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S2 Supplementary Material for Section 2: Context of Recent 
Extremes 
 
S2.1 Method 
 
S2.1.1 Contemporaneous Fire Weather 
 
In this edition of the report, we introduce routine summaries of the extreme (95th percentile) 
fire weather days during the March 2024–February 2025 global fire season based on the fire 
weather index (FWI), a common metric of fire danger developed by the Canadian Forest 
Service as part of the Canadian Forest Fire Danger Rating System (CFFDRS) (van Wagner, 
1987). The FWI comprises various components that consider the influence of weather on fire 
danger, with 2m temperature, 10m wind speed, precipitation, and 2m relative humidity as 
prerequisite variables. Higher FWI values are generally seen during droughts and heatwaves 
but they are more broadly indicative of meteorological conditions more conducive to wildfires 
in environments with sufficient fuel load (Di Giuseppe et al., 2016; Jones et al., 2022). 
​
We base our analysis of extreme (95th percentile) fire weather on the FWI dataset derived 
from the Copernicus Climate Change Service ERA5 reanalysis (Hersbach et al., 2023; Vitolo 
et al., 2020) and maintained by the Copernicus Emergency Management Service (CEMS, 
version4.1 2019). This dataset provides global fire weather data at a 0.25° spatial resolution 
and daily temporal resolution. To identify extreme fire weather conditions, we computed the 
95th percentile of daily FWI values at 0.25° resolution over the reference period March 
1978–February 2025 (i.e., covering 46 fire seasons). For each fire season, we then 
calculated the number of days on which the daily FWI exceeded this threshold, yielding our 
estimate of extreme fire weather days, referred to as FWI95d—defined as the annual number 
of days when fire weather conditions surpass the 95th percentile threshold.  
 
Anomalies in FWI95d for the March 2024–February 2025 fire season were subsequently 
calculated following the same methodology used for the observational fire variables, and are 
presented as (i) ranks, (ii) proportional anomalies, and (iii) standardised anomalies (see 
Section 2.1.2 “Regions with Extreme Wildfire Seasons”). The data produced using these 
methods are available from (Turco et al., 2025).  
 
We adopt FWI95d as our metric for extreme fire weather for several reasons. First, FWI95d 
focuses on periods of high fire danger, when fire ignition and rapid spread are more likely  
(e.g. Barbero et al., 2014). Second, it has been widely used in previous studies assessing 
fire–climate relationships (Abatzoglou et al., 2019; Jones et al., 2022; Quilcaille et al., 2023) , 
supporting consistency with the broader literature. Third, and crucially for a global analysis, 
the use of a quantile-based threshold reduces the impact of regional biases in absolute FWI 
values, allowing for a more robust comparison of fire weather extremes across 
geographically diverse environments. 
 
S2.1.2 21st Century Trends in Burned Area 
 
To place recent extremes in the context of fire trends of the past two decades, we update our 
regional analyses of trends in annual BA from Jones et al. (2022). In contrast, we present 
trends that align more closely with global fire seasons, spanning the period March 
2002-February 2025 rather than trends over calendar years. We quantified trends using the 
Theil-Sen slope estimator, which is useful when data may contain outliers or be non-normally 
distributed making it less sensitive to outliers than a standard least squares regression 
slope. Changes were calculated by multiplying trends (unit year-1) by the number of fire 
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seasons in the period of coverage for each variable (Section 2.1.1 “Input Data 
Uncertainties”). Relative changes were calculated as the absolute changes divided by the 
mean annual BA during the period following (Andela et al., 2017; Jones et al., 2022). The 
significance of trends was evaluated using the Mann-Kendall test, with a confidence level set 
at 95%.  
 
In addition to reporting trends in total BA, we also present trends in forest BA as these 
regularly diverge from total BA trends, following Jones et al. (2024a) see Section 2.2.2). 
Forest BA is calculated as described in Section 2.1.1, but after isolating burned cells in 
areas with tree cover exceeding 30% in NASA’s annual MODIS MOD44B collection 6.0 
Continuous Vegetation Field product (250m; Dimiceli et al., 2015). The 30% threshold is 
widely used amongst studies of forest cover change (Cunningham et al., 2020; e.g. Li et al., 
2017; Sexton et al., 2016). 
 
S2.2 Results 
 
S2.2.1 Contemporaneous Fire Weather 
 
Section 4 of this report comprehensively explores the drivers of the extreme fire season for 
4 selected events during 2024-25, not only in terms of meteorological factors influencing the 
preconditioning of vegetation fuels for fire but also including factors such as fuel loading, 
land use and management, and ignition opportunities. However, because large-scale 
regional patterns of drought and heatwave are known to influence fire extent (Abatzoglou et 
al., 2018; Jolly et al., 2015; Jones et al., 2022), we briefly summarise here the 
meteorological circumstances underlying some of the regional extremes of the 2024-25 fire 
season identified above. Robust relationships are observed between fire weather and fire 
activity in regions with ample fuels across multiple decades, particularly in forests 
(Abatzoglou et al., 2018; Jones et al., 2022, 2024a; Turco et al., 2018).  
 
Figure S2 shows world regions experiencing high levels of extreme fire weather during the 
2024-25 fire season (data are available from Turco et al., 2025). Extreme fire weather was 
notably prevalent in the majority of regions in tropical South America, with the highest 
number of fire weather days on record in most states of Brazil, Bolivia and Peru and many 
other states of Colombia, Venezuela, and the Guianas experiencing a high-ranking–if not 
record-breaking–number of days with extreme fire weather. For example, Amazonas State in 
Brazil experienced more than 50 additional days of extreme fire weather than its annual 
mean and many regions saw more than a month of additional fire weather days than is the 
average year (Figure S2). The spatial pattern of fire weather anomalies (Figure S2) clearly 
aligns with the elevated fire activity across the Amazon, broader moist tropical forests, 
Pantanal, and Chiquitano regions of South America during 2024-25 (Figure 2, Figure 3). 
Similarly, Mesoamerica experienced an unusually high number of extreme fire weather days 
during 2024-25 (Figure S2) and this is likely one factor contributing to higher than average 
fire activity in parts of Mexico during 2024-25 (Figure 2, Figure 3). 
 
In Canada, some anomalies in extreme fire weather were observed in the northernmost 
provinces of western Canada (e.g. Northwest territories) and some eastern provinces during 
2024-25 (Figure S2). Although anomalies in BA and C emissions were indeed centred on 
the same regions of Canada, we note that the anomalies in extreme fire weather days were 
fairly small and overall less widespread than the anomalies in BA and C emissions. This 
evidence points towards other factors (beyond contemporaneous fire weather) as drivers of 
the elevated fire activity during 2024-25, potentially including the carryover effects of the 
prior-year heatwave and drought from 2023 and of overwintering ignitions from smouldering 
peat combustion (Scholten et al., 2021). 
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In Africa, widespread high fire weather was observed across the Congo basin during the 
2024-25 fire season (Figure S2), aligning strongly with the anomalous BA and fire C 
emissions observed in the region (Figure 2, Figure 3). In Southern Africa, extreme fire 
weather anomalies were widespread (Figure S2) but also characteristically decoupled from 
anomalies in BA (Figure 2) due to the inverted relationship between fire weather and fire 
activity in this fuel-limited region, where fire weather tends to correlate with poor vegetation 
productivity (Jones et al., 2022).  
 
In Eastern Europe, anomalies in extreme fire weather were centred on Ukraine and the 
Balkan states (Figure S2), corresponding with BA and C emissions anomalies in some parts 
of Ukraine, Serbia, and North Macedonia (Figure 2, Figure 3). However, spatial relationship 
between extreme fire weather and extreme fire activity was not direct in neighbouring 
regions, with western Turkey (for example) experiencing above-average BA and emissions 
(Figure 2, Figure 3) despite no clear anomaly in extreme fire weather (Figure S2). Similarly, 
anomalies in extreme fire weather spanned much of southern and southeast Asia (Figure 
S2), yet positive anomalies in BA and fire C emissions emerged in northern India, Nepal and 
Bangladesh but not in nearby parts of Thailand, Cambodia and Myanmar (Figure 2, Figure 
3). In Siberia, a record-breaking number of extreme fire weather days occurred during the 
2024-25 fire season (Figure S2) but did not translate into especially high BA or fire C 
emissions (Figure 2, Figure 3). This is a somewhat surprising finding for this region, given 
that the most extreme fire seasons of 2020 and 2021 were previously linked with extreme 
fire weather associated with heatwave and drought (Zheng et al., 2023). 
 
Overall, these findings highlight that there is noise in the relationship between fire weather 
and BA, with extreme fire weather preconditioning vegetation to burn but a variety of other 
factors such as ignition availability, fuel loading, and management factors driving dissociation 
in certain regions and years. For certain focal events,  Section 4 formally evaluates the role 
of fire weather’s sub-components (temperature, precipitation, humidity and wind speed) as 
drivers of fire alongside non-meteorological factors.  
 
While the present report focuses primarily on explaining focal events that did emerge as 
extremes, we recognise the underexplored value of examining the factors that constrain fire 
occurrence in regions where anomalously high fire weather might otherwise be expected to 
drive extremes in burned area and associated carbon emissions. Future iterations of the 
State of Wildfires assessment may therefore consider giving greater emphasis to 
understanding why such extremes did not materialise. That said, this type of analysis has 
not, to our knowledge, been a common approach in fire science to date. For example, we 
are not aware of any formal attribution studies focusing on non-extreme fire events, in 
contrast to the growing number of attribution studies of extreme events. It may therefore be 
more appropriate for such investigations to be pursued initially as a dedicated exercise, 
whether within our network or by others. 
 
S2.2.2 21st Century Trends in Burned Area 
 
The anomalies of 2024-25 occur against a backdrop of trends in BA this century that point 
towards shifts in fire regime. Figure S3 shows significant trends in BA and forest BA across 
the fire seasons in the period March 2002-February 2025 derived from MODIS BA data. 
While many world regions are experiencing declines in total BA, increases in forest BA are 
far more prevalent than declines at the scale of continental biomes, countries, and 
administrative regions.  
 
In South America, trends in total and forest BA are varied. The more than doubling of both 
total and forest BA in Amazonas (significant at p<0.05; Figure S3), among the most pristine 
parts of Amazonia, contrasts with the neighbouring state of Pará, where total BA has fallen 
by 44% (p<0.05) as deforestation rates and deforestation-related fires have broadly declined 
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since their peak during the early 2000s (Mataveli et al., 2025). The anomalous fire activity 
and C emissions in Amazonas state during the 2024-25 fire season is consistent with the 
emerging pattern of increased fire extent within in the state, whereas in Pará and other 
regions of South America’s tropical forests, the 2024-25 anomaly punctuates the either 
reducing or stable BA trends of recent decades. 
 
More broadly across the tropics, total BA has reduced across many savannah regions of 
Africa, South America, and northern Australia (Figure S3). The low fire seasons of 2024-25 
and 2023-24 in the African savannahs (Section 2.2.1 “An Unprecedented Fire Season in 
South America”) are highly consistent with the decline in BA seen in those regions this 
century. In tropical forests, BA has generally fallen in Southeast Asia, increased in the 
Congo basin, and shown no significant trend in South America. Hence, fires in the tropics do 
not show a consistent global trend (Figure S3). Notably, the BA anomalies seen in the 
Congo basin during the 2024-25 fire season appear to be an extension of a trend towards 
increased BA across in the region over recent decades (Figure S3).  
 
Northern hemisphere extratropical regions in North America and Asia show a clear pattern of 
increased forest BA since 2002 (Figure S3), which is also visible on national scales in 
Canada and the US and on state/provincial scales in various states of western and eastern 
Canada, the western US, and northeast Russia. The consecutive large anomalies in BA in 
Canada during 2023-2024 and 2024-25 align with the doubling of forest BA seen in Canada 
across fire seasons since 2002 (significant trend, p < 0.05) and a 22% increase in total BA in 
Canada (marginally significant at p < 0.1). Three Canadian provinces showed significant 
increases in both total and forest BA this century: British Columbia (+39-49%); Northwest 
Territories (+52-80%), and; Yukon (+75-141%). No Canadian provinces experienced a 
significant decline in forest BA or total BA. More widely, there was a 51% increase in forest 
BA in the North American boreal forest biome since 2002, and a 118% increase across the 
pan-boreal forest biome of North America and Eurasia. The succession of events affecting 
boreal forests in Canada in 2023 and 2024, Siberia in 2020, and both North America and 
Siberia during 2021 are part of a continued trend towards rising fire extent in high latitude 
forests this century (Jones et al., 2024a).  
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Figure S1: Comparison of the burned area (BA) estimates from (left column) the ESA 
Climate Change Initiative FireCCI product Sentinel-3 SYN Burned Area Grid product, version 
1.1 (Chuvieco et al., 2024; FireCCIS311; Lizundia-Loiola et al., 2022), (middle column) the 
VIIRS BA product produced by NASA (VNP64A1 v002) (Giglio, 2024; Zubkova et al., 2024) 
and (right) the MODIS BA product produced by NASA (MCD64A1 collection 6.1; Giglio et 
al., 2018).  
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Figure S2: Extreme fire weather in the past fire season, including (top panel) the number of 
days with extreme (95th percentile) fire weather during the 2024-25 fire season, (middle 
panel) the anomaly versus the mean of all prior fire seasons 2002-2024, and (bottom 
panel) rank amongst all fire seasons since 2002.  
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Figure S3: Relative changes (%) in (left panels) total annual BA and (right panels) forest 
BA across March-February fire seasons during 2002-2025 for three regional layers: (top 
panels) continental biomes; (middle panels) countries, and; (bottom panels) level 1 
administrative regions (e.g. states or provinces). Forest BA considers only areas with tree 
cover over 30% at the native (500 m) resolution of the BA observations. Relative changes 
are calculated as the trend in BA across fire seasons March 2002-February 2003 through 
March 2024-February 2025 multiplied by the number of years in the time series and divided 
by the mean annual BA during the period. Trends in BA are derived using the Theil-Sen 
slope estimator. Only significant trends in BA are shown (dark grey fill signifies no significant 
trend).  
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Figure S4: (Top panel) first month, (middle panel) peak month, and (lower panel) final 
month of positive BA anomalies at Global Administrative Level 1 during March 
2024-February 2025. Peak anomalies are identified relative to the monthly climatology in 
2001-2024. The first and final months of the BA anomaly incorporate the period when BA 
was continuously above the climatological mean. Graduated colours are separated 
seasonally. 
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Figure  S5: Monthly anomalies in absolute BA fraction (unit: additional % of cell area 
burned) at 0.25° for Northeast Amazonia throughout the 2024-25 fire season compared with 
the 2001-2024 climatological mean. 
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Figure  S6: Same as Figure S5 but for the Pantanal & Chiquitano. 
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Figure S7: Same as Figure S5 but for Southern California. 
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Figure S8: Same as Figure S5 but for the Congo Basin.  
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S3 Supplementary Material for Section 3 
​

 
Figure S9: (left panels) Population and (right panels) physical assets exposed to burned 
area (BA) during the 2024-25 global fire season. The figure shows (top panels) the number 
of people or the asset value (billion US$) exposed to fire and (bottom panels) the relative 
anomaly versus all years since 2002.  
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Figure S10: Exceptional 2024 fire activity in carbon projects can be explained by regional 
drought extremes and a long-term increase in drought and forest fire risk. (a) Number of 
projects with burned area (BA) in each year, (b) average annual percentage of project area 
burned, (c) 2024 drought anomaly for all projects (12-month SPEI; negative values indicate 
drier conditions). In (a) and (b), the red star indicates the 2024 ranking among other years. 
Data are shown for all projects (all), Latin America (LA), northern America (NA), Eurasia 
(EUAS), and Africa (AF). 
 

S4 Supplementary Material for Section 4 
 
S4.1 Methods 
 
S4.1.1 Probability of Fire  

To model the probability of active fire occurrence at high spatial and temporal resolution, 
Sparky is trained on daily, gridded observations of satellite-detected active fires from the 
MCD14ML fire location product, produced by the University of Maryland (Giglio et al., 2020). 
This dataset contains point-based fire detections from the MODIS instruments aboard the 
Terra and Aqua satellites. We first aggregated these fire detections onto the model’s regular 
latitude–longitude grid at approximately 9 km resolution, using a daily time step. For each 
grid cell and day, the target variable was assigned a binary value: 1 if at least one MODIS 
active fire detection was present in that cell on that day, and 0 otherwise. The model was 
then trained to predict the probability of observing at least one active fire in a given grid cell 
on a given day. After training, we applied the model globally to generate daily, grid-based 
probability maps. While the model outputs the likelihood of at least one fire occurring per grid 
cell per day, we interpret the sum of predicted probabilities across all grid cells within a 
domain as an estimate of the expected number of active fire-affected grid cells. This 
interpretation is consistent with the probabilistic nature of classification outputs in ensemble 
tree models and is particularly suitable for modelling sparse events such as fire occurrence 
(Gneiting and Katzfuss, 2014). 
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S4.1.2 ConFLAME 

ConFLAME (Controlar Fogo Local Analise pela Máxima Entropia, or “Local Fire Control 
Analysis by Maximum Entropy' in English) is a probabilistic, control-based fire model 
designed to evaluate and attribute burned areas under diverse climate and 
socio-environmental scenarios. It directly builds upon the established ConFire and FLAME 
models (Barbosa et al., 2025; Kelley et al., 2019, 2021), integrating ConFire’s 
control-structured approach with FLAME's Bayesian inference framework based on the 
Maximum Entropy principle. Full details can be found in Barbosa et al. (submitted). 
ConFLAME is specifically developed for attribution purposes, including compatibility with 
satellite-derived burned area data. This hybrid model allows for spatially explicit, event-scale 
attribution, making it applicable across different timeframes and regions. This means that, 
new to this year's report, our burned area (BA) driver and attribution assessments can now 
target both high burned area zones within subregions and the overall burned area across our 
entire focal region. 

ConFLAME simulates monthly fractional burned area at grid-cell level using a set of 
environmental and anthropogenic controls, each representing a key dimension of fire 
regulation. These controls capture the limitations imposed by factors such as: 

●​ Fuel availability and continuity​
 

●​ Fuel dryness​
 

●​ Fire weather (including temperature and relative humidity)​
 

●​ Wind speed​
 

●​ Ignition sources (both natural and human-caused)​
 

●​ Fragmentation and suppression (e.g., from land use, roads, or firefighting)​
 

●​ Stochastic influences (unmodelled or residual variation)​
 

Each control predicts the maximum possible burned area under ideal conditions for that 
specific factor. For instance, the “fuel dryness” control estimates the area that could burn if 
all other factors, such as fuel, ignition or suppression, impose no limitations. These controls 
are derived as linear combinations of their respective drivers (see Table S1 for assignment 
details), which are then transformed using the logistic function to produce a value between 0 
and 1. The individual control outputs are multiplied together to give a final burned area 
estimate, capturing the combined effects of all constraints (Kelley et al., 2021). This 
multiplicative structure allows interactions between drivers to influence fire outcomes and 
accommodates compound extremes where multiple drivers align to produce extreme BAs. 
As per Barbosa et al. (2025), this BA is corrected for sub-grid spatial/temporal 
autocorrelation that may alter overall fire spread and therefore BA. 

ConFLAME uses a Bayesian inference approach following a similar protocol to (Barbosa, 
2024). We use the PyMC (v5) Python package with the Metropolis-Hastings MCMC sampler 
(Hoffman and Gelman, 2011). Optimisation runs over 10 parallel chains with 1,000 tuning 
and 1,000 sampling iterations per chain to determine the probability distribution of model 
parameters, such as those describing driver combination control strength and BA 
autocorrelation. The model employs a Maximum Entropy update function to avoid 
unnecessary assumptions beyond data constraints (Barbosa et al., 2025). Training utilising 
50% of the data or a minimum of 4000 grid cells. Instead of a single outcome. This approach 
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produces a full distribution of possible burned area results for each grid cell and month, 
capturing uncertainty in parameters and fire variability. This allows rare but plausible 
outcomes, such as unusual BA levels, to emerge when multiple conditions favour fire. 

Once trained, ConFLAME is run in large ensembles to approximate the posterior BA 
probability distributions: 

●​ For attribution experiments (e.g., climate vs human vs combined forcing), we 
randomly sample 400 simulations from each chain (so 4000 samples), each using 
parameter samples drawn from the posterior distribution. For climate or human 
attribution, we pair each of these with an additional sample using counterfactual 
(either without anthropogenic forcing, without climate change or without people) 
inputs.​
 

●​ For future projections, a smaller ensemble of 1000 sampled (100 for each chain)..​
 

●​ As per (Barbosa, 2024), for evaluation we trained the first half of the period and test 
on the second half using 1000 samples. For the rest of the results, we trained on the 
full period. 

Each simulation in the ensemble represents one possible realisation of fire behaviour, 
conditioned on a plausible combination of parameters and driver inputs. The ensemble as a 
whole approximates the posterior distribution of burned area for each grid cell and time step. 

When analysing outputs across time (e.g., seasonal totals) or space (e.g., regional 
aggregates), probability metrics (mean, median, percentiles) are computed per ensemble 
member first, and then the distribution of these metrics is used to reconstruct a consistent 
posterior for the aggregated quantity. This preserves the dependencies within each 
realisation and avoids artificial narrowing of uncertainty that would result from averaging 
across distributions rather than ensembles. 
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Table S1: Overview of predictors used in the two fire attribution models (PoF and 
ConFLAME). Predictors are grouped into four control categories. ✓ indicates inclusion in the 
model, with (+) or (–) signs representing positive or negative influence over fire occurrence in 
ConFLAME. Resolution and temporal coverage refer to the dataset version used during 
model training. 

Category Predictor PoF Con-​
FLAME 
(section 
4) 

Con-​
FLAME 
(section 
5) 

Spatial 
Resolution 

Temporal 
Coverage 

Reference 

Weather 2m Temperature ✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

 2m Dewpoint 
Temperature 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

 Relative 
Humidity 

✗ ✗ ✓ (–) (0.25°) 2003–2025 (Muñoz-Sabater 
et al., 2021) 
 

 10m Wind 
Speed 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

 Precipitation ✓ ✓ (–) ✓ (–) ~9 km 
(0.1°) 

2003–2025 (Muñoz-Sabater 
et al., 2021) 

Fuel  Live Leaf Fuel 
Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Live Wood Fuel 
Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Foliage 
Fuel Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Wood Fuel 
Load 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 LAI – Low/High 
Vegetation 

✓ ✓ (+) ✓ (+) ~9 km 
(0.1°) 

2003–2025 (Boussetta et 
al., 2021) 

 Live Fuel 
Moisture 
Content 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Foliage 
Moisture 
Content 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 

 Dead Wood 
Moisture 
Content 

✓ ✓ (–) ✗ ~9 km 
(0.1°) 

2003–2025 (McNorton and 
Di Giuseppe, 
2024) 
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Ignition/​
Suppresio
n 

Pasture Fraction ✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Cropland 
Fraction 

✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Urban 
Population 

✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Rural Population ✗ ✓ (+/–) ✓ (+/–) ~25 km 
(0.25°) 

2007–2025 (Klein Goldewijk 
et al., 2010) 

 Population 
Density 

✓  ✗ ✗ ~9 km 
(0.1°) 

2005, 
2010, 
2015, 2020 

(Center for 
International 
Earth Science 
Information 
Network 
(CIESIN), 2025) 
 

 Road Length ✓  ✗ ✗ ~9 km 
(0.1°) 

2015 (Meijer et al., 
2018) 

 Cloud-to-ground 
lightning 

✗ ✓ (+) ✓ (+) ~25 km 
(0.25°) 

2019-2025 (Qu et al., 2025) 

 Lightning ✓ ✗ ✗ ~9 km 
(0.1°) 

2019-2025 (Lopez, 2016) 

 Vegetation Type ✓ ✗ ✗ ~9 km 
(0.1°) 

2003-2021 (Boussetta et 
al., 2021) 

 Urban Fraction ✓ ✗ ✗ ~9 km 
(0.1°) 

2010 (McNorton et 
al., 2023) 

 Orography ✓ ✗ ✗ ~9 km 
(0.1°) 

Static (Boussetta et 
al., 2021) 

Missed 
Prediction 
Term 

 ✓ ✓ ✓ Model-defin
ed 

2007–2025 (Barbosa et al., 
2025) This 
study 
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S4.2 Results 

 
Figure S11: Pantanal and Chiquitano fire forecast (as for Figure 8 in the main text). 
Chicklet plots displaying seamless FWI and POF fire predictions over 10 days forecast. The 
x-axis corresponds to specific dates throughout the year, while the y-axis denotes either 
observations or the time leading up to the date when a forecast was generated. The vertical 
colour coherence allows for quick identification of the time windows of predictability 
associated to the observed fire activity both provided in terms of number of detected active 
in a day fires and total BA in a month (circles). The maps represents a snapshot in time at 
day 0 to allow the comparison of the spatial distribution of the forecasts and the recorded fire 
activity by MODIS. 
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Figure S12: Southern California fire forecast (as for Figure 8 in the main text). Chicklet plots 
displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis 
corresponds to specific dates throughout the year, while the y-axis denotes either 
observations or the time leading up to the date when a forecast was generated. The vertical 
colour coherence allows for quick identification of the time windows of predictability 
associated to the observed fire activity both provided in terms of number of detected active 
in a day fires and total BA in a month (circles). The maps represents a snapshot in time at 
day 0 to allow the comparison of the spatial distribution of the forecasts and the recorded fire 
activity by MODIS. 
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Figure S13: Congo basin fire forecast (as for Figure 8 in the main text). Chicklet plots 
displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis 
corresponds to specific dates throughout the year, while the y-axis denotes either 
observations or the time leading up to the date when a forecast was generated. The vertical 
colour coherence allows for quick identification of the time windows of predictability 
associated to the observed fire activity both provided in terms of number of detected active 
in a day fires and total BA in a month (circles). The maps represents a snapshot in time at 
day 0 to allow the comparison of the spatial distribution of the forecasts and the recorded fire 
activity by MODIS. 
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Figure S14. Forecast and observed burned‑area anomalies for four seasons: JFM, MJJ 
and JJA in 2024, and DJF in 2025. Rows correspond to these seasons and are linked 
respectively to the case‑study regions Amazonia, Congo, Pantanal and Los Angeles 
(highlighted in green). The columns display (i) the probability of a burned‑area anomaly 
occurring (left), (ii) whether the early‑warning system was triggered (centre), and (iii) the 
anomaly that was actually observed (right). Grey shading marks grid points where the 
climate‑fire model is not statistically significant (p‑value ≥ 0.01), while white indicates 
points where seasonal burned area was zero in less than half of the study period (i.e. 
BA = 0 in fewer than 11 of the 22 years, 2002–2023; see (i.e. BA = 0 in fewer than 11 of 
the 22 years, 2002–2023; see Torres-Vázquez et al., 2025). 
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Figure S15: Drivers explaining fire hotspots in Southern California (as for Figure 10 in the 
main text). 
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Figure S16: Drivers explaining fire hotspots in the Congo basin (as for Figure 10 in the 
main text). 
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Figure S17. Time series of burned area and key fire drivers for each focus region during 
2024. Columns represent different regions; rows show different variables. Top row: Observed 
burned area (blue) and modelled burned area (red) for each region, with the model median 
(solid red line), interquartile range (shaded), and 5th–95th percentile range (lighter shading). 
Second to fourth rows: Modelled contributions from key fire drivers—fuel availability, fire 
weather, and human/ignition-related factors—with each showing median (solid line), 
interquartile range (shaded), and 5th–95th percentile range. Together, these panels illustrate 
the relative influence of climate and human factors on fire activity throughout the year.

25 
 



 

 
Figure S18. Potential increases in burned area (y-axis) under different fire-controlling factors 
across varying levels of simulated burned area (x-axis), shown separately by region 
(columns) and control factor (rows). Results are drawn from the full 5000-member 
ConFLAME ensemble. Shading indicates the density of grid cells where a given potential 
increase occurs, with darker areas representing higher density. Each control factor 
represents a specific constraint on fire activity: 

●​ Fuel: the difference between BA simulated under plentiful fuel loads versus actual 
fuel loads. 

●​ Moisture: the effect of fuel moisture, comparing perfectly dry to actual moisture 
conditions. 

●​ Weather: the influence of atmospheric conditions, comparing the most extreme 
simulated fire weather to observed conditions. 

●​ Wind: the increase in BA expected under maximum wind conditions versus actual 
winds. 

●​ Ignitions: the difference between saturated ignitions (i.e., unlimited human or natural 
ignition sources) and observed ignition patterns. 

●​ Suppression: the difference between scenarios with no fire suppression and those 
reflecting actual suppression efforts. 

Together, these estimates illustrate the latent potential for fire spread under different limiting 
factors, helping to disentangle which constraints most strongly regulate fire activity in each 
region and at different severity levels. 
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Figure S19 Spatial distribution of burned area and fire driver anomalies for January-March 
2024 in Northeastern Amazonia. Top row: Observed burned area anomalies from MCD64A1 
(left); ensemble mean burned area anomalies simulated by ConFLAME (middle); and the 
number of fire-relevant controls (out of seven) showing a positive anomaly during the same 
period (right). Second row: Mean simulated control strength for each of the three grouped 
controls, expressed using the "standard limitation" formulation (Kelley et al., 2019), indicating 
the degree to which each factor constrained or enabled burning. Bottom row: Anomalies in 
control strength compared to the modelled climatology. Values represent ensemble means 
across all 4,000 members. Dots on the anomaly maps indicate grid cells with low agreement 
across ensemble members (<95% agreement in the direction of change), reflecting lower 
confidence in the sign of the anomaly at those locations. 
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Figure S20 As Figure S19 but for Pantanal & Chiquitano, August and September 2024 
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Figure S21 As Figure S19 but for Southern California, January 2025. 
 
 

 
Figure S22 As Figure S4.9 but for Congo Basin, July and August 2024 
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S5 Supplementary Material for Section 5 

S5.1 Methods 

Table S2: Guide to different attribution comparisons discussed. Coloured boxes indicate what is accounted for in counterfactual comparisons, 
which variable is targeted or where we look directly as the event or a longer historic record. 

Attribution 
type 

Model  Factual vs 
counterfactual data 
sources 

Removed in Counterfactual Target variable Target period 

GHG 
emissions 
on climate 

Aerosols 
on 
climate 

Land 
use on 
climate 

Climate & 
CO2 on 
fuel 

Natural 
climate 
trends 

Humans  
on fire 

Event 
FWI 

Event 
BA 

Background 
BA 

During 
the event 

Historic 

Anthropog
enic 
climate 
Forcing 

Canadian FWI  HaDGEM3-A All vs 
NAT 

           

CanESM5 FWI CanESM5 2014-2025 
vs 1850–1859 

           

WWA - sourced from already published 
material 

           

ConFLAME 
NRT 

ERA5 vs merged 
ERA5/HadGEM3-A            

Total 
climate 
forcing 
 

ConFLAME  
ISIMIP 

ISIMIP3a GSWP3 
reanalysis vs 
detrended 

           

FireMIP    

Socio-​
economic 
factors 

ConFLAME  
ISIMIP 

ISIMIP3a GSWP3 
detrended 2003-2019 
vs 1901-1917 

         

FireMIP    

All 
forcings 

ConFLAME  
ISIMIP 

ISIMIP3a GSWP3 
reanalysis 
2003-2019 vs 
detrended 1901-1917 

         

FireMIP          
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S5.1.1 Attributing Extremes in Fire Weather during 2024-25 - extended 
​  
We applied a bias correction to the 2023 HadGEM3 large ensemble using a linear 
regression approach, based on comparisons between the model's historical simulations 
(1960–2013) and the ERA5 reanalysis of fire weather index (FWI). The FWI data were 
transformed prior to regression to stabilise values at the high end, ensuring extreme fire 
conditions were accurately captured without distorting the distribution. This correction was 
anchored to 2023 conditions by extrapolating trends from the historical period to account for 
recent warming. 
 
Each present-day ensemble member was corrected against all historical ensemble 
members, producing a large ensemble of bias-adjusted simulations (7875 members in total). 
This method avoids assumptions about pairwise matching of ensemble members due to the 
perturbation process used in generating the ensemble. 
 
We then calculated risk ratios (RRs) for extreme fire weather events by comparing the 
likelihood of exceeding the observed 2023 FWI threshold in the bias-corrected “ALL” (with 
climate change) and “NAT” (without climate change) simulations. The RR represents how 
much more likely the event was in today’s climate compared to a world without 
anthropogenic influence. Uncertainty was assessed using bootstrapping. 
 
Full technical details are provided in last years report supplement section S1.2.3 (Jones et 
al.  2024b) and Burton et al. (2025). 
 
S5.1.2 Background changes in fire weather this decade 
 
To complement the HadGEM large-ensemble weather simulations, we also use a fully 
coupled Earth system model approach to assess the changing probability of extreme fire 
weather events.  This method uses the Canadian Earth System Model version 5 (CanESM5 
Swart et al., 2019), developed for the sixth phase of Coupled Model Intercomparison Project 
(CMIP6; Eyring et al., 2016). CanESM5 provides a 50-member ensemble spanning both the 
historical period (1850–2014) and high-emission future projections (SSP585, through 2100). 
By drawing on a physically consistent climate model ensemble, this method offers an 
independent line of evidence for assessing the role of anthropogenic climate change. Unlike 
the weather-perturbation ensemble, this method evaluates how often events of similar 
magnitude to those in 2024/25 would have occurred between 2016-2025. 
 
For each focal region and season, we extract the annual maximum of 7-day average FWI for 
each ensemble member and apply a statistical model (a time-dependent Generalized 
Extreme Value distribution), as often used in previous attribution studies (Eden et al., 2016, 
2018; Krikken et al., 2021; Liu et al., 2022a, 2023, 2022b; Otto et al., 2018; e.g. Schaller et 
al., 2014; van der Wiel et al., 2017) to estimate how the probability of extreme fire-conducive 
conditions has changed over time. In this section, we compare the likelihood of these events 
under pre-industrial conditions (1850–1859) to their likelihood in the recent past 
(2016–2025). These comparisons are expressed as a probability ratio (PR). For example, 
a PR of 10 indicates a tenfold increase in the chance of such an event occurring in the 
modern climate compared to pre-industrial conditions. In this study, we define 'high fire 
weather' conditions as the percentile rank of extreme Fire Weather Index (FWI) values 
during the event period, calculated relative to the full ERA5 historical record. For instance, if 
the event corresponds to the 95th percentile in the observed record, we assign the 95th 
percentile value from the model simulations as the representative magnitude of the event 
within the simulations. Confidence intervals for these PRs are estimated using 
bootstrapping. This approach, again following a similar approach outlined by (Liu et al., 
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2022c), allows us to account for uncertainties arising from internal climate variability and 
limited sample sizes, while leveraging the strength of large ensemble simulations.  
 
While this approach relies on a more generalised representation of climate and fire-relevant 
processes — and applies a statistical fit to account for sample size limitations — it adds 
valuable robustness by providing attribution results from an independent model and that 
assesses FWI occurrence over a longer period. Together with the HanGEM3-A approach, 
this approach strengthens confidence in the conclusions drawn by offering a diverse and 
independent line of evidence for the role of climate change in recent fire weather extremes. 

S5.1.2.1 Model and Data 

We use the Canadian Fire Weather Index (FWI; van Wagner, 1987) calculated from daily 
ERA5 reanalysis data for 1951–2025, and from the CanESM5 large ensemble simulations 
for 1850–2100 (Swart et al., 2019). The CanESM5 model was selected due to the availability 
of a 50-member ensemble under the historical (1850–2014) and SSP5-8.5 scenario 
(2015–2100), providing sufficient sample size for extreme value analysis. 

S5.1.2.2 Statistical Framework 

We follow a time-dependent Generalized Extreme Value (GEV) approach (Eden et al., 2016; 
Liu et al., 2022a, b; Philip et al., 2020; van der Wiel et al., 2017). For each focal region and 
fire season, we calculate annual maxima of 7-day average FWI from each ensemble 
member and fit them to a GEV distribution. 

The location (μ) and scale (σ) parameters are modelled as linear functions of 4-year 
smoothed global mean surface temperature (GMST) from the ensemble mean, capturing the 
externally forced response. The shape parameter (ξ) and the σ/μ ratio are held constant. 
This yields a time-evolving distribution from which return periods (and hence probabilities) 
for a fixed event magnitude can be computed across different climate baselines. 

S5.1.2.3 Attribution 

For attribution, we evaluate the return period of a specific observed 2024 event magnitude 
(e.g., 7-day FWI max) in: 

●​ A pre-industrial baseline: 1850–1859​
 

●​ A recent baseline: 2015–2024 

We then use the Risk Ratio in S5.1.1. 

5.1.2.4 Uncertainty 

We estimate 90% confidence intervals using a non-parametric moving-block bootstrap with 
1,000 replicates (Efron and Tibshirani, 1998; van der Wiel et al., 2017). This preserves 
autocorrelation in annual maxima sequences and accounts for interannual variability across 
the ensemble. 

5.1.3 Attributing Region-wide Extreme BA during 2024-25 - extended 
 
The near real-time configurations test and training follows the same setup as described in 
Section 4, but excludes the fuel moisture variables, as we do not have counterfactuals 
available for these variables. We use the same training protocol as outlined in Section 4.2. 
The factual climate is based on ERA5 reanalysis, providing physically consistent and 
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observation-constrained meteorological conditions for the fire event. The counterfactual 
climate represents a world without human influence on the climate system. It is created by 
adjusting ERA5 temperature, maximum temperature, precipitation, dry days, consecutive dry 
days, humidity, and minimum humidity variables using variable-specific adjustment functions 
(“deltas”). These deltas are derived from differences between the HadGEM3-A ALL-forcings 
and natural-forcings simulations described in Section 5.1.2, with: 

 ω(CF) = ω(ERA5) + ω(NAT) - ω(ALL)    ​ ​ ​ ​ ​  
Where CF is the counterfactual climate, ω is the transformation required to remove data 
bounds of the specific variable, and φ is the inverse of ω. The following transformations are 
applied to create counterfactual values for each climate variable: 

●​ Temperature (Mean and Max): ω(x) = x 
●​ Precipitation: ω(x) = log(ex-1) 
●​  Windspeed, soil moisture: ω(x) = log(x) 
●​ Relative Humidity: ω(x)=log⁡(x/(1-x)) 

 
Since relative humidity (RH) is not available directly from ERA5, we will therefore calculate it 
from  2m temperature ( ) and 2m dew point temperature ( ): 𝑇

𝑠
𝑇

𝑑
​  𝑅𝐻 = 100 × 𝑒

𝑑
/𝑒

𝑠

where   is the actual vapour pressure (calculated from the dewpoint temperature) and   is 𝑒
𝑑

𝑒
𝑠

the saturation vapour pressure (calculated from the air temperature): 

​   𝑒
𝑖

= 6. 112 × 𝑒𝑥𝑝
17.625 ×𝑇

𝑖

𝑇 + 243.04( ) 

 
We perform two types of counterfactual simulations to understand the influence of 
human-caused climate change: one using all individual members of the HadGEM3-A 
ensemble, and one using the ensemble mean. The full ensemble captures a wide range of 
possible weather outcomes and includes natural year-to-year variability, making it a more 
cautious or conservative estimate of the effect of climate change. The ensemble mean, by 
contrast, smooths out this variability to isolate the long-term influence of climate forcing, 
providing a cleaner signal. Since our analysis targets a specific year, the actual role of 
weather variability should, in theory, matter less. However climate change can interact with 
this variability in complex, sometimes non-linear ways, thereby making certain extremes 
more or less likely depending on the background conditions, we don’t know exactly where 
within that range the real-world outcome lies. As a result, the true effect of climate change 
likely falls somewhere between these two estimates. We therefore report the full ensemble 
results as our main findings and refer to the ensemble mean where it offers useful additional 
context or diverges substantially. 

We also use an ISIMIP configuration of ConFLAME, as used in last year’s report. The 
available data differs from our near real-time setup, so for this configuration we group 
controls into four categories (Table S3): 

1.​ Fuel load, represented by total vegetation cover and tree cover. 
2.​ Fuel moisture, represented by mean consecutive dry days within each month, the 

fraction of dry days within the month, daily mean precipitation, mean and maximum 
monthly temperature, and mean and maximum vapour pressure deficit (VPD). 

3.​ Ignitions, represented by climatological lightning, pasture, crop, and population 
density.  

4.​ Suppression, represented by pasture, crop, and population density. 
5.​ Land use change, represented by 12 month running mean change in tree, crop, and 

pasture. 
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We trained the ConFLAME ISIMIP configuration on observed monthly BA from the MODIS 
BA product (MCD64A1) during 2003-2019 at 0.5° resolution across the entire region. For 
model training and for factual, we used Global Soil Wetness Project Phase 3 
(GSWP3-W5E5) meteorological forcings, as provided at 0.5° spatial resolution by ISIMIP3a 
(see Table 5). Land surface information (tree cover and non-tree vegetated cover) was 
derived from dias corrected JULES-ES-ISIMIP model output (Mathison et al., 2023), which 
was also driven by GSWP3-W5E5. This model includes dynamic vegetation, accounting for 
changing vegetation cover in response to climate, growth, competition, and mortality. To 
avoid double-counting the impact of fire, we disabled the model’s interactive vegetation-fire 
module. The bias in this land surface information is adjusted to the MODIS Vegetation 
Continuous Fields collection 6.1 remote sensed data (Dimiceli et al., 2015), using a linear 
scaling approach. This preserves trends between historical and future periods and ensures 
accurate means and distribution. See Supplementary Text S2 for details. 

S5.1.3.1 Deriving ConFLAME  vegetation fraction driving data  
 
In Sections 5.3.1, and 6.1.2.2,  we drive ConFLAME with tree and non-tree vegetated cover 
from the Joint UK Land Environment Simulator Earth System impacts model (JULES-ES) at 
version 5.5 (Clark et al., 2011; Mathison et al., 2023) driven with GSWP3-W5E5 forcings 
provided at a 0.5° spatial resolution by ISIMIP3a. These runs are freely available at 
https://www.isimip.org/impactmodels/details/292/. JULES-ES dynamically models vegetation 
cover in response to meteorology, hydrology, nitrogen availability, and land use change. 
JULES-ES has been extensively evaluated against snapshots and site-based 
measurements of vegetation cover and carbon (Burton et al., 2019, 2022; Clark et al., 2011; 
Mathison et al., 2023; Sellar et al., 2020). JULES-ES-ISIMIP has previously been used as 
driving data for ConFLAME to perform future projections (UNEP et al., 2022), though using a 
previous round of ISIMIP climate forcing (ISIMIP2b). As per (UNEP et al., 2022), vegetation 
responses to JULES-ES’s internal fire model were turned off so as not to double-count the 
effects of burning.  
 
However, in (UNEP et al., 2022), residual JULES-ES simulated biases in vegetation cover 
were allowed to persist, increasing the uncertainty range of local vegetation cover and 
resultant burned area responses. We therefore correct the bias in JULES-ES’s vegetation 
cover using a linear scaling bias adjustment method, implemented using the ibicus software 
package (Spuler et al., 2024, ibicus).  
 
The method corrects the bias induced by the JULES-ES model rather than the bias of the 
climate model, assuming that this has been removed by the ISIMIP3BASD method(Lange, 
2019). For each surface cover type at each grid cell, the bias adjustment method identifies 
biases in the mean and variance of the JULES-ES model output relative to MODIS VCF 
collection 6.0 remotely sensed data (Dimiceli et al., 2015) at this grid cell. These biases in 
mean and variance are then removed from the surface information output from JULES-ES 
driven by climate models over the historical (1994-2014) and future (2015-2099) period, 
ensuring that the resulting model output is still bounded by [0, 1]. This bias adjustment 
method preserves the trend in mean and variance. While a trend-preserving empirical 
quantile mapping was used in the State of Wildfires 2023/24 publication, further analysis 
showed that, given the limited amount of observational data, this simpler method performs 
equally well while requiring fewer assumptions and parameters to fit, leading to an overall 
more robust bias adjustment. 
 
The results were evaluated in terms of the ability of the bias correction method to reduce the 
model bias over the historical period, as well as preserve the trend between the future and 
historical periods. It was found that the method corrects the bias well over the historical 
period for most regions, variables and grid cells in both the mean and 80th percentile at each 

34 
 

https://paperpile.com/c/lpE3cM/k2pr
https://paperpile.com/c/lpE3cM/xDbu
https://paperpile.com/c/lpE3cM/k2pr+FNf9
https://paperpile.com/c/lpE3cM/ec4V+fNmZ+FNf9+k2pr+Y7Gs
https://paperpile.com/c/lpE3cM/ec4V+fNmZ+FNf9+k2pr+Y7Gs
https://paperpile.com/c/lpE3cM/8GaL
https://paperpile.com/c/lpE3cM/8GaL
https://paperpile.com/c/lpE3cM/8GaL
https://paperpile.com/c/lpE3cM/k4rY+Aa6L
https://paperpile.com/c/lpE3cM/xDbu


 

grid cell. The mean trend between the future and historical period is preserved by definition, 
but also quantile trends in most regions and grid cells are well preserved. 

To demonstrate the evaluation conducted, Figure S27 shows the results for tree cover over 
the Amazon region. The plots for the remaining regions, including tree and no-tree cover, 
can be found in a notebook 
https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment. Investigating the time 
series of average tree cover over the region, we find that the correction method reduces the 
bias over the historical period and matches the future period to the historical period (Figure 
S27a). The cumulative distribution functions of average tree cover merged over all spatial 
locations in observations and the model matches better after bias adjustment (Figure S27b). 
They do not match perfectly, and we note that this is a non-calibrated aspect that we do not 
expect to have zero bias, but that is important to evaluate. Furthermore, we find that the 
improvement in both mean and 80th percentile holds across the region (Figure S27c). The 
trend between future and historical periods is preserved for the majority of grid-cells, with the 
absolute change in trend being close to zero for most grid-cells. 

 

S5.1.4 FireMIP 
 
For the multi-model ensemble we use simulations from the ISIMIP3a fire sector, as 
published in (Burton & Lampe et al. 2024). The 7 models reporting BA for ISIMIP3a are 
shown in Table S3. The methodology follows the ISIMIP3a Impacts Attribution protocol, as 
outlined in (Mengel et al., 2021), where the factual historical simulations are driven with 
GSWP3-W5E5 reanalysis data, and the counterfactual simulations are the same historical 
data which has been detrended via quantile mapping (Mengel et al., 2021).  
 
As outlined in (Hantson et al., 2016), the spread in the absolute BA is large amongst the 
observations, models and regions and therefore a normalised relative anomaly (RA) rather 
than absolute BA is used for the analysis. To calculate the RA in present day BA, we 
subtract the counterfactual mean, and divide by the counterfactual mean. By comparing both 
factual and counterfactual experiments to the counterfactual mean, we are looking at the 
fractional increase in BA driven by climate change compared to a baseline without climate 
change. Based on model performance by AR6 region, a region-specific weighting is also 
applied following (Knutti et al., 2017). The weighting is based on the model's distance to the 
observed BA temporal RA using both FireCCI5.1 and GFED5, measured using NME as per 
Kelley et al. (2013). To measure the uncertainty, random noise is generated and scaled by 
the climatological RMSE of each model. This noise is then added to the modelled relative 
anomaly, this process is repeated 1000 times. Then, bootstrapping is applied to the monthly 
regional BA RA (now with noise added in) according to the weight for each model. 
Uncertainty is calculated by taking the 2.5-97.5th percentile of the resultant histogram. All 
results are reported as P50 [P2.5, P97.5]. The methods are explained in full in (Burton & 
Lampe et al. 2024). 
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Table S3: FireMIP Models used for attributing median burned area. Table reproduced from (Burton & Lampe et al. 2024)  

Model CLASSIC INFERNO LPJ-GUESS-​
SIMFIRE-​
BLAZE 

LPJ-​
GUESS-​

SPITFIRE 

ORCHIDEE-​
MICT-​

SPITFIRE 

SSiB4/​
TRIFFID VISIT 

Fire Model 
CLASSIC INFERNO SIMFIRE SPITFIRE SPITFIRE Li After (Thonicke 

et al., 2008)) 

Land / Vegetation 
CLASSIC JULES LPJ-GUESS LPJ-GUESS ORCHIDEE SSiB VISIT 

Dynamic 
Veg 

Physiology 
Yes Yes, via 

TRIFFID 
Yes Yes Yes Yes, via 

TRIFFID 
Yes 

LAI 
Yes Yes, via 

TRIFFID 
Yes Yes Yes Yes Yes 

Bio-​
geography 

No Yes, via 
TRIFFID 

Yes Yes Yes Yes No 

Nitrogen Cycle 
Yes Yes Yes Yes No Yes Yes, but C-N 

coupling is 
limited 

No. PFTs 
9 13 17 17 19 7 33 (biome 

types) 

No. Soil Layers 
20 4 2 2 11 3 2 

Fuel 
Vegetation and 

litter 
Vegetation & top 

soil layer as 
proxy for litter 

Vegetation, litter Litter Vegetation and 
litter 

Vegetation and 
litter 

Litter 

Ignitions Natural 
Prescribed 
lightning 

Prescribed 
lightning 

SIMFIRE 
describes 

annual BA + 
fire-climatology 

-> daily BA used 
as 

Fire-Probability 

Prescribed 
lightning 

Prescribed 
lightning 

Prescribed 
lightning 

Probabilistic 
based on fuel 

wetness 

Anthropoge
nic 

Prescribed 
population 

density 

Prescribed 
Population 

density 

SIMFIRE 
includes 

suppression by 
humans 

Prescribed 
population 

density 

Prescribed 
population 

density 

Prescribed 
population 

density 

No 
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Suppression 
Prescribed 
population 

density 

Crops, 
population 

density 

Crops (100%), 
prescribed 
population 

density 
(Hyde3.1) 

Crops, 
population 

density 

Prescribed 
population 

density, crops 

Prescribed 
population 
density and 

GDP 

Low fuel load 

Spread 
Wind speed and 

soil moisture 
None Daily BA (no 

explicit spread) 
Rothermel 
equations 

including wind 
speed, tree 

fraction, grass 
fraction, fuel 
moisture, fuel 

load and 
characteristics 

wind speed, tree 
fraction, grass 
fraction, fuel 
moisture, fuel 

load 

Wind speed and 
soil moisture 

None 

Model inputs 
SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, 
population 

density, lightning 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
population 

density, lightning  

SW radiation,  
precipitation, air 

temperature 
(mean, min, 

max), relative 
humidity, wind 

speed 

SW radiation, 
precipitation, air 

temperature, 
specific 

humidity, wind 
speed, 

atmospheric 
pressure,  
population 

density, lightning 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, PFT 
map, population 

density 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, 
population 

density, and 
GDP, peat map, 

land cover 
change 

Air temperature, 
precipitation, air 
vapor pressure, 
cloudiness, wind 

Resolution 
1 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 

References  

(Melton et al., 

2019) 

(Burton et al., 

2019, 2020; 

Mangeon et al., 

2016) 

(Knorr et al., 2014; 

Rabin et al., 2017; 

Smith et al., 2014) 
 

(Lehsten et al., 

2009; Rabin et al., 

2017; Smith et al., 

2014; Thonicke et 

al., 2010) 

(Yue et al., 2014, 

2015) 
(Huang et al., 

2020, 2021; 

Hugelius et al., 

2013; Li et al., 

2012, 2013) 

(Ito, 2019) 
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S5.2 Results 
 
S5.2.1 Background changes in fire weather this decade 
 
S5.2.1.1 Northeast Amazonia 
 
Area/Time: All region/Jan–Mar 2024 
Variable: Fire Weather Index 
Attribution Type: Anthropogenic climate forcing 
Includes: Changes in climate since Pre-Industrial 
 
To understand longer-term trends, we estimate how global warming has changed the 
average likelihood of extreme fire weather over the past decade. Using a statistical fit to the 
CanESM5 model ensemble, we find that fire weather conditions like those seen in 2024 
have become 1.9 times more likely on average since pre-industrial times, with a 95% 
confidence range of [1.5, 53.3]. 
 
While this method gives less event-specific resolution, it supports the conclusion that climate 
change has increased the background risk of extreme fire weather in the region over the last 
10 years reinforcing the HadGEM-based result. 
 
S5.2.1.4 Congo Basin 
 
Area/Time: All region/Jun-Aug 2014-2025 
Variable: Fire Weather Index 
Attribution Type: Anthropogenic climate forcing 
Includes: Changes in climate since Pre-Industrial 
 
Using the CanESM5 ensemble, we find that fire weather conditions similar to those observed 
in July–August 2024 were 1.3 times more likely due to climate change ([0.7, 1.8], 95% CI) 
over the last decade. While more uncertain than the HadGEM3-A analysis, the findings are 
not inconsistent: both show a positive central estimate. The difference likely reflects the 
broader decadable sampling of the CanESM5 method or as well as differences in the 
underlying model systems. However, both methods suggest that climate change has 
increased the likelihood of fire-conducive weather in the Congo Basin. 
 
S5.2.2 Region-wide extreme BA during 2024-25.  
 
S5.2.2.1 Northeast Amazonia 
Time: Jan-Mar 2003-2019 
Variable: Burned Area 
Attribution Type: Total climate change 
Includes: All anthropogenic and natural trends in climate 
 
We also assessed the influence of total climate forcing on the frequency of fire activity in the 
Northeast Amazonia for all January-March during 2002-2019. The likelihood of a 
climate-driven increase in regional burned area (BA)  during these ~2 decades was just 56% 
(Figure 14), indicating that any long-term trend remains highly uncertain. The central 
amplification factor was 1.17, with a 90% confidence range of 0.88 to 1.15 (Table 6), 
encompassing the possibility of no change. In contrast to the direct attribution of the 2024 
fire season, this analysis shows no clear signal that total climate forcing increased overall BA 
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during this earlier period. A similar picture emerges for sub-regional extremes, with a 
likelihood of an increase due to climate forcing was 70%, just meeting the IPCC threshold for 
being considered likely. The amplification factor was modest-1.02, with a 90% range of 0.94 
to 1.13-indicating that while climate may have played a role in enhancing the most intense 
burning, its influence was relatively small and uncertain during this timeframe. 
 
Together, these results suggest that while anthropogenic climate change had a strong and 
detectable impact on the 2024 fire season, similar effects were not consistently evident in 
the decades prior. The relatively low upper bounds on amplification, particularly for 
sub-regional extremes, imply that large increases in anomalous fire activity were not 
widespread prior to 2020. This interpretation aligns with earlier research (Kelley et al., 2019) 
showing only a weak meteorological contribution to elevated burning in the southern parts of 
the region during the large fire anomalies in 2019. 
 
However, it is important to note that the analysis ends in 2019, excluding a series of major 
droughts and fire anomalies since 2020. These recent years have shown increasingly 
frequent and widespread extremes, suggesting that the climate signal may now be 
strengthening. This is consistent with last year’s report, which analysed a Western Amazonia 
region just southwest of this one. There, long-term trends similarly suggested only marginal 
increases in sub-regional extremes from 2002–2019, while the risk ratios for specific fire 
weather events were extremely high. A longer observational window that includes the last 
five years would help better evaluate whether a persistent shift is emerging. 
 
Time: Jan-Mar 2003-2019 
Variable: Burned Area 
Attribution Type: Socioeconomic forcing 
Includes: Population density, land use and land cover change 
 
For sub-regional extremes, the likelihood that socioeconomic factors increased BA was only 
slightly higher at 62%. The central Amplification Factor was 1.01, with a narrow range of 
0.96 to 1.10, indicating only minimal influence. This suggests that in the most fire-affected 
locations, socioeconomic drivers alone did not strongly amplify the extent of burning during 
this timeframe. Together, these findings point to a limited or unclear role of socioeconomic 
change in driving extreme fire activity across the Northeast Amazonia between 2002 and 
2019.  
 
Time: Jan-Mar 2003-2019 
Variable: Burned Area 
Attribution Type: All forcing  
Includes:  All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
 
We also assessed the combined effect of total forcing, which includes all long-term changes 
in climate (anthropogenic and natural), land use, land cover, and population density,on 
burned area (BA). For regional totals, the likelihood that total forcing increased BA was just 
47% (Figure 14), with a median amplification factor of 0.99 and a 90% confidence interval of 
0.81 to 1.47 (Table 6). This result indicates no clear signal that the combined effects of 
climate and socioeconomic change had a net impact on fire activity across the region during 
this two-decade period. For sub-regional extremes,the grid cells with the highest BA in each 
season, the likelihood of an increase was slightly higher at 62% (Figure 14), with a central 
amplification of 1.01 and a wider confidence interval of 0.96 to 5.1 (Table 6). While this 
suggests that some influence of combined human and climatic drivers on extreme BA cannot 
be ruled out, the signal remains modest and uncertain overall. 
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Together, these findings imply that, even when considering all major sources of long-term 
change in climate and land use together, there is insufficient evidence to attribute a 
consistent trend in BA or its extremes across the region for 2002–2019. The relatively wide 
range for the sub-regional extremes, compared to regional totals, highlights a possibility that 
landscape modification or localised climate feedbacks could have amplified fire activity in 
specific hotspots, but the model does not provide enough resolution to identify or confirm 
such patterns. 
 
S5.2.2.2 Pantanal and Chiquitano 
 
Time: Aug-Sep 2003-2019 
Variable: Burned Area 
Attribution Type: Total climate change 
Includes: All anthropogenic and natural trends in climate 
 
Over the longer-term 2003–2019 period, our analysis suggests that it was virtually certain 
that total (99%; Figure 14) that climate change very likely  increased the likelihood of fire 
events with comparable burned area to August–September 2024 in the Pantanal & 
Chiquitano region. The median likely amplification factor greater than 100 [90% confidence 
range of 4.92 >100] (Table 6). This suggests that a substantial portion - and possibly the 
vast majority, of the burned area associated with 2024-like events is attributable to long-term 
anthropogenic changes in the climate system. The sub-regional attribution signal is 
consistent with the regional-scale result, which also shows >99% likelihood of an increase 
(Figure 14), with an amplification factor >100 [2.72 to >100] (Table 6). While both estimates 
exhibit wide uncertainty ranges, their overlapping confidence intervals point to a consistent 
climate signal rather than a statistically clear difference in impact strength between regional 
and sub-regional scales. 
 
This analysis provides additional confidence in the role of anthropogenic climate change by 
situating the 2024-type fire conditions within the broader distribution of fire-weather years 
over the past two decades. By extending the analysis beyond the specific year of 2024, it 
helps to identify a persistent fingerprint of climate forcing in driving elevated fire risk. 
 
By drawing on multiple years of climate and fire conditions, this longer-term approach 
increases the sample size available for evaluating the likelihood of 2024-like fire events. This 
may help separate the structural influence of climate forcing more clearly than near-real-time 
(NRT) event-based attribution. Further analyses comparing NRT and multi-year setups could 
help explore whether recent variability has masked or amplified long-term trends in fire 
likelihood. 
 
Time: Aug-Sep 2002-2019 
Variable: Burned Area 
Attribution Type: All forcing  
Includes:  All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
 
When assessing the combined influence of all anthropogenic and natural forcings, we find 
limited attribution power for 2024-like events in the Pantanal and Chiquitano region. At the 
regional scale, the likelihood that all forcings increased burned area is 61%, with an 
amplification factor (AF) of 1.05 [0.26–64.3]. This wide uncertainty range suggests that 
internal variability and counteracting drivers may obscure the net effect of all forcings. For 
sub-regional extremes, confidence is slightly higher: 84% likelihood, with an AF of 1.00 
[0.68–12.16]. This points to a potential increase in burned area, though again with 
considerable uncertainty. 
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While these results do not offer conclusive evidence of a net anthropogenic effect, they 
underscore the complexity of attributing fire outcomes to the combined influence of climate 
and human activity. The limited confidence in these findings highlights the need to improve 
methodologies capable of capturing interactions and feedbacks between land use, climate, 
and fire, particularly in regions such as Pantanal and Chiquitano, where these relationships 
are highly complex. Future reports should move beyond treating climate and socioeconomic 
drivers in isolation. As interactive and compounding effects become more likely, attribution 
frameworks that separate human and climate influences risk overlooking critical synergies 
that are most relevant for effective policy and risk management. 
 
S5.2.2.3 Southern California 
 
Time: Jan 2003-2019 
Variable: Burned Area 
Attribution Type: Total climate change 
Includes: All anthropogenic and natural trends in climate 
 
There is limited evidence from this framework that total climate change increased the 
likelihood of January 2025-like regional burned area in Southern California during the 
2003–2019 period. The likelihood of an increase is estimated at 63% (Figure 14) with an 
amplification factor (AF) of 1.07 [0.68–2.83] (Table 6), suggesting that total climate change 
could have played a role, but the model does not provide a confident answer either way. This 
large range of uncertainty partially stems from the small geographic size of the region, which 
limits signal-to-noise ratios in long-term attribution frameworks. A similar issue was observed 
for Greece in last year’s report  (Jones et al., 2024b), where a confident climate signal was 
also absent in long-term regional attribution, despite strong evidence emerging from 
event-specific analysis. Interestingly, while the long-term climate signal here is weak, the 
near-real-time (NRT) attribution for the 2025 event itself shows a much stronger likelihood of 
anthropogenic influence, suggesting that climate signals may emerge more clearly during 
specific extremes than across broader multi-year variability. 
 
 
As the amount of burned area in January in Southern California is historically nominal given 
that this is the traditional wet season when flammability is low, some of the elevated 
uncertainty may stem from local calibration. Likewise, these were principally wind-driven 
fires due to synoptic-mesoscale features with Santa Ana downslope winds whose features 
are poorly resolved in the coarse reanalysis data used here. Climate projections show a 
weak attenuation of the frequency of Santa Ana winds with anthropogenic climate change 
(Guzman-Morales and Gershunov, 2019; Hawkins et al., 2022), but also an extension of  
critically dry fuels into winter due to delayed onset of winter precipitation (Goss et al., 2020). 
The degree to which these two factors alongside the direct thermal influence of climate 
change on fuel desiccation altered the odds of such extremes requires additional analysis 
and may not be realized through the approaches used here. 
 
Time: Jan 2002-2019 
Variable: Burned Area 
Attribution Type: All forcing  
Includes:  All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
 
There is no clear signal for the impact of all forcing for January 2025-like burned area in 
Southern California during 2002–2019. The likelihood of an increase is estimated at 55%, 
with an amplification factor of 1.05 [0.26–64.26], nearly identical to the socioeconomic-only 
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result. This further highlights the challenge of drawing confident conclusions in small regions 
with limited signal. 
 
S2.2.2.4 Congo Basin 
 
Time: Jun-Aug 2024 
Variable: Burned Area 
Attribution Type: Total climate change 
Includes: All anthropogenic and natural trends in climate 
 
Total climate change likely increased the amount of burned area in areas with the height 
levels of burning, though with limited confidence in the size of this effect. The likelihood of an 
increase was estimated at 75%, with an amplification factor (AF) of 1.29 [0.96–3.32]. This 
implies that while a contribution from climate change is more likely than not, the possibility of 
little to no effect cannot be ruled out. The risk ratio was 1.8, suggesting that events of this 
severity were nearly twice as likely under current climate conditions than they would have 
been in a pre-industrial climate. 
 
Time: Jun-Aug 2024 
Variable: Burned Area 
Attribution Type: All forcing  
Includes:  All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
 
For the region as a whole, the likelihood of all human and climate forcing increased burning 
was 55%, with an amplification factor (AF) of 1.01 [0.86–1.42], indicating no clear signal. In 
the areas most severely affected by fire, the likelihood rose slightly to 63%, with an AF of 
1.06 [0.73–4.44]. While this suggests that the combined effect of all forcings could have 
contributed to the sub-regional extremes, the wide range and low confidence highlight the 
challenge of attributing fire outcomes in regions where both data and model constraints 
remain significant. 
 
S5.2.3 Sub-regional extreme burned area during 2024-25 
 
S5.2.3.1 Northeast Amazonia 
 
Area/Time: Sub-regional extremes/Jan-Mar 2024 
Variable: Burned Area 
Attribution Type: Anthropogenic climate forcing 
Includes: Greenhouse gases, aerosols, and land-use change effects on climate 
 
Anthropogenic climate forcing also very likely caused increased burned area (BA) in the 
sub-regional extremes with a likelihood of 96% (Figure 14; Table 6). The amplification factor 
in these areas was smaller than for the region as a whole: fires in these high-BA zones were 
on average 1.17 times larger, with a 90% confidence range of 1.01 to 5.13. This means that 
anthropogenic climate forcing likely contributed to increased burning in these areas, though 
the amplification was more modest than across the broader region. The risk ratio was 2.2, 
indicating that fire seasons with this spatial pattern of extreme burning are now more than 
twice as likely due to climate change. 
 
This difference between regional and sub-regional extremes is consistent with earlier 
findings in Section 4, which showed that climate-driven weather anomalies - more directly 
linked to the influences considered in our attribution, increased the potential for burning 
across much of the region, while fuel conditions (fuel load and moisture) shaped the location 
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and timing of the most severe burning. The moderate amplification factor in the highest-BA 
grid cells likely reflects the local interplay between fire weather and fuel constraints, where 
factors such as fuel limitations or ignition variability may have restricted how much additional 
burning occurred, even under climate driven more fire conducive  weather conditions.   
 

 
Figure S23 Risk ratio and amplification factor for different levels of total (left) and 
sub-regional extreme (right) burned area, simulated using ConFLAME-NRT for each region 
(rows). Percentile ranges for the amplification factor are taken across ensemble members. 
The red dashed vertical line indicates observed levels of burned area, for which the 
corresponding risk ratio is reported in each panel. 
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S5.2.3.2 Pantanal and Chiquitano 
 
Area/Time: Sub-regional extremes/Aug-Sep 2024 
Variable: Burned Area 
Attribution Type: Anthropogenic climate forcing 
Includes: Greenhouse gases, aerosols, and land-use change effects on climate​
 
Anthropogenic climate forcing was very likely to have increased BA for the sub-region with 
the highest burned areas in August-September 2024, with a 90% likelihood of increased 
burned area in the factual simulations compared to the counterfactual (Figure 14). The 
amplification factor (AF) was 1.91, albeit with a wide uncertainty range [0.98–>100] (Table 
6), suggesting that while the median influence was lower than for regional totals, very large 
increases in burned area due to climate change cannot be ruled out. A similar likelihood of 
increase and upper bound was found when using ensemble-mean meteorology for the 
counterfactual.  

The risk ratio for these sub-regional extremes was 2.3 (Table 6), indicating more than twice 
the likelihood of observing similar extreme burned area under current anthropogenic 
conditions relative to a natural climate. 

As with Northeast Amazonia, the anthropogenic influence appears less pronounced for the 
most severely affected areas than for the region overall. This could reflect local 
fire–moisture–fuel feedbacks limiting amplification where BA was already high, or shifts in 
fire-prone zones expanding regional totals without intensifying extremes. Further 
investigation into local factors such as wetlands and fuel constraints will be key to 
understanding why the climate signal appears weaker in the areas that burn most. One 
possible explanation is that wetlands and other moisture-rich ecosystems may help buffer 
fire activity, even as climate conditions change. Another contributing factor could be land use 
in these extreme fire areas. For example, fire suppression in human-managed landscapes 
may interact with climate drivers in ways that reduce the strength of attribution signals. 

S2.2.2.2 Southern California 
 
Area/Time: Sub-regional extremes/Aug-Sep 2024 
Variable: Burned Area 
Attribution Type: Anthropogenic climate forcing 
Includes: Greenhouse gases, aerosols, and land-use change effects on climate 
 
Due to the relatively small size of the Southern California study region, the identified 
sub-regional extremes correspond to a single model grid cell thus limiting the ability to 
capture nuances of the distinct fire regimes and mesoscale factors associated with Santa 
Ana winds (Kolden and Abatzoglou, 2018). As the attribution results are qualitatively similar 
to those for the full region for all comparisons (Table 6), we do not discuss a separate 
analysis of sub-regional extremes here. 
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S5.2.4 Background Changes in Burned Area this Century - all forcings 
 
S5.2.4.1 Northeast Amazonia 
 
Area/Period: All region/2003-2019 
Variable: Background Burned Area 
Attribution Type: All forcing  
Includes: All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
 
When both climate and socioeconomic forcings are considered together, their effects largely 
offset one another, leading to a small and uncertain net change in BA of +1% [-6%, +9%]. In 
this region, we observe that the effects of climate change and socio-economic factors on BA 
have approximately counteracted to produce no clear overall change in background levels of 
BA this century. 
 

 
Figure S24: Change in median BA due to total climate forcing from FireMIP. Present day BA 
(2003-2019) for factual (historical forcing, orange) and counterfactual (detrended climate, 
blue). Probability is shown on a log scale. 
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Figure S25: Change in median BA anomaly due to socioeconomic factors (population and 
land-use change) from FireMIP. Present day BA (2003-2019) for counterfactual (detrended 
climate, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North 
West South America (NWS, RIGHT). Probability is shown on a log scale.  
 
S5.2.4.2 Pantanal and Chiquitano 
 
Area/Period: All region/2003-2019 
Variable: Background Burned Area 
Attribution Type: All forcing  
Includes: All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
 
When considering the combined effects of climate change and socioeconomic drivers, we 
estimate a net change in background BA at +3% [-2%, 9%]. This modest and uncertain 
increase likely reflects offsetting influences, where climate-driven increases in fire activity 
have been partially counteracted by human-driven factors such as land management, 
suppression practices, or landscape fragmentation. While the net change is close to zero, 
the underlying drivers may still be highly active in opposing directions, a dynamic that 
warrants further investigation to support more effective fire policy and adaptation planning. 
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Figure S26: Change in median BA anomaly due to all forcing (climate change and 
socioeconomic factors) from FireMIP. Present day BA (2003-2019) for factual (historical 
forcing, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North 
West South America (NWS, RIGHT). Probability is shown on a log scale. 
 
S5.2.4.3 Congo Basin 
 
Area/Period: All region/Jun-Aug 2024 
Variable: Background Burned Area 
Attribution Type: All forcing  
Includes: All anthropogenic and natural trends in climate, population density, land use and 
land cover change 
When accounting for all anthropogenic and natural trends (i.e. climate change, population 
dynamics, and land use change) we estimate that total background burned area in the 
Congo Basin increased by 25% [18%, 33%] over the 2003-2019 period compared to 
pre-industrial conditions. This result reflects the net outcome of competing influences: while 
socioeconomic factors appear to have reduced fire activity (as noted in the previous section), 
climate change has likely increased the underlying fire risk, particularly through changes in 
temperature, rainfall patterns, and vegetation dynamics. 
 
The net increase in background fire activity does not necessarily imply more fire during 
extreme years, but it does suggest that the baseline fire environment is shifting. Over time, 
this could reduce the threshold for extreme events to occur or make recovery between fire 
seasons more difficult.  
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S6 Supplementary Material for Section 6 
 
 
 

 
Figure S27: Evaluation of the JULES vegetation model bias adjustment for tree cover over 
the Amazon region. a) Time series of tree cover over the area (in percent) for different 
climate models, both with historical and scenario runs, raw model in solid lines, bias 
corrected models in dashed lines and MODIS VCF in black. b) Cumulative distribution 
function of tree cover values across region and historical time period for different climate 
models for observations (blue), raw models (orange), raw historical models (green) debiased 
models (red). c) Absolute model bias in mean and 80th percentile for the GFDL-ESM4 
climate model before (left two plots) and after bias adjustment (right two plots). 
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Northeastern Amazonia 

 
Pantanal and Chiquitano 

 
Southern California 

 
Congo Basin 

 
 
 Figure S28:  Time series of tree cover over each focal region for different climate models, 
both with historical and future scenario runs, raw model in solid lines, bias corrected models 
in dashed lines and MODIS VCF in black. Note that for Southern California, bias and 
none-bias corrected time series overlap one another. 
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Figure S29: As Figure 18, but for the regions with the highest burned area (at the 95 
percentile of burning). 
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Figure S30: Projected changes in January-March 2024 BA over Northeast Amazonia by 
2030–2040 under three SSP scenarios, with BA simulated by ConFLAME. (Left) Average 
JFM BA fraction (%) for 2010–2020. (Middle) Relative change in JFM BA extent projected 
for 2030–2040 period, expressed as a multiplier of 2010–2020 values. (Right) Increased (or 
decreased) frequency in the 2030s period of a 1-in-100 year event defined for the period 
2010–2020, expressed as a multiplier of 2010–2020 values. In the left column, the size of 
the dot in each grid cell indicates the likelihood (larger = higher likelihood) of a BA fraction 
being greater than the threshold indicated by the coloured dot (see legend at the base). 
Likewise, in the middle column the size of the dot varies with likelihood that the BA fraction 
exceeds the threshold indicated by the coloured dot (see legend at the base). For example, 
a large pale orange dot in the left column indicates a high likelihood of the BA fraction 
exceeding 0.03%, whereas a small dark red dot indicates a small (but non-zero) likelihood of 
the BA fraction exceeding 0.03%+.  
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Figure S31:  Same as Figure S30 for 2040s. 
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Figure S32: Same as Figure S30 for 2090s. 
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Figure S33: Same as Figure S30 for August-September 2024, Pantanal and Chiquitano 
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Figure S34:  Same as Figure S30 for 2040s. 
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Figure S35:  Same as Figure S30 for 2090s. 
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Figure S36: Same as Figure S30 for July 2025, Southern California 
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Figure S37:   Same as Figure S36 for 2040s. 
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Figure S38:   Same as Figure S36 for 2090s. 
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Figure S39: Same as Figure S30 for July, August 2025, Congo Basin 
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Figure S40:   Same as Figure S39 for 2040s. 
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Figure S41:   Same as Figure S39 for 2090s. 
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A- Mean Tree cover differences B- Minimum Precipitation Differences

C- Temperature Max Difference D- Max temperature Max differences  

 
 

Figure S42 Future projections of key bioclimate drivers of fire for Southern California, 
expressed as difference 2090s vs 2020s. Panels show (A) mean tree cover differences, (B) 
minimum precipitation differences, (C) mean maximum temperature differences, and (D) 
maximum temperature extremes differences. 
 

S6.3 ConFLAME evaluation 

We evaluated the performance of bias-corrected ISIMIP3b climate model data against ERA5 
reanalysis in estimating the likelihood of extreme burned area (BA) events across four focal 
regions. 

S6.3.1 Northeast Amazonia: 

For the baseline period 2010–2020, reanalysis-based estimates indicate a 0.073% annual 
probability of experiencing a BA extent comparable to January–March 2024 (Table 7). 
GCM-based estimates yield a slightly higher likelihood of 0.12%. Although bias correction 
reduced some discrepancies, differences between GCM and reanalysis data persist. 

 

S6.3.2 Pantanal–Chiquitano: 

GCM-based estimates suggest a higher present-day likelihood of August–September 
2024-level BA (0.08–0.10% annually) than reanalysis data (0.19%). However, for the most 
impacted areas (top 5% of grid cells), GCMs and reanalysis align more closely, both 
indicating a very low annual probability of 0.01–0.03%. 
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S6.3.3 Southern California:  

During 2010–2020, the annual likelihood of a 2025-scale regional fire event is estimated at 
0.38% from reanalysis and 0.34% from bias-corrected GCMs. In the top 5% most affected 
grid cells, these estimates are slightly lower (0.27% and 0.24%, respectively). This close 
agreement highlights the effectiveness of bias correction in aligning model projections with 
observations, supporting confidence in future risk assessments. 

 

S6.3.4 Basin: 

Bias-corrected GCMs closely replicate reanalysis estimates for July 2024-scale fire events, 
with annual likelihoods of 0.16–0.19% (GCMs) and 0.17% (reanalysis). For the most 
severely affected areas, both data sources agree on an annual likelihood near 0.01%, 
indicating strong model fidelity to observed fire risk patterns. 
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S8 Supplementary Material for Appendix A  
 

 
Figure S43: Summary of the 2024-2025 fire season in the Republic of the Congo. Time 
series show annual fire count, BA, C emissions totals within the region, as well as the 
average fire’s peak fire intensity (95th percentile value of fire radiative power within fire 
perimeters), the 95th percentile fire size, fastest daily rate of growth, and 95th percentile fire 
daily rate of growth. Black dots show annual values prior to the latest fire season, red dots 
the values during the latest fire season, and blue dashed lines the average values across all 
fire seasons.  
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Figure S44: Summary of the 2024-2025 fire season in Huíla, Angola, as in Figure A1.  
 

66 
 



 

 
Figure S45: Summary of the 2024-2025 fire season in Nepal, as in Figure A1. 
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Figure S46: Summary of the 2024-2025 fire season in Portugal, as in Figure A1.  
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Figure S47: Summary of the 2024-2025 fire season in Oregon, USA, as in Figure A1.  
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S9 Supplementary Material: Extended Model evaluation 
 
S9.1 ConFLAME evaluation - driver assessment 
 
We evaluate the performance of ConFLAME following the Bayesian attribution model 
evaluation framework introduced by Barbosa et al. (2025) and applied in last year’s report. 
The aim of this evaluation is to ensure that the posterior distribution adequately represents 
the observed fire record in each case-study region, a necessary precondition for robust 
attribution. 
Specifically, we test two criteria: 

1.​ Coverage of observations – the observed burned area (BA) should fall within the 
posterior uncertainty range (5th–95th percentiles) of the model simulations.​
 

2.​ Lack of systematic bias – observed values should not cluster consistently at one 
edge of the posterior distribution. An unbiased model will show observations 
distributed around the median posterior, with an expected average rank position of 
~0.5.​
 

We present three diagnostic panels for each region: 
●​ Top row: Annual mean BA for December–February in observations, and the 5th and 

95th percentiles of the posterior simulations, to assess spatial coverage of the 
observed distribution.​
 

●​ Middle row: (i) scatter of observed BA versus its likelihood under the posterior (where 
high observed BA should have high likelihood, >0.9, if extremes are well 
represented); (ii) spatial maps of the 5th and 95th percentiles of likelihood across all 
months.​
 

●​ Bottom row: (i) scatter of observed versus simulated BA, with posterior uncertainty 
shown as vertical ranges (5th, interquartile, and 95th percentiles); (ii) map of the 
average rank position of observations within the posterior (ideal ≈0.5); and (iii) map of 
the probability that deviations from 0.5 are statistically significant, indicating bias.​
 

Equations for the likelihood and rank-position diagnostics are given in Barbosa et al. (2025). 
 
We use the same model configuration outlined in Section 4.1.2 and Supplementary 
Section 4.1.2. Due to constraints on the time period of available data, we performed training 
and evaluation over 2019-2026, with 50% of grid cells used for training and 50% for 
evaluation.  
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S9.1.1 Northeast Amazonia 
 

 
Figure S48: Posterior evaluation diagnostics for ConFLAME in Northeastern Amazonia. 
Each panel shows three sets of diagnostics. Top row: Observed annual average BA for 
Focal Months (left), compared to the 5th (middle) and 95th (right) percentiles of simulated 
BA. Middle row: Scatterplot of observed BA (x-axis) versus likelihood of observations under 
the posterior (y-axis), where high observed BA should correspond to high likelihood values; 
spatial maps of the 5th (middle) and 95th (right) percentiles of observation likelihood across 
all months. Bottom row: Scatterplot of observed BA (x-axis) versus posterior-simulated BA 
(y-axis), with vertical ranges representing the 5th percentile, interquartile range, and 95th 
percentile; a map of the average posterior rank position of observations (ideal ≈0.5); and a 
map of the significance of deviations from 0.5, indicating where bias may be present. 
The observed burned area (BA) during January–March is concentrated mainly in the 
northern Amazonian savannas and in the transitional dry-forest zone to the north of the 
region, with a mean monthly BA of approximately 0.067 (fractional area burned). The 
posterior ensemble from the model reproduces these core burning regions well, although it 
extends elevated BA slightly into more forested areas along the Brazil–Venezuela border. 
This spatial shift corresponds to locations where satellite observations likely underestimate 
BA because of persistent cloud cover and tree-canopy interference. 
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Following the evaluation approach of Barbosa et al. (2025), we assess both the coverage of 
the observed values by the posterior and the lack of systematic bias in their placement within 
it. Across Northeastern Amazonia, the posterior shows high consistency with observations: 
the probability of the observed value given the model, P(Obs∣Model), exceeds 0.95 for 
nearly all grid cells. Observed BA values fall comfortably within the posterior uncertainty 
range, including for the most extreme events, with the top 10 % of observed BAs aligned, on 
average, with the 79th percentile of the posterior distribution. This demonstrates that the 
model captures both the spatial pattern and magnitude of historical extremes, providing a 
strong basis for subsequent attribution analysis in this region. 
 
S9.3.2 Pantanal and Chiquitano 

 
Figure S49:Observed burned area (BA) peaks across the Bolivian dry forests of the 
Chiquitano region, with extensive burning also evident in the adjacent Brazilian Pantanal 
wetlands. The model reproduces this broad spatial pattern within its posterior, though it does 
so primarily through a wide uncertainty range. Some mismatches remain in the wetlands and 
southern Chiquitano areas, where observed burning is less strongly expressed in the 
posterior mean. Nevertheless, the observed BA consistently falls within the posterior range, 
indicating that the model adequately represents historical variability even in these more 
heterogeneous landscapes. 
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Across most of the region, the probability of the observed value given the model, 
P(Obs∣Model), remains high (typically >0.85), though it dips below 0.75 for some months in 
wetter or more topographically complex areas. The most extreme observations also lie within 
the posterior, averaging at the 87th percentile, suggesting a modest regional 
underestimation of absolute BA magnitudes, but with the relative ranking of years and 
locations well captured (as shown by the observed–simulated scatter). Together, these 
results indicate that while the posterior is broad, it successfully captures the spatial and 
interannual structure of fire activity required for robust attribution analysis. 
 
 
S9.3.3 Southern California 

 
 
Figure S50: The 2025 Los Angeles fires produced the highest burned area (BA) observation 
in the record, concentrated in the northern part of the region, where the 10-year mean BA 
reached ~0.3%. The model posterior captures this hotspot, but also indicates that, given the 
training data, elevated BA is plausible in the southern portion of the region. Posterior 
uncertainty ranges are wide in both sub-regions, spanning from negligible burning to values 
of 1–10% BA. Despite this spread, the probability of the observed values under the posterior, 
P(Obs|Model), is very high (>0.92) across the region. Observations fall predominantly within 
the central mass of the posterior distributions, though with a slight tendency toward 
underestimation at the upper extreme (observations align, on average, with the 60th 
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percentile of the posterior for the most extreme events, i.e. 99–100% quantiles). This mild 
bias remains within acceptable limits according to the criteria of Barbosa et al. (2025), 
supporting the conclusion that the posterior adequately represents both the central tendency 
and extreme tail of the observed distribution in Southern California. 
 
 

 

74 
 



 

S9.3.4 Congo Basin 
 

 
Figure S51: Observed burned area (BA) is concentrated toward the southern margin of the 
basin, spanning both Congos and extending westward toward the Atlantic coast. This region 
corresponds to the drier savanna–forest mosaic that experiences seasonal burning, 
contrasting with the largely unburned central rainforest core. The model’s posterior 
reproduces this spatial pattern well, indicating strong sensitivity to the same climatic and 
vegetation gradients that shape observed fire activity. It also suggests that burning may 
extend slightly further into forested areas, consistent with regions where satellite 
observations are known to underestimate low-intensity or short-lived fires beneath partial 
canopy cover. 
 
Across nearly the entire region, the probability of the observed value given the model,  
P(Obs∣Model), exceeds 0.9, indicating excellent agreement between simulated and 
observed burned area magnitudes. Observations consistently fall within the simulated 
posterior range, including at higher burned area levels. The most extreme observed events 
(top 10%) occur, on average, at the 82nd percentile of the posterior, suggesting a modest 
underestimation of the highest-intensity burning. Nonetheless, the posterior captures both 
the spatial gradients and interannual variability in burned area across the southern Congo 
Basin, supporting its suitability for attribution analysis. 

75 
 



 

S9.2 ConFLAME evaluation - Near Real Time 
S9.2.1 HadGEM3-A vs ERA5 meteorology 
 
In this section we present a basic evaluation of the model’s performance against ERA5 
reanalysis for the physical input variables to the FWI. As the FWI methodology requires a 
bias correction of the FWI itself, rather than of the input variables, we focus here on 
assessing the basic physical behaviour of and relationship between those variables.  Figures 
S48- S55 present time series for a number of recent years followed by details of the 
seasonal cycle over 2024. From these we are able to qualitatively assess the behaviour over 
these timescales to that in reanalysis, compare any obvious anthropogenic responses to the 
response to only natural climate forcings and note any clear biases.  
 
Temperature variables typically possess better model performance than those related to 
precipitation, humidity and wind. For all regions we see that daily mean and maximum 
temperature possess similar magnitude of variability, absolute values and presence of 
obvious trends to ERA5. The Amazon and Congo regions see model daily means that are 
warm biased while daily maximum temperatures are essentially unbiased in all regions, at 
the relevant part of the seasonal cycle, which is useful for FWI as maximum temperature is 
the relevant input variable. Temperature is the only variable with significant trends that are 
obvious over the short period depicted (Congo) but we see that the model captures these, as 
well as the lack of such in other regions. 
 
For each region the model captures the phasing of the seasonal cycle in precipitation, 
despite clear biases in magnitude of extremes of the monthly mean. Daily mean surface 
wind also possess seasonality with features that are captured by the model, generally with 
high biases. RH anomalies appear to possess both significantly different magnitude of 
variability and seasonality in more than one region. Together with temperature however 
these suggest that the appropriate physical relationships between the input variables is 
present in the model and that the basic meteorology relevant to fire weather events is 
acceptable.  
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Figure S52: January 2010 to April 2025 time series of individual component variables of the 
FWI from HadGEM (red: all forcing scenario, blue: natural forcing scenario) compared to 
ERA5 reanalysis (black) over northeast Amazonia region. We show monthly mean a) daily 
maximum temperature, b) temperature, c) total precipitation, d) relative humidity, e) wind 
speed as well as f) wind gusts. Shading represents the 5th-95th percentile confidence 
interval. 
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Figure S53: Same as in figure S52, but for the Pantanal-Chiquitano. 
 

78 
 



 

 
 
Figure S54: Same as in figure S52, but for the Congo Basin. 
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​​  
Figure S55: Same as in figure S52, but for the Souther California region. 
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Figure S56: Seasonal cycle of individual component variables of the FWI from HadGEM 
(red: all forcing scenario, blue: natural forcing scenario) compared to ERA5 reanalysis 
(black) across 2024 over the northeast Amazonia region. We show daily a) maximum 
temperature, b) mean temperature, c) total precipitation, d) relative humidity, e) wind gusts 
as well as f) mean wind speed. Shading represents the 5th-95th percentile confidence 
interval.  
 

 
Figure S57: Same as in figure S56, but for the Pantanal-Chiquitano.  
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Figure S58: Same as in figure S52, but for the Congo Basin. 
 

 
Figure S59: Same as in figure S56, but for the Southern California egion. 
 
 
S9.2.2 ConFLAME evaluation - Near Real Time 
 
Here, we apply the same evaluation method and protocol described in Supplementary 
Section 4.3, but using the Near Real-Time (NRT) configuration outlined in Section 9.1 
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S9.2.2.1 Northeast Amazonia 

 
Figure S60: Although fuel moisture data were not included in this setup, the model produces 
a posterior distribution largely consistent with the driver-based configuration described in 
Supplementary  Section 9.1.1. Some differences are evident, particularly a tendency to 
simulate slightly higher burned area in forested regions where this is not observed. 
Importantly, for attribution of extreme events in policy-relevant areas under climate change, 
the model captures high-end burned area values more accurately in this configuration. The 
top 10 % of observed burned areas correspond to approximately the 48th percentile of the 
posterior, and the top 5 % to around the 54th percentile, indicating a largely unbiased model 
performance for simulating extremes. 
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S9.2.2.2 Pantanal and Chiquitano 
 

 
Figure S61: As with Northeastern Amazonia, the Pantanal–Chiquitano region shows very 
similar behaviour to the driver-based model configuration described in Supplementary 
Section 9.1.2. Again, the Near Real-Time setup performs slightly better at capturing 
extremes: the top 10 % of observed burned area corresponds to approximately the 60th 
percentile of the posterior, and the top 5 % to around the 65th percentile. This indicates a 
small remaining underestimation of the most extreme events, but overall good model 
performance. 
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S9.2.2.3 Southern California 
 

 
Figure S62: The spatial pattern of burned area in Southern California is slightly offset from 
observations but still broadly consistent, with high BA captured in both the northern and 
southern parts of the region. Otherwise, the Near Real-Time setup behaves similarly to the 
driver-based configuration described in Supplementary Section 9.1.3. Observed burned 
areas fall around the 58th percentile of the posterior distribution, indicating a model that is 
largely free from systematic bias. 
 

 

85 
 



 

S9.2.2.4 Congo Basin 
 

Figure S63: The Congo Basin results are again similar to the driver-based setup described 
in Supplementary Section 9.1.4, though with additional pockets of possible burning 
appearing throughout the central basin. As with other regions, the Near Real-Time 
configuration captures extremes more effectively, with the top 10% of observed burned area 
occurring at the 58th percentile and the top 5% at the 66th percentile of the posterior 
distribution. 
 
S5.3 ConFLAME evaluation - ISIMP 
 
Here, we apply the same evaluation method described in Supplementary Section 9.1, but 
using the Near Real-Time (ISIMIP) configuration outlined in Section 5.1.3. The evaluation 
protocol is slightly modified to account for the extended data availability period. Specifically, 
the model is trained on data from 2002–2009 and evaluated on 2012–2019, providing an 
out-of-sample assessment of model performance following the approach of Barbosa et al. 
(2025). 
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S5.3.1 Northeast Amazonia 

 

Figure S64: The spatial pattern simulated by the model closely follows that of the observed 
burned area in Northeastern Amazonia, though it suggests that burning could extend further 
into forested regions where observations may underestimate fire activity. The posterior 
distribution is notably wider than in the Near Real-Time configuration, which may help 
explain why attribution to total climate forcing (using the ISIMIP setup) is associated with 
greater uncertainty. However, the absence of systematic bias at the extremes, with the top 
10% of observed burned area corresponding to the 53rd percentile and the top 5% to the 
57th percentile of the posterior, which indicates that any detected signal would still be robust 
and statistically credible. 
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S5.3.2 Pantanal and Chiquitano 
 

 

Figure S65: The model successfully captures the spatial distribution of burned area 
observed in the wetlands of the Pantanal and the adjacent areas to the east. However, it 
performs less well in representing the dry forests of Chiquitano, particularly in Bolivia. 
Despite this, observed burned area still falls within the simulated posterior range. The 
probability of the observations given the model, P(Obs∣Mod), remains consistently 
high—around 0.95 or higher. Across the region, the model is largely unbiased, largely due to 
the wide uncertainty range. Extreme values are also relatively unbiased, though slightly 
underestimated compared to observations (with observed values averaging the 77th 
percentile for the top 10% of burned area and the 79th percentile for the top 5%). Overall, 
this supports a high degree of confidence in any formal attribution derived from this model. 
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S5.3.3 Southern California 
 

 

Figure S66: The coarser resolution of the ISIMIP setup means that there are too few grid 
cells to make meaningful spatial comparisons. Nonetheless, observations generally fall 
within the modelled range. The probability of the observations given the model, P(Obs∣Mod), 
is not always high but reaches approximately 0.9 for higher burned area values. The model 
is also largely unbiased, with the mean position of all observed burned areas at the 67th 
percentile within the posterior distribution. 
 

 

89 
 



 

S5.3.4 Congo Basin 
 

 
Figure S67: Over the longer period, observations also show some burning in the northern 
part of the basin, which is captured by the simulation. The model suggests the possibility of 
more extensive burning in the eastern basin than observed. Nonetheless, the model is 
relatively unbiased at the extremes, with the top 10% and 5% of burned area falling near the 
50th percentile of the posterior distribution. 

90 
 



 

 
Figure S68: Bias correction for Amazon forest northeast of the Amazon and Rio Negro 
rivers. Historical ensemble of HadGEM3 (yellow) compared to ERA5 (grey) 95th percentile 
of FWI for the historical period (1960-2013), shown as probability density before correction 
(a) and after correction (b), and one member shown as a time series (c, where HadGEM3 is 
shown in red, ERA5 in blue and corrected HadGEM3 in purple). HadGEM3 ensemble for 
2024 shown before bias-correction (d). ERA5 2024 event shown as black vertical line on all 
probability density plots.  
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Figure S69: As for Figure S68, but for Pantanal & Chiquitano 
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Figure S70: As for Figure S68, but for Congo basin  
 
 
 
 
 

Supplementary References 

Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M., and Kolden, C. A.: Global 
patterns of interannual climate--fire relationships, Glob. Chang. Biol., 24, 5164–5175, 2018. 

Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global emergence of anthropogenic 
climate change in fire weather indices, Geophys. Res. Lett., 46, 326–336, 
https://doi.org/10.1029/2018gl080959, 2019. 

Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., 
DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., 
Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in 
global burned area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 
2017. 

Barbero, R., Abatzoglou, J. T., Steel, E. A., and K Larkin, N.: Modeling very large-fire 
occurrences over the continental United States from weather and climate forcing, Environ. 
Res. Lett., 9, 124009, https://doi.org/10.1088/1748-9326/9/12/124009, 2014. 

Barbosa, M. L. F., Kelley, D. I., Burton, C. A., Ferreira, I. J. M., da Veiga, R. M., Bradley, A., 

93 
 

http://paperpile.com/b/lpE3cM/RxkK
http://paperpile.com/b/lpE3cM/RxkK
http://paperpile.com/b/lpE3cM/TnZV
http://paperpile.com/b/lpE3cM/TnZV
http://paperpile.com/b/lpE3cM/TnZV
http://dx.doi.org/10.1029/2018gl080959
http://paperpile.com/b/lpE3cM/TnZV
http://paperpile.com/b/lpE3cM/Ex3A
http://paperpile.com/b/lpE3cM/Ex3A
http://paperpile.com/b/lpE3cM/Ex3A
http://paperpile.com/b/lpE3cM/Ex3A
http://dx.doi.org/10.1126/science.aal4108
http://paperpile.com/b/lpE3cM/Ex3A
http://paperpile.com/b/lpE3cM/Ex3A
http://paperpile.com/b/lpE3cM/go2K
http://paperpile.com/b/lpE3cM/go2K
http://paperpile.com/b/lpE3cM/go2K
http://dx.doi.org/10.1088/1748-9326/9/12/124009
http://paperpile.com/b/lpE3cM/go2K
http://paperpile.com/b/lpE3cM/E6Lt


 

Molin, P. G., and Anderson, L. O.: FLAME 1.0: a novel approach for modelling burned area 
in the Brazilian biomes using the maximum entropy concept, Geosci. Model Dev., 18, 
3533–3557, https://doi.org/10.5194/gmd-18-3533-2025, 2025. 

Boussetta, S., Balsamo, G., Arduini, G., Dutra, E., McNorton, J., Choulga, M., 
Agustí-Panareda, A., Beljaars, A., Wedi, N., Munõz-Sabater, J., de Rosnay, P., Sandu, I., 
Hadade, I., Carver, G., Mazzetti, C., Prudhomme, C., Yamazaki, D., and Zsoter, E.: ECLand: 
The ECMWF land surface modelling system, Atmosphere (Basel), 12, 723, 
https://doi.org/10.3390/atmos12060723, 2021. 

Burton, C., Betts, R., Cardoso, M., Feldpausch, T. R., Harper, A., Jones, C. D., Kelley, D. I., 
Robertson, E., and Wiltshire, A.: Representation of fire, land-use change and vegetation 
dynamics in the Joint UK Land Environment Simulator vn4. 9 (JULES), Geoscientific Model 
Development, 12, 179–193, 2019. 

Burton, C., Betts, R. A., Jones, C. D., Feldpausch, T. R., Cardoso, M., and Anderson, L. O.: 
El Niño Driven Changes in Global Fire 2015/16, Front Earth Sci. Chin., 8, 
https://doi.org/10.3389/feart.2020.00199, 2020. 

Burton, C., Kelley, D. I., Jones, C. D., Betts, R. A., Cardoso, M., and Anderson, L.: South 
American fires and their impacts on ecosystems increase with continued emissions, Climate 
Resilience and Sustainability, 1, e8, https://doi.org/10.1002/cli2.8, 2022. 

Burton, C. A., Lampe, S., Kelley, D., Thiery, W., Hantson, S., Christidis, N., Gudmundsson, 
L., Forrest, M., Burke, E., Chang, J., Huang, H., Ito, A., Kou‐Giesbrecht, S., Lasslop, G., Li, 
W., Nieradzik, L., Li, F., Chen, Y., Randerson, J., Reyer, C. P. O., and Mengel, M.: Global 
burned area increasingly explained by climate change, Nat. Clim. Chang., 1–7, 
https://doi.org/10.1038/s41558-024-02140-w, 2024. 

Burton, C. A., Ciavarella, A., Kelley, D., Hartley, A. J., McCarthy, M., S. New, Betts, R. A., 
and Robertson, E.: Very high fire danger in UK in 2022 at least 6 times more likely due to 
human-caused climate change, Environ. Res. Lett., 20, 
https://doi.org/10.1088/1748-9326/adb764, 2025. 

Center for International Earth Science Information Network (CIESIN): Gridded Population of 
the World, Version 4 (GPWv4): Population Count, Revision 11, 2025. 

Chuvieco, E., Lucrecia Pettinari, M., Lizundia-Loiola, J., Khairoun, A., Danne, O., Boettcher, 
M., and Storm, T.: ESA Fire Climate Change Initiative (Fire_cci): Sentinel-3 SYN Burned 
Area Grid product, version 1.1, 2024. 

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., 
Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and 
Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: 
Carbon fluxes and vegetation dynamics, Geoscientific Model Development, 4, 701–722, 
https://doi.org/10.5194/gmd-4-701-2011, 2011. 

CMES: Fire danger indices historical data from the Copernicus Emergency Management 
Service, https://doi.org/10.24381/CDS.0E89C522, 2019. 

Cunningham, D., Cunningham, P., and Fagan, M. E.: Evaluating forest cover and 
fragmentation in Costa Rica with a corrected global tree cover map, Remote Sens. (Basel), 
12, 3226, https://doi.org/10.3390/rs12193226, 2020. 

Di Giuseppe, F., Pappenberger, F., Wetterhall, F., Krzeminski, B., Camia, A., Libertá, G., and 
San Miguel, J.: The potential predictability of fire danger provided by numerical weather 

94 
 

http://paperpile.com/b/lpE3cM/E6Lt
http://paperpile.com/b/lpE3cM/E6Lt
http://paperpile.com/b/lpE3cM/E6Lt
http://dx.doi.org/10.5194/gmd-18-3533-2025
http://paperpile.com/b/lpE3cM/E6Lt
http://paperpile.com/b/lpE3cM/AwiT
http://paperpile.com/b/lpE3cM/AwiT
http://paperpile.com/b/lpE3cM/AwiT
http://paperpile.com/b/lpE3cM/AwiT
http://paperpile.com/b/lpE3cM/AwiT
http://dx.doi.org/10.3390/atmos12060723
http://paperpile.com/b/lpE3cM/AwiT
http://paperpile.com/b/lpE3cM/ec4V
http://paperpile.com/b/lpE3cM/ec4V
http://paperpile.com/b/lpE3cM/ec4V
http://paperpile.com/b/lpE3cM/ec4V
http://paperpile.com/b/lpE3cM/Dbqh
http://paperpile.com/b/lpE3cM/Dbqh
http://paperpile.com/b/lpE3cM/Dbqh
http://dx.doi.org/10.3389/feart.2020.00199
http://paperpile.com/b/lpE3cM/Dbqh
http://paperpile.com/b/lpE3cM/fNmZ
http://paperpile.com/b/lpE3cM/fNmZ
http://paperpile.com/b/lpE3cM/fNmZ
http://dx.doi.org/10.1002/cli2.8
http://paperpile.com/b/lpE3cM/fNmZ
http://paperpile.com/b/lpE3cM/6VnO
http://paperpile.com/b/lpE3cM/6VnO
http://paperpile.com/b/lpE3cM/6VnO
http://paperpile.com/b/lpE3cM/6VnO
http://paperpile.com/b/lpE3cM/6VnO
http://dx.doi.org/10.1038/s41558-024-02140-w
http://paperpile.com/b/lpE3cM/6VnO
http://paperpile.com/b/lpE3cM/opnN
http://paperpile.com/b/lpE3cM/opnN
http://paperpile.com/b/lpE3cM/opnN
http://paperpile.com/b/lpE3cM/opnN
http://dx.doi.org/10.1088/1748-9326/adb764
http://paperpile.com/b/lpE3cM/opnN
http://paperpile.com/b/lpE3cM/ODbE
http://paperpile.com/b/lpE3cM/ODbE
http://paperpile.com/b/lpE3cM/IL9A
http://paperpile.com/b/lpE3cM/IL9A
http://paperpile.com/b/lpE3cM/IL9A
http://paperpile.com/b/lpE3cM/FNf9
http://paperpile.com/b/lpE3cM/FNf9
http://paperpile.com/b/lpE3cM/FNf9
http://paperpile.com/b/lpE3cM/FNf9
http://paperpile.com/b/lpE3cM/FNf9
http://dx.doi.org/10.5194/gmd-4-701-2011
http://paperpile.com/b/lpE3cM/FNf9
http://paperpile.com/b/lpE3cM/X4fZ
http://paperpile.com/b/lpE3cM/X4fZ
http://dx.doi.org/10.24381/CDS.0E89C522
http://paperpile.com/b/lpE3cM/X4fZ
http://paperpile.com/b/lpE3cM/ooG9
http://paperpile.com/b/lpE3cM/ooG9
http://paperpile.com/b/lpE3cM/ooG9
http://dx.doi.org/10.3390/rs12193226
http://paperpile.com/b/lpE3cM/ooG9
http://paperpile.com/b/lpE3cM/4iCSe
http://paperpile.com/b/lpE3cM/4iCSe


 

prediction, J. Appl. Meteorol. Climatol., 55, 2469–2491, 
https://doi.org/10.1175/jamc-d-15-0297.1, 2016. 

Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D.-H., and Kelly, M.: MOD44B MODIS/Terra 
Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006, 
https://doi.org/10.5067/MODIS/MOD44B.006, 2015. 

Eden, J. M., Wolter, K., Otto, F. E. L., and Jan van Oldenborgh, G.: Multi-method attribution 
analysis of extreme precipitation in Boulder, Colorado, Environ. Res. Lett., 11, 124009, 
https://doi.org/10.1088/1748-9326/11/12/124009, 2016. 

Eden, J. M., Kew, S. F., Bellprat, O., Lenderink, G., Manola, I., Omrani, H., and J., van O. G.: 
Extreme precipitation in the Netherlands: An event attribution case study, Weather and 
climate extremes, 21, 90–101, 2018. 

Efron, B. and Tibshirani, R.: The problem of regions, Ann. Stat., 26, 1687–1718, 
https://doi.org/10.1214/aos/1024691353, 1998. 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. 
E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental 
design and organization, Geosci. Model Dev., 9, 1937–1958, 
https://doi.org/10.5194/gmd-9-1937-2016, 2016. 

Giglio, L.: VIIRS/NPP Burned Area Monthly L4 Global 500m SIN Grid V002, 
https://doi.org/10.5067/VIIRS/VNP64A1.002, 2024. 

Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The Collection 6 
MODIS burned area mapping algorithm and product, Remote Sens. Environ., 217, 72–85, 
https://doi.org/10.1016/j.rse.2018.08.005, 2018. 

Gneiting, T. and Katzfuss, M.: Probabilistic forecasting, Annu. Rev. Stat. Appl., 1, 125–151, 
https://doi.org/10.1146/annurev-statistics-062713-085831, 2014. 

Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A., Williams, A. P., and 
Diffenbaugh, N. S.: Climate change is increasing the likelihood of extreme autumn wildfire 
conditions across California, Environ. Res. Lett., 15, 094016, 
https://doi.org/10.1088/1748-9326/ab83a7, 2020. 

Guzman-Morales, J. and Gershunov, A.: Climate change suppresses Santa Ana winds of 
southern California and sharpens their seasonality, Geophys. Res. Lett., 46, 2772–2780, 
https://doi.org/10.1029/2018gl080261, 2019. 

Hantson, S., Arneth, A., Harrison, S. P., and Kelley, D. I.: The status and challenge of global 
fire modelling, 2016. 

Hawkins, L. R., Abatzoglou, J. T., Li, S., and Rupp, D. E.: Anthropogenic influence on recent 
severe autumn fire weather in the west coast of the United States, Geophys. Res. Lett., 49, 
https://doi.org/10.1029/2021gl095496, 2022. 

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., 
Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and 
Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, 
https://doi.org/10.24381/cds.adbb2d47, 2023. 

Huang, H., Xue, Y., Li, F., and Liu, Y.: Modeling long-term fire impact on ecosystem 
characteristics and surface energy using a process-based vegetation–fire model 

95 
 

http://paperpile.com/b/lpE3cM/4iCSe
http://paperpile.com/b/lpE3cM/4iCSe
http://dx.doi.org/10.1175/jamc-d-15-0297.1
http://paperpile.com/b/lpE3cM/4iCSe
http://paperpile.com/b/lpE3cM/xDbu
http://paperpile.com/b/lpE3cM/xDbu
http://paperpile.com/b/lpE3cM/xDbu
http://dx.doi.org/10.5067/MODIS/MOD44B.006
http://paperpile.com/b/lpE3cM/xDbu
http://paperpile.com/b/lpE3cM/YrO6
http://paperpile.com/b/lpE3cM/YrO6
http://paperpile.com/b/lpE3cM/YrO6
http://dx.doi.org/10.1088/1748-9326/11/12/124009
http://paperpile.com/b/lpE3cM/YrO6
http://paperpile.com/b/lpE3cM/WPbg
http://paperpile.com/b/lpE3cM/WPbg
http://paperpile.com/b/lpE3cM/WPbg
http://paperpile.com/b/lpE3cM/DXTK
http://paperpile.com/b/lpE3cM/DXTK
http://dx.doi.org/10.1214/aos/1024691353
http://paperpile.com/b/lpE3cM/DXTK
http://paperpile.com/b/lpE3cM/AwA5
http://paperpile.com/b/lpE3cM/AwA5
http://paperpile.com/b/lpE3cM/AwA5
http://paperpile.com/b/lpE3cM/AwA5
http://dx.doi.org/10.5194/gmd-9-1937-2016
http://paperpile.com/b/lpE3cM/AwA5
http://paperpile.com/b/lpE3cM/QMz6
http://paperpile.com/b/lpE3cM/QMz6
http://dx.doi.org/10.5067/VIIRS/VNP64A1.002
http://paperpile.com/b/lpE3cM/QMz6
http://paperpile.com/b/lpE3cM/DZyN
http://paperpile.com/b/lpE3cM/DZyN
http://paperpile.com/b/lpE3cM/DZyN
http://dx.doi.org/10.1016/j.rse.2018.08.005
http://paperpile.com/b/lpE3cM/DZyN
http://paperpile.com/b/lpE3cM/R3pR
http://paperpile.com/b/lpE3cM/R3pR
http://dx.doi.org/10.1146/annurev-statistics-062713-085831
http://paperpile.com/b/lpE3cM/R3pR
http://paperpile.com/b/lpE3cM/iSJM
http://paperpile.com/b/lpE3cM/iSJM
http://paperpile.com/b/lpE3cM/iSJM
http://paperpile.com/b/lpE3cM/iSJM
http://dx.doi.org/10.1088/1748-9326/ab83a7
http://paperpile.com/b/lpE3cM/iSJM
http://paperpile.com/b/lpE3cM/pSCQ
http://paperpile.com/b/lpE3cM/pSCQ
http://paperpile.com/b/lpE3cM/pSCQ
http://dx.doi.org/10.1029/2018gl080261
http://paperpile.com/b/lpE3cM/pSCQ
http://paperpile.com/b/lpE3cM/dG7f
http://paperpile.com/b/lpE3cM/dG7f
http://paperpile.com/b/lpE3cM/vpd0
http://paperpile.com/b/lpE3cM/vpd0
http://paperpile.com/b/lpE3cM/vpd0
http://dx.doi.org/10.1029/2021gl095496
http://paperpile.com/b/lpE3cM/vpd0
http://paperpile.com/b/lpE3cM/ly1p
http://paperpile.com/b/lpE3cM/ly1p
http://paperpile.com/b/lpE3cM/ly1p
http://paperpile.com/b/lpE3cM/ly1p
http://dx.doi.org/10.24381/cds.adbb2d47
http://paperpile.com/b/lpE3cM/ly1p
http://paperpile.com/b/lpE3cM/rrqh
http://paperpile.com/b/lpE3cM/rrqh


 

SSiB4/TRIFFID-Fire v1.0, Geosci. Model Dev., 
https://doi.org/10.5194/gmd-2020-122-supplement, 2020. 

Huang, H., Xue, Y., Liu, Y., Li, F., and Okin, G.: Modeling the short-term fire effects on 
vegetation dynamics and surface energy in Southern Africa using the improved 
SSiB4/TRIFFID-Fire model, https://doi.org/10.5194/gmd-2021-116, 2021. 

Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The 
Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage 
and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5, 3–13, 
https://doi.org/10.5194/essd-5-3-2013, 2013. 

Ito, A.: Disequilibrium of terrestrial ecosystem CO2 budget caused by disturbance-induced 
emissions and non-CO2 carbon export flows: a global model assessment, Earth Syst. Dyn., 
10, 685–709, https://doi.org/10.5194/esd-10-685-2019, 2019. 

Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., 
and Bowman, D. M. J. S.: Climate-induced variations in global wildfire danger from 1979 to 
2013, Nat. Commun., 6, 7537, https://doi.org/10.1038/ncomms8537, 2015. 

Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, 
A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., 
Kolden, C., Doerr, S. H., and Le Quéré, C.: Global and regional trends and drivers of fire 
under climate change, Rev. Geophys., 60, https://doi.org/10.1029/2020rg000726, 2022. 

Jones, M. W., Veraverbeke, S., Andela, N., Doerr, S. H., Kolden, C., Mataveli, G., Pettinari, 
M. L., Le Quéré, C., Rosan, T. M., van der Werf, G. R., van Wees, D., and Abatzoglou, J. T.: 
Global rise in forest fire emissions linked to climate change in the extratropics, Science, 386, 
eadl5889, https://doi.org/10.1126/science.adl5889, 2024a. 

Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., 
Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., 
Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., 
Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, 
D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., 
Stacey New, Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., 
San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., Van Der Werf, G. R., Veraverbeke, S., 
and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, 
https://doi.org/10.5194/essd-16-3601-2024, 2024b. 

Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M., Fisher, J. B., and Willis, K. 
O.: A comprehensive benchmarking system for evaluating global vegetation models, 
Biogeosciences, 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013. 

Kelley, D. I., Bistinas, I., Whitley, R., and Burton, C.: How contemporary bioclimatic and 
human controls change global fire regimes, Nat. Clim. Chang., 2019. 

Kelley, D. I., Burton, C., Huntingford, C., Brown, M. A. J., Whitley, R., and Dong, N.: 
Technical note: Low meteorological influence found in 2019 Amazonia fires, Biogeosciences, 
18, 787–804, https://doi.org/10.5194/bg-18-787-2021, 2021. 

Klein Goldewijk, K., Goldewijk, K. K., Beusen, A., Van Drecht, G., and De Vos, M.: The 
HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 
12,000 years, Glob. Ecol. Biogeogr., 20, 73–86, 
https://doi.org/10.1111/j.1466-8238.2010.00587.x, 2010. 

96 
 

http://paperpile.com/b/lpE3cM/rrqh
http://paperpile.com/b/lpE3cM/rrqh
http://dx.doi.org/10.5194/gmd-2020-122-supplement
http://paperpile.com/b/lpE3cM/rrqh
http://paperpile.com/b/lpE3cM/AqTX
http://paperpile.com/b/lpE3cM/AqTX
http://paperpile.com/b/lpE3cM/AqTX
http://dx.doi.org/10.5194/gmd-2021-116
http://paperpile.com/b/lpE3cM/AqTX
http://paperpile.com/b/lpE3cM/swpI
http://paperpile.com/b/lpE3cM/swpI
http://paperpile.com/b/lpE3cM/swpI
http://paperpile.com/b/lpE3cM/swpI
http://dx.doi.org/10.5194/essd-5-3-2013
http://paperpile.com/b/lpE3cM/swpI
http://paperpile.com/b/lpE3cM/PDmA
http://paperpile.com/b/lpE3cM/PDmA
http://paperpile.com/b/lpE3cM/PDmA
http://dx.doi.org/10.5194/esd-10-685-2019
http://paperpile.com/b/lpE3cM/PDmA
http://paperpile.com/b/lpE3cM/D7L7
http://paperpile.com/b/lpE3cM/D7L7
http://paperpile.com/b/lpE3cM/D7L7
http://dx.doi.org/10.1038/ncomms8537
http://paperpile.com/b/lpE3cM/D7L7
http://paperpile.com/b/lpE3cM/BAGWP
http://paperpile.com/b/lpE3cM/BAGWP
http://paperpile.com/b/lpE3cM/BAGWP
http://paperpile.com/b/lpE3cM/BAGWP
http://dx.doi.org/10.1029/2020rg000726
http://paperpile.com/b/lpE3cM/BAGWP
http://paperpile.com/b/lpE3cM/2s1t
http://paperpile.com/b/lpE3cM/2s1t
http://paperpile.com/b/lpE3cM/2s1t
http://paperpile.com/b/lpE3cM/2s1t
http://dx.doi.org/10.1126/science.adl5889
http://paperpile.com/b/lpE3cM/2s1t
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/2yYL
http://dx.doi.org/10.5194/essd-16-3601-2024
http://paperpile.com/b/lpE3cM/2yYL
http://paperpile.com/b/lpE3cM/wdZS
http://paperpile.com/b/lpE3cM/wdZS
http://paperpile.com/b/lpE3cM/wdZS
http://dx.doi.org/10.5194/bg-10-3313-2013
http://paperpile.com/b/lpE3cM/wdZS
http://paperpile.com/b/lpE3cM/059d
http://paperpile.com/b/lpE3cM/059d
http://paperpile.com/b/lpE3cM/eDrC
http://paperpile.com/b/lpE3cM/eDrC
http://paperpile.com/b/lpE3cM/eDrC
http://dx.doi.org/10.5194/bg-18-787-2021
http://paperpile.com/b/lpE3cM/eDrC
http://paperpile.com/b/lpE3cM/Oz2I
http://paperpile.com/b/lpE3cM/Oz2I
http://paperpile.com/b/lpE3cM/Oz2I
http://paperpile.com/b/lpE3cM/Oz2I
http://dx.doi.org/10.1111/j.1466-8238.2010.00587.x
http://paperpile.com/b/lpE3cM/Oz2I


 

Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on 
fire frequency at the global scale, Biogeosciences, 11, 1085–1102, 2014. 

Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., and Eyring, V.: A 
climate model projection weighting scheme accounting for performance and 
interdependence, Geophys. Res. Lett., 44, 1909–1918, 
https://doi.org/10.1002/2016gl072012, 2017. 

Krikken, F., Lehner, F., Haustein, K., Drobyshev, I., and J., van O. G.: Attribution of the role of 
climate change in the forest fires in Sweden 2018, Natural Hazards and Earth System 
Sciences, 21, 2169–2179, 2021. 

Lehsten, V., Tansey, K., Balzter, H., Thonicke, K., Spessa, A., Weber, U., Smith, B., and 
Arneth, A.: Estimating carbon emissions from African wildfires, Biogeosciences, 6, 349–360, 
https://doi.org/10.5194/bg-6-349-2009, 2009. 

Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate 
complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9, 2761–2780, 
https://doi.org/10.5194/bg-9-2761-2012, 2012. 

Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in the Earth system – Part 1: 
Improved global fire modeling in the Community Earth System Model (CESM1), 
Biogeosciences, 10, 2293–2314, https://doi.org/10.5194/bg-10-2293-2013, 2013. 

Liu, J., Feng, X., Gu, X., Zhang, J., Slater, L. J., and Kong, D.: Detection and attribution of 
human influence on the global diurnal temperature range decline, Geophys. Res. Lett., 49, 
https://doi.org/10.1029/2021gl097155, 2022a. 

Liu, W., Su, X., Zhang, G., and Chen, D.: Projection of future dry‐wet evolution in Northwest 
China and its uncertainty attribution analysis, River, 2, 65–78, https://doi.org/10.1002/rvr2.39, 
2023. 

Liu, Z., Eden, J. M., Dieppois, B., and Blackett, M.: A global view of observed changes in fire 
weather extremes: uncertainties and attribution to climate change, Clim. Change, 173, 
https://doi.org/10.1007/s10584-022-03409-9, 2022b. 

Liu, Z., Eden, J. M., Dieppois, B., Drobyshev, I., Gallo, C., and Blackett, M.: Were 
meteorological conditions related to the 2020 Siberia wildfires made more likely by 
anthropogenic climate change?, Bull. Am. Meteorol. Soc., 103, S44–S49, 
https://doi.org/10.1175/bams-d-21-0168.1, 2022c. 

Li, Y., Sulla-Menashe, D., Motesharrei, S., Song, X.-P., Kalnay, E., Ying, Q., Li, S., and Ma, 
Z.: Inconsistent estimates of forest cover change in China between 2000 and 2013 from 
multiple datasets: differences in parameters, spatial resolution, and definitions, Sci. Rep., 7, 
8748, https://doi.org/10.1038/s41598-017-07732-5, 2017. 

Lizundia-Loiola, J., Franquesa, M., Khairoun, A., and Chuvieco, E.: Global burned area 
mapping from Sentinel-3 Synergy and VIIRS active fires, Remote Sens. Environ., 282, 
113298, https://doi.org/10.1016/j.rse.2022.113298, 2022. 

Lopez, P.: A lightning parameterization for the ECMWF Integrated Forecasting System, Mon. 
Weather Rev., 144, 3057–3075, https://doi.org/10.1175/mwr-d-16-0026.1, 2016. 

Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and Folberth, G.: INFERNO: 
a fire and emissions scheme for the UK Met Office’s Unified Model, Geosci. Model Dev., 9, 
2685–2700, https://doi.org/10.5194/gmd-9-2685-2016, 2016. 

97 
 

http://paperpile.com/b/lpE3cM/Q1q7
http://paperpile.com/b/lpE3cM/Q1q7
http://paperpile.com/b/lpE3cM/oWt4
http://paperpile.com/b/lpE3cM/oWt4
http://paperpile.com/b/lpE3cM/oWt4
http://paperpile.com/b/lpE3cM/oWt4
http://dx.doi.org/10.1002/2016gl072012
http://paperpile.com/b/lpE3cM/oWt4
http://paperpile.com/b/lpE3cM/D0qh
http://paperpile.com/b/lpE3cM/D0qh
http://paperpile.com/b/lpE3cM/D0qh
http://paperpile.com/b/lpE3cM/PlsA
http://paperpile.com/b/lpE3cM/PlsA
http://paperpile.com/b/lpE3cM/PlsA
http://dx.doi.org/10.5194/bg-6-349-2009
http://paperpile.com/b/lpE3cM/PlsA
http://paperpile.com/b/lpE3cM/VPmg
http://paperpile.com/b/lpE3cM/VPmg
http://paperpile.com/b/lpE3cM/VPmg
http://dx.doi.org/10.5194/bg-9-2761-2012
http://paperpile.com/b/lpE3cM/VPmg
http://paperpile.com/b/lpE3cM/JF9o
http://paperpile.com/b/lpE3cM/JF9o
http://paperpile.com/b/lpE3cM/JF9o
http://dx.doi.org/10.5194/bg-10-2293-2013
http://paperpile.com/b/lpE3cM/JF9o
http://paperpile.com/b/lpE3cM/ceeY
http://paperpile.com/b/lpE3cM/ceeY
http://paperpile.com/b/lpE3cM/ceeY
http://dx.doi.org/10.1029/2021gl097155
http://paperpile.com/b/lpE3cM/ceeY
http://paperpile.com/b/lpE3cM/vdwi
http://paperpile.com/b/lpE3cM/vdwi
http://dx.doi.org/10.1002/rvr2.39
http://paperpile.com/b/lpE3cM/vdwi
http://paperpile.com/b/lpE3cM/vdwi
http://paperpile.com/b/lpE3cM/5r3m
http://paperpile.com/b/lpE3cM/5r3m
http://paperpile.com/b/lpE3cM/5r3m
http://dx.doi.org/10.1007/s10584-022-03409-9
http://paperpile.com/b/lpE3cM/5r3m
http://paperpile.com/b/lpE3cM/12fj
http://paperpile.com/b/lpE3cM/12fj
http://paperpile.com/b/lpE3cM/12fj
http://paperpile.com/b/lpE3cM/12fj
http://dx.doi.org/10.1175/bams-d-21-0168.1
http://paperpile.com/b/lpE3cM/12fj
http://paperpile.com/b/lpE3cM/xcIX
http://paperpile.com/b/lpE3cM/xcIX
http://paperpile.com/b/lpE3cM/xcIX
http://paperpile.com/b/lpE3cM/xcIX
http://dx.doi.org/10.1038/s41598-017-07732-5
http://paperpile.com/b/lpE3cM/xcIX
http://paperpile.com/b/lpE3cM/f3Gd
http://paperpile.com/b/lpE3cM/f3Gd
http://paperpile.com/b/lpE3cM/f3Gd
http://dx.doi.org/10.1016/j.rse.2022.113298
http://paperpile.com/b/lpE3cM/f3Gd
http://paperpile.com/b/lpE3cM/JMvL
http://paperpile.com/b/lpE3cM/JMvL
http://dx.doi.org/10.1175/mwr-d-16-0026.1
http://paperpile.com/b/lpE3cM/JMvL
http://paperpile.com/b/lpE3cM/7ohV
http://paperpile.com/b/lpE3cM/7ohV
http://paperpile.com/b/lpE3cM/7ohV
http://dx.doi.org/10.5194/gmd-9-2685-2016
http://paperpile.com/b/lpE3cM/7ohV


 

Mataveli, G., Maure, L. A., Sanchez, A., Dutra, D. J., de Oliveira, G., Jones, M. W., Amaral, 
C., Artaxo, P., and Aragão, L. E. O. C.: Forest degradation is undermining progress on 
deforestation in the Amazon, Glob. Chang. Biol., 31, e70209, 
https://doi.org/10.1111/gcb.70209, 2025. 

Mathison, C., Burke, E., Hartley, A. J., Kelley, D. I., Burton, C., Robertson, E., Gedney, N., 
Williams, K., Wiltshire, A., Ellis, R. J., and Others: Description and evaluation of the 
JULES-ES set-up for ISIMIP2b, Geoscientific Model Development, 16, 4249–4264, 2023. 

McNorton, J. and Di Giuseppe, F.: A global fuel characteristic model and dataset for wildfire 
prediction, Biogeosciences, https://doi.org/10.5194/bg-21-279-2024, 2024. 

McNorton, J., Agustí-Panareda, A., Arduini, G., Balsamo, G., Bousserez, N., Boussetta, S., 
Chericoni, M., Choulga, M., Engelen, R., and Guevara, M.: An urban scheme for the 
ECMWF integrated forecasting system: Global forecasts and residential CO2 emissions, J. 
Adv. Model. Earth Syst., 15, e2022MS003286, https://doi.org/10.1029/2022ms003286, 2023. 

Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., and Schipper, A. M.: Global patterns 
of current and future road infrastructure, Environ. Res. Lett., 13, 064006, 
https://doi.org/10.1088/1748-9326/aabd42, 2018. 

Melton, J., Arora, V., Wisernig-Cojoc, E., Seiler, C., Fortier, M., Chan, E., and Teckentrup, L.: 
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface 
Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 1: Model 
framework and site-level performance, Geosci. Model Dev., 
https://doi.org/10.5194/gmd-2019-329-supplement, 2019. 

Mengel, M., Treu, S., Lange, S., and Frieler, K.: ATTRICI v1. 1--counterfactual climate for 
impact attribution, Geoscientific Model Development, 14, 5269–5284, 2021. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., 
Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, 
M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Jean-Noël Thépaut: 
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. 
Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Otto, F., van der Wiel, K., van Oldenborgh, G. J., Philip, S., Kew, S., Uhe, P., and Cullen, H.: 
Climate change increases the probability of heavy rains in Northern England/Southern 
Scotland like those of storm Desmond—a real-time event attribution revisited, Environmental 
Research Letters, 13, https://doi.org/10.1088/1748-9326/aa9663, 2018. 

Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., 
Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: A protocol for probabilistic extreme event 
attribution analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, 
https://doi.org/10.5194/ascmo-6-177-2020, 2020. 

Quilcaille, Y., Batibeniz, F., Ribeiro, A. F. S., Padrón, R. S., and Seneviratne, S. I.: Fire 
weather index data under historical and shared socioeconomic pathway projections in the 
6th phase of the Coupled Model Intercomparison Project from 1850 to 2100, Earth Syst. Sci. 
Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, 2023. 

Qu, Y., Jones, M. W., Brambleby, E., Hunt, H. G. P., Pérez-Invernón, F. J., Yebra, M., Zhao, 
L., Moris, J. V., Janssen, T., and Veraverbeke, S.: A new global gridded lightning dataset with 
high spatial and temporal resolution, , https://doi.org/10.5194/egusphere-egu25-8351, 2025. 

Rabin, S. S., Melton, J. R., and Lasslop, G.: The Fire Modeling Intercomparison Project 

98 
 

http://paperpile.com/b/lpE3cM/tJR5
http://paperpile.com/b/lpE3cM/tJR5
http://paperpile.com/b/lpE3cM/tJR5
http://paperpile.com/b/lpE3cM/tJR5
http://dx.doi.org/10.1111/gcb.70209
http://paperpile.com/b/lpE3cM/tJR5
http://paperpile.com/b/lpE3cM/k2pr
http://paperpile.com/b/lpE3cM/k2pr
http://paperpile.com/b/lpE3cM/k2pr
http://paperpile.com/b/lpE3cM/5Pbi
http://paperpile.com/b/lpE3cM/5Pbi
http://dx.doi.org/10.5194/bg-21-279-2024
http://paperpile.com/b/lpE3cM/5Pbi
http://paperpile.com/b/lpE3cM/mKXs
http://paperpile.com/b/lpE3cM/mKXs
http://paperpile.com/b/lpE3cM/mKXs
http://paperpile.com/b/lpE3cM/mKXs
http://dx.doi.org/10.1029/2022ms003286
http://paperpile.com/b/lpE3cM/mKXs
http://paperpile.com/b/lpE3cM/OKas
http://paperpile.com/b/lpE3cM/OKas
http://paperpile.com/b/lpE3cM/OKas
http://dx.doi.org/10.1088/1748-9326/aabd42
http://paperpile.com/b/lpE3cM/OKas
http://paperpile.com/b/lpE3cM/Ia3h
http://paperpile.com/b/lpE3cM/Ia3h
http://paperpile.com/b/lpE3cM/Ia3h
http://paperpile.com/b/lpE3cM/Ia3h
http://paperpile.com/b/lpE3cM/Ia3h
http://dx.doi.org/10.5194/gmd-2019-329-supplement
http://paperpile.com/b/lpE3cM/Ia3h
http://paperpile.com/b/lpE3cM/f8Zm
http://paperpile.com/b/lpE3cM/f8Zm
http://paperpile.com/b/lpE3cM/DE25
http://paperpile.com/b/lpE3cM/DE25
http://paperpile.com/b/lpE3cM/DE25
http://paperpile.com/b/lpE3cM/DE25
http://paperpile.com/b/lpE3cM/DE25
http://dx.doi.org/10.5194/essd-13-4349-2021
http://paperpile.com/b/lpE3cM/DE25
http://paperpile.com/b/lpE3cM/ur6K
http://paperpile.com/b/lpE3cM/ur6K
http://paperpile.com/b/lpE3cM/ur6K
http://paperpile.com/b/lpE3cM/ur6K
http://dx.doi.org/10.1088/1748-9326/aa9663
http://paperpile.com/b/lpE3cM/ur6K
http://paperpile.com/b/lpE3cM/cslD
http://paperpile.com/b/lpE3cM/cslD
http://paperpile.com/b/lpE3cM/cslD
http://paperpile.com/b/lpE3cM/cslD
http://dx.doi.org/10.5194/ascmo-6-177-2020
http://paperpile.com/b/lpE3cM/cslD
http://paperpile.com/b/lpE3cM/mmQ8
http://paperpile.com/b/lpE3cM/mmQ8
http://paperpile.com/b/lpE3cM/mmQ8
http://paperpile.com/b/lpE3cM/mmQ8
http://dx.doi.org/10.5194/essd-15-2153-2023
http://paperpile.com/b/lpE3cM/mmQ8
http://paperpile.com/b/lpE3cM/PMy9
http://paperpile.com/b/lpE3cM/PMy9
http://paperpile.com/b/lpE3cM/PMy9
http://dx.doi.org/10.5194/egusphere-egu25-8351
http://paperpile.com/b/lpE3cM/PMy9
http://paperpile.com/b/lpE3cM/MXn5


 

(FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, 
Geoscientific Model, 2017. 

Schaller, N., Otto, F., Oldenborgh, G. V., Massey, N., Sparrow, S., and Allen: The heavy 
precipitation event of may-June 2013 in the upper Danube and Elbe basins, Bulletin of the 
American Meteorological Society, 95, 2014. 

Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke, S.: Overwintering 
fires in boreal forests, Nature, 593, 399–404, https://doi.org/10.1038/s41586-021-03437-y, 
2021. 

Sellar, A. A., Walton, J., Jones, C. G., and Wood, R.: Implementation of UK Earth system 
models for CMIP6, Journal of Advances, 2020. 

Sexton, J. O., Noojipady, P., Song, X.-P., Feng, M., Song, D.-X., Kim, D.-H., Anand, A., 
Huang, C., Channan, S., Pimm, S. L., and Townshend, J. R.: Conservation policy and the 
measurement of forests, Nat. Clim. Chang., 6, 192–196, 
https://doi.org/10.1038/nclimate2816, 2016. 

Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: 
Implications of incorporating N cycling and N limitations on primary production in an 
individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, 
https://doi.org/10.5194/bg-11-2027-2014, 2014. 

Spuler, F., Wessel, J., Comyn‐Platt, E., Varndell, J., and Cagnazzo, C.: ibicus: a new 
open-source Python package and comprehensive interface for statistical bias adjustment 
and evaluation in climate modelling (v1.0.1), Geosci. Model Dev., 
https://doi.org/10.5194/gmd-17-1249-2024, 2024. 

ibicus: https://pypi.org/project/ibicus/, last access: 7 August 2024. 

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., 
Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, 
C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The 
Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev. Discuss., 
1–68, https://doi.org/10.5194/gmd-2019-177, 2019. 

Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire disturbance for global 
vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model, Glob. Ecol. 
Biogeogr., 10, 661–677, https://doi.org/10.1046/j.1466-822x.2001.00175.x, 2008. 

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: 
The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas 
emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, 
https://doi.org/10.5194/bg-7-1991-2010, 2010. 

Torres-Vázquez, M. Á., Herrera, S., Gincheva, A., Halifa-Marín, A., Cavicchia, L., Di 
Giuseppe, F., Montávez, J. P., and Turco, M.: Enhancing seasonal fire predictions with hybrid 
dynamical and random forest models, NPJ Nat. Hazards, 2, 1–10, 
https://doi.org/10.1038/s44304-025-00069-4, 2025. 

Turco, M., Jerez, S., Doblas-Reyes, F. J., AghaKouchak, A., Llasat, M. C., and Provenzale, 
A.: Skilful forecasting of global fire activity using seasonal climate predictions, Nat. 
Commun., 9, 2718, https://doi.org/10.1038/s41467-018-05250-0, 2018. 

Turco, M., Jones, M. W., and Di Giuseppe, F.: State of Wildfires 2024-25: Anomalies in 

99 
 

http://paperpile.com/b/lpE3cM/MXn5
http://paperpile.com/b/lpE3cM/MXn5
http://paperpile.com/b/lpE3cM/XjVn
http://paperpile.com/b/lpE3cM/XjVn
http://paperpile.com/b/lpE3cM/XjVn
http://paperpile.com/b/lpE3cM/57wq
http://paperpile.com/b/lpE3cM/57wq
http://dx.doi.org/10.1038/s41586-021-03437-y
http://paperpile.com/b/lpE3cM/57wq
http://paperpile.com/b/lpE3cM/57wq
http://paperpile.com/b/lpE3cM/Y7Gs
http://paperpile.com/b/lpE3cM/Y7Gs
http://paperpile.com/b/lpE3cM/LuhF
http://paperpile.com/b/lpE3cM/LuhF
http://paperpile.com/b/lpE3cM/LuhF
http://paperpile.com/b/lpE3cM/LuhF
http://dx.doi.org/10.1038/nclimate2816
http://paperpile.com/b/lpE3cM/LuhF
http://paperpile.com/b/lpE3cM/mydX
http://paperpile.com/b/lpE3cM/mydX
http://paperpile.com/b/lpE3cM/mydX
http://paperpile.com/b/lpE3cM/mydX
http://dx.doi.org/10.5194/bg-11-2027-2014
http://paperpile.com/b/lpE3cM/mydX
http://paperpile.com/b/lpE3cM/k4rY
http://paperpile.com/b/lpE3cM/k4rY
http://paperpile.com/b/lpE3cM/k4rY
http://paperpile.com/b/lpE3cM/k4rY
http://dx.doi.org/10.5194/gmd-17-1249-2024
http://paperpile.com/b/lpE3cM/k4rY
http://paperpile.com/b/lpE3cM/Aa6L
https://pypi.org/project/ibicus/,
http://paperpile.com/b/lpE3cM/Aa6L
http://paperpile.com/b/lpE3cM/ekcW
http://paperpile.com/b/lpE3cM/ekcW
http://paperpile.com/b/lpE3cM/ekcW
http://paperpile.com/b/lpE3cM/ekcW
http://paperpile.com/b/lpE3cM/ekcW
http://dx.doi.org/10.5194/gmd-2019-177
http://paperpile.com/b/lpE3cM/ekcW
http://paperpile.com/b/lpE3cM/Rf9l
http://paperpile.com/b/lpE3cM/Rf9l
http://paperpile.com/b/lpE3cM/Rf9l
http://dx.doi.org/10.1046/j.1466-822x.2001.00175.x
http://paperpile.com/b/lpE3cM/Rf9l
http://paperpile.com/b/lpE3cM/kxdA
http://paperpile.com/b/lpE3cM/kxdA
http://paperpile.com/b/lpE3cM/kxdA
http://paperpile.com/b/lpE3cM/kxdA
http://dx.doi.org/10.5194/bg-7-1991-2010
http://paperpile.com/b/lpE3cM/kxdA
http://paperpile.com/b/lpE3cM/OzQ2
http://paperpile.com/b/lpE3cM/OzQ2
http://paperpile.com/b/lpE3cM/OzQ2
http://paperpile.com/b/lpE3cM/OzQ2
http://dx.doi.org/10.1038/s44304-025-00069-4
http://paperpile.com/b/lpE3cM/OzQ2
http://paperpile.com/b/lpE3cM/56yG
http://paperpile.com/b/lpE3cM/56yG
http://paperpile.com/b/lpE3cM/56yG
http://dx.doi.org/10.1038/s41467-018-05250-0
http://paperpile.com/b/lpE3cM/56yG
http://paperpile.com/b/lpE3cM/xLYU


 

Extreme Fire Weather Days by Continent, Biome, Country, and Administrative Region, 
https://doi.org/10.5281/zenodo.15538595, 2025. 

UNEP, Popescu, A., Paulson, A. K., Christianson, A. C., Sullivan, A., Tulloch, A., Bilbao, B., 
Mathison, C., Robinson, C., Burton, C., Ganz, D., Nangoma, D., Saah, D., Armenteras, D., 
Driscoll, D., Hankins, D. L., Kelley, D. I., Langer, E. R. L., Baker, E., Berenguer, E., Reisen, 
F., Robinne, F.-N., Galudra, G., Humphrey, G., Safford, H., Baird, I. G., Oliveras, I., Littell, J., 
Kieft, J., Chew, J., Maclean, K., Wittenberg, L., Anderson, L. O., Gillson, L., Plucinski, M., 
Moritz, M., Brown, M., Soto, M. C., Flannigan, M., Costello, O., Silva, P. S., Fernandes, P., 
Moore, P., Jandt, R., Blanchi, R., Libonati, R., Archibald, S., Dunlop, S., McCaffrey, S., Page, 
S., Gonzãƒâ¡lez, T. D. T., Sokchea, T., and Charlton, V.: Spreading like Wildfire: The Rising 
Threat of Extraordinary Landscape Fires, edited by: Sullivan, A., Kurvits, T., and E., B., 
United Nations Environment Programme and GRID-Arendal., 2022. 

Vitolo, C., Di Giuseppe, F., Barnard, C., Coughlan, R., San-Miguel-Ayanz, J., Libertá, G., and 
Krzeminski, B.: ERA5-based global meteorological wildfire danger maps, Sci. Data, 7, 216, 
https://doi.org/10.1038/s41597-020-0554-z, 2020. 

van Wagner, C. E.: Development and structure of the Canadian forest fire weather index 
system, cabidigitallibrary.org, https://doi.org/10.5555/19910646918, 1987. 

van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S., Vecchi, G. A., 
Singh, R. K., Arrighi, J., and Cullen, H.: Rapid attribution of the August 2016 flood-inducing 
extreme precipitation in south Louisiana to climate change, Hydrol. Earth Syst. Sci., 21, 
897–921, https://doi.org/10.5194/hess-21-897-2017, 2017. 

Yue, C., Ciais, P., Cadule, P., Thonicke, K., Archibald, S., Poulter, B., Hao, W., Hantson, S., 
Mouillot, F., Friedlingstein, P., Maignan, F., and Viovy, N.: Modelling the role of fires in the 
terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model 
ORCHIDEE – Part 1: simulating historical global burned area and fire regimes, Geoscientific 
Model Development, 7, 2747–2767, https://doi.org/10.5194/GMD-7-2747-2014, 2014. 

Yue, C., Cadule, P., and Van Leeuwen, T. T.: Modelling the role of fires in the terrestrial 
carbon balance by incorporating SPITFIRE into the global vegetation model 
ORCHIDEE--Part 2: Carbon emissions and the role of fires in the global carbon balance, 
Geoscientific Model Development, 8, 1321–1338, 2015. 

Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J. G., Chen, Y., van der Velde, I. R., 
Aben, I., Chuvieco, E., Davis, S. J., Deeter, M., Hong, C., Kong, Y., Li, H., Li, H., Lin, X., He, 
K., and Zhang, Q.: Record-high CO2 emissions from boreal fires in 2021, Science, 379, 
912–917, https://doi.org/10.1126/science.ade0805, 2023. 

Zubkova, M., Giglio, L., Boschetti, L., Roy, D., Hall, J., and Humber, M. L.: The NASA Visible 
Infrared Imaging Radiometer Suite (VIIRS) burned area product - VNP64A1, AGUFM, 2024, 
B13I–1644, 2024. 

 

100 
 

http://paperpile.com/b/lpE3cM/xLYU
http://paperpile.com/b/lpE3cM/xLYU
http://dx.doi.org/10.5281/zenodo.15538595
http://paperpile.com/b/lpE3cM/xLYU
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/8GaL
http://paperpile.com/b/lpE3cM/YiU4
http://paperpile.com/b/lpE3cM/YiU4
http://paperpile.com/b/lpE3cM/YiU4
http://dx.doi.org/10.1038/s41597-020-0554-z
http://paperpile.com/b/lpE3cM/YiU4
http://paperpile.com/b/lpE3cM/jSCJ
http://paperpile.com/b/lpE3cM/jSCJ
http://dx.doi.org/10.5555/19910646918
http://paperpile.com/b/lpE3cM/jSCJ
http://paperpile.com/b/lpE3cM/eCXj
http://paperpile.com/b/lpE3cM/eCXj
http://paperpile.com/b/lpE3cM/eCXj
http://paperpile.com/b/lpE3cM/eCXj
http://dx.doi.org/10.5194/hess-21-897-2017
http://paperpile.com/b/lpE3cM/eCXj
http://paperpile.com/b/lpE3cM/tBLf
http://paperpile.com/b/lpE3cM/tBLf
http://paperpile.com/b/lpE3cM/tBLf
http://paperpile.com/b/lpE3cM/tBLf
http://paperpile.com/b/lpE3cM/tBLf
http://dx.doi.org/10.5194/GMD-7-2747-2014
http://paperpile.com/b/lpE3cM/tBLf
http://paperpile.com/b/lpE3cM/JFoY
http://paperpile.com/b/lpE3cM/JFoY
http://paperpile.com/b/lpE3cM/JFoY
http://paperpile.com/b/lpE3cM/JFoY
http://paperpile.com/b/lpE3cM/aD8z
http://paperpile.com/b/lpE3cM/aD8z
http://paperpile.com/b/lpE3cM/aD8z
http://paperpile.com/b/lpE3cM/aD8z
http://dx.doi.org/10.1126/science.ade0805
http://paperpile.com/b/lpE3cM/aD8z
http://paperpile.com/b/lpE3cM/S4vx
http://paperpile.com/b/lpE3cM/S4vx
http://paperpile.com/b/lpE3cM/S4vx

	S2 Supplementary Material for Section 2: Context of Recent Extremes 
	S2.1 Method 
	S2.1.1 Contemporaneous Fire Weather 
	S2.1.2 21st Century Trends in Burned Area 

	S2.2 Results 
	S2.2.1 Contemporaneous Fire Weather 
	S2.2.2 21st Century Trends in Burned Area 

	 

	 
	 
	 
	S3 Supplementary Material for Section 3 
	S4 Supplementary Material for Section 4 
	S4.1 Methods 
	S4.1.1 Probability of Fire  
	S4.1.2 ConFLAME 

	 

	S5 Supplementary Material for Section 5 
	S5.1 Methods 
	 
	S5.1.1 Attributing Extremes in Fire Weather during 2024-25 - extended 
	​ 

	S5.1.2 Background changes in fire weather this decade 
	S5.1.2.1 Model and Data 
	S5.1.2.2 Statistical Framework 
	S5.1.2.3 Attribution 
	5.1.2.4 Uncertainty 

	5.1.3 Attributing Region-wide Extreme BA during 2024-25 - extended 
	S5.1.3.1 Deriving ConFLAME  vegetation fraction driving data  

	S5.1.4 FireMIP 
	 

	S5.2 Results 
	S5.2.1 Background changes in fire weather this decade 
	 
	S5.2.1.1 Northeast Amazonia 
	S5.2.1.4 Congo Basin 

	S5.2.2 Region-wide extreme BA during 2024-25.  
	 
	S5.2.2.1 Northeast Amazonia 
	S5.2.2.2 Pantanal and Chiquitano 
	S5.2.2.3 Southern California 
	S2.2.2.4 Congo Basin 

	S5.2.3 Sub-regional extreme burned area during 2024-25 
	S5.2.3.1 Northeast Amazonia 
	 
	S5.2.3.2 Pantanal and Chiquitano 
	S2.2.2.2 Southern California 

	 
	S5.2.4 Background Changes in Burned Area this Century - all forcings 
	S5.2.4.1 Northeast Amazonia 
	S5.2.4.2 Pantanal and Chiquitano 
	S5.2.4.3 Congo Basin 



	S6 Supplementary Material for Section 6 
	S6.3 ConFLAME evaluation 
	S6.3.1 Northeast Amazonia: 

	S8 Supplementary Material for Appendix A  
	S9 Supplementary Material: Extended Model evaluation 
	 
	We use the same model configuration outlined in Section 4.1.2 and Supplementary Section 4.1.2. Due to constraints on the time period of available data, we performed training and evaluation over 2019-2026, with 50% of grid cells used for training and 50% for evaluation.  
	S9.1.1 Northeast Amazonia 
	S9.3.2 Pantanal and Chiquitano 
	S9.3.3 Southern California 
	 
	S9.3.4 Congo Basin 
	S9.2.1 HadGEM3-A vs ERA5 meteorology 
	S9.2.2 ConFLAME evaluation - Near Real Time 
	S9.2.2.1 Northeast Amazonia 

	 
	S9.2.2.2 Pantanal and Chiquitano 

	 
	S9.2.2.3 Southern California 

	 
	S9.2.2.4 Congo Basin 

	S5.3.1 Northeast Amazonia 
	 
	S5.3.2 Pantanal and Chiquitano 
	 
	S5.3.3 Southern California 
	 
	S5.3.4 Congo Basin 
	Supplementary References 


