Supplement of Earth Syst. Sci. Data, 17, 5557–5570, 2025 https://doi.org/10.5194/essd-17-5557-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

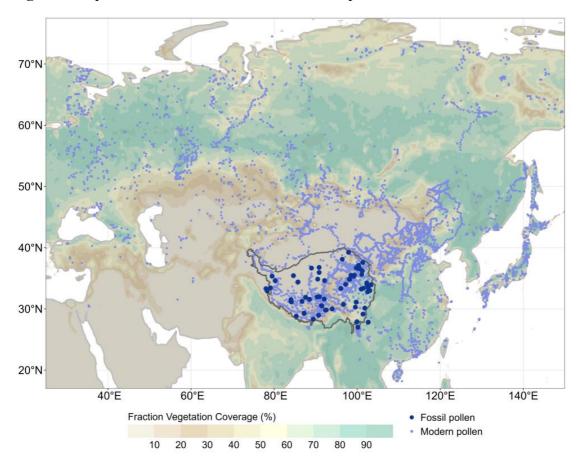
Pollen-based reconstruction of spatially-explicit vegetation cover over the Tibetan Plateau since the last deglaciation

Pengchao Zhang et al.

Correspondence to: Tao Wang (twang@itpcas.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1	This file includes:		
2	Tables S1-S2		
3	Figures S1–S13		
4	References in the supplementary materials		
5			


Table S1 List of the covariates used in the RF-temporal models.

Variable	Type	Type Source and Reference	
123 pollen taxes	Pollen	Modern pollen dataset for Asia https://data.tpdc.ac.cn	
Elevation Slope Aspect Eastness Northness Roughness TRI (Terrain Ruggedness Index)	Topographic	WorldClim version 2. http://www.worldclim.com/version2	
TPI (Topographic Position Index)			

Table S2 List of the 63 covariates used in the RF-spatial models.

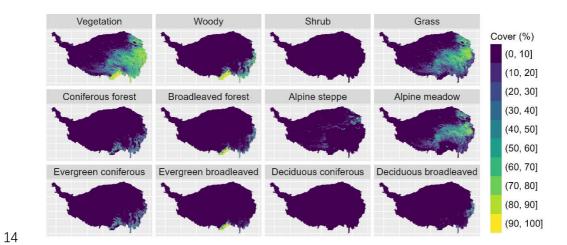

Variable	Type	Data resolution	Source and Reference	
Annual mean temperature	Bioclimatic	~0.5°		
Temperature annual range	Bioclimatic	~0.5°		
Temperature seasonality	Bioclimatic	~0.5°		
Isothermality	Bioclimatic	~0.5°		
Maximum temperature of warmest month	Bioclimatic	~0.5°		
Mean diurnal range	Bioclimatic	~0.5°		
Mean temperature of coldest quarter	Bioclimatic	~0.5°		
Mean temperature of driest quarter	Bioclimatic	~0.5°		
Mean temperature of warmest quarter	Bioclimatic	~0.5°	CUELSA Tracesale	
Mean temperature of wettest quarter	Bioclimatic	~0.5°	CHELSA-TraCE21k	
Minimum temperature of coldest month	Bioclimatic	~0.5°	www.chelsa-climate.org	
Precipitation seasonality	Bioclimatic	~0.5°		
Annual precipitation	Bioclimatic	~0.5°		
Precipitation of coldest quarter	Bioclimatic	~0.5°		
Precipitation of driest month	Bioclimatic	~0.5°		
Precipitation of driest quarter	Bioclimatic	~0.5°		
Precipitation of warmest quarter	Bioclimatic	~0.5°		
Precipitation of wettest month	Bioclimatic	~0.5°		
Precipitation of wettest quarter	Bioclimatic	~0.5°		
Monthly maximum precipitation	Climatic	~0.5°	CHELSA-TraCE21k www.chelsa-climate.org	
Monthly minimum temperature	Climatic	~0.5°		
Monthly precipitation	Climatic	~0.5°		
Elevation	Topographic	~0.5°		
Slope	Topographic	~0.5°		
Aspect	Topographic	~0.5°		
Eastness	Topographic	~0.5°	WorldClim version 2.	
Northness	Topographic	~0.5°	http://www.worldclim.co	
Roughness	Topographic	~0.5°	m/version2	
TRI (Terrain Ruggedness Index)	Topographic	~0.5°		
TPI (Topographic Position Index)	Topographic	~0.5°		

Figure S1. Spatial distribution of modern and fossil pollen records.

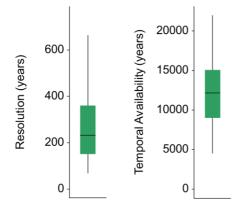


Figure S2. Spatial distribution of modern vegetation cover for different plant functional

types (PFTs) on the Tibetan Plateau.

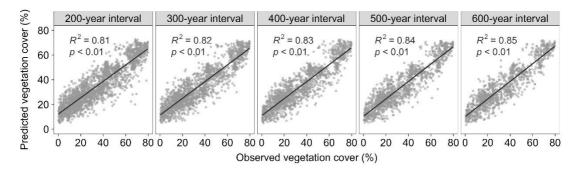


Figure S3. The statistical distribution of the resolution and temporal coverage of the fossil pollen records. The horizontal black line indicates the mean values, bar ends represent the 25th and 75th percentiles, and horizontal lines represent the 5th and 95th percentiles.

Figure S4. Model performance of Random Forest reconstructions across different

23 temporal resolutions based on 10-fold cross-validation.

Figure S5. Temporal trends of reconstructed vegetation cover under different temporal resolutions. Solid lines represent regional means estimated using a Generalized Additive Model, and shaded areas indicate 95% confidence intervals.

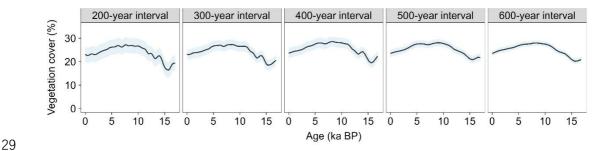
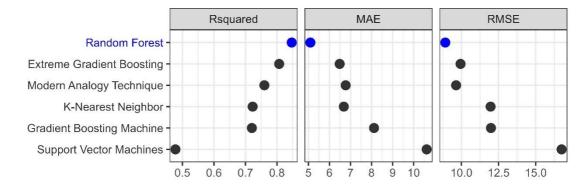
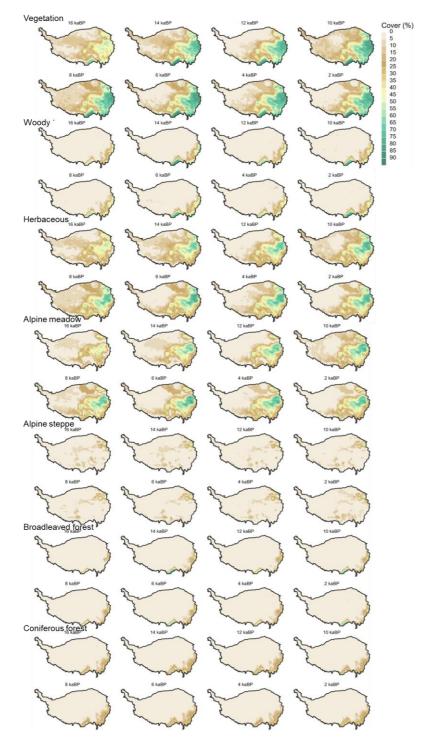
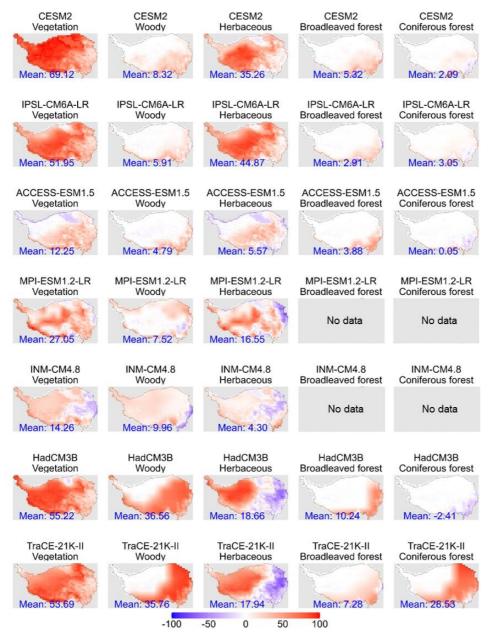
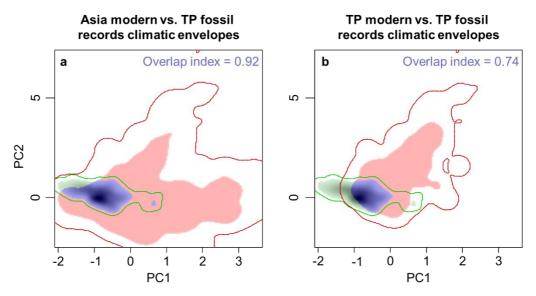
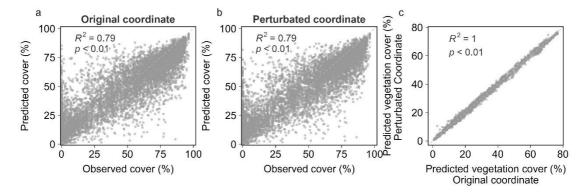




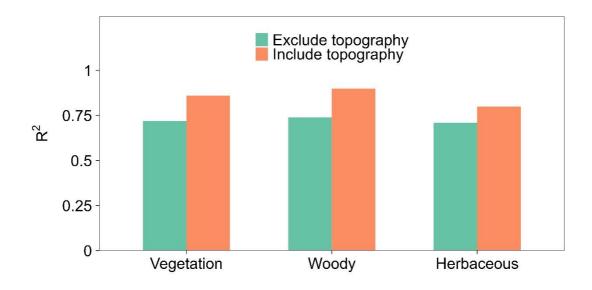
Figure S6. Performance comparison between five machine learning methods and the Modern Analogy Technique. The methods selected for this study are highlighted in blue text.

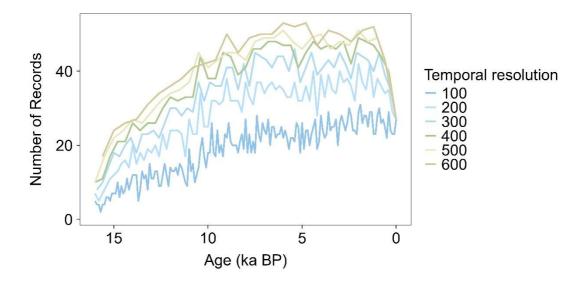
Figure S7. Different vegetation type cover for eight selected time windows from the

last deglaciation to the present.

Figure S8. Spatial distribution of the differences of vegetation cover between the model simulations and reconstructed dataset for the mid-Holocene (6 Ka BP). The values below each panel indicate the mean difference between the model simulations and reconstruction.


Figure S9. Climatic envelope overlap between modern and fossil records, mapped in climate space using TraCE-21ka climate information and the direct methodological approach ('ecospat' package in R; (Di Cola et al., 2017)). a. Asia modern vs. TP fossil pollen records climatic envelopes. b. Tibetan plateau modern vs. Tibetan plateau fossil pollen records climatic envelopes. Green areas represent climatic spaces where only fossil records occurred; red areas represent climatic spaces where only modern records; and purple areas represent climatic spaces where modern and fossil records overlapped in their climatic distribution. The solid green outline indicates the extent of the fossil records' climatic space across the entire study period. The solid red outline indicates the extent of the modern records' climatic space. Darker areas represent higher densities of fossil pollen samples. In the upper left corner, the overlap index displays the degree of overlap between the two climate spaces, with higher values indicating a greater extent of overlap (referencing the niche stability index for two species; (Guisan et al., 2014)).


Figure S10. Model validation and vegetation cover reconstruction based on modern pollen sites with randomly perturbed coordinates. (**a-b**) Accuracy of RF models trained using original (a) and perturbed (b) coordinates. (**c**) Comparison of reconstructed vegetation cover between models using original and perturbed coordinates.

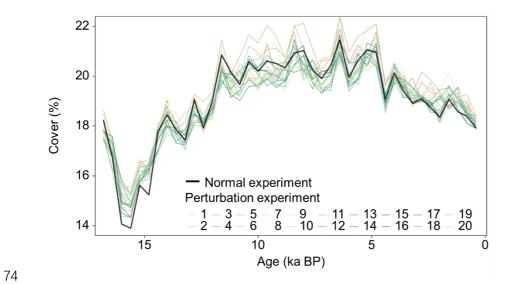

Figure S11. Prediction accuracy of the Random Forest model under different combinations of predictor variables, using 10-fold cross-validation.

Figure S12. Changes in the number of fossil pollen records from 16 ka to the present at different temporal resolutions.

- 71 **Figure S13.** The comparison between the perturbation experiment and the normal
- experiment. In the perturbation experiment, the temporal sequence of input data used
- 73 for RF-spatial is randomly scrambled.

75 References

- 76 Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., Randin, C., Engler, R.,
- Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., and Guisan,
- 78 A.: ecospat: an R package to support spatial analyses and modeling of species niches and
- 79 distributions, Ecography, 40, 774–787, https://doi.org/10.1111/ecog.02671, 2017.
- 80 Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., and Kueffer, C.: Unifying niche shift
- 81 studies: insights from biological invasions, Trends Ecol. Evol., 29, 260-269,
- 82 https://doi.org/10.1016/j.tree.2014.02.009, 2014.