Earth Syst. Sci. Data, 17, 5557-5570, 2025
https://doi.org/10.5194/essd-17-5557-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth System
Science

Data

Open Access

Pollen-based reconstruction of spatially-explicit
vegetation cover over the Tibetan
Plateau since the last deglaciation

Pengchao Zhang'-2, Yi Luo®?, Dan Liu?, Xiaoyi Wang?, and Tao Wang?

ICollege of Ecology, Lanzhou University, Lanzhou 730000, China
ZState Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER),
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence: Tao Wang (twang @itpcas.ac.cn)

Received: 24 November 2024 — Discussion started: 31 March 2025
Revised: 6 September 2025 — Accepted: 14 September 2025 — Published: 21 October 2025

Abstract. Spatiotemporally contiguous paleo-vegetation reconstructions are essential for studying climate-
vegetation interactions, providing critical data for paleoclimate modeling, and refining past land cover in Earth
System Models (ESMs) and scenarios of anthropogenic land-cover changes (ALCCs). Here, we present the
first spatiotemporally contiguous paleo-vegetation cover dataset for the Tibetan Plateau, spanning from the last
deglaciation (16 ka) to the preindustrial era. This dataset was achieved using two sets of random forest (RF) mod-
els: one focused on temporal reconstructions (RF-temporal) and the other on spatial reconstructions (RF-spatial).
RF-temporal reconstructs temporal trends from 61 fossil pollen records across the Tibetan Plateau, while RF-
spatial interpolates site-based cover, producing a dataset with a spatial resolution of 0.5° x 0.5° and a temporal
resolution of 400 years. The dataset provides estimates of vegetation cover, along with a 95 % confidence in-
terval, for seven vegetation types (total vegetation, woody vegetation, herbaceous vegetation, coniferous forest,
broadleaved forest, alpine steppe, and alpine meadow). To illustrate, we present the temporal trends and spatial
distribution of vegetation cover for these vegetation types, comparing them with the vegetation cover used in
ESMs. We further discuss the dataset’s reliability, limitations, and applications, along with the discrepancies
between our reconstructed results and those used in ESMs, highlighting possible reasons for these differences.
This dataset presented here can be downloaded from https://doi.org/10.5281/zenodo.16908779 (Zhang, 2024).

1 Introduction

Climate affects vegetation distribution and structure, while
vegetation, in turn, influences climate through biogeophys-
ical effects, including changing albedo (Alibakhshi et al.,
2020), roughness (Thomas and Foken, 2007), and evapotran-
spiration (Yan et al., 2012), and biogeochemical effects, in-
cluding changing greenhouse gases (CH4 and CO3) (Gui et
al., 2024). Therefore, the spatiotemporal dynamics of veg-
etation cover serve as crucial boundary conditions driving
global climate models (GCMs) and Earth system models
(ESMs). Reconstructing the past spatiotemporal dynamics
of vegetation cover not only aids in understanding the re-
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sponses and feedbacks of vegetation to climate change but
also provides foundational data for these models and an-
thropogenic land-cover changes (ALCCs) (e.g., KK10 and
HYDE) (Githumbi et al., 2022; Li et al., 2023). Long-term
vegetation cover data can be derived from paleo-vegetation
records in stratigraphic sediments (e.g., fossil pollen) recon-
structions and dynamic global vegetation models (DGVMs)
simulations.

Fossil pollen, as a direct proxy for past vegetation, has
been widely used to reconstruct paleo-vegetation cover. Early
methods for reconstructing vegetation changes used qualita-
tive (Biomization) (Sun et al., 2020) and semi-quantitative
methods (relative changes in different biomes) (Zhao et
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al., 2017). Subsequently, researchers employed the Land-
scape Reconstruction Algorithm (LRA), which corrects for
the non-linear relationship between pollen abundance and
vegetation cover, such as through the ‘“Regional Estimates
of VEgetation Abundance from Large Sites” (REVEALS)
(Sugita, 2007), to quantitatively reconstruct vegetation cover
changes. While REVEALS was mainly developed to esti-
mate vegetation cover changes from fossil pollen deposited
in large lakes (> 50 ha), and from multiple small-sized sites
(Marquer et al., 2017; Githumbi et al., 2022; Li et al., 2023).
However, it is still challenging to obtain a spatio-temporally
explicit estimate of vegetation cover changes. The outputs
from REVEALS represent the proportion of different vege-
tation types within the vegetation area, and they still require
correction using DGVMs’ estimates of total vegetation cover
or bare ground cover to obtain the actual cover of vegeta-
tion types (Strandberg et al., 2023). Although these outputs
are useful for summarizing paleo-vegetation changes over
time based on pollen assemblages, they are of limited util-
ity when spatially continuous data or actual vegetation cover
is required.

The ESMs or DGVMs use mathematical representations
of the physical, chemical, and biological principles to sim-
ulate how vegetation varies with climate and CO; concen-
tration (Braghiere et al., 2023; Chen et al., 2023). How-
ever, these models often do not activate dynamic vegetation
processes but use prescribed vegetation cover. For example,
in PMIP4 simulations, only one model activated vegetation
dynamics, while other models used prescribed preindustrial
vegetation cover, due to the lack of a comprehensive and re-
liable vegetation dataset during these paleo periods (Jung-
claus et al., 2017; Kageyama et al., 2018). ESMs with veg-
etation dynamics could simulate potential vegetation distri-
butions corresponding to paleoclimate, but the model out-
puts are often fraught with notorious uncertainties in pale-
oclimate variables (Brierley et al., 2020). Machine learning
approaches such as the modern analogy technique (MAT)
(Davis et al., 2024) have been increasingly used to recon-
struct past vegetation dynamics from fossil pollen records
at the biome level (e.g., Sobol et al., 2019; Lindgren et al.,
2021). These machine learning methods (e.g., random for-
est, extreme gradient boosting, and k-nearest neighbor) do
not require prior knowledge, can quickly learn relationships
within data, and are adept at handling nonlinear relationships
and high-dimensional data (Sobol et al., 2019; Lindgren et
al., 2021).

The Tibetan Plateau is of particular interest as a global
region where the westerlies and Asian monsoons converge,
making it a climate-sensitive area with noticeable vegetation
responses to climate change (Wang et al., 2021). Addition-
ally, due to its unique geographical position, the plateau’s
terrestrial ecosystem plays a crucial role as an ecological se-
curity barrier (Chen et al., 2021; Wang et al., 2024). Even
small changes in vegetation can have significant effects on lo-
cal and broader Asian climates, potentially influencing other
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global climate-sensitive regions, such as the Arctic, through
teleconnections (Tang et al., 2023, 2024). Understanding the
response and feedback of plateau paleo-vegetation to climate
change from the last Glaciation to the present can provide
essential insights into potential vegetation changes under fu-
ture climate scenarios (Zhao et al., 2015; McElwain, 2018;
Nolan et al., 2018).

Here, we reconstructed spatiotemporally contiguous veg-
etation cover changes at a regional scale using machine
learning algorithms. Specifically, we first used a tempo-
rally random-forest model (RF-temporal) to reconstruct the
cover of different vegetation types from fossil pollens at
the site level. We then employed a spatial RF model (RF-
spatial) to obtain a spatially contiguous dataset. The gener-
ated dataset provided vegetation cover data for the Tibetan
Plateau from the Last deglaciation (16 ka BP) to the present,
with a temporal resolution of 400 years and a spatial reso-
lution of 0.5°, covering different vegetation types (including
vegetation, woody vegetation, herbaceous vegetation, conif-
erous forest, broadleaved forest, alpine steppe, and alpine
meadow). This dataset will be expected to enhance our un-
derstanding of paleo-vegetation dynamics and their response
to climate change on the Tibetan plateau. More importantly,
this dataset could provide the vegetation boundary condition
for ESMs that are used to simulate paleoclimate changes and
resultant biogeochemical and biophysical impacts.

2 Data and methodology

2.1 Fossil and modern pollen datasets
2.1.1 Fossil pollen datasets

The fossil pollen dataset was obtained from Cao et
al. (2022a), including 65 records and 4395 samples with
143 harmonized pollen taxa. The age-depth model for each
pollen record was reconstructed using Bayesian age-depth
modeling and the IntCal09 radiocarbon calibration curve (de-
tailed information about the standardized chronology is pre-
sented in Cao et al., 2013). We further filtered the dataset
according to the following criteria to ensure data quality and
an adequate site distribution: (1) each record had more than
three chronological controls; (2) the duration of the record
was more than 2000 years; (3) the sampling resolution was
finer than 1000 years. We then followed the harmonized tax-
onomy table published by Herzschuh et al. (2022) to har-
monize 245 pollen taxa into 125 taxa. The selected records
(61 records and 4224 samples) are evenly distributed across
the Tibetan Plateau (Fig. 1), and the number of samples in-
creased from ~ 20 during the deglaciation to ~ 100 in the
Late Holocene, meeting the requirements for reconstructing
the past spatiotemporal patterns of vegetation on the Tibetan
Plateau.
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2.1.2 Modern pollen datasets

To encompass as many scenarios as possible of different
vegetation combinations under varying climate conditions
within the stratigraphic fossil record (Wang et al., 2023),
the modern pollen datasets were obtained from the “Mod-
ern pollen dataset for Asia” (Cao et al., 2022b). This dataset
covers eastern and northern Asia, including 9772 pollen as-
semblages and 242 harmonized pollen taxa, which represent
the diverse vegetation types across most of Asia (Fig. S1 in
the Supplement). Although the dataset underwent rigorous
quality control, we conducted an additional three-step pre-
processing procedure to ensure the robustness of model con-
struction. (1) To address potential duplicate records across
datasets and the fact that modern lake-sediment surface
pollen samples may derive from multiple samples of a single
fossil pollen record collected after 1950 CE, we averaged the
pollen percentages of samples sharing identical coordinates
but differing in taxa composition (resulting in n = 7832 sites
after averaging). (2) To ensure accurate correspondence be-
tween modern pollen sites and true vegetation cover, we ex-
cluded sites with coordinates recorded only to the nearest de-
gree (n = 245; 3.1 % of all sites). (3) For consistency with
the fossil pollen dataset, we first standardized the taxa names
in this dataset using the same harmonized taxonomy table.
We then selected taxa shared with the fossil pollen dataset
and proportionally standardized their values to 100 %. In to-
tal, 7587 modern pollen assemblages — each corresponding
to a unique coordinate — comprising 125 taxa were used for
paleo-vegetation cover model construction. Furthermore, to
assess the robustness of the dataset, we conducted a sensitiv-
ity test by introducing random perturbations to site coordi-
nates. Specifically, we randomly selected 10 % of the pollen
sites and applied random shifts within a range of 0 to 0.05°
(~ 5.6 km). The choice of 0.05° is reasonable, as coordinates
derived from map-based estimates typically have an error of
about +2 km depending on latitude (Whitmore et al., 2005).

2.2 \Vegetation cover data
2.2.1 Modern vegetation cover

Modern vegetation cover data were obtained from the
Global Land Surface Satellite (GLASS) fractional veg-
etation cover products (http://www.glass.umd.edu/FVC/
MODIS/500m/, last access: October 2024) (Jia et al., 2015).
This dataset provides global vegetation cover data at a
500 m pixel resolution, with extensive validation from high-
resolution satellite data and ground measurements demon-
strating high accuracy (Liu et al.,, 2019). In this study,
the average annual maximum vegetation cover from 2000
to 2020 was used to represent modern vegetation cover.
For the 7587 modern pollen samples, circular buffers were
applied, with a 5km radius for surface soil samples and
a 50km radius for lake surface sediments. The average
vegetation cover within each buffer was used to repre-
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sent the cover associated with each pollen record. Since
the modern pollen dataset does not distinguish land use at
the site level, the Global Lakes and Wetlands Database:
Lakes and Wetlands Grid (Level 3) (Lehner and Doll, 2004)
was used to identify pollen originating from lake sources.
Among the samples, 858 pollen records were from lakes
and 6729 were from topsoil. To further differentiate vege-
tation cover by type, we used the MODIS Land Cover Type
Product (MCD12Q1), which provides an annual Plant Func-
tional Type (PFT) classification (DiMiceli et al., 2022). We
grouped deciduous broadleaved and evergreen broadleaved
forest as “broadleaved forest”, and grouped deciduous conif-
erous and evergreen coniferous forest as “coniferous forest”,
due to their relatively small spatial extents on the Tibetan
Plateau (< 7% and < 1 %, respectively; Fig. S2). Further-
more, shrubs and trees were grouped as “woody”, rather than
being shrubs as a separate vegetation type, as shrub distribu-
tion across the Tibetan Plateau accounts for less than 1 %.

The proportion of each vegetation type’s area within the
circular buffer of each modern pollen sample relative to the
total vegetation area was calculated, and this proportion,
multiplied by the total vegetation cover, provided the cover
of each specific vegetation type (woody vegetation, herba-
ceous vegetation, broadleaved forest, and coniferous forest).
To further distinguish alpine meadow and alpine steppe — two
ecologically important herbaceous types in the region — we
used the updated Vegetation Map of China (1 : 1000000) (Su
et al., 2020) to determine their relative proportions within
herbaceous vegetation areas, and then apportioned herba-
ceous cover accordingly. In total, we obtained the cover of
seven vegetation types corresponding to the modern pollen
samples: vegetation, woody vegetation, herbaceous vegeta-
tion, coniferous forest, broadleaved forest, alpine steppe, and
alpine meadow.

2.2.2 Paleo-vegetation cover

Paleo-vegetation cover derived from seven ESMs from the
CMIP4 project (Kageyama et al., 2018), TraCE-21k-II (He
and Clark, 2022), and HadCM3B (Hopcroft and Valdes,
2021), including models ACCESS-ESM1.5, CESM2, INM-
CM4.8, IPSL-CM6A-LR, MPI-ESM1.2-LR, TraCE-21K-
II (CCSM3), and HadCM3B (Table 1) are evaluated in
this study. Among these, TraCE-21K-II (CCSM3) and
HadCM3B are transient simulations with dynamic vegeta-
tion, while MPI-ESM1.2-LR is a snapshot simulation with
dynamic vegetation. The remaining four models run with
prescribed preindustrial vegetation cover due to the lack of a
comprehensive and reliable global vegetation dataset (Otto-
Bliesner et al., 2017). For comparison with the reconstruction
results in this study, we also grouped all forest and shrub veg-
etation types in the models as woody and all grass vegetation
types as herbaceous. All broadleaved forests were grouped as
“broadleaved forest”, and all coniferous forests as “conifer-
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Figure 1. Locations and temporal coverage of the fossil pollen records. (a) Latitudinal distribution of fossil pollen records, as well as their
(b) site locations. (¢) Temporal coverage of the fossil pollen samples, binned at 400-year intervals. Years before the present (ka BP) are
relative to 1950 CE. The bubble diameter corresponds to the temporal coverage of each record.

Table 1. Earth system models used in this study.

Institution ~Model name Spatial ~ Vegetation
resolution  cover
CSIRO ACCESS-ESM1.5 1.875° x 1.25°  Prescribed
NCAR CESM2 1.25° % 0.9375°  Prescribed
INM INM-CM4.8 2°x 1.5° Prescribed
IPSL IPSL-CM6A-LR 2.5°x 1.6°  Prescribed
MPI MPI-ESM1.2-LR 1.875° x 1.875°  Diagnostic
NCAR TraCE-21K-II (CCSM3) 3.75° x 3.75°  Diagnostic
MOHC HadCM3B 3.75° x 2.5°  Diagnostic

ous forest”, although INM-CM4.8 and MPI-ESM1.2-LR did
not provide vegetation cover data at the forest-type level.

2.3 Paleoclimate data

Paleoclimate data were taken from the CHELSA TraCE21k
database (Karger et al., 2023), which offers high spatial
(30 arcsec) and temporal (centennial time slices) resolution.
CHELSA TraCE21k uses a similar algorithm to CHELSA
(Climatologies at High Resolution for Earth’s Land Surface
Areas) to process TraCE21k data, and it has been corrected
using modern data. In this study, we resampled the spatial
resolution to 0.5° x 0.5° using bilinear interpolation and av-
eraged the temporal resolution to 400 years, ensuring consis-
tency in both spatial and temporal scales with pollen records.
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2.4 Random forest

Random forest, as an advanced machine learning technique,
is known for its high accuracy and efficiency in handling
high-dimensional data, making it widely used in the field of
ecology (Wang et al., 2023; Liu et al., 2024a). In this study,
we employed two sets of random forest models. The first
set of RF models (RF-temporal) was used to reconstruct the
temporal trends of vegetation cover corresponding to fossil
pollen. Based on these results, the second set of RF mod-
els (RF-spatial) predicted the spatial distribution of vegeta-
tion cover across the Tibetan Plateau by analyzing the spatial
relationships between point-based vegetation cover, climate,
and terrain data (Fig. 2).

Specifically, in the first model, we used modern pollen
percentages and terrain variables as predictors (Table S1),
and the cover of different vegetation types as the response
variable to predict the vegetation cover represented by fossil
pollen at different periods. During the model-building pro-
cess, we selected the model with the lowest error as the op-
timal model based on the coefficient of determination (R2)
and root mean square error (RMSE) through ten-fold cross-
validation. For the second set of models, RF-spatial models
were constructed at 400-year bins from the last deglacia-
tion to the present for each vegetation type. This 400-year
resolution was determined based on the temporal resolu-
tion of the fossil pollen records (interquartile range: 180-
360 years; Fig. S3), providing both high modeling accuracy
(Fig. S4) and the capacity to capture vegetation responses to
centennial-scale climatic events, such as the Younger Dryas
and Bglling—Allergd periods (Fig. S5). The predictors in-
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Figure 2. Summary of major steps used in reconstructing vegetation cover using the random forest.

cluded 55 climate variables and 8 terrain variables (Ta-
ble S2), while the response variable was the vegetation cover
at fossil pollen sites. Similar to the RF-temporal, after de-
termining the optimal model, we ran the model 100 times
to obtain confidence intervals of the spatial predictions. To
address potential errors inherent in the RF model itself, we
applied the classical Delta Method to perform bias correc-
tion using modern vegetation cover data (Beyer et al., 2020;
Karger et al., 2023).

3 Results

3.1 Paleochanges in vegetation cover over the Tibetan
Plateau

By comparing MAT and five ML algorithms, we found that
the random forest (RF) algorithm performed the best, achiev-
ing the highest goodness of fit and the lowest error (Fig. S6).
Consequently, this study selected RF to reconstruct the spa-
tiotemporal changes in vegetation cover across various vege-
tation types on the Tibetan Plateau over the past 16 000 years
(see Method). The ten-fold cross-validation showed that the
RF model achieved a high accuracy in the reconstruction of
vegetation cover (Fig. 3). For temporal reconstruction of dif-
ferent vegetation types, the R? values for total vegetation,
woody vegetation, herbaceous vegetation, coniferous forest,
broadleaved forest, alpine steppe, and alpine meadow cover
were 0.79, 0.82, 0.65, 0.76, 0.68, 0.46, and 0.53, respec-
tively. In spatial reconstruction, the R? values for these types
were 0.83, 0.64, 0.52, 0.51, 0.52, 0.32, and 0.38.

Based on the above-mentioned spatiotemporal model, we
reconstructed the spatial-temporal changes in the differ-
ent vegetation types at a temporal resolution of 400 years
from the Last Deglaciation period (16 ka BP) to the present
(see Methods). For total vegetation cover, the coverage
over the past 16kaBP varied by more than 8 %, approx-
imately quarter of the present-day cover (23.6 % +2.3 %)
(Fig. 4a). Throughout the past 16000 years, total vegeta-
tion cover reached its lowest value (19.8 % £2.3 %) dur-
ing the Last Deglaciation period (15 ka BP), gradually peak-
ing (28.5 % £ 2.3 %) during the warmest period of the Mid-
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Holocene (~ 8kaBP), and then gradually declining toward
the present-day (23.6 % £ 2.3 %).

Specifically, changes in vegetation cover reveal a dis-
tinct three-phase pattern that generally corresponds to cli-
matic shifts. The first phase coincides with the Bglling—
Allergd warm event (14.7-12.9 ka BP) when rapid warming
of ~ 1.5° within a millennium led to a 6 % rise in vegeta-
tion cover. This trend was interrupted by the Younger Dryas
cold event (12.9—-11.7 ka BP) when vegetation on the Tibetan
Plateau was primarily concentrated in the southeastern re-
gion (Fig. S7). During the second phase, from the Early
Holocene (11.7 kaBP) to the Mid-Holocene (8 ka BP), veg-
etation cover gradually increased, reaching its peak value
(28.5% +2.3 %), which is ~ 5% higher than the present
(23.6 % +2.3 %). At this time, vegetation on the Tibetan
Plateau expanded further from the southeast to the western
and northern regions (Fig. S7). Throughout the third phase,
from the Mid-Holocene (8 ka BP) to the preindustrial era, the
climate experienced a period of steady cooling with fluctuat-
ing warm and cold phases, resulting in a gradual decrease in
vegetation cover. During this period, the spatial distribution
of vegetation on the Tibetan Plateau retreated from the north
toward the southeast (Fig. S7).

For woody cover, the variation over the entire period from
16 kaBP to the present is 2 %, approximately a quarter of
the present-day cover (7 % %2 %) (Fig. 4b). The temporal
changes in woody vegetation cover reveal a distinct three-
phase pattern. The first phase spans from the Last Deglacia-
tion period (16 ka BP) to the Early Holocene (9 ka BP), dur-
ing which woody vegetation cover rapidly increased, reach-
ing its peak value (7.3 % =% 2 %), which is 0.3 % higher than
the present (7 % %2 %). The response of woody cover to
millennial-scale climate events (BA and YD) is pronounced.
During this phase, forests expanded from the southernmost
edge of the plateau to the southeastern margin. Throughout
the second phase, from the Early Holocene (11kaBP) un-
til the Late Holocene (3 ka BP), woody cover experienced
a steady decline, decreasing by approximately 1% over
the entire period. Spatially, although forests remained dis-
tributed along the southeastern margin, the overall area of
distribution contracted compared to the Mid-Holocene. Dur-
ing the third phase, from the Late Holocene (3 kaBP) to
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Figure 4. Changes in vegetation cover on the Tibetan plateau since 16ka BP (a—g). The solid lines represent the smoothed changes in
vegetation cover using a cubic smoothing spline. The shading indicates the 95 % confidence interval. Shown at the top are spatial distributions

of vegetation cover at 15.2, 7.6, and O ka BP.

the preindustrial era, woody cover exhibited a renewed up-
ward trend, increasing by 1% and bringing the present-
day cover (7 % £ 2 %) close to its peak value (7.3 % 2 %).
Changes in woody cover were primarily driven by coniferous
forests, while broadleaved forests remained relatively stable
at around 3 % £ 0.9 % over the past 16 000 years.

For herbaceous cover, the variation over the entire pe-
riod is 7 %, approximately half of the present-day cover
(16.6 % + 2.2 %) (Fig. 4c). The temporal changes in herba-
ceous cover exhibit a three-phase pattern similar to that of
vegetation cover: a rapid increase during the Last Deglacia-
tion period (15-11 ka BP), steady fluctuations from the Early
Holocene to the Mid-Holocene (6kaBP), and a gradual

Earth Syst. Sci. Data, 17, 5557-5570, 2025

decrease in the third phase (6-0kaBP). Spatially, during
the Deglaciation period, herbaceous vegetation was primar-
ily distributed in the southeastern part of the plateau. By
the Mid-Holocene, their distribution expanded eastward and
northward, followed by a retreat back towards the southeast
in the present day. Variations in herbaceous cover were pre-
dominantly driven by alpine meadow in the eastern Plateau,
accounting for 80 % of the herbaceous area, while alpine
steppe — primarily located in the southwest and northeast —
maintained an average cover below 4 %.
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3.2 The comparison of pollen-based reconstruction with
model outputs

Compared to the reconstruction, most of the models have
poor performance in capturing the spatial pattern of vegeta-
tion cover for the Mid-Holocene (6 ka BP). Only ACCESS-
ESM1.5 and INM-CM4.8 generally capture this pattern
(Fig. 5), with spatial correlations of 0.86 and 0.68, respec-
tively. These two models have correctly simulated high vege-
tation cover in the southeastern TP and low vegetation cover
in the northwestern TP. By contrast, other ESMs overesti-
mate the spatial extent of vegetation cover, especially in the
western TP, resulting in relatively low spatial correlations,
ranging from 0.27 for HadCM3B to 0.61 for MPI-ESM1.2-
LR.

In terms of vegetation types, most models can capture
the spatial pattern of woody cover, with spatial correlations
ranging from 0.45 (INM-CM4.8) to 0.82 (CESM2), with
the woody cover mainly distributed along the southeastern
edge of the plateau. Pollen-based reconstructions indicate
that broadleaved forests are mainly confined to the southeast-
ern Tibetan Plateau, whereas model simulations often sug-
gest a more extensive spatial distribution, with spatial corre-
lations between 0.48 (TraCE-21K-II) and 0.62 (HadCM3B).
Coniferous forests exhibit a broader distribution in the
southeastern Plateau, with spatial correlations ranging from
0.27 (TraCE-21K-II) to 0.58 (CESM2). By contrast, except
for ACCESS-ESM1.5 and INM-CM4.8, there is a notorious
bias in the simulation of herbaceous cover, with a spatial cor-
relation coefficient ranging from —0.65 (TraCE-21K-II) to
0.31 (MPI-ESM1.2-LR). They failed to capture the pollen-
based spatial pattern, with high cover in the east and low
cover in the west. These models either simulated an oppo-
site spatial pattern (e.g., TraCE-21K-II and HadCM3B), or
a homogenized high cover across the entire plateau (e.g.,
CESM2 and IPSL-CMO6A-LR). The model-data comparison
suggested a general overestimation of the spatial extent of
herbaceous cover, particularly in the western plateau. This
model-data discrepancy primarily contributes to the total
vegetation cover (Fig. S8).

In terms of variations at the centennial timescale, the
pollen-based reconstruction shows an increase from 16 to
8 kaBP, followed by a decline from 8 to O kaBP (Fig. 6).
While the model simulations display differing temporal pat-
terns. In HadCM3B, vegetation cover rises from 10kaBP,
reaching its peak at 6 ka BP, and then remains stable due to
relatively steady woody and herbaceous cover. In contrast,
TraCE-21Kk-II largely captures a similar temporal trend to
that from pollen reconstruction, but the decline from 8 ka BP
to the present is primarily driven by a decrease in woody
cover, whereas the reduction in total vegetation cover from
pollen-based reconstruction is mainly due to a decrease in
herbaceous cover. In PMIP4, the model-prescribed vegeta-
tion cover for the Mid-Holocene exhibits significant variabil-
ity, with vegetation cover across different models ranging
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from 41.3 % to 97 %. This substantial difference in vegeta-
tion cover between models primarily stems from herbaceous
cover, which ranges from 25 % to 54 %, rather than woody
cover, which ranges more narrowly from 16.7 % to 17.8 %.

4 Discussion

4.1 Reliability of machine learning-based reconstruction
of vegetation cover

Here we employed five machine learning methods and the
Modern Analogy Technique (all models used default param-
eters) for reconstructing temporal trends. Among these, RF
models achieved the highest R? values and the lowest RMSE
and MAE, followed by extreme gradient boosting, Modern
Analogy Technique, k-nearest neighbor, gradient boosting
machine, and support vector machines (Fig. S6), consistent
with other studies (Hengl et al., 2018; Lindgren et al., 2021).
This study suggested that the RF model is a superior method
for reconstructing vegetation cover using pollen data.

We employed a comprehensive pollen dataset from the Ti-
betan Plateau to develop an RF-temporal model at the site
level. This extensive modern surface pollen database across
Asia spans the spatial climate gradient that could be large
enough to encompass the temporal one recorded by fossil
pollen assemblages (Fig. S9), giving us a relatively high level
of confidence in the reconstruction of vegetation cover at
the site level. Sensitivity tests introducing random perturba-
tions to site coordinates demonstrated that vegetation cover
reconstructions from perturbed coordinates were highly con-
sistent with the original dataset (R?> = 1; Fig. S10). In addi-
tion, the inclusion of topographic variables in developing the
RF-temporal model could significantly improve the predic-
tive accuracy at the site level (Fig. S11).

By extrapolating vegetation cover from the site level to
the spatial scale, we first develop an individual RF-spatial
model for each 400-year time bin and use gridded climate
and topographic data from paleoclimatic simulations to ob-
tain spatially continuous vegetation cover within each time
bin. The 400-year resolution was selected as an optimal bal-
ance between model accuracy and the temporal granularity
required to capture rapid vegetation changes. On one hand,
fossil pollen datasets exhibit a median temporal resolution of
220 years and a 75th percentile of 360 years (Fig. S2), indi-
cating that increasing the time bin beyond 400 years yields
minimal gains in sample size for RF-spatial model recon-
struction (Fig. S12). On the other hand, coarser resolutions
risk overlooking vegetation responses to centennial-scale cli-
matic events, such as the Younger Dryas and Bglling—Allergd
periods (Fig. S5).

We found that ESMs generally performed much better
in capturing spatial variation in paleoclimatic variables than
their temporal variability. The notorious model errors in the
temporal variability of paleoclimatic variables would not
greatly affect our reconstruction within each time bin, since
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Figure 5. Spatial distribution of vegetation cover from model-prescribed or simulations and the reconstructed dataset for the Mid-Holocene
(6 ka BP). The numerical values in the lower left of each panel indicate the spatial correlation between the reconstructed data and model-
prescribed or simulated cover.
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Figure 6. Changes in vegetation cover of model-prescribed or simulations and reconstruction dataset since 16 ka BP. Total vegetation
cover (a), Woody cover (b), herbaceous cover (c), broadleaved forest cover (d), and coniferous forest cover (e). Circular indicates models
using prescribed preindustrial vegetation cover, whereas triangular indicates models with activated dynamic vegetation modeling. Transition
simulations (TraCE-21K-II and HadCM3B) both use dynamic vegetation.

we only use the spatial pattern of paleoclimate variables in
spatial interpolation. This statement was further confirmed
by our perturbation tests. Specifically, within each 400-year
bin, we developed 20 sets of spatial RF models by using
the fossil pollen data within this bin as the response variable
and randomly selecting paleoclimate data from other bins as
drivers. These perturbation results were generally consistent
with the original results (Fig. S13), suggesting that the tem-
poral variability in gridded climate data would not affect the
temporal variability in our reconstruction.

4.2 Uncertainty of machine learning-based vegetation
cover

Although data-driven machine learning methods provide a
less parameter-intensive approach to reconstructing paleo-
vegetation, they still rely on the assumption that the rela-
tionship between pollen assemblages and vegetation cover,
extracted from modern observations, has remained consistent
over time. Consequently, the robustness of our reconstruction
ultimately depends on the quality of the input datasets, in-
cluding pollen percentage data and vegetation cover derived
from remote sensing observations.

Pollen datasets, compiled from diverse studies with vary-
ing objectives and methods, inevitably contain inconsisten-
cies in sampling, taxonomic identification, and age con-
trol. We implemented rigorous quality-control procedures,
including duplicate removal, correction of inaccurate coor-
dinates, taxonomic standardization, and filtering for higher
temporal resolution and reliable chronologies. Nonetheless,
unavoidable uncertainties remain due to environmental con-
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tamination and the absence of standardized pollen process-
ing and identification protocols. Furthermore, pollen sam-
ples could potentially be corrupted by anthropogenic distur-
bances, such as land use, agricultural practices, and the in-
troduction of exotic plants (Cronin et al., 2017; Sobol et al.,
2019; Zhang et al., 2025).

To link modern pollen assemblages with vegetation cover,
we employed the MCD12Q1 land cover product in conjunc-
tion with the GLASS vegetation cover dataset to estimate
the cover of different plant functional types. While these
satellite-based reanalysis datasets are robust at the global
scale and are widely applied, they generally introduce larger
uncertainties than field observations or region-specific veg-
etation maps. Such acceptable but non-negligible errors in-
evitably affect the precision of paleovegetation reconstruc-
tions. In addition, although the majority of modern pollen
samples used in this study were collected after the 2000s,
some were obtained in the 1980s and 1990s. The vegeta-
tion represented by these earlier samples may have shifted
under contemporary climate change, particularly given the
rapid warming observed in recent decades.

The accuracy of both pollen- and remote-sensing-based
vegetation classifications imposes constraints on the vegeta-
tion classification scheme of our reconstruction. Pollen iden-
tification, relying primarily on exine morphology, is typically
limited to the genus or family level, making it difficult to dis-
tinguish functional ecological traits such as evergreen ver-
sus deciduous. For example, evergreen and deciduous species
of Quercus display only minor morphological differences in
their pollen and are therefore generally grouped as “Quercus-
type pollen” (Pefiuelas et al., 2009), with finer distinctions
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requiring additional evidence such as macrofossils (Liu et
al., 2007). This limitation is compounded by the relatively
coarse spatial resolution of MODIS data, which is suitable
for regions with simple land cover types but often yields low
classification accuracy in areas with more complex vegeta-
tion (Zeng et al., 2016). As a result, we did not separate ever-
green and deciduous forests from broadleaved and coniferous
forests. Additionally, all existing global land cover datasets
consistently indicate that shrub cover on the Tibetan Plateau
is minimal, generally less than 2 % (Yang et al., 2017). Ac-
cordingly, shrubs were not treated as a separate class but in-
stead merged with trees under the broader category of woody
vegetation. The absence of a more detailed vegetation classi-
fication scheme constrains the applications of this paleovege-
tation dataset in climate, carbon cycle, and biodiversity stud-
ies, particularly when differences among vegetation types are
of primary interest.

Additionally, the RF models tend to overestimate low val-
ues and underestimate high values (Wang et al., 2023; Liu
et al., 2024a). The spatially uneven distribution of surface
pollen samples would exacerbate this problem. In addition,
the long-distance transport of arboreal pollen from forested
regions at lower altitudes may lead to an overestimate of
vegetation cover in receptor regions (Wang et al., 2023).
An alternative solution is to create mock records (Hengl et
al., 2018; Lindgren et al., 2021). For instance, fossil pollen
records are inherently sparse in barren regions (e.g., alpine
glaciers and the deserts of the Tarim Basin), while we could
assume that these areas have been devoid of vegetation
during certain periods. Adding sample points across these
unvegetated regions would enhance model performance in
the prediction of vegetation cover. Moreover, incorporating
records of past desert regions from other paleo-evidence be-
yond pollen could further improve accuracy (Davis et al.,
2024).

Coupling data-driven and process-based approaches of-
fers a promising avenue toward higher-quality paleovege-
tation reconstructions. Process-based models such as RE-
VEALS provide taxon-specific cover estimates by ac-
counting for pollen productivity and dispersal, while data-
driven approaches provide actual vegetation cover to refine
these taxon-based reconstructions. Such integration not only
strengthens the robustness and credibility of the datasets
through cross-validation of independent methods but also
provides taxon-level reconstructions that allow the tracing of
species’ migrations, expansions, and contractions in response
to climatic transitions.

4.3 Applications of a spatio-temporally explicit estimate
of vegetation cover

Here we reconstruct the first spatiotemporally continuous
vegetation cover dataset using random forest. The spa-
tiotemporally continuous vegetation cover datasets provide
a millennial-scale perspective on how vegetation responds
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and adapts to paleoclimatic change on the one hand (Xu et
al., 2023; Dziomber et al., 2024). On the other hand, by
analyzing the woody-to-herbaceous ratio in our reconstruc-
tion, we could potentially reveal how westerlies and Asian
monsoons evolved over the Tibetan Plateau since the LGM
(Sun et al., 2017). In addition, the vegetation cover presented
in this dataset is a result of impacts from both paleocli-
matic change and prehistoric human activities. By comparing
pollen-based reconstruction to pure climate change-induced
changes in vegetation cover (e.g., ESMs results), we could
identify the onset and magnitude of human activities on the
Tibetan Plateau (Strandberg et al., 2023).

Second, the comparison of our reconstruction with vege-
tation cover in ESMs over the Tibetan Plateau shows that the
models generally overestimate vegetation-related variables,
which is linked to inaccurate parameterization of soil mois-
ture dynamics (Yang et al., 2020; Song et al., 2021; Kang et
al., 2022). Such overestimation would introduce a significant
bias into simulations of surface radiation balance, water, en-
ergy, and carbon cycles (Alibakhshi et al., 2020; Gui et al.,
2024). For instance, models generally overestimate vegeta-
tion cover in the western plateau, which suggests that mod-
els have a lower-than-expected surface albedo and then a no-
table climate bias. Evidence is mounting that surface darken-
ing over the Tibetan plateau could enhance Asian monsoon
systems (Tang et al., 2023). The lower-than-expected albedo
in models could then introduce a bias into simulations of at-
mospheric circulation and precipitation patterns over Asian
regions (Tang et al., 2023). Prescribing our spatio-temporally
explicit map in ESMs could help realistically capture the
biophysical and biogeochemical impacts of vegetation cover
changes on paleoclimatic change.

The construction methods and spatiotemporal resolution
of this dataset necessitate several considerations in its ap-
plication: (1) the magnitude of modern vegetation cover
datasets directly influences the magnitude of reconstructed
vegetation cover, while their spatial heterogeneity shapes
the temporal variability of reconstructed sequences. How-
ever, substantial discrepancies exist among vegetation cover
datasets owing to differences in data sources, processing
methods, and classification systems (Liu et al., 2024b; Xu
et al., 2024). Therefore, when comparing paleovegetation
reconstructions derived from different modern vegetation
cover datasets, these intrinsic differences must be care-
fully taken into account. (2) The spatiotemporal resolutions
of 0.5°x0.5° and 400 years are appropriate for regional
to continental-scale analyses and for examining long-term
trends, but they are insufficient to resolve fine-scale ecolog-
ical heterogeneity or capture decadal climatic fluctuations.
(3) The classification of vegetation into seven types, while
facilitating comparability with Earth System Models, does
not fully capture the complexity of plant functional diversity
or ensure direct equivalence with model-specific plant func-
tional types.
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5 Data availability

Data are publicly accessible at Zenodo via the follow-
ing link: https://doi.org/10.5281/zenodo.16908779 (Zhang,
2024). This link provides a detailed data summary along with
instructions on variable definitions in the file and their usage,
ensuring that readers can effectively utilize the dataset.

6 Conclusions

Here we integrate fossil pollen records, along with the rela-
tionship between modern pollen assemblages and vegetation
cover, in a machine-learning approach to generate a spatio-
temporally explicit map of vegetation cover (total vegetation,
woody vegetation, herbaceous vegetation, coniferous forest,
broadleaved forest, alpine steppe, and alpine meadow) for the
Tibetan Plateau, spanning from the deglaciation period to the
present, at a spatial resolution of 0.5° and a temporal reso-
lution of 400 years. We discussed how different settings of
random forest modeling affect reconstruction accuracy and
demonstrated the robustness of our pollen-based reconstruc-
tion. In contrast to the previous pollen-based reconstruction
at the site level over the Tibetan Plateau, we have produced
the most spatially complete estimate by ingesting spatial in-
formation on climate variables. We demonstrated that the use
of spatial information on paleoclimatic data in producing the
temporal evolution of regional vegetation cover would not
be affected by notorious uncertainties in the temporal evolu-
tion of paleoclimatic variables. Our machine learning-based
vegetation cover dataset can be used to understand how veg-
etation responds and adapts to paleoclimatic change. More-
over, this vegetation data can also be fed into the Earth sys-
tem models for quantifying the “true” feedback of vegetation
cover changes on paleoclimatic change.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-5557-2025-supplement.
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