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Abstract. The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment pro-
vided a comprehensive suite of cloud–aerosol–precipitation observations with both in situ and remote-sensing
instruments. In this study, we apply a tracking methodology to volumetric radar data, creating a refined
database focused on deep convective systems with a full life cycle, incorporating lightning data. This refined
deep convection database is shown to be a robust sample of the complete dataset in terms of convective
system morphology. The analysis reveals significant seasonal and diurnal variations in convective morphol-
ogy and intensity, with most intense systems occurring during the dry-season–wet-season transition. The fil-
tered dataset offers a robust sample for future studies on Amazonian convection. The database is available at
https://doi.org/10.5281/zenodo.13732692 (Lopes, 2024).

1 Introduction

Due to its large territorial extent that includes pristine forest,
agricultural regions, and a large urban zone with an indus-
trial center, the Amazon tropical rainforest serves as a natural
test bed for studies on cloud–aerosol–precipitation and land–
atmosphere interactions. This complex ecosystem is one of
the main centers of convection regulating the climate (No-
bre et al., 2009; Artaxo et al., 2022) and the South American
monsoon system (SAMS) (Zhou and Lau, 1998; Jones and
Carvalho, 2002). Several convection patterns are present in
the region, mainly modulated by the Hadley circulation and
the corresponding position of the Intertropical Convergence
Zone (ITCZ), which determines the Amazonian wet (austral
summer) and dry (austral winter) seasons.

Several field experiments have been conducted in the re-
gion in order to study different aspects of cloud–aerosol–
precipitation interactions in the Amazon. The Amazon

Boundary Layer Experiment campaigns ABLE 2A (Har-
riss et al., 1988) and 2B (Harriss et al., 1990) focused
on the chemistry and dynamics of the lower atmosphere
in the dry and wet seasons, respectively. The Large-Scale
Biosphere–Atmosphere Experiment in Amazonia (LBA)
program (Silva Dias et al., 2002) was responsible for numer-
ous field experiments during late 1990s and early 2000s, in-
cluding the first major mesoscale atmospheric campaign as
part of the Tropical Rainfall Measuring Mission (TRMM)
validation campaigns and the CHUVA (Cloud Processes of
the Main Precipitation Systems in Brazil) project, a contri-
bution to cloud-resolving modeling and to the Global Pre-
cipitation Measurement (GPM) mission (Machado et al.,
2014a). The Observations and Modeling of the Green Ocean
Amazon (GoAmazon2014/5; Martin et al., 2017) campaign
was the first long-term experiment to analyze the effects of
the Manaus pollution plume at different experimental sites
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around Manaus, and it included two intensive operation pe-
riods (IOPs) during the wet and dry season. Unlike previous
experiments, an operational weather radar, operated by Sis-
tema de Proteção da Amazônia (SIPAM – System for the
Protection of the Amazon), was available during GoAma-
zon, and it enabled coverage of all experimental sites with
cloud remote-sensing data at great temporal and spatial res-
olutions. The main goal of the GoAmazon experiment was
to analyze cloud–aerosol–precipitation interactions between
the forest and the Manaus metropolitan region, specifically
the transformation of air plumes from the pristine forest
to the Manaus pollution plumes and their subsequent east-
ern propagation. The goal of the CHUVA-Manaus experi-
ment was to characterize the convection regimes in the re-
gion using remote sensing, with the installation of an X-band
radar during the experiment and the establishment of part-
nerships with CENSIPAM (Centro Gestor e Operacional do
Sistema de Proteção da Amazônia – Manager and Opera-
tional Center of the System for the Protection of the Amazon)
for surface radar data and NASA–JAXA (National Aeronau-
tics and Space Administration–Japan Aerospace Exploration
Agency) for satellite radar data from TRMM and GPM.

A few studies, such as Giangrande et al. (2017), Machado
et al. (2018), Giangrande et al. (2020), and Biscaro et al.
(2021), have provided insight into the convection character-
istics during GoAmazon. Each of them use different def-
initions of cloud features employing different sources of
remote-sensing data, and they even diverge with respect to
their definition of the wet and dry seasons, thereby making it
difficult for other studies to follow a homogeneous method-
ology of convection measurements, especially those that an-
alyze cloud–aerosol–precipitation interactions. For this rea-
son, this study aims to create a comprehensive database and
methodology for convective systems based on radar data that
can be used in future studies utilizing GoAmazon data.

2 Materials and methods

2.1 Data

Data sources for this study are the GoAmazon (Martin et al.,
2017) and CHUVA-Manaus (Machado et al., 2014b) field
experiments that occurred between January 2014 and De-
cember 2015 around Manaus, Amazonas. The main site of
these experiments, named T3, was located in Manacapuru,
Amazonas, Brazil (3.213° S, 60.598° W), about 70 km west
of Manaus. A wide range of cloud, precipitation, aerosol,
and atmospheric instruments were installed at the site, as
part of the ARM (Atmospheric Radiation Measurement) mo-
bile facility AMF1 that took measurements during most of
the experiment. Some additional instruments and other sites
(shown in Fig. 1 of Martin et al., 2017) took measurements
during two intensive operation periods (IOPs), with IOP1 be-
ing between 1 February and 31 March 2014 (wet season) and
IOP2 being between 15 August and 15 October 2014 (dry

Figure 1. Amazonian region used in this study, showing the SIPAM
radar location (red triangle), the 250 km originally calculated cov-
erage (dashed red lines), the 150 km× 150 km bounding box (red
square) used in the study, and the T3 site location in Manacapuru
where surface data (not shown in this study) were collected.

season). More details about the campaigns can be found in
Martin et al. (2016, 2017).

In order to create the convective system database, radar
volumes from the SIPAM (Sistema de Proteção da Amazô-
nia – System for the Protection of the Amazon) single-
polarization S-band radar located in Manaus (3.149° S,
59.991° W, 102.4 m altitude, Fig. 1) were selected during
the period of the GoAmazon experiment (1 January 2014
to 31 December 2015). These volumes consist of CAPPIs
(constant-altitude plan position indicators) with a bias cor-
rection calculated by Schumacher and Funk (2018); Biscaro
(2016). Table 1 shows the data settings, including the bias
values applied throughout the period.

Given the coarse characteristics of this radar and its scan
strategy, such as varying numbers of elevation sweeps and
antenna vibrations between volumes, the radar data used in
this study consist of quality-controlled, bias-corrected CAP-
PIs, gridded onto a 1×1 km horizontal resolution, following
previous studies using the same source of data (e.g., Gupta
et al., 2024). Following the approach of Saraiva et al. (2016),
we restricted our analysis to a 150× 150 km box centered
on the radar location. This domain allows for consistent and
reliable detection of convective structures while also mini-
mizing the effects of beam broadening, ground clutter, and
incomplete vertical sampling at farther ranges.

A second data source was employed to calculate param-
eters related to lightning activity in the convective systems.
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Table 1. SIPAM radar data settings processed by CPTEC-INPE.

Type CAPPIs

Format Binary, 15× 500× 500 elements

Resolution (vertical, horizontal, temporal) 1× 1× 1 km, 12 min

Min, max height 2 km, 16 km

CAPPI processing software RSL (Radar Software Library)

Bias correction (Schumacher and Funk, 2018) 3 Jan to 5 Feb 2014: +1.0 dB
6 Feb to 19 Aug 2014: +3.0 dB
20 Aug to 16 Nov 2014: −2.5 dB
17 Oct 2014 to 6 Mar 2015: −5.5 dB
7 Mar to 5 Jul 2015: −4.0 dB
6 Jul to 28 Oct 2015: −1.5 dB
29 Oct to 31 Dec 2015: +1.0 dB

The Vaisala Global Lightning Detection Network (GLD360;
Demetriades et al., 2010) measures cloud-to-ground return
strokes in the VLF (very low frequency) range using trian-
gulation techniques, magnetic direction finding (MDF), and
time of arrival (TOA), as well as lightning recognition algo-
rithms. Limitations of this network include the detection ef-
ficiency in Brazil, which is 70 % in average (Naccarato et al.,
2010) but can be significantly lower in areas with deficient
coverage such as northern Brazil, including the Amazon re-
gion, as well as the definition of a measured stroke as a sin-
gle or multiple real return strokes (Murphy and Nag, 2015).
Stroke data were accumulated over 12 min using the same
time stamps as the radar data and were selected within the
cluster polygons delimited by the tracking algorithm.

2.2 Tracking methodology

The convective system database was created with the TATHU
(Tracking and Analysis of Thunderstorms) software package
(Uba et al., 2022) applied to the radar data described in the
previous section. The software is a free, open-source Python
package available at Uba (2025a), and it addresses convective
system tracking as a multi-target tracking problem (Makris
and Prieur, 2014). The main modules are observation, de-
tection, description, tracking, and forecast (not used in this
study). The algorithm detects agglomerates of pixels – here-
after referred to as clusters of storm cells – in an input field at
a single time step according to the (one or more) threshold(s)
and extracts their statistics, such as size (in pixels) and mean
and maximum values of the input field. From subsequent
time steps, based on spatial overlap, it tracks and names (via a
universal unique identifier – uuid) the convective systems that
occurred in the period and their status during the described
life cycle, with status being “spontaneous generation” (new
cluster), “continuity” (growing or decaying cluster), “split”
(when a single cluster separates into two or more clusters af-
ter a time step), or “merge” (when two or more clusters merge

into a single cluster after a time step). The identification of
a split or a merge depends mainly on the cluster’s propa-
gation between subsequent time steps, where discrepancies
can occur in situations such as clusters generating within
the same relative overlap area of other propagating clusters.
This split/merge problem is common to several tracking algo-
rithms that use area overlap strategies, such as SCIT (Storm
Cell Identification and Tracking Algorithm; Johnson et al.,
1998) and TITAN (Thunderstorm Identification, Tracking,
Analysis, and Nowcasting; Dixon and Wiener, 1993).

Table 2 shows the TATHU settings used in this study.
Based on several considerations, we selected SIPAM radar
reflectivity greater than 20 dBZ at the 3 km CAPPI field
as the input field to the TATHU tracking algorithm. First,
this altitude lies above the typical cloud base in the region
(Fisch et al., 2004; Souza et al., 2023) and coincides with the
level at which maximum reflectivity is frequently observed in
convective precipitation cores below freezing layer. Second,
lower elevations near the radar are significantly affected by
ground clutter and beam blockage (Giangrande et al., 2016;
Schumacher and Funk, 2018), compromising the reliability
of reflectivity data closer to the surface. Additionally, the
SIPAM radar’s relatively coarse resolution limits the ability
to resolve vertical structures accurately, particularly storm
tilts. However, in the tropical environment of the Amazon,
vertical wind shear is generally weak, reducing the likelihood
of significant storm tilt or vertical displacement of convective
cores. These factors together support the use of a horizontal
3 km CAPPI as a consistent and suitable input for identifying
and tracking convective systems in this study. Other track-
ing algorithms consider composite reflectivity (e.g., Heiken-
feld et al., 2019; Sokolowsky et al., 2024) instead of 2D re-
flectivity fields to offer a more comprehensive depiction of
the 3D structure of convective systems. However, consider-
ing the context of our study and the nature of this dataset
(exposed above), the 3D structure of the convective systems
should be captured. A comprehensive study of the implica-
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Table 2. TATHU parameters (original names in parentheses) and values chosen for the generation of the systems (raw) and systems_filtered
(filtered) datasets.

Input data 3 km CAPPI in a 150× 150 km box (300× 300 elements) centered at the radar
location, between January 2014 and December 2015

Reflectivity thresholds (threshold value) Values greater than 20 and 40 dBZ

Minimum cluster sizes (minarea) 100 and 40 km2

Tracking technique (trackers class) Relative overlap area (RelativeOverlapAreaStrategy)

Minimum cluster overlap area 10 %

Maximum interval between images 60 min

Statistics (stats) Maximum, mean, and standard deviation of reflectivity; size (number of pixels); and
number of layers (corresponding to having one or two reflectivity and minimum size
thresholds)

Output PostGIS database (systems and systems_filtered tables)

Filters applied – There is at least one 40 dBZ/40 km2(corresponding to deep convection) pixel in any
time stamp
– Does not intersect the bounding box of the grid (corresponding to part of the cluster
probably being outside the tracking region)
– Lasts longer than 12 min (one time stamp) or has a relation with another convective
system (by splitting or merging)

tions with respect to the reflectivity thresholds for tracking
convective systems in CAPPI fields can be found in Leal
et al. (2022) but is not within the scope of this study. More-
over, our approach is methodologically consistent with pre-
vious studies that have successfully employed single-level
CAPPI fields to characterize convective systems in the Ama-
zon (e.g., Laurent and Laurent, 2002; Albrecht et al., 2011;
Leal et al., 2022; Gupta et al., 2024). These studies have pro-
vided valuable insights into storm morphology, evolution,
and vertical structure using similar techniques. Adopting a
comparable methodology ensures continuity and compara-
bility with the existing body of literature on Amazonian con-
vection.

The relative overlap area strategy considers two subse-
quent clusters in time as the same convective system when
there is at least a 10 % overlap between their areas (i.e., poly-
gons). The maximum interval between images considers a
data gap sufficient to ensure the continuity of the convective
systems, but it can result in different convective systems be-
ing tracked as the same system if they are in the overlap area,
considering that the average life cycle of tropical convection
is less than 60 min. Within the main statistics, clusters with a
number of threshold layers equal to 0 (with only the 20 dBZ
reflectivity threshold) or 1 (with both the 20 and 40 dBZ re-
flectivity thresholds) can be used to separate systems with or
without deep convective cores.

For better illustration of the terminology of the TATHU
tracking system applied to SIPAM 3 km CAPPI fields, Fig. 2
shows a schematic of these definitions: a cluster is a contigu-
ous region (polygon) of pixels within the 3 km CAPPI re-

flectivity field that exceeds the 20 dBZ reflectivity threshold
identified at a single time step; a convective system is a time-
continuous sequence of clusters that are linked across radar
volumes based on spatial overlap. A cluster can have one or
several cores that exceed the 40 dBZ reflectivity threshold,
an estimation of deep convection, but these cores are consid-
ered to be part of a single cluster during the description and
tracking of the convective systems.

Output data were stored in a PostGIS database, a database
management system (DBMS) with geospatial support that al-
lows for the storage of large volumes of data in a tabular
format, including geolocated geometries. The database was
converted to GeoJSON datasets in order to make it easily
available in Lopes (2024).

Two datasets were defined based on the TATHU tracking.
The original – hereafter referred to as the raw dataset – con-
tains all of the convective systems observed in the period,
regardless of duration, size, or status during the life cycle. In
contrast, the filtered dataset contains only the convective sys-
tems that met the filtering criteria described in Table 2. The
second threshold criteria (40 dBZ in a 40 km2 minimum area)
is used here as a definition of deep convective cores present
during the life cycle. Clusters intersecting the borders of the
grid had their associated convective systems discarded to ex-
clude systems without a full life cycle within the study area.
Systems with only one time step were also discarded. We
created this filtered dataset to provide a subset of deep con-
vective systems with a full life cycle, an important criteria for
several convection studies.
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Figure 2. Illustrative deep convective system as observed by TATHU: cluster morphology with 20 dBZ (orange) and 40 dBZ (dark red)
thresholds in five valid subsequent time stamps with the TATHU status (spontaneous generation or continuity) and different phases (growth,
mature, and decay) of a full life cycle.

The original systems dataset contains 91 609 convec-
tive systems and 322 896 clusters, while the filtered sys-
tems_filtered dataset contains 5976 convective systems
(6.5 % of the original dataset) and 40 394 clusters (12.5 % of
the original dataset). Using the filtered dataset with the ad-
ditional lightning data, several other parameters were calcu-
lated for each cluster (Table 3) related to storm morphology.
The following equations were applied for VIWL (vertically
integrated warm liquid), VII (vertically integrated ice), and
VIL (vertically integrated liquid), respectively:

VIWL=
5 km∑
i=2 km

3.44× 10−6
(
Zi +Zi+1

2

) 4
7
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2

) 4
7
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3 Results

3.1 Raw and filtered dataset characteristics

This subsection compares the physical characteristics be-
tween the raw and filtered datasets in order to define what
type of convective system each dataset represents. Figure 3
shows the size – represented by area (in km2) – distribu-
tion of clusters and the maximum size of convective systems.
Both distributions have a maximum frequency in the small-
est (1000 km2) area. The maximum area of the raw systems
is 6 times larger (60 000 km2 vs. 10 000 km2) and the distri-
bution drops faster in the filtered systems. These characteris-
tics show the filtering effect around the border of the 150 km
bounding box (Fig. 1), which excluded very large clusters. A

200×200 point cluster with a 40 000 km2 area, for example,
can be considered too large because it occupies two-thirds of
the grid and probably intercepts the border of the bounding
box in a given time stamp.

Figure 4 shows the mean and maximum cluster reflectiv-
ity distributions for the raw (Fig. 4a) and filtered (Fig. 4b)
datasets. On raw data, the distributions show no signifi-
cant frequency peaks, with the mean reflectivity distributed
mainly (frequency above 20 %) between 20 and 40 dBZ and
the maximum reflectivity between 35 and 50 dBZ (frequency
above 15 %). Conversely, on the filtered data, peaks (above
35 %) can be found between 25 and 40 dBZ and between
50 and 55 dBZ of mean and maximum reflectivity, respec-
tively. These differences between the distributions represent
the filtering effect on the type of the selected clusters. The
filters ended up selecting more intense clusters (larger mean
and maximum reflectivity) and excluded mainly those that
did not exceed 40 dBZ – observe that the clusters with maxi-
mum reflectivity below 40 dBZ are significantly less frequent
(below 5 %) compared to the raw data ones.

Table 4 shows some characteristics of the convective sys-
tems of the raw and filtered datasets using the cluster classi-
fications on each time step. On both datasets, the percentage
of spontaneously generated convective systems was similar
(above 70 %); on the raw data, not all of these systems had
their full life cycle covered, whereas on the filtered data, all
of the systems had their full life cycle covered (as one of the
filtering criteria is to exclude convective systems that leave
the radar coverage area). A total of 53 % of the filtered con-
vective systems split or merged during their life cycle, com-
pared to 37 % of the raw systems; an important point here is
that 31 % of the raw systems and only 2 % of the filtered sys-
tems lasted only one time step (12 min) (not shown), mean-
ing that raw convective systems did not last long enough to
go through a split or merge. The majority (80 %) of the fil-
tered and half (49 %) of the raw convective systems were
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Table 3. Clusters’ additional parameters calculated on the filtered dataset.

Variable Description Reference

gld GLD strokes within a cluster area detected within 12 min (interval
between scans)

echotop_0,
echotop_20,
echotop_40

0, 20, and 40 dBZ echo top heights

z_freq Reflectivity frequencies per height; 15× 16 matrices with reflectivities
between −10 and 70 dBZ (every 5 dBZ) and heights between 2 and
16 km

Yuter and Houze (1995)

viwl_kgm2 VIWL (vertically integrated warm liquid) of the cluster (in kg m−2),
Eq. (1)

vii_kgm2 VII (vertically integrated ice) of the cluster (in kg m−2), Eq. (2) Petersen and Rutledge (2001)

vil_kgm2 VIL (vertically integrated liquid) of the cluster (in kg m−2), Eq. (3) Greene and Clark (1972)

nae_s_1 Normalized area expansion (in s−1) between clusters of the same
convective system

Machado and Laurent (2004)

gld_strmin Stroke rate between clusters of the same convective system (in strokes
per minute)

echotop0_kmmin,
echotop20_kmmin,
echotop40_kmmin

0, 20, and 40 dBZ echo top rate between clusters of the same
convective system (in km min−1)

Figure 3. Distribution of clusters’ area (a) and convective systems’ max area (b) for the raw (white) and filtered (black) datasets.
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Figure 4. Distribution of clusters’ max (purple) and mean (white) reflectivity for raw (a) and filtered (b) datasets.

Table 4. Frequency of spontaneously generated (did not generate
from splits or the first steps of algorithm rounds) convective systems
(CSs), split and/or merged CSs, and full-life-cycle (last time step in
continuity) CSs for the raw and filtered datasets.

Raw Filtered

CSs (total) 91 609 5976
CSs spontaneously generated (%) 72 73
CSs with split/merge (%) 37 53
CSs with full life cycle (%) 49 80

considered with their full life cycle (last time step was “con-
tinuity”), which is also explained by the high percentage of
raw systems with only one time step (i.e., only “spontaneous
generation” status). The 20 % of filtered convective systems
without a full life cycle are within the not spontaneously gen-
erated systems – products of a split or a merge with other
systems.

Table 5 shows the distribution of convective system dura-
tions for the raw and filtered datasets. The majority of the raw
(40 %) and filtered (47 %) systems lasted up to 1 h, indicat-
ing the predominance of isolated convective systems (Gian-
grande et al., 2023; Viscardi et al., 2024; Gupta et al., 2024).
Only 10 % of the raw systems lasted between 1 and 3 h, com-
pared to 36 % of filtered systems. The majority of convective
systems were short-lived, with 40 % of the raw and 47 % of
the filtered systems lasting up to 1 h, highlighting the preva-
lence of isolated convective systems. A notable difference
is observed in the 1–3 h range, where only 10 % of the raw
systems persisted, compared to 36 % in the filtered dataset.

Table 5. Frequency of spontaneously generated (did not generate
from splits or the first steps of algorithm rounds) CSs, split and/or
merged CSs, and full-life-cycle (last time step in continuity) CSs
for the raw and filtered data tables.

Raw Filtered

CS duration≤ 1 h 79 301 (86.6 %) 3448 (57.7 %)
1 h<CS duration≤ 2 h 6950 (7.6 %) 1535 (25.7 %)
2 h<CS duration≤ 3 h 2597 (2.8 %) 635 (10.6 %)
3 h<CS duration≤ 4 h 1170 (1.3 %) 239 (4 %)
4 h<CS duration≤ 5 h 641 (0.7 %) 74 (1.2 %)
5 h<CS duration≤ 6 h 318 (0.3 %) 27 (0.5 %)
CS duration> 6 h 631 (0.6 %) 18 (0.3 %)

Total 91 609 (100 %) 5976 (100 %)

For long-duration systems, nearly twice as many raw sys-
tems (631) lasted longer than 6 h compared to those in the 5–
6 h range (318). In contrast, the filtered dataset shows fewer
systems exceeding 6 h (18) than those lasting between 5 and
6 h (27), indicating a stronger effect of the area filtering on
prolonged convective systems.

Figure 5 shows the monthly distribution of the raw and fil-
tered clusters and convective systems. Seasons and intensive
operation periods (IOPs) were defined according to Machado
et al. (2018): dry season between August and October, dry-
season–wet-season transition between November and De-
cember, wet season between January and March, IOP1 be-
tween February 1 and March 31 2014, and IOP2 between
5 August and 15 October 2014. In general, a larger frequency
of clusters and convective systems occurred in the wet and
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Figure 5. Monthly relative frequency distribution of clusters (a) and convective systems (b) for the raw (white) and filtered (black) datasets.
The blue and red areas delimit wet and dry seasons, respectively, and dashed lines delimit IOP1 and IOP2.

Table 6. Distribution of convective system (CS) durations for the raw and filtered datasets separated by IOP1 and IOP2.

IOP1 IOP2

Raw Filtered Raw Filtered

CS duration≤ 1 h 8427 (86.1 %) 176 (55.7 %) 6565 (90 %) 272 (55.5 %)
1 h<CS duration≤ 2 h 772 (7.9 %) 88 (27.8 %) 432 (5.9 %) 130 (26.5 %)
2 h<CS duration≤ 3 h 277 (2.8 %) 34 (10.8 %) 146 (2 %) 53 (10.8 %)
3 h<CS duration≤ 4 h 118 (1.2 %) 10 (3.2 %) 60 (0.8 %) 24 (4.9 %)
4 h<CS duration≤ 5 h 66 (0.7 %) 6 (1.9 %) 41 (0.6 %) 7 (1.4 %)
5 h<CS duration≤ 6 h 40 (0.4 %) 0 (0 %) 19 (0.3 %) 2 (0.4 %)
CS duration> 6 h 91 (0.9 %) 2 (0.6 %) 31 (0.4 %) 2 (0.4 %)

Total 9792 (100 %) 316 (100 %) 7294 (100 %) 490 (100 %)

transition (wet-to-dry and dry-to-wet) seasons, with a peak
in the filtered clusters/systems in November 2015 (almost 2
times more than the raw clusters/systems). The proportion
between raw and filtered systems changes over the months,
with a larger frequency of raw clusters and convective sys-
tems in the wet seasons and the opposite in the dry seasons.
This difference can be explained by the filtering of very large

clusters cited previously, which are more common in the
wet season. Considering the climatological characteristics of
each season, it is expected that more clusters/convective sys-
tems would occur during the wet season than during the dry
season, which was the case for both the raw and filtered data.

Table 6 presents the duration of the raw and filtered con-
vective systems by IOP. The distribution of system durations
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Figure 6. Hourly relative distribution of clusters for the raw (white) and filtered (black) datasets separated by IOP1 (a) and IOP2 (b). The
blue and yellow areas delimit diurnal and nocturnal periods, respectively.

Figure 7. Hourly relative distribution of convective system initiation time for the raw (white) and filtered (black) datasets separated by
IOP1 (a) and IOP2 (b). The blue and yellow areas delimit diurnal and nocturnal periods, respectively.

is generally consistent across seasons, with similar propor-
tions observed between the raw and filtered datasets. In con-
trast to Table 5, where less than half of the raw systems lasted
up to 1 h, seasonal distributions show that more than 80 % of
the raw systems and 50 % of filtered systems persisted for

no more than 1 h, indicating the predominance of isolated
convective systems. Additionally, 97 % of raw and 94 % of
filtered systems had durations of 3 h or less.

Figure 6 shows the hourly distribution of the raw and fil-
tered clusters by IOP. Comparing the raw and filtered clus-
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Figure 8. Monthly relative distribution of clusters (a), convective systems (b), and GLD strokes (c) for filtered datasets separated by lightning
(yellow bars) or no lightning (gray bars) occurrence. The blue and red areas delimit wet and dry seasons, respectively, and dashed lines delimit
IOP1 and IOP2.

ters, in all seasons, there is a larger frequency of raw clusters
during the late-night/dawn period and a larger frequency of
filtered clusters during late-morning/afternoon period. In the
dry season (IOP2), filtered clusters are more frequent (above
15 %) between 14:00 and 15:00 LT (local time) compared to
the raw clusters (below 10 %), while the raw clusters are 5 %
more frequent than the filtered clusters between 23:00 and
07:00 LT. These differences between the raw and filtered
clusters indicate a more diurnal characteristic of the filtered
clusters, while the raw clusters are more nocturnal, probably
represented by the very large and long-lasting (above 6 h)
clusters described previously.

Figure 7 shows the hourly distribution of the raw and fil-
tered convective system initiation (defined here as the first
time stamp) by IOP. Comparing the raw and filtered systems,
in both seasons, there is a larger frequency of raw systems
initiating at dawn, whereas a larger frequency of filtered sys-
tems initiate during the morning/afternoon. This difference
is even greater (almost 10 %) in the dry season. Comparing
the seasons, in both the dry and wet seasons, the initiation
peak occurs only at 14:00 LT. Specifically regarding the fil-
tered systems, the 14:00 LT peak during the wet season is not
highlighted in IOP1, with another peak at 12:00 LT.
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Figure 9. Hourly relative distribution of clusters with lightning (a), initiation time of clusters with lightning (b), and GLD strokes (c) for
filtered dataset during IOP1 (blue) and IOP2 (red). The blue and yellow areas delimit diurnal and nocturnal periods, respectively.

When comparing the physical characteristics of the raw
and filtered datasets, the filters significantly decrease the
sampling size but define a specific subset of convective sys-
tems: in general, they have areas of up to 10 000 km2, a
maximum reflectivity mainly above 50 dBZ, a full life cy-
cle (growth, mature, and decay phases), and last up to 3 h.
The raw dataset includes these same systems as well as di-
verse convective types, such as mesoscale (considering the
areas above 50 000 km2), both short-lived (12 min duration)
and long-lived (duration above 6 h), and stratiform (reflectiv-
ity below 30 dBZ) systems. Both datasets are useful for fur-
ther convection studies, but they should be chosen carefully
depending on the study objectives. If the convection phase
is important, for example, the filtered dataset would be more
appropriate, whereas some studies might benefit from con-
vection patterns in the Amazon region that can be extracted
from the raw dataset.

3.2 Characteristics specific to the filtered systems

Starting with the monthly distribution, Fig. 8 shows the clus-
ters and convective systems separated by lightning activity as

well as the distribution of GLD strokes. More than double the
clusters (27 214 vs. 13 180) had no electrical activity, while
more convective systems (3758 vs. 2218) showed lightning,
which means that, in general, the convective systems with
lightning consist of only a few clusters with lightning. A
larger frequency of clusters and systems without lightning
occurs between wet and dry seasons, while peaks in clus-
ter and system frequency occur in the dry-season–wet-season
transition, comparable with the peak stroke frequency. These
findings are similar to what has been found in previous work
such as Albrecht et al. (2011, 2016).

Separating the analysis into systems with and without
lightning, Fig. 9 shows the hourly distribution of clusters and
the initiation (first time stamp) of convective systems with
lightning and GLD strokes by IOP. All variables are more
frequent during the late-morning/afternoon period, with sig-
nificant differences between IOPs. In IOP2, the cluster and
stroke peaks occur at 15:00 LT, which is also the preferen-
tial time for convective system initiation. In IOP1, the clus-
ter and stroke peaks occur around the same time, but sys-
tem initiation occurs preferentially earlier, at 12:00 LT. The
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Figure 10. Convective systems’ relative propagation direction distribution in the filtered dataset separated by IOP1 (a) and IOP2 (b). The
direction was defined by the distance between the first and last centroids of the convective system.

Figure 11. Convective systems’ 0 (gray bars), 20 (light-blue bars), and 40 dBZ (dark-blue bars) max echo tops (a) and max echo top variation
rates (b).

low number of systems (198 in IOP1 and 412 in IOP2)
influenced the frequency distribution, but the results were
similar to their corresponding seasons (not shown). Con-
vective systems without lightning are more frequent during
the late-morning/afternoon period (not shown). The initia-
tion frequency peaks in the dry and wet seasons occur at
15:00 LT, whereas during the dry-season–wet-season transi-
tion, the distribution is more dispersed, with approximately
equal peaks at 12:00, 13:00, and 16:00 LT.

In order to analyze the propagation direction of the con-
vective systems, Fig. 10 shows the frequency distribution of
the propagation direction by IOP. The predominant direction
of the convective systems is from the east, consistent with
the main dynamic forcing in the Amazon, which is a mois-
ture flux from the tropical Atlantic due to the easterlies that
is influenced by the position of the Intertropical Convergence
Zone (ITCZ) (Silva Dias and Carvalho, 2016). Comparing
the IOPs, in the wet season, about 25 % of systems propa-
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Figure 12. Convective systems’ 0 (gray bars), 20 (light-blue bars), and 40 dBZ (dark-blue bars) max echo tops separated by IOP1 (a) and
IOP2 (b).

gated from the east and east-northeast, whereas in the dry
season, more than 30 % of systems propagated from the east
and east-southeast. This direction shift from east-northeast
to east-southeast is related to the shift in the position of the
ITCZ and cold-front propagation over the South American
continent, which affect the zonal wind regime in the Amazo-
nian region (Rickenbach et al., 2002). These results are also
consistent with Gupta et al. (2024), who focused on isolated
convective systems near the Manacapuru (T3) site.

In order to analyze the intensity of the convective systems,
Fig. 11 shows the frequency distribution of the maximum
heights and variation rates (considering the 12 min interval
between radar scans) of the 0, 20, and 40 dBZ echoes, associ-
ated with cloud-top height, precipitable-hydrometeor height,
and intense-precipitation height, respectively. The maximum
cloud-top heights are more frequent above 10 km, with peaks
at 11 km (dry season) and 15 km (wet season). The maximum
precipitable-hydrometeor height was more frequent between
7 and 11 km. The maximum intense-precipitation height was
also more frequent between 4 and 7 km, with peaks at 5 km
(in both the dry and wet seasons). These high tops, comple-
mented by a maximum precipitation height more frequently
between 7 and 11 km and a maximum intense-precipitation
height more frequently between 4 and 7 km, show how these
systems were predominantly deep at their most intense mo-
ments. The variation rates (Fig. 11b) were similar between
the echoes, with frequency peaks at −0.2 and 0.2 km min−1,
indicating significant fluctuations in the echo tops throughout
their life cycle.

Figure 13. Mean contoured frequency by altitude diagram (CFAD)
of clusters’ reflectivity with 5 dBZ bins.

Figure 12 shows the frequency distribution of the maxi-
mum echo tops of 0, 20, and 40 dBZ by IOP. As in the com-
plete time series, the maximum top heights are more frequent
above 10 km, with peaks at 11 km (IOP2) and 15 km (IOP1).
The maximum precipitable height was also more frequent
between 7 and 11 km. The maximum intense precipitation
height was also more frequently located between 4 and 7 km,
with peaks at 5 km.

In order to analyze the clusters’ vertical profiles, Fig. 13
shows the frequency diagram by altitude of the cluster reflec-
tivity of the complete time series. The most frequent profile
is of a small reflectivity variation with height: 25 dBZ at the
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Figure 14. Mean contoured frequency by altitude diagram (CFAD) of clusters’ reflectivity with 5 dBZ bins separated by IOP1 (a) and
IOP2 (b); the IOP1− IOP2 anomaly (c) is also shown.

surface to 10 dBZ at 15 km height (i.e., a −1 dBZ km−1 vari-
ation). Less frequent (between 5 % and 10 %) profiles have
very low (5 to 10 dBZ) or high (40 dBZ) reflectivity at the
surface and up to 25 dBZ at 15 km height, with a minimum
of 0 dBZ at 12 km height.

Figure 14 shows the clusters’ frequency by altitude dia-
grams by IOP as well the difference between them. Consid-
ering the largest frequencies, the profiles are similar between
the IOPs (and with the complete time series profile), but the
IOP1 profile (wet season) is more intense (up to 20 %) than
IOP2 profile (dry season), especially between 10 and 20 dBZ.

4 Data availability

The systems and systems_filtered datasets are avail-
able at https://doi.org/10.5281/zenodo.13732692
(Lopes, 2024). SIPAM radar data are available at
https://ftp.cptec.inpe.br/chuva/goamazon/experimental/
level_0/eq_radar/esp_band_s/st_sipam/ (Biscaro, 2016).

5 Code availability

The TATHU software package is available at
https://doi.org/10.5281/zenodo.17298147 (Uba, 2025a).
The code developed to create the datasets with TATHU is

available at https://doi.org/10.5281/zenodo.17297271 (Uba,
2025b).

6 Conclusions

A database of convective systems that occurred during the
GoAmazon experiment was created to provide a comprehen-
sive convection data collection for future GoAmazon stud-
ies. The systems and systems_filtered datasets cover the main
convective characteristics (including morphology and inten-
sity) and electrical activity. The filtered dataset is shown to
be an acceptable sample of the complete dataset, selecting
deep convective systems with a full life cycle within the re-
search area. Convection seasonality is also well represented,
with more intense convective systems between the dry season
and the dry-season–wet-season transition and less intense
systems in the wet season, typically occurring during the
late-morning/early-afternoon period. The preeminent prop-
agation direction of these systems is connected with the east-
erlies, with a transition from slightly north to slightly south
associated with the ITCZ position.

It is important to consider the limitations in the convection
description when using these data for future research. As the
SIPAM radar’s main role is to serve as an operational weather
radar instrument, its settings are not optimal for convection
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research: low spatial (1 km) and temporal (12 min) resolution
(considering it is a weather radar), beam blockage during the
experiment (Giangrande et al., 2016; Tian et al., 2021), and
radar software setting changes during the experiment. An-
other limitation is in the tracking itself, especially when deal-
ing with system splitting/merging (which occurs in a signifi-
cant portion of the convective system database), which can be
more complex in large, mesoscale systems. Even with these
limitations, the database is an important source of convection
characteristics for cloud–aerosol–precipitation research.

Author contributions. CL and RA designed the study. CL pro-
cessed the data and wrote the manuscript, with advice from RA.
DU developed the tracking software, helped with data processing,
and reviewed the manuscript. TB processed the radar data and re-
viewed the manuscript. IS provided the radar data and reviewed the
manuscript.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. We would like to thank Sistema de Pro-
teção da Amazônia (SIPAM) for providing the radar data and the
ARM GoAmazon 2014/5 operations and science team for their ef-
forts during the experiment. We also thank Vaisala Inc. for provid-
ing the GLD360 lightning dataset for this study.

Financial support. This research has been supported by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-
rior (grant no. 88887.464412/2019-00) (C. Lopes), Conselho Na-
cional de Desenvolvimento Científico e Tecnológico (CNPq –
grant nos. 438638/2018-2, 313355/2021-5, and 440171/2022-9)
(R. Albrecht), and Fundação de Amparo à Pesquisa do Estado
de São Paulo (Fapesp – grant nos. 2009/15235-8, 2017/17047-0,
2022/13257-9, and 2023/04358-9) (field experiment operations).

Review statement. This paper was edited by Montser-
rat Costa Surós and reviewed by two anonymous referees.

References

Albrecht, R. I., Morales, C. A., and Dias, M. A. F. S.: Electrifi-
cation of precipitating systems over the Amazon: Physical pro-

cesses of thunderstorm development, J. Geophys. Res.-Atmos.,
116, D08209, https://doi.org/10.1029/2010jd014756, 2011.

Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J.,
Christian, H. J., Albrecht, R. I., Goodman, S. J., Buechler, D. E.,
Blakeslee, R. J., and Christian, H. J.: Where are the lightning
hotspots on Earth?, B. Am. Meteorol. Soc., 97, BAMS-D-14-
00193.1, https://doi.org/10.1175/bams-d-14-00193.1, 2016.

Artaxo, P., Hansson, H. C., Machado, L. A. T., and
Rizzo, L. V.: Tropical forests are crucial in regulat-
ing the climate on Earth, PLOS Climate, 1, e0000054,
https://doi.org/10.1371/journal.pclm.0000054, 2022.

Biscaro, T. S.: SIPAM radar data during GoAmazon [data set],
https://ftp.cptec.inpe.br/chuva/goamazon/experimental/level_0/
eq_radar/esp_band_s/st_sipam/ (last access: 17 March 2025),
2016.

Biscaro, T. S., Machado, L. A. T., Giangrande, S. E., and Jensen,
M. P.: What drives daily precipitation over the central Ama-
zon? Differences observed between wet and dry seasons, At-
mos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-
21-6735-2021, 2021.

Demetriades, N. W. S., Murphy, M. J., and Cramer, J. A.: Valida-
tion of Vaisala’s global lightning dataset (GLD360) over the con-
tinental United States, in: Preprints, 29th Conf. on Hurricanes
and Tropical Meteorology, Tucson, AZ, vol. 16, vaisala.com,
Amer. Meteor. Soc. D, https://www.vaisala.com/sites/default/
files/documents/6.Demetriades,Murphy,Cramer.pdf (last access:
17 July 2025), 2010.

Dixon, M. and Wiener, G.: TITAN: Thunderstorm
Identification, Tracking, Analysis, and Nowcasting
– A Radar-based Methodology, J. Atmos. Ocean.
Tech., 10, 785–797, https://doi.org/10.1175/1520-
0426(1993)010<0785:TTITAA>2.0.CO;2, 1993.

Fisch, G., Tota, J., Machado, L. A. T., Silva Dias, M. A. F.,
da F. Lyra, R. F., Nobre, C. A., Dolman, A. J., and
Gash, J. H. C.: The convective boundary layer over pasture
and forest in Amazonia, Theor. Appl. Climatol., 78, 47–59,
https://doi.org/10.1007/s00704-004-0043-x, 2004.

Giangrande, S. E., Toto, T., Jensen, M. P., Bartholomew, M. J.,
Feng, Z., Protat, A., Williams, C. R., Schumacher, C., and
Machado, L.: Convective cloud vertical velocity and mass-
flux characteristics from radar wind profiler observations dur-
ing GoAmazon2014/5, J. Geophys. Res.-Atmos., 121, 12891–
12913, https://doi.org/10.1002/2016JD025303, 2016.

Giangrande, S. E., Feng, Z., Jensen, M. P., Comstock, J. M., John-
son, K. L., Toto, T., Wang, M., Burleyson, C., Bharadwaj, N.,
Mei, F., Machado, L. A. T., Manzi, A. O., Xie, S., Tang, S.,
Silva Dias, M. A. F., de Souza, R. A. F., Schumacher, C., and
Martin, S. T.: Cloud characteristics, thermodynamic controls and
radiative impacts during the Observations and Modeling of the
Green Ocean Amazon (GoAmazon2014/5) experiment, Atmos.
Chem. Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-
14519-2017, 2017.

Giangrande, S. E., Wang, D., and Mechem, D. B.: Cloud
regimes over the Amazon Basin: perspectives from the GoA-
mazon2014/5 campaign, Atmos. Chem. Phys., 20, 7489–7507,
https://doi.org/10.5194/acp-20-7489-2020, 2020.

Giangrande, S. E., Biscaro, T. S., and Peters, J. M.: Seasonal con-
trols on isolated convective storm drafts, precipitation inten-
sity, and life cycle as observed during GoAmazon2014/5, At-

https://doi.org/10.5194/essd-17-5489-2025 Earth Syst. Sci. Data, 17, 5489–5505, 2025

https://doi.org/10.1029/2010jd014756
https://doi.org/10.1175/bams-d-14-00193.1
https://doi.org/10.1371/journal.pclm.0000054
https://ftp.cptec.inpe.br/chuva/goamazon/experimental/level_0/eq_radar/esp_band_s/st_sipam/
https://ftp.cptec.inpe.br/chuva/goamazon/experimental/level_0/eq_radar/esp_band_s/st_sipam/
https://doi.org/10.5194/acp-21-6735-2021
https://doi.org/10.5194/acp-21-6735-2021
https://www.vaisala.com/sites/default/files/documents/6.Demetriades, Murphy, Cramer.pdf
https://www.vaisala.com/sites/default/files/documents/6.Demetriades, Murphy, Cramer.pdf
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
https://doi.org/10.1007/s00704-004-0043-x
https://doi.org/10.1002/2016JD025303
https://doi.org/10.5194/acp-17-14519-2017
https://doi.org/10.5194/acp-17-14519-2017
https://doi.org/10.5194/acp-20-7489-2020


5504 C. d C. Lopes et al.: Deep convection life cycle characteristics: a database from the GoAmazon experiment

mos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-
23-5297-2023, 2023.

Greene, D. R. and Clark, R. A.: Vertically Integrated Liq-
uid Water – A New Analysis Tool, Mon. Weather
Rev., 100, 548–552, https://doi.org/10.1175/1520-
0493(1972)100<0548:VILWNA>2.3.CO;2, 1972.

Gupta, S., Wang, D., Giangrande, S., Biscaro, T., and Jensen, M.
P.: Lifecycle of updrafts and mass flux in isolated deep convec-
tion over the Amazon rainforest: insights from cell tracking, At-
mos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-
24-4487-2024, 2024.

Harriss, R. C., Wofsy, S. C., Garstang, M., Browell, E. V.,
Molion, L. C. B., McNeal, R. J., Hoell, Jr, J. M., Ben-
dura, R. J., Beck, S. M., Navarro, R. L., Riley, J. T.,
and Snell, R. L.: The Amazon Boundary Layer Experiment
(ABLE 2A): dry season 1985, J. Geophys. Res., 93, 1351,
https://doi.org/10.1029/jd093id02p01351, 1988.

Harriss, R. C., Garstang, M., Wofsy, S. C., Beck, S. M., Bendura,
R. J., Coelho, J. R. B., Drewry, J. W., Hoell Jr., J. M., Mat-
son, P. A., McNeal, R. J., Molion, L. C. B., Navarro, R. L.,
Rabine, V., and Snell, R. L.: The Amazon Boundary Layer Ex-
periment: Wet season 1987, J. Geophys. Res., 95, 16721–16736,
https://doi.org/10.1029/jd095id10p16721, 1990.

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris,
D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2:
towards a flexible framework for tracking and analysis of
clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570,
https://doi.org/10.5194/gmd-12-4551-2019, 2019.

Johnson, J. T., MacKeen, P. L., Witt, A., Mitchell, E.
D. W., Stumpf, G. J., Eilts, M. D., and Thomas,
K. W.: The Storm Cell Identification and Tracking Al-
gorithm: An Enhanced WSR-88D Algorithm, Weather
Forecast., 13, 263–276, https://doi.org/10.1175/1520-
0434(1998)013<0263:tsciat>2.0.co;2, 1998.

Jones, C. and Carvalho, L.: Active and break phases
in the South American monsoon system, J. Cli-
mate, 15, 905–914, https://doi.org/10.1175/1520-
0442(2002)015<0905:AABPIT>2.0.CO;2, 2002.

Laurent, H. and Laurent, D.: Characteristics of the Amazo-
nian mesoscale convective systems observed from satellite and
radar during the WETAMC/LBA experiment, J. Geophys. Res.,
https://doi.org/10.1029/2001JD000337, 2002.

Leal, H. B., Calheiros, A. J. P., Barbosa, H. M. J., Almeida, A. P.,
Sanchez, A., Vila, D. A., Garcia, S. R., and Macau, E. E. N.:
Impact of Multi-Thresholds and Vector Correction for Tracking
Precipitating Systems over the Amazon Basin, Remote Sens., 14,
5408, https://doi.org/10.3390/rs14215408, 2022.

Lopes, C.: GoAmazon convective systems datasets
(systems and systems_filtered), Zenodo [data set],
https://doi.org/10.5281/zenodo.13732692, 2024.

Machado, L. A. T. and Laurent, H.: The Convective System Area
Expansion over Amazonia and Its Relationships with Convec-
tive System Life Duration and High-Level Wind Divergence,
Mon. Weather Rev., 132, 714–725, https://doi.org/10.1175/1520-
0493(2004)132<0714:TCSAEO>2.0.CO;2, 2004.

Machado, L. A. T., Dias, M. A. F. S., Morales, C., Fisch, G.,
Vila, D., Albrecht, R., Goodman, S. J., Calheiros, A. J. P., Bis-
caro, T., Kummerow, C., Cohen, J., Fitzjarrald, D., Nascimento,
E. L., Sakamoto, M. S., Cunningham, C., Chaboureau, J.-P., Pe-

tersen, W. A., Adams, D. K., Baldini, L., Angelis, C. F., Sa-
pucci, L. F., Salio, P., Barbosa, H. M. J., Landulfo, E., Souza,
R. A. F., Blakeslee, R. J., Bailey, J., Freitas, S., Lima, W.
F. A., and Tokay, A.: The Chuva Project: How Does Convec-
tion Vary across Brazil?, B. Am. Meteorol. Soc., 95, 1365–1380,
https://doi.org/10.1175/bams-d-13-00084.1, 2014a.

Machado, L. A. T., Silva Dias, M. A. F., Morales, C., Fisch, G.,
Vila, D., Albrecht, R., Goodman, S. J., Calheiros, A. J. P., Bis-
caro, T., Kummerow, C., Cohen, J., Fitzjarrald, D., Nascimento,
E. L., Sakamoto, M. S., Cunningham, C., Chaboureau, J.-P., Pe-
tersen, W. A., Adams, D. K., Baldini, L., Angelis, C. F., Sa-
pucci, L. F., Salio, P., Barbosa, H. M. J., Landulfo, E., Souza,
R. A. F., Blakeslee, R. J., Bailey, J., Freitas, S., Lima, W.
F. A., and Tokay, A.: The Chuva Project: How Does Convec-
tion Vary across Brazil?, B. Am. Meteorol. Soc., 95, 1365–1380,
https://doi.org/10.1175/BAMS-D-13-00084.1, 2014b.

Machado, L. A. T., Calheiros, A. J. P., Biscaro, T., Giangrande, S.,
Silva Dias, M. A. F., Cecchini, M. A., Albrecht, R., Andreae,
M. O., Araujo, W. F., Artaxo, P., Borrmann, S., Braga, R., Bur-
leyson, C., Eichholz, C. W., Fan, J., Feng, Z., Fisch, G. F., Jensen,
M. P., Martin, S. T., Pöschl, U., Pöhlker, C., Pöhlker, M. L.,
Ribaud, J.-F., Rosenfeld, D., Saraiva, J. M. B., Schumacher, C.,
Thalman, R., Walter, D., and Wendisch, M.: Overview: Precip-
itation characteristics and sensitivities to environmental condi-
tions during GoAmazon2014/5 and ACRIDICON-CHUVA, At-
mos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-
18-6461-2018, 2018.

Makris, A. and Prieur, C.: Bayesian multiple-hypothesis tracking
of merging and splitting targets, IEEE T. Geosci. Remote, 52,
7684–7694, https://doi.org/10.1109/tgrs.2014.2316600, 2014.

Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R.
A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M.
J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J.
L., Pöschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch, M.:
Introduction: Observations and Modeling of the Green Ocean
Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–
4797, https://doi.org/10.5194/acp-16-4785-2016, 2016.

Martin, S. T., Artaxo, P., Machado, L., Manzi, A. O., Souza, R.
A. F., Schumacher, C., Wang, J., Biscaro, T., Brito, J., Calheiros,
A., Jardine, K., Medeiros, A., Portela, B., de Sá, S. S., Adachi,
K., Aiken, A. C., Albrecht, R., Alexander, L., Andreae, M. O.,
Barbosa, H. M. J., Buseck, P., Chand, D., Comstock, J. M., Day,
D. A., Dubey, M., Fan, J., Fast, J., Fisch, G., Fortner, E., Gian-
grande, S., Gilles, M., Goldstein, A. H., Guenther, A., Hubbe,
J., Jensen, M., Jimenez, J. L., Keutsch, F. N., Kim, S., Kuang,
C., Laskin, A., McKinney, K., Mei, F., Miller, M., Nascimento,
R., Pauliquevis, T., Pekour, M., Peres, J., Petäjä, T., Pöhlker, C.,
Pöschl, U., Rizzo, L., Schmid, B., Shilling, J. E., Silva Dias,
M. A., Smith, J. N., Tomlinson, J. M., Tóta, J., and Wendisch,
M.: The Green Ocean Amazon Experiment (GoAmazon2014/5)
Observes Pollution Affecting Gases, Aerosols, Clouds, and Rain-
fall over the Rain Forest, B. Am. Meteorol. Soc., 98, 981–997,
https://doi.org/10.1175/BAMS-D-15-00221.1, 2017.

Murphy, M. J. and Nag, A.: Cloud lightning perfor-
mance and climatology of the U.S. based on the up-
graded U.S. National Lightning Detection Network,
https://ams.confex.com/ams/95Annual/webprogram/
Manuscript/Paper262391/AMS2015_MALD_8.2_murphy.pdf
(last access: 17 July 2025), 2015.

Earth Syst. Sci. Data, 17, 5489–5505, 2025 https://doi.org/10.5194/essd-17-5489-2025

https://doi.org/10.5194/acp-23-5297-2023
https://doi.org/10.5194/acp-23-5297-2023
https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2
https://doi.org/10.5194/acp-24-4487-2024
https://doi.org/10.5194/acp-24-4487-2024
https://doi.org/10.1029/jd093id02p01351
https://doi.org/10.1029/jd095id10p16721
https://doi.org/10.5194/gmd-12-4551-2019
https://doi.org/10.1175/1520-0434(1998)013<0263:tsciat>2.0.co;2
https://doi.org/10.1175/1520-0434(1998)013<0263:tsciat>2.0.co;2
https://doi.org/10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2
https://doi.org/10.1029/2001JD000337
https://doi.org/10.3390/rs14215408
https://doi.org/10.5281/zenodo.13732692
https://doi.org/10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0714:TCSAEO>2.0.CO;2
https://doi.org/10.1175/bams-d-13-00084.1
https://doi.org/10.1175/BAMS-D-13-00084.1
https://doi.org/10.5194/acp-18-6461-2018
https://doi.org/10.5194/acp-18-6461-2018
https://doi.org/10.1109/tgrs.2014.2316600
https://doi.org/10.5194/acp-16-4785-2016
https://doi.org/10.1175/BAMS-D-15-00221.1
https://ams.confex.com/ams/95Annual/webprogram/Manuscript/Paper262391/AMS2015_MALD_8.2_murphy.pdf
https://ams.confex.com/ams/95Annual/webprogram/Manuscript/Paper262391/AMS2015_MALD_8.2_murphy.pdf


C. d C. Lopes et al.: Deep convection life cycle characteristics: a database from the GoAmazon experiment 5505

Naccarato, K. P., Pinto, Jr, O., Garcia, S. A. M., Murphy, M.,
Demetriades, N., and Cramer, J.: Validation of the new GLD360
dataset in Brazil: First results, in: International Lightning De-
tection Conference, https://www.vaisala.com/sites/default/files/
documents/7.Naccarato,%20Pinto,%20Garcia.pdf (last access:
17 July 2025), 2010.

Nobre, C. A., Obregón, G. O., Marengo, J. A., Fu, R., and Poveda,
G.: Characteristics of Amazonian climate: Main features,
in: Amazonia and Global Change, Geophysical monograph,
American Geophysical Union, Washington, D.C., 149–162,
ISBN 9780875904764, https://doi.org/10.1029/2009GM000903,
2009.

Petersen, W. A. and Rutledge, S. A.: Regional Variabil-
ity in Tropical Convection: Observations from TRMM,
J. Climate, 14, 3566–3586, https://doi.org/10.1175/1520-
0442(2001)014<3566:RVITCO>2.0.CO;2, 2001.

Rickenbach, T. M., Ferreira, R. N., Halverson, J. B., Herdies,
D. L., and Silva Dias, M. A. F.: Modulation of convection
in the southwestern Amazon basin by extratropical stationary
fronts, J. Geophys. Res.-Atmos., 107, LBA 7-1–LBA 7-13,
https://doi.org/10.1029/2000JD000263, 2002.

Saraiva, I., Silva Dias, M. A. F., Morales, C. A. R., and Saraiva,
J. M. B.: Regional Variability of Rain Clouds in the Amazon
Basin as Seen by a Network of Weather Radars, J. Appl. Me-
teorol. Clim., 55, 2657–2675, https://doi.org/10.1175/JAMC-D-
15-0183.1, 2016.

Schumacher, C. and Funk, A.: GoAmazon2014/5 Three-
dimensional Gridded S-band Reflectivity and Radial Ve-
locity from the SIPAM Manaus S-band Radar, Tech. rep.,
ORNL – Oak Ridge National Lab., Oak Ridge, TN, USA,
https://www.osti.gov/biblio/1459573 (last access: 19 March
2025), 2018.

Silva Dias, M. A. F. and Carvalho, L. M. V.: The South
American Monsoon System, in: The Global Monsoon Sys-
tem, vol. 9 of World Scientific Series on Asia-Pacific Weather
and Climate, World Scientific, 25–33, ISBN 9789813200906,
https://doi.org/10.1142/9789813200913_0003, 2016.

Silva Dias, M. A. F., Rutledge, S., Kabat, P., Silva Dias, P. L., No-
bre, C., Fisch, G., Dolman, A. J., Zipser, E., Garstang, M., Manzi,
A. O., Fuentes, J. D., Rocha, H. R., Marengo, J., Plana-Fattori,
A., Sá, L. D. A., Alvalá, R. C. S., Andreae, M. O., Artaxo, P.,
Gielow, R., and Gatti, L.: Cloud and rain processes in a bio-
sphere-atmosphere interaction context in the Amazon Region, J.
Geophys. Res., 107, S1, https://doi.org/10.1029/2001jd000335,
2002.

Sokolowsky, G. A., Freeman, S. W., Jones, W. K., Kukulies, J.,
Senf, F., Marinescu, P. J., Heikenfeld, M., Brunner, K. N., Brun-
ing, E. C., Collis, S. M., Jackson, R. C., Leung, G. R., Pfeifer,
N., Raut, B. A., Saleeby, S. M., Stier, P., and van den Heever,
S. C.: tobacv1.5: introducing fast 3D tracking, splits and merg-
ers, and other enhancements for identifying and analysing me-
teorological phenomena, Geosci. Model Dev., 17, 5309–5330,
https://doi.org/10.5194/gmd-17-5309-2024, 2024.

Souza, C. M. A., Dias-Júnior, C. Q., D’Oliveira, F. A. F., Martins,
H. S., Carneiro, R. G., Portela, B. T. T., and Fisch, G.: Long-
term measurements of the Atmospheric Boundary Layer height
in Central Amazonia using remote sensing instruments, Remote
Sens., 15, 3261, https://doi.org/10.3390/rs15133261, 2023.

Tian, Y., Zhang, Y., Klein, S. A., and Schumacher, C.: Interpret-
ing the diurnal cycle of clouds and precipitation in the ARM
GoAmazon observations: Shallow to deep convection transition,
J. Geophys. Res., 126, https://doi.org/10.1029/2020jd033766,
2021.

Uba, D.: uba/tathu: v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.17298147, 2025a.

Uba, D.: Cclopes/Tathu: SIPAM Tracking Module on TATHU, Zen-
odo [code], https://doi.org/10.5281/zenodo.17297271, 2025b.

Uba, D. M., Negri, R. G., Enoré, D. P., Costa, I. C. D., and
Jorge, A. A. S.: TATHU – Software para rastreio e análise
do ciclo de vida de sistemas convectivos, http://urlib.net/ibi/
8JMKD3MGP3W34T/47AF772 (last access: 19 March 2025),
2022.

Viscardi, L. A. M., Torri, G., Adams, D. K., and Barbosa, H. D.
M. J.: Environmental controls on isolated convection during the
Amazonian wet season, Atmos. Chem. Phys., 24, 8529–8548,
https://doi.org/10.5194/acp-24-8529-2024, 2024.

Yuter, S. E. and Houze, R. A.: Three-Dimensional Kine-
matic and Microphysical Evolution of Florida Cumu-
lonimbus. Part II: Frequency Distributions of Vertical
Velocity, Reflectivity, and Differential Reflectivity, Mo.
Weather Rev., 123, 1941–1963, https://doi.org/10.1175/1520-
0493(1995)123<1941:tdkame>2.0.co;2, 1995.

Zhou, J. and Lau, K.-M.: Does a monsoon cli-
mate exist over South America?, J. Climate,
11, 1020–1040, https://doi.org/10.1175/1520-
0442(1998)011<1020:damceo>2.0.co;2, 1998.

https://doi.org/10.5194/essd-17-5489-2025 Earth Syst. Sci. Data, 17, 5489–5505, 2025

https://www.vaisala.com/sites/default/files/documents/7.Naccarato,%20Pinto,%20Garcia.pdf
https://www.vaisala.com/sites/default/files/documents/7.Naccarato,%20Pinto,%20Garcia.pdf
https://doi.org/10.1029/2009GM000903
https://doi.org/10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2
https://doi.org/10.1029/2000JD000263
https://doi.org/10.1175/JAMC-D-15-0183.1
https://doi.org/10.1175/JAMC-D-15-0183.1
https://www.osti.gov/biblio/1459573
https://doi.org/10.1142/9789813200913_0003
https://doi.org/10.1029/2001jd000335
https://doi.org/10.5194/gmd-17-5309-2024
https://doi.org/10.3390/rs15133261
https://doi.org/10.1029/2020jd033766
https://doi.org/10.5281/zenodo.17298147
https://doi.org/10.5281/zenodo.17297271
http://urlib.net/ibi/8JMKD3MGP3W34T/47AF772
http://urlib.net/ibi/8JMKD3MGP3W34T/47AF772
https://doi.org/10.5194/acp-24-8529-2024
https://doi.org/10.1175/1520-0493(1995)123<1941:tdkame>2.0.co;2
https://doi.org/10.1175/1520-0493(1995)123<1941:tdkame>2.0.co;2
https://doi.org/10.1175/1520-0442(1998)011<1020:damceo>2.0.co;2
https://doi.org/10.1175/1520-0442(1998)011<1020:damceo>2.0.co;2

	Abstract
	Introduction
	Materials and methods
	Data
	Tracking methodology

	Results
	Raw and filtered dataset characteristics
	Characteristics specific to the filtered systems

	Data availability
	Code availability
	Conclusions
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

