RTS spatial organization: single
landforms and complex landforms. RTS can be classified as
a single landform when its outline is distinct and clearly de-
fined and there is no more than one actively thawing zone
within this outline (Fig. 7a). RTS can be classified as a com-
plex landform when its boundary is difficult to define and/or
there are two or more actively thawing zones (Fig. 7b). All
the RTSs with combined morphologies were marked as com-
plex landforms.

The influence of concurrent (happening in parallel to RTS
development) processes on RTS development is described in
Nesterova et al. (2024). For each mapped RTS, we noted the
possible presence of 5 concurrent processes: lateral thermo-
erosion, coastal thermo-erosion, ice wedge erosion, niva-
tion, and thermokarst subsidence. Lateral thermo-erosion
was identified by the rugged outline of the RTS and visi-
ble traces of erosive channels (Fig. 8a). The Coastal thermo-
erosion classifier includes not only the sea coast erosion but
also river and lakeshore erosion. It was determined by a sharp
dark outline of the RTS base along the coastline of a water-
body and the absence of sediment accumulation in the wa-
ter (Fig. 8a). We have noted ice wedge erosion when an RTS
headwall had a jagged outline resembling the adjacent polyg-
onal surface of undisturbed tundra (Fig. 8b). Nivation in the
context of this study is considered as persistent snow cover. It
was detected as white patches of snowpacks that stayed over
the summer within RTS (Fig. 8a). Thermokarst subsidence
appears as small thermokarst ponds filled with water. It is
noticeable as black patches within the RTS outline (Fig. 8b).

2.3 Accuracy assessment
2.3.1 RTS location accuracy

We compared the RTS point locations of our dataset with two
sets of ground truth field data to estimate the accuracy of our
mapped RTS point locations.

Earth Syst. Sci. Data, 17, 5707-5727, 2025

The first set of RTS locations was collected for the Vaskiny
Dachi Research Station in Central Yamal by Khomutov et
al. (2024) and included 158 points. The authors used satellite
images of QuickBird-2 for 2010, GeoEye-1 and WorldView-
2 for 2013, and WorldView-2, 3 for 2018, as well as the
results of long-term field observation to map RTSs. Since
the RTS mapping protocols can significantly affect the re-
sults (Nitze et al., 2024), we have adjusted these ground truth
points to align with our mapping protocol in which one point
stands for one RTS landform. When comparing our points
to the ground truth collected, we observed inconsistencies in
mapping RTS points. For example, while the ground truth
dataset might contain two or three points for an RTS land-
form, our approach would place only one. To account for
these differences, we recalibrated the dataset and calculated
accuracy statistics for both the original (unadjusted) and ad-
justed RTS points (Table 1).

Two RTS surveys were conducted during helicopter flights
in 2020 and 2023. We manually identified the exact locations
of aerial photos and created another RTS dataset. We then
used it to perform an accuracy analysis in the central Gydan
Peninsula (Fig. 9b and c). These points were also adjusted to
our RTS mapping protocol, and the accuracy statistics were
calculated for both versions (Table 1). The performance of
our dataset was evaluated using precision, recall, and Fi-
score, which integrates both measures. In this context, pre-
cision refers specifically to the metric used in the Fj-score
calculation and should not be confused with measurement
precision, as no measurements were performed. Precision is
calculated as the proportion of correctly identified (true pos-
itive) RTS points when compared to the ground truth RTS
points, among all mapped RTS points in the dataset. Recall
represents the proportion of correctly identified RTS points
relative to the total number of RTS points in the ground truth
dataset. The Fp-score is the harmonic mean of precision and
recall, providing a balanced evaluation of both false positives
and false negatives.

https://doi.org/10.5194/essd-17-5707-2025
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Figure 7. Examples of the different spatial organization of RTSs: (a) single RTS landform with a distinct outline (yellow dot); (b) complex
RTS landform (yellow dot) with multiple nested active (1) and stabilized (2) RTSs within one contour. ESRI basemap used has the following
credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User
Community.

50 100 m

Figure 8. Examples of RTS with concurrent processes: (a) stabilized RTS (yellow dot) at a riverbank. The white arrow (1) points to the clear
dark boundary between the RTS and the waterbody, which together with the absence of sediment accumulation, indicates ongoing coastal
thermo-erosion at the slump base. The purple arrows (2) point to the rugged outline of RTS and traces of erosive channels, indicating lateral
thermo-erosion. The green arrow (3) points at the white patch of the remaining snowpack (nivation). (b) Stabilized RTS (yellow dot) at a
lakeshore. The light blue arrows (4) point to the polygonal surface around the RTS and (5) the jagged outline of the headwall suggesting
ice-wedge degradation. The orange arrows (6) point to the small black patches of thermokarst ponds within the RTS. ESRI basemap used
has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and

the GIS User Community.

2.3.2 Classification accuracy

To assess the subjectivity of the classification, we conducted
an experiment in which five co-authors of this study were
tasked with classifying a subsample of 120 randomly strati-
fied RTS points that equally covered all three types of mor-
phology. The decision-tree schemes and the collection of
screenshots of different RTSs were used as supportive ma-
terials (see Supplement). We calculated the proportion of the
same classifications by 5 co-authors compared to the original
dataset and Jensen-Shannon distances explaining the devia-
tion of classifications.

https://doi.org/10.5194/essd-17-5707-2025

3 Results

3.1 RTS points

The dataset is presented in a GeoPackage vector file of point
geometry with 6168 RTS point locations. Mapped RTSs were
distributed unevenly, covering Tazovsky Peninsula where no
RTS were found, the Yamal Peninsula except its northern
part, and covering the Gydan Peninsula except its southern
part (Fig. 10a). RTSs were significantly clustered accord-
ing to Ripley’s K function on a wide range of distances
(p value =0.001). The majority of areas of both peninsulas
had less than 20 RTSs per 30 x 30 km hexagon grid cell, in-
dicating distinct hotspots of RTS occurrence with more than
100 RTSs per grid cell. The main areas with high RTS density

Earth Syst. Sci. Data, 17, 5707-5727, 2025
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Figure 9. Field validation: (a) locations of the Vaskiny Dachi research station with field survey area on Yamal Peninsula and helicopter
survey area on central Gydan Peninsula, basemap: ESRI; (b) photo of RTSs from the helicopter taken by Artem Khomutov, July 2023;
(c) the same RTSs marked with the yellow point on the ESRI basemap, WorldView-2 24 July 2019. ESRI basemap used in (a) and (c) has
the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the

GIS User Community.

Table 1. Number of RTSs used for the location accuracy analysis. The unadjusted number of RTSs represents the initial amount of RTSs
in the ground truth datasets. The adjusted number of RTSs represents the amount of RTSs in the ground truth datasets adapted to the RTS

mapping protocol applied for manual collection.

Vaskiny Dachi Research Gydan Helicopter Gydan Helicopter
Station Survey 2024 Survey 2020 Survey 2023

Unadjusted  Adjusted Unadjusted  Adjusted Unadjusted  Adjusted

158 132 60 39 12 12

were the western part of central Yamal and the area between
the southern-western and north-eastern parts of central Gy-
dan. On Gydan, they clustered along a distinct linear feature
on its southern edge, south of which RTSs abruptly become
almost absent (Fig. 10b).

3.2 Terrain position

More than 75% of all RTSs were found at lakeshores
(Fig. 11a). The high-density areas of lakeshore RTSs cor-
respond to RTS occurrence hotspots in the western part of
central Yamal and the area between the south-western and
north-eastern parts of central Gydan (Fig. 11c¢).

The density of RTSs at the sea coasts was mostly less than
10 RTSs per grid cell. The highest density of coastal RTSs
was found along the northern shores of Yuribei Bay in south-
western Yamal (Fig. 11b). For RTSs along river banks, gul-
lies, and slopes, the predominating values of density were

Earth Syst. Sci. Data, 17, 5707-5727, 2025

less than 10 RTSs per grid cell, not showing any spatial clus-
tering (Appendix A).

3.3 Morphology

The majority (72 %) of RTSs were classified as thermo-
cirques, one-quarter of all RT'Ss are combined landforms, and
less than 3 % were classified as thermoterraces (Fig. 12a).
The majority of RTSs in all categories have a spatial density
of less than 15 RTSs per grid cell.

Thermocirques were highly concentrated in hotspot areas
of general RTS abundance (Fig. 10b). Combination land-
forms followed the high RTS abundance pattern mostly in the
Gydan Peninsula but less so on the Yamal Peninsula. In con-
trast, thermoterraces lacked distinct high-density hotspots.

https://doi.org/10.5194/essd-17-5707-2025
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3.4 Spatial organization

More than half of all RTSs (64 %) were classified as com-
plex landforms and slightly more than one-third (36 %) as
single landforms (Fig. 13). Both complex and single land-
forms followed the general spatial distribution patterns, with
high-density areas being located in the western part of the
central Yamal Peninsula and the southern-western and north-
eastern parts of the central Gydan Peninsula. The most fre-
quent density range for both classes was less than 10 RTSs
per grid cell.

3.5 Concurrent processes

More than half (53.8 %) of all RTSs were found to have
at least one concurrent process detected, more than a third
(33.4 %) of all RTSs showed only one process detected, while
much fewer RTSs demonstrated two or more processes de-
tected at the same time (Fig. 14a). Lateral thermo-erosion
and thermokarst were two very abundant RTS-concurrent
processes (Fig. 14b). For the cases where only one pro-
cess was detected per RTS, there was a predominance of
thermokarst (38 %) followed by lateral thermo-erosion pro-
cesses (30 %) (Fig. 14c).

Using chord diagrams (Fig. 14d—f) allowed a depiction of
the co-occurrence of concurrent processes estimated for the
cases when two, three, or four processes were detected for
RTS. In general, the co-occurrence of the concurrent pro-
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cesses shows different results depending on the cases of the
amount of the processes detected. There was a clear trend
of the co-occurrence of nivation and lateral thermo-erosion
among all 3 cases (Fig. 14d—f). The co-occurrence of lateral
thermo-erosion and ice-wedge erosion gradually increased
with more processes detected. The co-occurrence of the niva-
tion and the coastal thermo-erosion, when only 2 processes
are detected, was relatively low but increased significantly
with more processes detected. The presence of thermokarst
processes, in general, decreased with more processes de-
tected.

RTSs attributed with concurrent processes exhibit low
densities, with fewer than 5 RTSs per grid cell, regardless
of the type of concurrent process (Fig. 15). RTSs with lateral
thermo-erosion detected had higher densities in the western
part of the central Yamal Peninsula and the central and north-
ern Gydan Peninsula, with a hotspot in central Gydan Penin-
sula (Fig. 15a). RTSs with concurrent coastal thermo-erosion
had higher densities in the western part of central Yamal and
the north-western Gydan peninsulas, with three hotspots lo-
cated at south-western part of central Yamal Peninsula, and
northern and north-western Gydan Peninsula (Fig. 15b). In
general, the spatial distribution of RTSs with coastal thermo-
erosion did not follow the main spatial patterns detected in
the Fig. 10b. RTSs with ice wedge erosion had higher densi-
ties on the northern Gydan Peninsula and rather lower den-
sities on the Yamal Peninsula, with one hotspot located on
central Yamal Peninsula (Fig. 15¢). The spatial distribution

Earth Syst. Sci. Data, 17, 5707-5727, 2025
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of RTSs with concurrent ice wedge erosion also did not fol-
low the main spatial patterns detected in Fig. 10b. RTSs with
nivation had higher densities in central and northern Gy-
dan Peninsula (more than 30 RTSs per grid cell) and rather
lower (less than 15 RTSs per grid cell) densities on Yamal
Peninsula (Fig. 15d). There were four hotspots: one on cen-
tral Yamal Peninsula and three on central Gydan Peninsula.
The spatial distribution of RTSs with nivation also did not
follow the main spatial patterns detected in Fig. 10b. RTSs
with concurrent thermokarst did follow the main spatial pat-
terns detected in Fig. 10b and thus had higher densities and
some hotspots in the western part of central Yamal Peninsula
and the area between the southern-western and north-eastern
parts of central Gydan Peninsula (Fig. 15¢).

4 Discussion

4.1 Data limitations

The manual collection of RTS points using the ESRI satellite
basemap was effective across a large region but also had sev-
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eral limitations. One challenge was the resolution and zoom
limitations, as the minimum detectable landform width was
20 m, potentially excluding smaller features. Seasonal vari-
ability of the images in the ESRI satellite basemap further
complicated the process, with snowpacks identifiable only in
summer images, excluding all autumn (September) imagery.
On the other hand, more extensive snow cover on certain im-
ages obscured some areas, hindering the accurate inventory
of RTS and their attributes in these regions. Additionally, vi-
sual artifacts (blur, glare, clouds, contrails) in some imagery
led to the omission of some cells, though this accounted for
less than 0.5 % of the total dataset.

Temporal constraints posed another issue, as working with
a single satellite image captured at a specific time could mean
that some features were not visible or detectable under those
conditions, leading to potential underrepresentation of RTS
features. The rapid evolution of RTS in this area (i.e., 35 %
increase in RTS number in the central Yamal key site over
8 years reported by Ardelean et al., 2020) added difficulty for
static inventory not only in the amount, with two RTSs of a
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single morphology potentially merging into a complex mor-
phology, creating challenges in morphology classification.
Similar challenges were reported in the literature (Huang et
al., 2020; Rodenhizer et al., 2024). Additionally, updates to
the ESRI satellite basemap during the mapping effort some-
times introduced inconsistencies across different stages of
our workflow, e.g. between the initial mapping of RTS as
points, the subsequent addition of attributes, and the later cor-
rection loop (Fig. 2). To alleviate some of these challenges,
we effectively used the ESRI Wayback time series to verify
uncertain landforms or attributes.

Visual identification also had several challenges. Stabi-
lized RTSs were difficult to recognize. Challenges were also
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faced when classifying partially stabilized RTS. The limi-
tations concerning distinguishing slowly stabilizing slumps
from stabilized slumps using optical data were also reported
in the literature (Bernhard et al., 2020). The sediment accu-
mulation as a secondary indicator for coastal thermo-erosion
was found to be debatable due to its temporary nature. Some
landforms, such as curved riverbanks, wave-cut lakeshores,
active layer detachments (ALDs), and first-stage thermokarst
mound (baydzherakh) development, could have been easily
misclassified as RTS, leading to false positives in the final
dataset.

Atypical for this area, Yedoma RTSs found in our inven-
tory in the northern Gydan region differed significantly in ap-
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pearance from the majority of the rest mapped RTSs. Yedoma
deposits in West Siberia were not included in the Circum-
Arctic Map of the Yedoma Permafrost Domain (Strauss et al.,
2021), yet were described in the fieldwork in northern Yamal
coast and northern Gydan coast (Vasil’chuk and Vasil’chuk,
2018; Vasil’chuk et al., 2022). Since Yedoma mapping was
not the aim of this inventory, we did not mark Yedoma
RTSs. Moreover, Yedoma RTS’s visual characteristics were
not properly addressed in the initial visual identification pro-
tocol, leading to potential misidentifications.

4.2 Accuracy

Human subjectivity, even if mapping is conducted by experi-
enced researchers, can influence the results and contribute
to dataset uncertainties. For RTS mapping, this has been
demonstrated before in a mapping exercise with multiple
operators with varying degrees of experience (Nitze et al.,
2024). Our subjectivity assessment using a subset of 120 RTS
samples revealed that 3 %—16.6 % were classified as non-
RTS, with an average false positive rate of approximately
8.5 % and a median of 4.1 %. Consequently, the accuracy of
our dataset based on this experiment averages around 0.91.
We acknowledge that involving additional experts in visual
correction could have improved accuracy and reduced sub-
jectivity.

The degree of classification similarity among the five co-
authors, compared to the original dataset, exhibited a clear
trend influenced by spatial organization, morphology, and
two concurrent processes — coastal thermo-erosion and lat-
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eral thermo-erosion — which were generally the most sub-
jective. Spatial organization emerged as the most subjective
parameter, with classifications showing the alignment in only
half of the 120 sample points on average (Fig. 16a).

To further quantify classification variability, we cal-
culated Jensen-Shannon distances (Fig. 16b), a metric
for measuring similarity between probability distributions.
This value ranges from 0.0, indicating identical distribu-
tions, to 1.0, representing completely distinct distributions.
The results confirmed the overall trend of morphology,
coastal thermo-erosion, and lateral thermo-erosion being the
most subjective parameters, except for spatial organization,
which showed minor differences in probability distributions.
Coastal thermo-erosion exhibited the highest variation in
classification probability distributions, likely due to two dis-
tinct hotspots observed in the heatmap.

Overall, the probability distributions of most classified pa-
rameters were either highly or moderately similar to those
in the original dataset. This suggests a generally consistent
perception of RTS classification among the co-authors in the
experiment.

RTS location accuracy was estimated for the area around
the Vaskiny Dachi research station in central Yamal and cen-
tral Gydan Peninsulas, with helicopter surveys conducted in
2020 and 2023 (see Appendix B). RTS location accuracy as-
sessments for all areas revealed very high precision com-
pared to the ground truth, confirming the reliability of the
dataset (Table 2). A relatively low recall, even after applying
mapping style adjustments, indicates an approximate 50 %
underestimation of small RTSs in the study area (Table 2)
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primarily due to the reasons described in the Data Limita-
tions section (see Sect. 4.1). Please, note that in this context,
precision specifically refers to the metric used in the F-score
calculation and should not be mistaken for measurement pre-
cision, as no actual measurements were conducted.

The relatively low Fj scores observed in our study can be
attributed primarily to high underestimation (i.e., low recall)
when compared to field data. Manual mapping of RTS using
remote sensing data is often regarded as the most accurate
approach (Swanson and Nolan, 2018; Segal et al., 2016a, b;
Young et al., 2022; Luo et al., 2022). Efforts to enhance ac-
curacy, particularly in terms of precision, have been made by
incorporating multi-year datasets (Huang et al., 2021) and
conducting multiple rounds of expert review (Segal et al.,
2016b; Young et al., 2022). To ensure the reliability of man-
ual mapping, Young et al. (2022) employed aerial field sur-
vey data for visual validation; however, their study did not
report the initial recall of manual RTS mapping against field
observations.

To the best of our knowledge, there are no existing studies
that quantitatively assess the recall uncertainty of RTS man-
ual mapping using remote sensing compared to field data,

https://doi.org/10.5194/essd-17-5707-2025

Table 2. Average results of RTS location accuracy assessment for
all three sets of ground truth field data: central Yamal and central
Gydan (2020 and 2023). The adjusted value represents the accuracy
measure calculated by comparing our dataset to the ground truth
datasets adapted to the RTS mapping protocol applied for manual
collection. The unadjusted value represents the accuracy measure
calculated by comparing our dataset to the original ground truth
datasets.

Average results for all three sets
of ground truth field data

Adjusted  Unadjusted
to the to the
mapping mapping
style style
Precision 0.96 0.96
Recall 0.44 0.38
F1 score 0.60 0.54
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particularly over large spatial extents. Lewkowicz and Way
(2019) attempted to estimate recall accuracy for manual RTS
mapping in Banks Island, Canada (70000km?), but their
evaluation was based on a comparison with another remote
sensing dataset rather than ground-based field observations.
This limitation is largely due to the challenges associated
with field data collection in remote study areas. Moreover,
since field data provides only a single snapshot in time, some
RTS classified as false positives based on remote sensing data
may be true RTS that were simply not captured in the field
dataset.

Despite these uncertainties, manually mapped RTS
datasets serve as validation sources for automated deep-
learning-based mapping algorithms (Nitze et al., 2021; Yang
etal., 2023; Xiaet al., 2022; Huang et al., 2021). Notably, rel-
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atively high F; scores (F; >~ 0.7) for automated RTS map-
ping have been reported, but these assessments were primar-
ily conducted against internal training datasets covering lim-
ited spatial extents and derived from manual mapping rather
than field data (Huang et al., 2020; Nitze et al., 2021; Witha-
rana et al., 2022; Yang et al., 2023).

Our findings demonstrate that manual mapping using re-
mote sensing data cannot be considered a definitive ground
truth and is associated with a certain degree of inaccuracy,
particularly concerning recall.

Our accuracy assessment highlights the overall subjectiv-
ity in defining RTS morphology and spatial organization.
These parameters critically influence what is visually iden-
tified as RTS in satellite imagery. This subjectivity aligns
with previous RTS mapping experiments, where “mapping

https://doi.org/10.5194/essd-17-5707-2025
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Figure 16. Classification subjectivity assessment: (a) heatmap of the proportion of similar classifications by five co-authors compared to the
classification in the dataset; (b) heatmap of Jensen-Shannon distances explaining deviation of classifications by five co-authors compared to
the classification in the dataset.

style” and the scientific background of domain experts were 4.3 Data applicability
found to impact RTS delineation (Nitze et al., 2024). Our
results demonstrate that, despite standardized instructions,
both morphology and spatial organization remain the most
subjective parameters in RTS classification.

The collected data on RTSs holds significant potential for
future applications and research across various disciplines.
It can serve as a foundation for a more detailed characteri-
zation of the permafrost region. The spatial distribution and
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clustering of RTSs in West Siberia, combined with cryos-
tratigraphic and geomorphological analyses, can help unravel
driving processes and improve our understanding of these dy-
namic landforms.

This dataset can also guide further research efforts, such
as field surveys aimed at monitoring cryogenic processes as
well as studies to uncover the ground ice origin. In addition, it
provides a valuable reference for ground-truthing in machine
learning applications, enabling more accurate automated re-
mote sensing classifications and predictive modeling.

The dataset is particularly relevant to ecologists, biogeo-
chemists, geomorphologists, climatologists, permafrost sci-
entists, hazard researchers, and remote sensing specialists.
This data can also be useful in the context of managing
permafrost-related risks and planning sustainable develop-
ment in vulnerable regions.

5 Data availability

The dataset is available at Nesterova et al. (2025)
(https://doi.org/10.1594/PANGAEA.974406).

6 Conclusions

In this study, we present the first large-scale manual RTS
mapping effort with accuracy assessments based on field
data. We present a comprehensive, manually mapped dataset
of 6168 current retrogressive thaw slumps (RTS) for a large
region in the West Siberian Arctic. Each RTS in the dataset
was classified according to its morphology, spatial organi-
zation, terrain position, and concurrent permafrost relief-
forming processes. Accuracy assessments with independent
field data and expert knowledge indicate a high accuracy of
the dataset while also highlighting some subjectivity in the
classifications. Due to resolution limitations in the satellite
image basemaps used for mapping, the dataset may under-
estimate the occurrence of small RTS in the region, result-
ing in an overall conservative estimate. Despite these con-
straints, our new RTS inventory offers valuable insights for a
wide range of research fields aiming at further investigations
of RTS formation and dynamics, permafrost-climate interac-
tions, permafrost-ecosystem feedbacks, and ground ice dis-
tribution in West Siberia.

Earth Syst. Sci. Data, 17, 5707-5727, 2025
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Figure A1. Density maps of RTS points counted per 30 x 30 km hexagonal grid cell located at the (a) river, (b) gully, and (c) slope.

Projection: WGS 84 UTM Zone 43. Basemap: © OpenStreetMap contributors 2025. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.
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Appendix B

Table B1. Results of RTS location accuracy assessment for all
three sets of ground truth field data: central Yamal Vaskiny Dachi
research station and central Gydan Helicopter Survey (2020 and
2023). The adjusted value represents the accuracy measure calcu-
lated by comparing our dataset to the ground truth datasets adapted
to the RTS mapping protocol applied for manual collection. The un-
adjusted value represents the accuracy measure calculated by com-
paring our dataset to the original ground truth datasets.

Vaskiny Dachi research station,
central Yamal

Adjusted  Unadjusted

to the to the

mapping mapping

style style

Precision 0.88 0.88
Recall 0.44 0.37
Fy score 0.59 0.52

Gydan Helicopter Survey 2020

Adjusted  Unadjusted

to the to the

mapping mapping

style style

Precision 1 1
Recall 0.3

Fy score 0.46 0.33

Gydan Helicopter Survey 2023

Precision 1
Recall 0.58
Fy score 0.73

Supplement. The supplement of the decision-tree schemes and
the collection of screenshots of different RTSs to help classify
RTSs in West Siberia is available online at Zenodo (Nesterova
and Tarasevich, 2025, https://doi.org/10.5281/zenodo.15063753).
The supplement related to this article is available online
at https://doi.org/10.5194/essd-17-5707-2025-supplement.
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