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S2 Supplementary Material for Section 2: Context of Recent
Extremes

S2.1 Method

$2.1.1 Contemporaneous Fire Weather

In this edition of the report, we introduce routine summaries of the extreme (95" percentile)
fire weather days during the March 2024—February 2025 global fire season based on the fire
weather index (FWI), a common metric of fire danger developed by the Canadian Forest
Service as part of the Canadian Forest Fire Danger Rating System (CFFDRS) (van Wagner,
1987). The FWI comprises various components that consider the influence of weather on fire
danger, with 2m temperature, 10m wind speed, precipitation, and 2m relative humidity as
prerequisite variables. Higher FWI values are generally seen during droughts and heatwaves
but they are more broadly indicative of meteorological conditions more conducive to wildfires
in environments with sufficient fuel load (Di Giuseppe et al., 2016; Jones et al., 2022).

We base our analysis of extreme (95th percentile) fire weather on the FWI dataset derived
from the Copernicus Climate Change Service ERA5 reanalysis (Hersbach et al., 2023; Vitolo
et al., 2020) and maintained by the Copernicus Emergency Management Service (CEMS,
version4.1 2019). This dataset provides global fire weather data at a 0.25° spatial resolution
and daily temporal resolution. To identify extreme fire weather conditions, we computed the
95th percentile of daily FWI values at 0.25° resolution over the reference period March
1978-February 2025 (i.e., covering 46 fire seasons). For each fire season, we then
calculated the number of days on which the daily FWI exceeded this threshold, yielding our
estimate of extreme fire weather days, referred to as FWIlgys.—defined as the annual number
of days when fire weather conditions surpass the 95th percentile threshold.

Anomalies in FWIlgs, for the March 2024—February 2025 fire season were subsequently
calculated following the same methodology used for the observational fire variables, and are
presented as (i) ranks, (ii) proportional anomalies, and (iii) standardised anomalies (see
Section 2.1.2 “Regions with Extreme Wildfire Seasons”). The data produced using these
methods are available from (Turco et al., 2025).

We adopt FWIgs, as our metric for extreme fire weather for several reasons. First, FWlgs,
focuses on periods of high fire danger, when fire ignition and rapid spread are more likely
(e.g. Barbero et al., 2014). Second, it has been widely used in previous studies assessing
fire—climate relationships (Abatzoglou et al., 2019; Jones et al., 2022; Quilcaille et al., 2023) ,
supporting consistency with the broader literature. Third, and crucially for a global analysis,
the use of a quantile-based threshold reduces the impact of regional biases in absolute FWI
values, allowing for a more robust comparison of fire weather extremes across
geographically diverse environments.

$2.1.2 215 Century Trends in Burned Area

To place recent extremes in the context of fire trends of the past two decades, we update our
regional analyses of trends in annual BA from Jones et al. (2022). In contrast, we present
trends that align more closely with global fire seasons, spanning the period March
2002-February 2025 rather than trends over calendar years. We quantified trends using the
Theil-Sen slope estimator, which is useful when data may contain outliers or be non-normally
distributed making it less sensitive to outliers than a standard least squares regression
slope. Changes were calculated by multiplying trends (unit year') by the number of fire
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seasons in the period of coverage for each variable (Section 2.1.1 “Input Data
Uncertainties”). Relative changes were calculated as the absolute changes divided by the
mean annual BA during the period following (Andela et al., 2017; Jones et al., 2022). The
significance of trends was evaluated using the Mann-Kendall test, with a confidence level set
at 95%.

In addition to reporting trends in total BA, we also present trends in forest BA as these
regularly diverge from total BA trends, following Jones et al. (2024a) see Section 2.2.2).
Forest BA is calculated as described in Section 2.1.1, but after isolating burned cells in
areas with tree cover exceeding 30% in NASA's annual MODIS MOD44B collection 6.0
Continuous Vegetation Field product (250m; Dimiceli et al., 2015). The 30% threshold is
widely used amongst studies of forest cover change (Cunningham et al., 2020; e.g. Li et al.,
2017; Sexton et al., 2016).

S2.2 Results

$2.2.1 Contemporaneous Fire Weather

Section 4 of this report comprehensively explores the drivers of the extreme fire season for
4 selected events during 2024-25, not only in terms of meteorological factors influencing the
preconditioning of vegetation fuels for fire but also including factors such as fuel loading,
land use and management, and ignition opportunities. However, because large-scale
regional patterns of drought and heatwave are known to influence fire extent (Abatzoglou et
al.,, 2018; Jolly et al., 2015; Jones et al., 2022), we briefly summarise here the
meteorological circumstances underlying some of the regional extremes of the 2024-25 fire
season identified above. Robust relationships are observed between fire weather and fire
activity in regions with ample fuels across multiple decades, particularly in forests
(Abatzoglou et al., 2018; Jones et al., 2022, 2024a; Turco et al., 2018).

Figure S2 shows world regions experiencing high levels of extreme fire weather during the
2024-25 fire season (data are available from Turco et al., 2025). Extreme fire weather was
notably prevalent in the majority of regions in tropical South America, with the highest
number of fire weather days on record in most states of Brazil, Bolivia and Peru and many
other states of Colombia, Venezuela, and the Guianas experiencing a high-ranking—if not
record-breaking—number of days with extreme fire weather. For example, Amazonas State in
Brazil experienced more than 50 additional days of extreme fire weather than its annual
mean and many regions saw more than a month of additional fire weather days than is the
average year (Figure S2). The spatial pattern of fire weather anomalies (Figure S2) clearly
aligns with the elevated fire activity across the Amazon, broader moist tropical forests,
Pantanal, and Chiquitano regions of South America during 2024-25 (Figure 2, Figure 3).
Similarly, Mesoamerica experienced an unusually high number of extreme fire weather days
during 2024-25 (Figure S2) and this is likely one factor contributing to higher than average
fire activity in parts of Mexico during 2024-25 (Figure 2, Figure 3).

In Canada, some anomalies in extreme fire weather were observed in the northernmost
provinces of western Canada (e.g. Northwest territories) and some eastern provinces during
2024-25 (Figure S2). Although anomalies in BA and C emissions were indeed centred on
the same regions of Canada, we note that the anomalies in extreme fire weather days were
fairly small and overall less widespread than the anomalies in BA and C emissions. This
evidence points towards other factors (beyond contemporaneous fire weather) as drivers of
the elevated fire activity during 2024-25, potentially including the carryover effects of the
prior-year heatwave and drought from 2023 and of overwintering ignitions from smouldering
peat combustion (Scholten et al., 2021).


https://paperpile.com/c/lpE3cM/BAGWP+Ex3A
https://paperpile.com/c/lpE3cM/2s1t/?noauthor=1
https://paperpile.com/c/lpE3cM/xDbu/?prefix=250m%3B%20
https://paperpile.com/c/lpE3cM/xcIX+ooG9+LuhF/?prefix=e.g.%20,,
https://paperpile.com/c/lpE3cM/xcIX+ooG9+LuhF/?prefix=e.g.%20,,
https://paperpile.com/c/lpE3cM/D7L7+RxkK+BAGWP
https://paperpile.com/c/lpE3cM/D7L7+RxkK+BAGWP
https://paperpile.com/c/lpE3cM/56yG+RxkK+BAGWP+2s1t
https://paperpile.com/c/lpE3cM/xLYU/?prefix=data%20are%20available%20from
https://paperpile.com/c/lpE3cM/57wq

In Africa, widespread high fire weather was observed across the Congo basin during the
2024-25 fire season (Figure S2), aligning strongly with the anomalous BA and fire C
emissions observed in the region (Figure 2, Figure 3). In Southern Africa, extreme fire
weather anomalies were widespread (Figure S2) but also characteristically decoupled from
anomalies in BA (Figure 2) due to the inverted relationship between fire weather and fire
activity in this fuel-limited region, where fire weather tends to correlate with poor vegetation
productivity (Jones et al., 2022).

In Eastern Europe, anomalies in extreme fire weather were centred on Ukraine and the
Balkan states (Figure S2), corresponding with BA and C emissions anomalies in some parts
of Ukraine, Serbia, and North Macedonia (Figure 2, Figure 3). However, spatial relationship
between extreme fire weather and extreme fire activity was not direct in neighbouring
regions, with western Turkey (for example) experiencing above-average BA and emissions
(Figure 2, Figure 3) despite no clear anomaly in extreme fire weather (Figure S2). Similarly,
anomalies in extreme fire weather spanned much of southern and southeast Asia (Figure
S$2), yet positive anomalies in BA and fire C emissions emerged in northern India, Nepal and
Bangladesh but not in nearby parts of Thailand, Cambodia and Myanmar (Figure 2, Figure
3). In Siberia, a record-breaking number of extreme fire weather days occurred during the
2024-25 fire season (Figure S2) but did not translate into especially high BA or fire C
emissions (Figure 2, Figure 3). This is a somewhat surprising finding for this region, given
that the most extreme fire seasons of 2020 and 2021 were previously linked with extreme
fire weather associated with heatwave and drought (Zheng et al., 2023).

Overall, these findings highlight that there is noise in the relationship between fire weather
and BA, with extreme fire weather preconditioning vegetation to burn but a variety of other
factors such as ignition availability, fuel loading, and management factors driving dissociation
in certain regions and years. For certain focal events, Section 4 formally evaluates the role
of fire weather’s sub-components (temperature, precipitation, humidity and wind speed) as
drivers of fire alongside non-meteorological factors.

While the present report focuses primarily on explaining focal events that did emerge as
extremes, we recognise the underexplored value of examining the factors that constrain fire
occurrence in regions where anomalously high fire weather might otherwise be expected to
drive extremes in burned area and associated carbon emissions. Future iterations of the
State of Wildfires assessment may therefore consider giving greater emphasis to
understanding why such extremes did not materialise. That said, this type of analysis has
not, to our knowledge, been a common approach in fire science to date. For example, we
are not aware of any formal attribution studies focusing on non-extreme fire events, in
contrast to the growing number of attribution studies of extreme events. It may therefore be
more appropriate for such investigations to be pursued initially as a dedicated exercise,
whether within our network or by others.

$2.2.2 21%' Century Trends in Burned Area

The anomalies of 2024-25 occur against a backdrop of trends in BA this century that point
towards shifts in fire regime. Figure S3 shows significant trends in BA and forest BA across
the fire seasons in the period March 2002-February 2025 derived from MODIS BA data.
While many world regions are experiencing declines in total BA, increases in forest BA are
far more prevalent than declines at the scale of continental biomes, countries, and
administrative regions.

In South America, trends in total and forest BA are varied. The more than doubling of both
total and forest BA in Amazonas (significant at p<0.05; Figure S$3), among the most pristine
parts of Amazonia, contrasts with the neighbouring state of Para, where total BA has fallen
by 44% (p<0.05) as deforestation rates and deforestation-related fires have broadly declined
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since their peak during the early 2000s (Mataveli et al., 2025). The anomalous fire activity
and C emissions in Amazonas state during the 2024-25 fire season is consistent with the
emerging pattern of increased fire extent within in the state, whereas in Para and other
regions of South America’s tropical forests, the 2024-25 anomaly punctuates the either
reducing or stable BA trends of recent decades.

More broadly across the tropics, total BA has reduced across many savannah regions of
Africa, South America, and northern Australia (Figure S3). The low fire seasons of 2024-25
and 2023-24 in the African savannahs (Section 2.2.1 “An Unprecedented Fire Season in
South America”) are highly consistent with the decline in BA seen in those regions this
century. In tropical forests, BA has generally fallen in Southeast Asia, increased in the
Congo basin, and shown no significant trend in South America. Hence, fires in the tropics do
not show a consistent global trend (Figure S3). Notably, the BA anomalies seen in the
Congo basin during the 2024-25 fire season appear to be an extension of a trend towards
increased BA across in the region over recent decades (Figure S3).

Northern hemisphere extratropical regions in North America and Asia show a clear pattern of
increased forest BA since 2002 (Figure S3), which is also visible on national scales in
Canada and the US and on state/provincial scales in various states of western and eastern
Canada, the western US, and northeast Russia. The consecutive large anomalies in BA in
Canada during 2023-2024 and 2024-25 align with the doubling of forest BA seen in Canada
across fire seasons since 2002 (significant trend, p < 0.05) and a 22% increase in total BA in
Canada (marginally significant at p < 0.1). Three Canadian provinces showed significant
increases in both total and forest BA this century: British Columbia (+39-49%); Northwest
Territories (+52-80%), and; Yukon (+75-141%). No Canadian provinces experienced a
significant decline in forest BA or total BA. More widely, there was a 51% increase in forest
BA in the North American boreal forest biome since 2002, and a 118% increase across the
pan-boreal forest biome of North America and Eurasia. The succession of events affecting
boreal forests in Canada in 2023 and 2024, Siberia in 2020, and both North America and
Siberia during 2021 are part of a continued trend towards rising fire extent in high latitude
forests this century (Jones et al., 2024a).
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Figure S1: Comparison of the burned area (BA) estimates from (left column) the ESA
Climate Change Initiative FireCCI product Sentinel-3 SYN Burned Area Grid product, version
1.1 (Chuvieco et al., 2024; FireCCIS311; Lizundia-Loiola et al., 2022), (middle column) the
VIIRS BA product produced by NASA (VNP64A1 v002) (Giglio, 2024; Zubkova et al., 2024)
and (right) the MODIS BA product produced by NASA (MCD64A1 collection 6.1; Giglio et
al., 2018).
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Figure S2: Extreme fire weather in the past fire season, including (top panel) the number of
days with extreme (95™ percentile) fire weather during the 2024-25 fire season, (middle
panel) the anomaly versus the mean of all prior fire seasons 2002-2024, and (bottom

panel) rank amongst all fire seasons since 2002.
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Figure S3: Relative changes (%) in (left panels) total annual BA and (right panels) forest
BA across March-February fire seasons during 2002-2025 for three regional layers: (top
panels) continental biomes; (middle panels) countries, and; (bottom panels) level 1
administrative regions (e.g. states or provinces). Forest BA considers only areas with tree
cover over 30% at the native (500 m) resolution of the BA observations. Relative changes
are calculated as the trend in BA across fire seasons March 2002-February 2003 through
March 2024-February 2025 multiplied by the number of years in the time series and divided
by the mean annual BA during the period. Trends in BA are derived using the Theil-Sen
slope estimator. Only significant trends in BA are shown (dark grey fill signifies no significant
trend).
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Figure S4: (Top panel) first month, (middle panel) peak month, and (lower panel) final
month of positive BA anomalies at Global Administrative Level 1 during March
2024-February 2025. Peak anomalies are identified relative to the monthly climatology in
2001-2024. The first and final months of the BA anomaly incorporate the period when BA
was continuously above the climatological mean. Graduated colours are separated
seasonally.
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Figure S5: Monthly anomalies in absolute BA fraction (unit: additional % of cell area
burned) at 0.25° for Northeast Amazonia throughout the 2024-25 fire season compared with
the 2001-2024 climatological mean.
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Figure S6: Same as Figure S5 but for the Pantanal & Chiquitano.
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Figure S7: Same as Figure S5 but for Southern California.
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Congo Basin Burnt Area Anomaly Sep 23 - Feb 25
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Figure $8: Same as Figure S5 but for the Congo Basin.
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S3 Supplementary Material for Section 3

2024-2025 Population Exposure (Million People) by Country

2024-2025 Asset Exposure (Billion US$) by Country
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Figure S9: (left panels) Population and (right panels) physical assets exposed to burned
area (BA) during the 2024-25 global fire season. The figure shows (top panels) the number

of people or the asset value (billion US$) exposed to fire and (bottom panels) the relative
anomaly versus all years since 2002.
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Figure S10: Exceptional 2024 fire activity in carbon projects can be explained by regional
drought extremes and a long-term increase in drought and forest fire risk. (a) Number of
projects with burned area (BA) in each year, (b) average annual percentage of project area
burned, (c) 2024 drought anomaly for all projects (12-month SPEI; negative values indicate
drier conditions). In (a) and (b), the red star indicates the 2024 ranking among other years.
Data are shown for all projects (all), Latin America (LA), northern America (NA), Eurasia
(EUAS), and Africa (AF).

S4 Supplementary Material for Section 4

S4.1 Methods

$4.1.1 Probability of Fire

To model the probability of active fire occurrence at high spatial and temporal resolution,
Sparky is trained on daily, gridded observations of satellite-detected active fires from the
MCD14ML fire location product, produced by the University of Maryland (Giglio et al., 2020).
This dataset contains point-based fire detections from the MODIS instruments aboard the
Terra and Aqua satellites. We first aggregated these fire detections onto the model’s regular
latitude—longitude grid at approximately 9 km resolution, using a daily time step. For each
grid cell and day, the target variable was assigned a binary value: 1 if at least one MODIS
active fire detection was present in that cell on that day, and 0 otherwise. The model was
then trained to predict the probability of observing at least one active fire in a given grid cell
on a given day. After training, we applied the model globally to generate daily, grid-based
probability maps. While the model outputs the likelihood of at least one fire occurring per grid
cell per day, we interpret the sum of predicted probabilities across all grid cells within a
domain as an estimate of the expected number of active fire-affected grid cells. This
interpretation is consistent with the probabilistic nature of classification outputs in ensemble
tree models and is particularly suitable for modelling sparse events such as fire occurrence
(Gneiting and Katzfuss, 2014).
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S4.1.2 ConFLAME

ConFLAME (Controlar Fogo Local Analise pela Maxima Entropia, or “Local Fire Control
Analysis by Maximum Entropy' in English) is a probabilistic, control-based fire model
designed to evaluate and attribute burned areas under diverse climate and
socio-environmental scenarios. It directly builds upon the established ConFire and FLAME
models (Barbosa et al., 2025; Kelley et al., 2019, 2021), integrating ConFire’s
control-structured approach with FLAME's Bayesian inference framework based on the
Maximum Entropy principle. Full details can be found in Barbosa et al. (submitted).
ConFLAME is specifically developed for attribution purposes, including compatibility with
satellite-derived burned area data. This hybrid model allows for spatially explicit, event-scale
attribution, making it applicable across different timeframes and regions. This means that,
new to this year's report, our burned area (BA) driver and attribution assessments can now
target both high burned area zones within subregions and the overall burned area across our
entire focal region.

ConFLAME simulates monthly fractional burned area at grid-cell level using a set of
environmental and anthropogenic controls, each representing a key dimension of fire
regulation. These controls capture the limitations imposed by factors such as:

e Fuel availability and continuity

e Fuel dryness

e Fire weather (including temperature and relative humidity)

e Wind speed

e Ignition sources (both natural and human-caused)

e Fragmentation and suppression (e.g., from land use, roads, or firefighting)

e Stochastic influences (unmodelled or residual variation)

Each control predicts the maximum possible burned area under ideal conditions for that
specific factor. For instance, the “fuel dryness” control estimates the area that could burn if
all other factors, such as fuel, ignition or suppression, impose no limitations. These controls
are derived as linear combinations of their respective drivers (see Table S1 for assignment
details), which are then transformed using the logistic function to produce a value between 0
and 1. The individual control outputs are multiplied together to give a final burned area
estimate, capturing the combined effects of all constraints (Kelley et al., 2021). This
multiplicative structure allows interactions between drivers to influence fire outcomes and
accommodates compound extremes where multiple drivers align to produce extreme BAs.
As per Barbosa et al. (2025), this BA is corrected for sub-grid spatial/temporal
autocorrelation that may alter overall fire spread and therefore BA.

ConFLAME uses a Bayesian inference approach following a similar protocol to (Barbosa,
2024). We use the PyMC (v5) Python package with the Metropolis-Hastings MCMC sampler
(Hoffman and Gelman, 2011). Optimisation runs over 10 parallel chains with 1,000 tuning
and 1,000 sampling iterations per chain to determine the probability distribution of model
parameters, such as those describing driver combination control strength and BA
autocorrelation. The model employs a Maximum Entropy update function to avoid
unnecessary assumptions beyond data constraints (Barbosa et al., 2025). Training utilising
50% of the data or a minimum of 4000 grid cells. Instead of a single outcome. This approach
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produces a full distribution of possible burned area results for each grid cell and month,
capturing uncertainty in parameters and fire variability. This allows rare but plausible
outcomes, such as unusual BA levels, to emerge when multiple conditions favour fire.

Once trained, ConFLAME is run in large ensembles to approximate the posterior BA
probability distributions:

e For attribution experiments (e.g., climate vs human vs combined forcing), we
randomly sample 400 simulations from each chain (so 4000 samples), each using
parameter samples drawn from the posterior distribution. For climate or human
attribution, we pair each of these with an additional sample using counterfactual
(either without anthropogenic forcing, without climate change or without people)
inputs.

e For future projections, a smaller ensemble of 1000 sampled (100 for each chain)..

e As per (Barbosa, 2024), for evaluation we trained the first half of the period and test
on the second half using 1000 samples. For the rest of the results, we trained on the
full period.

Each simulation in the ensemble represents one possible realisation of fire behaviour,
conditioned on a plausible combination of parameters and driver inputs. The ensemble as a
whole approximates the posterior distribution of burned area for each grid cell and time step.

When analysing outputs across time (e.g., seasonal totals) or space (e.g., regional
aggregates), probability metrics (mean, median, percentiles) are computed per ensemble
member first, and then the distribution of these metrics is used to reconstruct a consistent
posterior for the aggregated quantity. This preserves the dependencies within each
realisation and avoids artificial narrowing of uncertainty that would result from averaging
across distributions rather than ensembles.
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Table S1: Overview of predictors used in the two fire attribution models (PoF and
ConFLAME). Predictors are grouped into four control categories. v indicates inclusion in the
model, with (+) or (-) signs representing positive or negative influence over fire occurrence in
ConFLAME. Resolution and temporal coverage refer to the dataset version used during
model training.

Category | Predictor PoF | Con- Con- Spatial Temporal Reference
FLAME FLAME Resolution | Coverage
(section | (section
4) 5)
Weather 2m Temperature | v/ v (+) v (+) ~9 km 2003-2025 | (Muioz-Sabater
(0.1°) etal., 2021)
2m Dewpoint v v () X ~9 km 2003-2025 | (Mufioz-Sabater
Temperature (0.1°) et al., 2021)
Relative X X v (=) (0.25°) 2003-2025 | (Mufoz-Sabater
Humidity et al., 2021)
10m Wind v v (+) v (+) ~9 km 2003-2025 | (Muioz-Sabater
Speed (0.1°) et al., 2021)
Precipitation v v (=) v (=) ~9 km 2003-2025 | (Muioz-Sabater
(0.1°) etal., 2021)
Fuel Live Leaf Fuel v v (+) v (+) ~9 km 2003-2025 | (McNorton and
Load (0.1°) Di Giuseppe,
2024)
Live Wood Fuel | v v (+) v (+) ~9 km 2003-2025 | (McNorton and
Load (0.1°) Di Giuseppe,
2024)
Dead Foliage v v (+) v (+) ~9 km 2003-2025 | (McNorton and
Fuel Load (0.1°) Di Giuseppe,
2024)
Dead Wood Fuel | v v (+) v (+) ~9 km 2003-2025 | (McNorton and
Load (0.1°) Di Giuseppe,
2024)
LAl — Low/High v v (+) v (+) ~9 km 2003-2025 | (Boussetta et
Vegetation (0.1°) al., 2021)
Live Fuel v v () X ~9 km 2003-2025 | (McNorton and
Moisture (0.1°) Di Giuseppe,
Content 2024)
Dead Foliage v v (=) X ~9 km 2003-2025 | (McNorton and
Moisture (0.1°) Di Giuseppe,
Content 2024)
Dead Wood v v () X ~9 km 2003-2025 | (McNorton and
Moisture (0.1°) Di Giuseppe,
Content 2024)
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Ignition/ Pasture Fraction v (+-) v (+-) ~25 km 2007-2025 | (Klein Goldewijk
Suppresio (0.25°) etal.,, 2010)
n
Cropland v (+-) v (+-) ~25 km 2007-2025 | (Klein Goldewijk
Fraction (0.25°) etal., 2010)
Urban v (+-) v () ~25 km 2007-2025 | (Klein Goldewijk
Population (0.25°) etal., 2010)
Rural Population v (+-) v (+-) ~25 km 2007-2025 | (Klein Goldewijk
(0.25°) etal., 2010)
Population X X ~9 km 2005, (Center for
Density (0.1°) 2010, International
2015, 2020 | Earth Science
Information
Network
(CIESIN), 2025)
Road Length X X ~9 km 2015 (Meijer et al.,
(0.1°) 2018)
Cloud-to-ground v (+) v (+) ~25 km 2019-2025 | (Qu et al., 2025)
lightning (0.25°)
Lightning X X ~9 km 2019-2025 | (Lopez, 2016)
(0.1°)
Vegetation Type X X ~9 km 2003-2021 | (Boussetta et
(0.1°) al., 2021)
Urban Fraction X X ~9 km 2010 (McNorton et
(0.1°) al., 2023)
Orography X X ~9 km Static (Boussetta et
(0.1°) al., 2021)
Missed v v Model-defin | 2007-2025 | (Barbosa et al.,
Prediction ed 2025) This
Term study
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S4.2 Results
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Figure S$11: Pantanal and Chiquitano fire forecast (as for Figure 8 in the main text).
Chicklet plots displaying seamless FWI and POF fire predictions over 10 days forecast. The
x-axis corresponds to specific dates throughout the year, while the y-axis denotes either
observations or the time leading up to the date when a forecast was generated. The vertical
colour coherence allows for quick identification of the time windows of predictability
associated to the observed fire activity both provided in terms of number of detected active
in a day fires and total BA in a month (circles). The maps represents a snapshot in time at
day 0 to allow the comparison of the spatial distribution of the forecasts and the recorded fire
activity by MODIS.
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Figure S12: Southern California fire forecast (as for Figure 8 in the main text). Chicklet plots
displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis
corresponds to specific dates throughout the year, while the y-axis denotes either
observations or the time leading up to the date when a forecast was generated. The vertical
colour coherence allows for quick identification of the time windows of predictability
associated to the observed fire activity both provided in terms of number of detected active
in a day fires and total BA in a month (circles). The maps represents a snapshot in time at
day 0 to allow the comparison of the spatial distribution of the forecasts and the recorded fire
activity by MODIS.
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Figure S13: Congo basin fire forecast (as for Figure 8 in the main text). Chicklet plots
displaying seamless FWI and POF fire predictions over 10 days forecast. The x-axis
corresponds to specific dates throughout the year, while the y-axis denotes either
observations or the time leading up to the date when a forecast was generated. The vertical
colour coherence allows for quick identification of the time windows of predictability
associated to the observed fire activity both provided in terms of number of detected active
in a day fires and total BA in a month (circles). The maps represents a snapshot in time at
day 0 to allow the comparison of the spatial distribution of the forecasts and the recorded fire

activity by MODIS.




Burned Area Probability (JFM 2024 - Amazon) Burned Area Alarm (Forecast; JFM 2024 - Amazon) Burned area aﬂomaly (observed; JFM 2024 - Amazon)
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Figure S14. Forecast and observed burned-area anomalies for four seasons: JFM, MJJ
and JJA in 2024, and DJF in 2025. Rows correspond to these seasons and are linked
respectively to the case-study regions Amazonia, Congo, Pantanal and Los Angeles
(highlighted in green). The columns display (i) the probability of a burned-area anomaly
occurring (left), (ii) whether the early-warning system was triggered (centre), and (iii) the
anomaly that was actually observed (right). Grey shading marks grid points where the
climate-fire model is not statistically significant (p-value 20.01), while white indicates
points where seasonal burned area was zero in less than half of the study period (i.e.
BA =0 in fewer than 11 of the 22 years, 2002—-2023; see (i.e. BA = 0 in fewer than 11 of
the 22 years, 2002-2023; see Torres-Vazquez et al., 2025).
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Figure S15: Drivers explaining fire hotspots in Southern California (as for Figure 10 in the
main text).
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Figure S$16: Drivers explaining fire hotspots in the Congo basin (as for Figure 10 in the
main text).
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Figure S17. Time series of burned area and key fire drivers for each focus region during

2024. Columns represent different regions; rows show different variables. Top row: Observed

burned area (blue) and modelled burned area (red) for each region, with the model median
(solid red line), interquartile range (shaded), and 5th—95th percentile range (lighter shading).

Second to fourth rows: Modelled contributions from key fire drivers—fuel availability, fire

weather, and human/ignition-related factors—with each showing median (solid line),
interquartile range (shaded), and 5th—95th percentile range. Together, these panels illustrate
the relative influence of climate and human factors on fire activity throughout the year.
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Figure S18. Potential increases in burned area (y-axis) under different fire-controlling factors
across varying levels of simulated burned area (x-axis), shown separately by region
(columns) and control factor (rows). Results are drawn from the full 5000-member
ConFLAME ensemble. Shading indicates the density of grid cells where a given potential
increase occurs, with darker areas representing higher density. Each control factor
represents a specific constraint on fire activity:

Fuel: the difference between BA simulated under plentiful fuel loads versus actual
fuel loads.

Moisture: the effect of fuel moisture, comparing perfectly dry to actual moisture
conditions.

Weather: the influence of atmospheric conditions, comparing the most extreme
simulated fire weather to observed conditions.

Wind: the increase in BA expected under maximum wind conditions versus actual
winds.

Ignitions: the difference between saturated ignitions (i.e., unlimited human or natural
ignition sources) and observed ignition patterns.

Suppression: the difference between scenarios with no fire suppression and those
reflecting actual suppression efforts.

Together, these estimates illustrate the latent potential for fire spread under different limiting
factors, helping to disentangle which constraints most strongly regulate fire activity in each
region and at different severity levels.
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Figure S19 Spatial distribution of burned area and fire driver anomalies for January-March
2024 in Northeastern Amazonia. Top row: Observed burned area anomalies from MCD64A1
(left); ensemble mean burned area anomalies simulated by ConFLAME (middle); and the
number of fire-relevant controls (out of seven) showing a positive anomaly during the same
period (right). Second row: Mean simulated control strength for each of the three grouped
controls, expressed using the "standard limitation" formulation (Kelley et al., 2019), indicating
the degree to which each factor constrained or enabled burning. Bottom row: Anomalies in
control strength compared to the modelled climatology. Values represent ensemble means
across all 4,000 members. Dots on the anomaly maps indicate grid cells with low agreement
across ensemble members (<95% agreement in the direction of change), reflecting lower
confidence in the sign of the anomaly at those locations.
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Figure S20 As Figure S19 but for Pantanal & Chiquitano, August and September 2024
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Figure S21 As Figure S19 but for Southern California, January 2025.
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S5 Supplementary Material for Section 5
$5.1 Methods

Table S2: Guide to different attribution comparisons discussed. Coloured boxes indicate what is accounted for in counterfactual comparisons,

which variable is targeted or where we look directly as the event or a longer historic record.

30

Attribution | Model Factual vs Removed in Counterfactual Target variable Target period
type counterfactual data
sources GHG Aerosols | Land Climate & | Natural | Humans Event Background | During Historic
emissions on use on CO2on climate | on fire BA the event
on climate climate climate fuel trends
Anthropog | Canadian FWI HaDGEMS3-A All vs
enic NAT
climate
Forcing CanESM5 FWI | CanESM5 2014-2025
vs 1850-1859
WWA - sourced from already published
material
ConFLAME ERADS5 vs merged
NRT ERA5/HadGEM3-A
Total ConFLAME ISIMIP3a GSWP3
climate ISIMIP reanalysis vs
forcing detrended
FireMIP
Socio- ConFLAME ISIMIP3a GSWP3
economic ISIMIP detrended 2003-2019
factors vs 1901-1917
FireMIP
All ConFLAME ISIMIP3a GSWP3
forcings ISIMIP reanalysis
2003-2019 vs
FireMIP detrended 1901-1917




S$5.1.1 Attributing Extremes in Fire Weather during 2024-25 - extended

We applied a bias correction to the 2023 HadGEM3 large ensemble using a linear
regression approach, based on comparisons between the model's historical simulations
(1960-2013) and the ERAS5 reanalysis of fire weather index (FWI). The FWI data were
transformed prior to regression to stabilise values at the high end, ensuring extreme fire
conditions were accurately captured without distorting the distribution. This correction was
anchored to 2023 conditions by extrapolating trends from the historical period to account for
recent warming.

Each present-day ensemble member was corrected against all historical ensemble
members, producing a large ensemble of bias-adjusted simulations (7875 members in total).
This method avoids assumptions about pairwise matching of ensemble members due to the
perturbation process used in generating the ensemble.

We then calculated risk ratios (RRs) for extreme fire weather events by comparing the
likelihood of exceeding the observed 2023 FWI threshold in the bias-corrected “ALL” (with
climate change) and “NAT” (without climate change) simulations. The RR represents how
much more likely the event was in today’s climate compared to a world without
anthropogenic influence. Uncertainty was assessed using bootstrapping.

Full technical details are provided in last years report supplement section S$1.2.3 (Jones et
al. 2024b) and Burton et al. (2025).

S$5.1.2 Background changes in fire weather this decade

To complement the HadGEM large-ensemble weather simulations, we also use a fully
coupled Earth system model approach to assess the changing probability of extreme fire
weather events. This method uses the Canadian Earth System Model version 5 (CanESM5
Swart et al., 2019), developed for the sixth phase of Coupled Model Intercomparison Project
(CMIPG6; Eyring et al., 2016). CanESMS5 provides a 50-member ensemble spanning both the
historical period (1850-2014) and high-emission future projections (SSP585, through 2100).
By drawing on a physically consistent climate model ensemble, this method offers an
independent line of evidence for assessing the role of anthropogenic climate change. Unlike
the weather-perturbation ensemble, this method evaluates how often events of similar
magnitude to those in 2024/25 would have occurred between 2016-2025.

For each focal region and season, we extract the annual maximum of 7-day average FWI for
each ensemble member and apply a statistical model (a time-dependent Generalized
Extreme Value distribution), as often used in previous attribution studies (Eden et al., 2016,
2018; Krikken et al., 2021; Liu et al., 2022a, 2023, 2022b; Otto et al., 2018; e.g. Schaller et
al., 2014; van der Wiel et al., 2017) to estimate how the probability of extreme fire-conducive
conditions has changed over time. In this section, we compare the likelihood of these events
under pre-industrial conditions (1850-1859) to their likelihood in the recent past
(2016—2025). These comparisons are expressed as a probability ratio (PR). For example,
a PR of 10 indicates a tenfold increase in the chance of such an event occurring in the
modern climate compared to pre-industrial conditions. In this study, we define 'high fire
weather' conditions as the percentile rank of extreme Fire Weather Index (FWI) values
during the event period, calculated relative to the full ERA5 historical record. For instance, if
the event corresponds to the 95th percentile in the observed record, we assign the 95th
percentile value from the model simulations as the representative magnitude of the event
within the simulations. Confidence intervals for these PRs are estimated using
bootstrapping. This approach, again following a similar approach outlined by (Liu et al.,
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2022c), allows us to account for uncertainties arising from internal climate variability and
limited sample sizes, while leveraging the strength of large ensemble simulations.

While this approach relies on a more generalised representation of climate and fire-relevant
processes — and applies a statistical fit to account for sample size limitations — it adds
valuable robustness by providing attribution results from an independent model and that
assesses FWI occurrence over a longer period. Together with the HanGEM3-A approach,
this approach strengthens confidence in the conclusions drawn by offering a diverse and
independent line of evidence for the role of climate change in recent fire weather extremes.

S5.1.2.1 Model and Data

We use the Canadian Fire Weather Index (FWI; van Wagner, 1987) calculated from daily
ERAS5 reanalysis data for 1951-2025, and from the CanESM5 large ensemble simulations
for 1850-2100 (Swart et al., 2019). The CanESM5 model was selected due to the availability
of a 50-member ensemble under the historical (1850-2014) and SSP5-8.5 scenario
(2015-2100), providing sufficient sample size for extreme value analysis.

S5.1.2.2 Statistical Framework

We follow a time-dependent Generalized Extreme Value (GEV) approach (Eden et al., 2016;
Liu et al., 2022a, b; Philip et al., 2020; van der Wiel et al., 2017). For each focal region and
fire season, we calculate annual maxima of 7-day average FWI from each ensemble
member and fit them to a GEV distribution.

The location (u) and scale (o) parameters are modelled as linear functions of 4-year
smoothed global mean surface temperature (GMST) from the ensemble mean, capturing the
externally forced response. The shape parameter (¢) and the o/p ratio are held constant.
This yields a time-evolving distribution from which return periods (and hence probabilities)
for a fixed event magnitude can be computed across different climate baselines.

S$5.1.2.3 Attribution

For attribution, we evaluate the return period of a specific observed 2024 event magnitude
(e.g., 7-day FWI max) in:

e A pre-industrial baseline: 1850—1859

e A recent baseline: 2015-2024
We then use the Risk Ratio in $5.1.1.
5.1.2.4 Uncertainty
We estimate 90% confidence intervals using a non-parametric moving-block bootstrap with
1,000 replicates (Efron and Tibshirani, 1998; van der Wiel et al., 2017). This preserves
autocorrelation in annual maxima sequences and accounts for interannual variability across

the ensemble.

5.1.3 Attributing Region-wide Extreme BA during 2024-25 - extended

The near real-time configurations test and training follows the same setup as described in
Section 4, but excludes the fuel moisture variables, as we do not have counterfactuals
available for these variables. We use the same training protocol as outlined in Section 4.2.
The factual climate is based on ERA5 reanalysis, providing physically consistent and
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observation-constrained meteorological conditions for the fire event. The counterfactual
climate represents a world without human influence on the climate system. It is created by
adjusting ERAS temperature, maximum temperature, precipitation, dry days, consecutive dry
days, humidity, and minimum humidity variables using variable-specific adjustment functions
(“deltas”). These deltas are derived from differences between the HadGEM3-A ALL-forcings
and natural-forcings simulations described in Section 5.1.2, with:
w(CF) = w(ERA5) + w(NAT) - w(ALL)

Where CF is the counterfactual climate, w is the transformation required to remove data
bounds of the specific variable, and ¢ is the inverse of w. The following transformations are
applied to create counterfactual values for each climate variable:

e Temperature (Mean and Max): w(x) = x
Precipitation: w(x) = log(e*-1)
Windspeed, soil moisture: w(x) = log(x)
Relative Humidity: w(x)=log(x/(1-x))

Since relative humidity (RH) is not available directly from ERA5, we will therefore calculate it
from 2m temperature (TS) and 2m dew point temperature (Td):

RH = 100 X ed/es

where e, is the actual vapour pressure (calculated from the dewpoint temperature) and e is
the saturation vapour pressure (calculated from the air temperature):

17.625 xT,
e =6.112 X exp(m)

We perform two types of counterfactual simulations to understand the influence of
human-caused climate change: one using all individual members of the HadGEM3-A
ensemble, and one using the ensemble mean. The full ensemble captures a wide range of
possible weather outcomes and includes natural year-to-year variability, making it a more
cautious or conservative estimate of the effect of climate change. The ensemble mean, by
contrast, smooths out this variability to isolate the long-term influence of climate forcing,
providing a cleaner signal. Since our analysis targets a specific year, the actual role of
weather variability should, in theory, matter less. However climate change can interact with
this variability in complex, sometimes non-linear ways, thereby making certain extremes
more or less likely depending on the background conditions, we don’t know exactly where
within that range the real-world outcome lies. As a result, the true effect of climate change
likely falls somewhere between these two estimates. We therefore report the full ensemble
results as our main findings and refer to the ensemble mean where it offers useful additional
context or diverges substantially.

We also use an ISIMIP configuration of ConFLAME, as used in last year’s report. The
available data differs from our near real-time setup, so for this configuration we group
controls into four categories (Table S3):

1. Fuel load, represented by total vegetation cover and tree cover.

2. Fuel moisture, represented by mean consecutive dry days within each month, the
fraction of dry days within the month, daily mean precipitation, mean and maximum
monthly temperature, and mean and maximum vapour pressure deficit (VPD).

3. Ignitions, represented by climatological lightning, pasture, crop, and population
density.

4. Suppression, represented by pasture, crop, and population density.

5. Land use change, represented by 12 month running mean change in tree, crop, and
pasture.
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We trained the ConFLAME ISIMIP configuration on observed monthly BA from the MODIS
BA product (MCD64A1) during 2003-2019 at 0.5° resolution across the entire region. For
model training and for factual, we used Global Soil Wetness Project Phase 3
(GSWP3-W5E5) meteorological forcings, as provided at 0.5° spatial resolution by ISIMIP3a
(see Table 5). Land surface information (tree cover and non-tree vegetated cover) was
derived from dias corrected JULES-ES-ISIMIP model output (Mathison et al., 2023), which
was also driven by GSWP3-W5ES. This model includes dynamic vegetation, accounting for
changing vegetation cover in response to climate, growth, competition, and mortality. To
avoid double-counting the impact of fire, we disabled the model’s interactive vegetation-fire
module. The bias in this land surface information is adjusted to the MODIS Vegetation
Continuous Fields collection 6.1 remote sensed data (Dimiceli et al., 2015), using a linear
scaling approach. This preserves trends between historical and future periods and ensures
accurate means and distribution. See Supplementary Text S2 for details.

S$5.1.3.1 Deriving ConFLAME vegetation fraction driving data

In Sections 5.3.1, and 6.1.2.2, we drive ConFLAME with tree and non-tree vegetated cover
from the Joint UK Land Environment Simulator Earth System impacts model (JULES-ES) at
version 5.5 (Clark et al., 2011; Mathison et al., 2023) driven with GSWP3-W5E5 forcings
provided at a 0.5° spatial resolution by ISIMIP3a. These runs are freely available at
https://www.isimip.org/impactmodels/details/292/. JULES-ES dynamically models vegetation
cover in response to meteorology, hydrology, nitrogen availability, and land use change.
JULES-ES has been extensively evaluated against snapshots and site-based
measurements of vegetation cover and carbon (Burton et al., 2019, 2022; Clark et al., 2011;
Mathison et al., 2023; Sellar et al., 2020). JULES-ES-ISIMIP has previously been used as
driving data for ConFLAME to perform future projections (UNEP et al., 2022), though using a
previous round of ISIMIP climate forcing (ISIMIP2b). As per (UNEP et al., 2022), vegetation
responses to JULES-ES’s internal fire model were turned off so as not to double-count the
effects of burning.

However, in (UNEP et al., 2022), residual JULES-ES simulated biases in vegetation cover
were allowed to persist, increasing the uncertainty range of local vegetation cover and
resultant burned area responses. We therefore correct the bias in JULES-ES’s vegetation
cover using a linear scaling bias adjustment method, implemented using the ibicus software
package (Spuler et al., 2024, ibicus).

The method corrects the bias induced by the JULES-ES model rather than the bias of the
climate model, assuming that this has been removed by the ISIMIP3BASD method(Lange,
2019). For each surface cover type at each grid cell, the bias adjustment method identifies
biases in the mean and variance of the JULES-ES model output relative to MODIS VCF
collection 6.0 remotely sensed data (Dimiceli et al., 2015) at this grid cell. These biases in
mean and variance are then removed from the surface information output from JULES-ES
driven by climate models over the historical (1994-2014) and future (2015-2099) period,
ensuring that the resulting model output is still bounded by [0, 1]. This bias adjustment
method preserves the trend in mean and variance. While a trend-preserving empirical
quantile mapping was used in the State of Wildfires 2023/24 publication, further analysis
showed that, given the limited amount of observational data, this simpler method performs
equally well while requiring fewer assumptions and parameters to fit, leading to an overall
more robust bias adjustment.

The results were evaluated in terms of the ability of the bias correction method to reduce the
model bias over the historical period, as well as preserve the trend between the future and
historical periods. It was found that the method corrects the bias well over the historical
period for most regions, variables and grid cells in both the mean and 80th percentile at each
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grid cell. The mean trend between the future and historical period is preserved by definition,
but also quantile trends in most regions and grid cells are well preserved.

To demonstrate the evaluation conducted, Figure S27 shows the results for tree cover over
the Amazon region. The plots for the remaining regions, including tree and no-tree cover,
can be found in a notebook
https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment. Investigating the time
series of average tree cover over the region, we find that the correction method reduces the
bias over the historical period and matches the future period to the historical period (Figure
S27a). The cumulative distribution functions of average tree cover merged over all spatial
locations in observations and the model matches better after bias adjustment (Figure S27b).
They do not match perfectly, and we note that this is a non-calibrated aspect that we do not
expect to have zero bias, but that is important to evaluate. Furthermore, we find that the
improvement in both mean and 80th percentile holds across the region (Figure S27¢). The
trend between future and historical periods is preserved for the majority of grid-cells, with the
absolute change in trend being close to zero for most grid-cells.

S$5.1.4 FireMIP

For the multi-model ensemble we use simulations from the ISIMIP3a fire sector, as
published in (Burton & Lampe et al. 2024). The 7 models reporting BA for ISIMIP3a are
shown in Table S3. The methodology follows the ISIMIP3a Impacts Attribution protocol, as
outlined in (Mengel et al., 2021), where the factual historical simulations are driven with
GSWP3-W5E5 reanalysis data, and the counterfactual simulations are the same historical
data which has been detrended via quantile mapping (Mengel et al., 2021).

As outlined in (Hantson et al., 2016), the spread in the absolute BA is large amongst the
observations, models and regions and therefore a normalised relative anomaly (RA) rather
than absolute BA is used for the analysis. To calculate the RA in present day BA, we
subtract the counterfactual mean, and divide by the counterfactual mean. By comparing both
factual and counterfactual experiments to the counterfactual mean, we are looking at the
fractional increase in BA driven by climate change compared to a baseline without climate
change. Based on model performance by ARG6 region, a region-specific weighting is also
applied following (Knutti et al., 2017). The weighting is based on the model's distance to the
observed BA temporal RA using both FireCCI5.1 and GFED5, measured using NME as per
Kelley et al. (2013). To measure the uncertainty, random noise is generated and scaled by
the climatological RMSE of each model. This noise is then added to the modelled relative
anomaly, this process is repeated 1000 times. Then, bootstrapping is applied to the monthly
regional BA RA (now with noise added in) according to the weight for each model.
Uncertainty is calculated by taking the 2.5-97.5" percentile of the resultant histogram. All
results are reported as P50 [P2.5, P97.5]. The methods are explained in full in (Burton &
Lampe et al. 2024).
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Table S3: FireMIP Models used for attributing median burned area. Table reproduced from (Burton & Lampe et al. 2024)

Model

CLASSIC

INFERNO

LPJ-GUESS-

LPJ-

ORCHIDEE-

SSiB4/

SIMFIRE- GUESS- MICT- TRIFFID VISIT
BLAZE SPITFIRE SPITFIRE
] CLASSIC INFERNO SIMFIRE SPITFIRE SPITFIRE Li After (Thonicke
Fire Model et al., 2008))
. CLASSIC JULES LPJ-GUESS LPJ-GUESS ORCHIDEE SSiB VISIT
Land / Vegetation
. . Yes Yes, via Yes Yes Yes Yes, via Yes
Dynamic Physiology TRIFFID TRIFFID
Veg Yes Yes, via Yes Yes Yes Yes Yes
LAI TRIFFID
. No Yes, via Yes Yes Yes Yes No
Bio- TRIFFID
geography
. Yes Yes Yes Yes No Yes Yes, but C-N
limited
No. PFTs 9 13 17 17 19 7 3?;}/(8;?9
No. Soil Layers 20 4 2 2 B ° 2
Vegetation and | Vegetation & top | Vegetation, litter Litter Vegetation and Vegetation and Litter
Fuel litter soil layer as litter litter
proxy for litter
o Prescribed Prescribed SIMFIRE Prescribed Prescribed Prescribed Probabilistic
Ignitions Natural lightning lightning describes lightning lightning lightning based on fuel
annual BA + wetness
fire-climatology
-> daily BA used
as
Fire-Probability
Prescribed Prescribed SIMFIRE Prescribed Prescribed Prescribed No
Anthropoge population Population includes population population population
nic density density suppression by density density density
humans
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. Prescribed Crops, Crops (100%), Crops, Prescribed Prescribed Low fuel load
Suppression population population prescribed population population population
density density population density density, crops density and
density GDP
(Hyde3.1)
Wind speed and None Daily BA (no Rothermel wind speed, tree | Wind speed and None
Spread soil moisture explicit spread) equations fraction, grass soil moisture
including wind fraction, fuel
speed, tree moisture, fuel
fraction, grass load
fraction, fuel
moisture, fuel
load and
characteristics
. SW & LW SW & LW SW radiation, SW radiation, SW & LW SW & LW Air temperature,
Model inputs radiation, radiation, precipitation, air | precipitation, air radiation, radiation, precipitation, air
precipitation, air | precipitation, air temperature temperature, precipitation, air | precipitation, air | vapor pressure,
temperature, temperature, (mean, min, specific temperature, temperature, cloudiness, wind
specific specific max), relative humidity, wind specific specific
humidity, wind humidity, wind humidity, wind speed, humidity, wind humidity, wind
speed, speed, speed atmospheric speed, speed,
atmospheric population pressure, atmospheric atmospheric
pressure, density, lightning population pressure, PFT pressure,
population density, lightning | map, population population
density, lightning density density, and
GDP, peat map,
land cover
change
1de 0.5 de 0.5 de 0.5de 0.5de 0.5de 0.5de
Resolution 9 9 9 9 9 9 9
References (Burton et al., (Knorr et al., 2014; (Lehsten et al., (Yue et al., 2014, (Huang et al., (Ito, 2019)
2019, 2020; Rabin et al., 2017; 2009; Rabin et al., 2015) 2020, 2021;
(Melton et al.,
2019) Mangeon et al., Smith et al., 2014) 2017; Smith et al., Hugelius et al.,
2016) 2014; Thonicke et 2013; Lietal.,
al., 2010) 2012, 2013)
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S5.2 Results
S$5.2.1 Background changes in fire weather this decade

S5.2.1.1 Northeast Amazonia

ArealTime: All region/Jan—Mar 2024

Variable: Fire Weather Index

Attribution Type: Anthropogenic climate forcing
Includes: Changes in climate since Pre-Industrial

To understand longer-term trends, we estimate how global warming has changed the
average likelihood of extreme fire weather over the past decade. Using a statistical fit to the
CanESM5 model ensemble, we find that fire weather conditions like those seen in 2024
have become 1.9 times more likely on average since pre-industrial times, with a 95%
confidence range of [1.5, 53.3].

While this method gives less event-specific resolution, it supports the conclusion that climate
change has increased the background risk of extreme fire weather in the region over the last
10 years reinforcing the HadGEM-based result.

S5.2.1.4 Congo Basin

ArealTime: All region/Jun-Aug 2014-2025
Variable: Fire Weather Index

Attribution Type: Anthropogenic climate forcing
Includes: Changes in climate since Pre-Industrial

Using the CanESM5 ensemble, we find that fire weather conditions similar to those observed
in July—August 2024 were 1.3 times more likely due to climate change ([0.7, 1.8], 95% CI)
over the last decade. While more uncertain than the HadGEM3-A analysis, the findings are
not inconsistent: both show a positive central estimate. The difference likely reflects the
broader decadable sampling of the CanESM5 method or as well as differences in the
underlying model systems. However, both methods suggest that climate change has
increased the likelihood of fire-conducive weather in the Congo Basin.

$§5.2.2 Region-wide extreme BA during 2024-25.

S$5.2.2.1 Northeast Amazonia

Time: Jan-Mar 2003-2019

Variable: Burned Area

Attribution Type: Total climate change

Includes: All anthropogenic and natural trends in climate

We also assessed the influence of total climate forcing on the frequency of fire activity in the
Northeast Amazonia for all January-March during 2002-2019. The likelihood of a
climate-driven increase in regional burned area (BA) during these ~2 decades was just 56%
(Figure 14), indicating that any long-term trend remains highly uncertain. The central
amplification factor was 1.17, with a 90% confidence range of 0.88 to 1.15 (Table 6),
encompassing the possibility of no change. In contrast to the direct attribution of the 2024
fire season, this analysis shows no clear signal that total climate forcing increased overall BA
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during this earlier period. A similar picture emerges for sub-regional extremes, with a
likelihood of an increase due to climate forcing was 70%, just meeting the IPCC threshold for
being considered likely. The amplification factor was modest-1.02, with a 90% range of 0.94
to 1.13-indicating that while climate may have played a role in enhancing the most intense
burning, its influence was relatively small and uncertain during this timeframe.

Together, these results suggest that while anthropogenic climate change had a strong and
detectable impact on the 2024 fire season, similar effects were not consistently evident in
the decades prior. The relatively low upper bounds on amplification, particularly for
sub-regional extremes, imply that large increases in anomalous fire activity were not
widespread prior to 2020. This interpretation aligns with earlier research (Kelley et al., 2019)
showing only a weak meteorological contribution to elevated burning in the southern parts of
the region during the large fire anomalies in 2019.

However, it is important to note that the analysis ends in 2019, excluding a series of major
droughts and fire anomalies since 2020. These recent years have shown increasingly
frequent and widespread extremes, suggesting that the climate signal may now be
strengthening. This is consistent with last year’s report, which analysed a Western Amazonia
region just southwest of this one. There, long-term trends similarly suggested only marginal
increases in sub-regional extremes from 2002-2019, while the risk ratios for specific fire
weather events were extremely high. A longer observational window that includes the last
five years would help better evaluate whether a persistent shift is emerging.

Time: Jan-Mar 2003-2019

Variable: Burned Area

Attribution Type: Socioeconomic forcing

Includes: Population density, land use and land cover change

For sub-regional extremes, the likelihood that socioeconomic factors increased BA was only
slightly higher at 62%. The central Amplification Factor was 1.01, with a narrow range of
0.96 to 1.10, indicating only minimal influence. This suggests that in the most fire-affected
locations, socioeconomic drivers alone did not strongly amplify the extent of burning during
this timeframe. Together, these findings point to a limited or unclear role of socioeconomic
change in driving extreme fire activity across the Northeast Amazonia between 2002 and
2019.

Time: Jan-Mar 2003-2019

Variable: Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and
land cover change

We also assessed the combined effect of total forcing, which includes all long-term changes
in climate (anthropogenic and natural), land use, land cover, and population density,on
burned area (BA). For regional totals, the likelihood that total forcing increased BA was just
47% (Figure 14), with a median amplification factor of 0.99 and a 90% confidence interval of
0.81 to 1.47 (Table 6). This result indicates no clear signal that the combined effects of
climate and socioeconomic change had a net impact on fire activity across the region during
this two-decade period. For sub-regional extremes,the grid cells with the highest BA in each
season, the likelihood of an increase was slightly higher at 62% (Figure 14), with a central
amplification of 1.01 and a wider confidence interval of 0.96 to 5.1 (Table 6). While this
suggests that some influence of combined human and climatic drivers on extreme BA cannot
be ruled out, the signal remains modest and uncertain overall.
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Together, these findings imply that, even when considering all major sources of long-term
change in climate and land use together, there is insufficient evidence to attribute a
consistent trend in BA or its extremes across the region for 2002—2019. The relatively wide
range for the sub-regional extremes, compared to regional totals, highlights a possibility that
landscape modification or localised climate feedbacks could have amplified fire activity in
specific hotspots, but the model does not provide enough resolution to identify or confirm
such patterns.

S$5.2.2.2 Pantanal and Chiquitano

Time: Aug-Sep 2003-2019

Variable: Burned Area

Attribution Type: Total climate change

Includes: All anthropogenic and natural trends in climate

Over the longer-term 2003—-2019 period, our analysis suggests that it was virtually certain
that total (99%; Figure 14) that climate change very likely increased the likelihood of fire
events with comparable burned area to August-September 2024 in the Pantanal &
Chiquitano region. The median likely amplification factor greater than 100 [90% confidence
range of 4.92 >100] (Table 6). This suggests that a substantial portion - and possibly the
vast majority, of the burned area associated with 2024-like events is attributable to long-term
anthropogenic changes in the climate system. The sub-regional attribution signal is
consistent with the regional-scale result, which also shows >99% likelihood of an increase
(Figure 14), with an amplification factor >100 [2.72 to >100] (Table 6). While both estimates
exhibit wide uncertainty ranges, their overlapping confidence intervals point to a consistent
climate signal rather than a statistically clear difference in impact strength between regional
and sub-regional scales.

This analysis provides additional confidence in the role of anthropogenic climate change by
situating the 2024-type fire conditions within the broader distribution of fire-weather years
over the past two decades. By extending the analysis beyond the specific year of 2024, it
helps to identify a persistent fingerprint of climate forcing in driving elevated fire risk.

By drawing on multiple years of climate and fire conditions, this longer-term approach
increases the sample size available for evaluating the likelihood of 2024-like fire events. This
may help separate the structural influence of climate forcing more clearly than near-real-time
(NRT) event-based attribution. Further analyses comparing NRT and multi-year setups could
help explore whether recent variability has masked or amplified long-term trends in fire
likelihood.

Time: Aug-Sep 2002-2019

Variable: Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and
land cover change

When assessing the combined influence of all anthropogenic and natural forcings, we find
limited attribution power for 2024-like events in the Pantanal and Chiquitano region. At the
regional scale, the likelihood that all forcings increased burned area is 61%, with an
amplification factor (AF) of 1.05 [0.26-64.3]. This wide uncertainty range suggests that
internal variability and counteracting drivers may obscure the net effect of all forcings. For
sub-regional extremes, confidence is slightly higher: 84% likelihood, with an AF of 1.00
[0.68-12.16]. This points to a potential increase in burned area, though again with
considerable uncertainty.
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While these results do not offer conclusive evidence of a net anthropogenic effect, they
underscore the complexity of attributing fire outcomes to the combined influence of climate
and human activity. The limited confidence in these findings highlights the need to improve
methodologies capable of capturing interactions and feedbacks between land use, climate,
and fire, particularly in regions such as Pantanal and Chiquitano, where these relationships
are highly complex. Future reports should move beyond treating climate and socioeconomic
drivers in isolation. As interactive and compounding effects become more likely, attribution
frameworks that separate human and climate influences risk overlooking critical synergies
that are most relevant for effective policy and risk management.

S5.2.2.3 Southern California

Time: Jan 2003-2019

Variable: Burned Area

Attribution Type: Total climate change

Includes: All anthropogenic and natural trends in climate

There is limited evidence from this framework that total climate change increased the
likelihood of January 2025-like regional burned area in Southern California during the
2003-2019 period. The likelihood of an increase is estimated at 63% (Figure 14) with an
amplification factor (AF) of 1.07 [0.68—2.83] (Table 6), suggesting that total climate change
could have played a role, but the model does not provide a confident answer either way. This
large range of uncertainty partially stems from the small geographic size of the region, which
limits signal-to-noise ratios in long-term attribution frameworks. A similar issue was observed
for Greece in last year’s report (Jones et al., 2024b), where a confident climate signal was
also absent in long-term regional attribution, despite strong evidence emerging from
event-specific analysis. Interestingly, while the long-term climate signal here is weak, the
near-real-time (NRT) attribution for the 2025 event itself shows a much stronger likelihood of
anthropogenic influence, suggesting that climate signals may emerge more clearly during
specific extremes than across broader multi-year variability.

As the amount of burned area in January in Southern California is historically nominal given
that this is the traditional wet season when flammability is low, some of the elevated
uncertainty may stem from local calibration. Likewise, these were principally wind-driven
fires due to synoptic-mesoscale features with Santa Ana downslope winds whose features
are poorly resolved in the coarse reanalysis data used here. Climate projections show a
weak attenuation of the frequency of Santa Ana winds with anthropogenic climate change
(Guzman-Morales and Gershunov, 2019; Hawkins et al., 2022), but also an extension of
critically dry fuels into winter due to delayed onset of winter precipitation (Goss et al., 2020).
The degree to which these two factors alongside the direct thermal influence of climate
change on fuel desiccation altered the odds of such extremes requires additional analysis
and may not be realized through the approaches used here.

Time: Jan 2002-2019

Variable: Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and
land cover change

There is no clear signal for the impact of all forcing for January 2025-like burned area in

Southern California during 2002-2019. The likelihood of an increase is estimated at 55%,
with an amplification factor of 1.05 [0.26—64.26], nearly identical to the socioeconomic-only
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result. This further highlights the challenge of drawing confident conclusions in small regions
with limited signal.

S$2.2.2.4 Congo Basin

Time: Jun-Aug 2024

Variable: Burned Area

Attribution Type: Total climate change

Includes: All anthropogenic and natural trends in climate

Total climate change likely increased the amount of burned area in areas with the height
levels of burning, though with limited confidence in the size of this effect. The likelihood of an
increase was estimated at 75%, with an amplification factor (AF) of 1.29 [0.96-3.32]. This
implies that while a contribution from climate change is more likely than not, the possibility of
little to no effect cannot be ruled out. The risk ratio was 1.8, suggesting that events of this
severity were nearly twice as likely under current climate conditions than they would have
been in a pre-industrial climate.

Time: Jun-Aug 2024

Variable: Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and
land cover change

For the region as a whole, the likelihood of all human and climate forcing increased burning
was 55%, with an amplification factor (AF) of 1.01 [0.86—-1.42], indicating no clear signal. In
the areas most severely affected by fire, the likelihood rose slightly to 63%, with an AF of
1.06 [0.73—4.44]. While this suggests that the combined effect of all forcings could have
contributed to the sub-regional extremes, the wide range and low confidence highlight the
challenge of attributing fire outcomes in regions where both data and model constraints
remain significant.

S$5.2.3 Sub-regional extreme burned area during 2024-25

S5.2.3.1 Northeast Amazonia

ArealTime: Sub-regional extremes/Jan-Mar 2024

Variable: Burned Area

Attribution Type: Anthropogenic climate forcing

Includes: Greenhouse gases, aerosols, and land-use change effects on climate

Anthropogenic climate forcing also very likely caused increased burned area (BA) in the
sub-regional extremes with a likelihood of 96% (Figure 14; Table 6). The amplification factor
in these areas was smaller than for the region as a whole: fires in these high-BA zones were
on average 1.17 times larger, with a 90% confidence range of 1.01 to 5.13. This means that
anthropogenic climate forcing likely contributed to increased burning in these areas, though
the amplification was more modest than across the broader region. The risk ratio was 2.2,
indicating that fire seasons with this spatial pattern of extreme burning are now more than
twice as likely due to climate change.

This difference between regional and sub-regional extremes is consistent with earlier
findings in Section 4, which showed that climate-driven weather anomalies - more directly
linked to the influences considered in our attribution, increased the potential for burning
across much of the region, while fuel conditions (fuel load and moisture) shaped the location
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and timing of the most severe burning. The moderate amplification factor in the highest-BA
grid cells likely reflects the local interplay between fire weather and fuel constraints, where
factors such as fuel limitations or ignition variability may have restricted how much additional
burning occurred, even under climate driven more fire conducive weather conditions.
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Figure S23 Risk ratio and amplification factor for different levels of total (left) and
sub-regional extreme (right) burned area, simulated using ConFLAME-NRT for each region
(rows). Percentile ranges for the amplification factor are taken across ensemble members.
The red dashed vertical line indicates observed levels of burned area, for which the
corresponding risk ratio is reported in each panel.
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S$5.2.3.2 Pantanal and Chiquitano

ArealTime: Sub-regional extremes/Aug-Sep 2024

Variable: Burned Area

Attribution Type: Anthropogenic climate forcing

Includes: Greenhouse gases, aerosols, and land-use change effects on climate

Anthropogenic climate forcing was very likely to have increased BA for the sub-region with
the highest burned areas in August-September 2024, with a 90% likelihood of increased
burned area in the factual simulations compared to the counterfactual (Figure 14). The
amplification factor (AF) was 1.91, albeit with a wide uncertainty range [0.98—>100] (Table
6), suggesting that while the median influence was lower than for regional totals, very large
increases in burned area due to climate change cannot be ruled out. A similar likelihood of
increase and upper bound was found when using ensemble-mean meteorology for the
counterfactual.

The risk ratio for these sub-regional extremes was 2.3 (Table 6), indicating more than twice
the likelihood of observing similar extreme burned area under current anthropogenic
conditions relative to a natural climate.

As with Northeast Amazonia, the anthropogenic influence appears less pronounced for the
most severely affected areas than for the region overall. This could reflect local
fire—moisture—fuel feedbacks limiting amplification where BA was already high, or shifts in
fire-prone zones expanding regional totals without intensifying extremes. Further
investigation into local factors such as wetlands and fuel constraints will be key to
understanding why the climate signal appears weaker in the areas that burn most. One
possible explanation is that wetlands and other moisture-rich ecosystems may help buffer
fire activity, even as climate conditions change. Another contributing factor could be land use
in these extreme fire areas. For example, fire suppression in human-managed landscapes
may interact with climate drivers in ways that reduce the strength of attribution signals.

S2.2.2.2 Southern California

ArealTime: Sub-regional extremes/Aug-Sep 2024

Variable: Burned Area

Attribution Type: Anthropogenic climate forcing

Includes: Greenhouse gases, aerosols, and land-use change effects on climate

Due to the relatively small size of the Southern California study region, the identified
sub-regional extremes correspond to a single model grid cell thus limiting the ability to
capture nuances of the distinct fire regimes and mesoscale factors associated with Santa
Ana winds (Kolden and Abatzoglou, 2018). As the attribution results are qualitatively similar
to those for the full region for all comparisons (Table 6), we do not discuss a separate
analysis of sub-regional extremes here.
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$5.2.4 Background Changes in Burned Area this Century - all forcings
S5.2.4.1 Northeast Amazonia

Area/Period: All region/2003-2019

Variable: Background Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and

land cover change

When both climate and socioeconomic forcings are considered together, their effects largely
offset one another, leading to a small and uncertain net change in BA of +1% [-6%, +9%]. In
this region, we observe that the effects of climate change and socio-economic factors on BA
have approximately counteracted to produce no clear overall change in background levels of

BA this century.
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Figure S24: Change in median BA due to total climate forcing from FireMIP. Present day BA
(2003-2019) for factual (historical forcing, orange) and counterfactual (detrended climate,
blue). Probability is shown on a log scale.
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Figure S25: Change in median BA anomaly due to socioeconomic factors (population and
land-use change) from FireMIP. Present day BA (2003-2019) for counterfactual (detrended
climate, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North
West South America (NWS, RIGHT). Probability is shown on a log scale.

S$5.2.4.2 Pantanal and Chiquitano

ArealPeriod: All region/2003-2019

Variable: Background Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and
land cover change

When considering the combined effects of climate change and socioeconomic drivers, we
estimate a net change in background BA at +3% [-2%, 9%]. This modest and uncertain
increase likely reflects offsetting influences, where climate-driven increases in fire activity
have been partially counteracted by human-driven factors such as land management,
suppression practices, or landscape fragmentation. While the net change is close to zero,
the underlying drivers may still be highly active in opposing directions, a dynamic that
warrants further investigation to support more effective fire policy and adaptation planning.
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Figure S$26: Change in median BA anomaly due to all forcing (climate change and
socioeconomic factors) from FireMIP. Present day BA (2003-2019) for factual (historical
forcing, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North
West South America (NWS, RIGHT). Probability is shown on a log scale.

S$5.2.4.3 Congo Basin

Area/Period: All region/Jun-Aug 2024

Variable: Background Burned Area

Attribution Type: All forcing

Includes: All anthropogenic and natural trends in climate, population density, land use and
land cover change

When accounting for all anthropogenic and natural trends (i.e. climate change, population
dynamics, and land use change) we estimate that total background burned area in the
Congo Basin increased by 25% [18%, 33%] over the 2003-2019 period compared to
pre-industrial conditions. This result reflects the net outcome of competing influences: while
socioeconomic factors appear to have reduced fire activity (as noted in the previous section),
climate change has likely increased the underlying fire risk, particularly through changes in
temperature, rainfall patterns, and vegetation dynamics.

The net increase in background fire activity does not necessarily imply more fire during
extreme years, but it does suggest that the baseline fire environment is shifting. Over time,
this could reduce the threshold for extreme events to occur or make recovery between fire
seasons more difficult.
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S6 Supplementary Material for Section 6
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Figure S27: Evaluation of the JULES vegetation model bias adjustment for tree cover over
the Amazon region. a) Time series of tree cover over the area (in percent) for different
climate models, both with historical and scenario runs, raw model in solid lines, bias
corrected models in dashed lines and MODIS VCF in black. b) Cumulative distribution
function of tree cover values across region and historical time period for different climate
models for observations (blue), raw models (orange), raw historical models (green) debiased
models (red). ¢) Absolute model bias in mean and 80th percentile for the GFDL-ESM4
climate model before (left two plots) and after bias adjustment (right two plots).
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Figure S28: Time series of tree cover over each focal region for different climate models,
both with historical and future scenario runs, raw model in solid lines, bias corrected models
in dashed lines and MODIS VCF in black. Note that for Southern California, bias and
none-bias corrected time series overlap one another.
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Figure S29: As Figure 18, but for the regions with the highest burned area (at the 95
percentile of burning).
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Figure S30: Projected changes in January-March 2024 BA over Northeast Amazonia by
2030-2040 under three SSP scenarios, with BA simulated by ConFLAME. (Left) Average
JFM BA fraction (%) for 2010-2020. (Middle) Relative change in JFM BA extent projected
for 2030—-2040 period, expressed as a multiplier of 2010-2020 values. (Right) Increased (or
decreased) frequency in the 2030s period of a 1-in-100 year event defined for the period
20102020, expressed as a multiplier of 2010-2020 values. In the left column, the size of
the dot in each grid cell indicates the likelihood (larger = higher likelihood) of a BA fraction
being greater than the threshold indicated by the coloured dot (see legend at the base).
Likewise, in the middle column the size of the dot varies with likelihood that the BA fraction
exceeds the threshold indicated by the coloured dot (see legend at the base). For example,
a large pale orange dot in the left column indicates a high likelihood of the BA fraction
exceeding 0.03%, whereas a small dark red dot indicates a small (but non-zero) likelihood of
the BA fraction exceeding 0.03%+.

51



2010 - 2020 2040 - 2050
-60

-70 -65

-55 -50 -70 -65 -60 -55 -50

Change in

1-in-100 event
-70 -65 -60 -55 -50

sspl26
2 4 6 8
| 1

2 0
|

2 4 6 8
| |

ssp370

2 0
|

4 6 8
|

ssp585
2
1

2 0
1

-70 -65 -60 -55 -50
Longitude (°)
> o o & @ R
of of o o o 3 p a8 AT ATy o3 N 75
Burned area (%) Burned area extent change Extreme frequency change

2 0 2 4 6 8

2 0 2 4 6 8

2 0 2 4 6 8

Latitude (°)

® O © @
O O ®@ @ o

Definite  Likely No/little & Unknown  Likely  Definite
decrease decrease uncertain change increase increase
change

Figure S31: Same as Figure S30 for 2040s.
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Figure $32: Same as Figure S$30 for 2090s.
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Figure S33: Same as Figure S30 for August-September 2024, Pantanal and Chiquitano
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Figure S34: Same as Figure S30 for 2040s.
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Figure S35: Same as Figure S30 for 2090s.
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Figure $36: Same as Figure S30 for July 2025, Southern California
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Figure S37: Same as Figure S$36 for 2040s.
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Figure $39: Same as Figure S30 for July, August 2025, Congo Basin
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Figure S41: Same as Figure S39 for 2090s.
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Figure S42 Future projections of key bioclimate drivers of fire for Southern California,
expressed as difference 2090s vs 2020s. Panels show (A) mean tree cover differences, (B)
minimum precipitation differences, (C) mean maximum temperature differences, and (D)
maximum temperature extremes differences.

S6.3 ConFLAME evaluation

We evaluated the performance of bias-corrected ISIMIP3b climate model data against ERA5
reanalysis in estimating the likelihood of extreme burned area (BA) events across four focal
regions.

S$6.3.1 Northeast Amazonia:

For the baseline period 2010-2020, reanalysis-based estimates indicate a 0.073% annual
probability of experiencing a BA extent comparable to January—March 2024 (Table 7).
GCM-based estimates yield a slightly higher likelihood of 0.12%. Although bias correction
reduced some discrepancies, differences between GCM and reanalysis data persist.

$6.3.2 Pantanal-Chiquitano:

GCM-based estimates suggest a higher present-day likelihood of August-September
2024-level BA (0.08-0.10% annually) than reanalysis data (0.19%). However, for the most
impacted areas (top 5% of grid cells)) GCMs and reanalysis align more closely, both
indicating a very low annual probability of 0.01-0.03%.
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S$6.3.3 Southern California:

During 2010-2020, the annual likelihood of a 2025-scale regional fire event is estimated at
0.38% from reanalysis and 0.34% from bias-corrected GCMs. In the top 5% most affected
grid cells, these estimates are slightly lower (0.27% and 0.24%, respectively). This close
agreement highlights the effectiveness of bias correction in aligning model projections with
observations, supporting confidence in future risk assessments.

S$6.3.4 Basin:

Bias-corrected GCMs closely replicate reanalysis estimates for July 2024-scale fire events,
with annual likelihoods of 0.16-0.19% (GCMs) and 0.17% (reanalysis). For the most
severely affected areas, both data sources agree on an annual likelihood near 0.01%,
indicating strong model fidelity to observed fire risk patterns.
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S8 Supplementary Material for Appendix A
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Figure S$43: Summary of the 2024-2025 fire season in the Republic of the Congo. Time
series show annual fire count, BA, C emissions totals within the region, as well as the
average fire’s peak fire intensity (95th percentile value of fire radiative power within fire
perimeters), the 95th percentile fire size, fastest daily rate of growth, and 95th percentile fire
daily rate of growth. Black dots show annual values prior to the latest fire season, red dots
the values during the latest fire season, and blue dashed lines the average values across all
fire seasons.
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Figure S44: Summary of the 2024-2025 fire season in Huila, Angola, as in Figure A1.
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Figure S45: Summary of the 2024-2025 fire season in Nepal, as in Figure A1.
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Figure S$46: Summary of the 2024-2025 fire season in Portugal, as in Figure A1.
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Figure S47: Summary of the 2024-2025 fire season in Oregon, USA, as in Figure A1.
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S9 Supplementary Material: Extended Model evaluation

S9.1 ConFLAME evaluation - driver assessment

We evaluate the performance of ConFLAME following the Bayesian attribution model
evaluation framework introduced by Barbosa et al. (2025) and applied in last year’s report.
The aim of this evaluation is to ensure that the posterior distribution adequately represents
the observed fire record in each case-study region, a necessary precondition for robust
attribution.
Specifically, we test two criteria:

1. Coverage of observations — the observed burned area (BA) should fall within the

posterior uncertainty range (5th—95th percentiles) of the model simulations.

2. Lack of systematic bias — observed values should not cluster consistently at one
edge of the posterior distribution. An unbiased model will show observations
distributed around the median posterior, with an expected average rank position of
~0.5.

We present three diagnostic panels for each region:
e Top row: Annual mean BA for December—February in observations, and the 5th and
95th percentiles of the posterior simulations, to assess spatial coverage of the
observed distribution.

e Middle row: (i) scatter of observed BA versus its likelihood under the posterior (where
high observed BA should have high likelihood, >0.9, if extremes are well
represented); (ii) spatial maps of the 5th and 95th percentiles of likelihood across all
months.

e Bottom row: (i) scatter of observed versus simulated BA, with posterior uncertainty
shown as vertical ranges (5th, interquartile, and 95th percentiles); (ii) map of the
average rank position of observations within the posterior (ideal =0.5); and (iii) map of
the probability that deviations from 0.5 are statistically significant, indicating bias.

Equations for the likelihood and rank-position diagnostics are given in Barbosa et al. (2025).

We use the same model configuration outlined in Section 4.1.2 and Supplementary
Section 4.1.2. Due to constraints on the time period of available data, we performed training
and evaluation over 2019-2026, with 50% of grid cells used for training and 50% for
evaluation.
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S9.1.1 Northeast Amazonia
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Figure S48: Posterior evaluation diagnostics for ConFLAME in Northeastern Amazonia.
Each panel shows three sets of diagnostics. Top row: Observed annual average BA for
Focal Months (left), compared to the 5th (middle) and 95th (right) percentiles of simulated
BA. Middle row: Scatterplot of observed BA (x-axis) versus likelihood of observations under
the posterior (y-axis), where high observed BA should correspond to high likelihood values;
spatial maps of the 5th (middle) and 95th (right) percentiles of observation likelihood across
all months. Bottom row: Scatterplot of observed BA (x-axis) versus posterior-simulated BA
(y-axis), with vertical ranges representing the 5th percentile, interquartile range, and 95th
percentile; a map of the average posterior rank position of observations (ideal =0.5); and a
map of the significance of deviations from 0.5, indicating where bias may be present.
The observed burned area (BA) during January—March is concentrated mainly in the
northern Amazonian savannas and in the transitional dry-forest zone to the north of the
region, with a mean monthly BA of approximately 0.067 (fractional area burned). The
posterior ensemble from the model reproduces these core burning regions well, although it
extends elevated BA slightly into more forested areas along the Brazil-Venezuela border.
This spatial shift corresponds to locations where satellite observations likely underestimate
BA because of persistent cloud cover and tree-canopy interference.
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Following the evaluation approach of Barbosa et al. (2025), we assess both the coverage of
the observed values by the posterior and the lack of systematic bias in their placement within
it. Across Northeastern Amazonia, the posterior shows high consistency with observations:
the probability of the observed value given the model, P(Obs | Model), exceeds 0.95 for
nearly all grid cells. Observed BA values fall comfortably within the posterior uncertainty
range, including for the most extreme events, with the top 10 % of observed BAs aligned, on
average, with the 79th percentile of the posterior distribution. This demonstrates that the
model captures both the spatial pattern and magnitude of historical extremes, providing a
strong basis for subsequent attribution analysis in this region.

$9.3.2 Pantanal and Chiquitano
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Figure S$49:0bserved burned area (BA) peaks across the Bolivian dry forests of the
Chiquitano region, with extensive burning also evident in the adjacent Brazilian Pantanal
wetlands. The model reproduces this broad spatial pattern within its posterior, though it does
so primarily through a wide uncertainty range. Some mismatches remain in the wetlands and
southern Chiquitano areas, where observed burning is less strongly expressed in the
posterior mean. Nevertheless, the observed BA consistently falls within the posterior range,
indicating that the model adequately represents historical variability even in these more
heterogeneous landscapes.
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Across most of the region, the probability of the observed value given the model,

P(Obs | Model), remains high (typically >0.85), though it dips below 0.75 for some months in
wetter or more topographically complex areas. The most extreme observations also lie within
the posterior, averaging at the 87th percentile, suggesting a modest regional
underestimation of absolute BA magnitudes, but with the relative ranking of years and
locations well captured (as shown by the observed—simulated scatter). Together, these
results indicate that while the posterior is broad, it successfully captures the spatial and
interannual structure of fire activity required for robust attribution analysis.

S9.3.3 Southern California
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Figure S50: The 2025 Los Angeles fires produced the highest burned area (BA) observation
in the record, concentrated in the northern part of the region, where the 10-year mean BA
reached ~0.3%. The model posterior captures this hotspot, but also indicates that, given the
training data, elevated BA is plausible in the southern portion of the region. Posterior
uncertainty ranges are wide in both sub-regions, spanning from negligible burning to values
of 1-10% BA. Despite this spread, the probability of the observed values under the posterior,
P(Obs|Model), is very high (>0.92) across the region. Observations fall predominantly within
the central mass of the posterior distributions, though with a slight tendency toward
underestimation at the upper extreme (observations align, on average, with the 60th
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percentile of the posterior for the most extreme events, i.e. 99—100% quantiles). This mild
bias remains within acceptable limits according to the criteria of Barbosa et al. (2025),
supporting the conclusion that the posterior adequately represents both the central tendency
and extreme tail of the observed distribution in Southern California.
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S9.3.4 Congo Basin
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Figure S51: Observed burned area (BA) is concentrated toward the southern margin of the
basin, spanning both Congos and extending westward toward the Atlantic coast. This region
corresponds to the drier savanna—forest mosaic that experiences seasonal burning,
contrasting with the largely unburned central rainforest core. The model’'s posterior
reproduces this spatial pattern well, indicating strong sensitivity to the same climatic and
vegetation gradients that shape observed fire activity. It also suggests that burning may
extend slightly further into forested areas, consistent with regions where satellite
observations are known to underestimate low-intensity or short-lived fires beneath partial
canopy cover.

Across nearly the entire region, the probability of the observed value given the model,
P(Obs | Model), exceeds 0.9, indicating excellent agreement between simulated and
observed burned area magnitudes. Observations consistently fall within the simulated
posterior range, including at higher burned area levels. The most extreme observed events
(top 10%) occur, on average, at the 82nd percentile of the posterior, suggesting a modest
underestimation of the highest-intensity burning. Nonetheless, the posterior captures both
the spatial gradients and interannual variability in burned area across the southern Congo
Basin, supporting its suitability for attribution analysis.
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S9.2 ConFLAME evaluation - Near Real Time
$9.2.1 HadGEM3-A vs ERA5 meteorology

In this section we present a basic evaluation of the model’'s performance against ERA5
reanalysis for the physical input variables to the FWI. As the FWI methodology requires a
bias correction of the FWI itself, rather than of the input variables, we focus here on
assessing the basic physical behaviour of and relationship between those variables. Figures
S48- S55 present time series for a number of recent years followed by details of the
seasonal cycle over 2024. From these we are able to qualitatively assess the behaviour over
these timescales to that in reanalysis, compare any obvious anthropogenic responses to the
response to only natural climate forcings and note any clear biases.

Temperature variables typically possess better model performance than those related to
precipitation, humidity and wind. For all regions we see that daily mean and maximum
temperature possess similar magnitude of variability, absolute values and presence of
obvious trends to ERA5. The Amazon and Congo regions see model daily means that are
warm biased while daily maximum temperatures are essentially unbiased in all regions, at
the relevant part of the seasonal cycle, which is useful for FWI as maximum temperature is
the relevant input variable. Temperature is the only variable with significant trends that are
obvious over the short period depicted (Congo) but we see that the model captures these, as
well as the lack of such in other regions.

For each region the model captures the phasing of the seasonal cycle in precipitation,
despite clear biases in magnitude of extremes of the monthly mean. Daily mean surface
wind also possess seasonality with features that are captured by the model, generally with
high biases. RH anomalies appear to possess both significantly different magnitude of
variability and seasonality in more than one region. Together with temperature however
these suggest that the appropriate physical relationships between the input variables is
present in the model and that the basic meteorology relevant to fire weather events is
acceptable.
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Figure S$52: January 2010 to April 2025 time series of individual component variables of the
FWI from HadGEM (red: all forcing scenario, blue: natural forcing scenario) compared to
ERADS5 reanalysis (black) over northeast Amazonia region. We show monthly mean a) daily
maximum temperature, b) temperature, c) total precipitation, d) relative humidity, e) wind
speed as well as f) wind gusts. Shading represents the 5th-95th percentile confidence
interval.
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Figure S$53: Same as in figure S52, but for the Pantanal-Chiquitano.
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Figure S54: Same as in figure S52, but for the Congo Basin.
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Figure $55: Same as in figure S52, but for the Souther California region.
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Figure S57: Same as in figure S56, but for the Pantanal-Chiquitano.
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Figure S58: Same as in figure S52, but for the Congo Basin.
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Figure $59: Same as in figure S56, but for the Southern California egion.

S9.2.2 ConFLAME evaluation - Near Real Time

Here, we apply the same evaluation method and protocol described in Supplementary
Section 4.3, but using the Near Real-Time (NRT) configuration outlined in Section 9.1
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S9.2.2.1 Northeast Amazonia
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Figure S60: Although fuel moisture data were not included in this setup, the model produces
a posterior distribution largely consistent with the driver-based configuration described in
Supplementary Section 9.1.1. Some differences are evident, particularly a tendency to
simulate slightly higher burned area in forested regions where this is not observed.
Importantly, for attribution of extreme events in policy-relevant areas under climate change,
the model captures high-end burned area values more accurately in this configuration. The
top 10 % of observed burned areas correspond to approximately the 48th percentile of the
posterior, and the top 5 % to around the 54th percentile, indicating a largely unbiased model
performance for simulating extremes.
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$9.2.2.2 Pantanal and Chiquitano
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Figure S61: As with Northeastern Amazonia, the Pantanal—-Chiquitano region shows very
similar behaviour to the driver-based model configuration described in Supplementary
Section 9.1.2. Again, the Near Real-Time setup performs slightly better at capturing
extremes: the top 10 % of observed burned area corresponds to approximately the 60th
percentile of the posterior, and the top 5 % to around the 65th percentile. This indicates a
small remaining underestimation of the most extreme events, but overall good model
performance.
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S9.2.2.3 Southern California
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Figure S62: The spatial pattern of burned area in Southern California is slightly offset from

observations but still broadly consistent, with high BA captured in both the northern and

southern parts of the region. Otherwise, the Near Real-Time setup behaves similarly to the

driver-based configuration described in Supplementary Section 9.1.3. Observed burned
areas fall around the 58th percentile of the posterior distribution, indicating a model that is

largely free from systematic bias.
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S$9.2.2.4 Congo Basin
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Figure S63: The Congo Basin results are again similar to the driver-based setup described
in Supplementary Section 9.1.4, though with additional pockets of possible burning
appearing throughout the central basin. As with other regions, the Near Real-Time
configuration captures extremes more effectively, with the top 10% of observed burned area
occurring at the 58th percentile and the top 5% at the 66th percentile of the posterior

distribution.

S5.3 ConFLAME evaluation - ISIMP

Here, we apply the same evaluation method described in Supplementary Section 9.1, but
using the Near Real-Time (ISIMIP) configuration outlined in Section 5.1.3. The evaluation
protocol is slightly modified to account for the extended data availability period. Specifically,

the model is trained on data from 2002—-2009 and evaluated on 2012—-2019, providing an
out-of-sample assessment of model performance following the approach of Barbosa et al.

(2025).
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S$5.3.1 Northeast Amazonia
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Figure S64: The spatial pattern simulated by the model closely follows that of the observed
burned area in Northeastern Amazonia, though it suggests that burning could extend further
into forested regions where observations may underestimate fire activity. The posterior
distribution is notably wider than in the Near Real-Time configuration, which may help
explain why attribution to total climate forcing (using the ISIMIP setup) is associated with
greater uncertainty. However, the absence of systematic bias at the extremes, with the top
10% of observed burned area corresponding to the 53rd percentile and the top 5% to the
57th percentile of the posterior, which indicates that any detected signal would still be robust
and statistically credible.
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$5.3.2 Pantanal and Chiquitano
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Figure S65: The model successfully captures the spatial distribution of burned area
observed in the wetlands of the Pantanal and the adjacent areas to the east. However, it
performs less well in representing the dry forests of Chiquitano, particularly in Bolivia.
Despite this, observed burned area still falls within the simulated posterior range. The
probability of the observations given the model, P(Obs|Mod), remains consistently
high—around 0.95 or higher. Across the region, the model is largely unbiased, largely due to
the wide uncertainty range. Extreme values are also relatively unbiased, though slightly
underestimated compared to observations (with observed values averaging the 77th
percentile for the top 10% of burned area and the 79th percentile for the top 5%). Overall,
this supports a high degree of confidence in any formal attribution derived from this model.



S5.3.3 Southern California
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Figure S66: The coarser resolution of the ISIMIP setup means that there are too few grid
cells to make meaningful spatial comparisons. Nonetheless, observations generally fall
within the modelled range. The probability of the observations given the model, P(Obs | Mod),
is not always high but reaches approximately 0.9 for higher burned area values. The model
is also largely unbiased, with the mean position of all observed burned areas at the 67th
percentile within the posterior distribution.
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S$5.3.4 Congo Basin
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Figure S67: Over the longer period, observations also show some burning in the northern
part of the basin, which is captured by the simulation. The model suggests the possibility of
more extensive burning in the eastern basin than observed. Nonetheless, the model is
relatively unbiased at the extremes, with the top 10% and 5% of burned area falling near the
50th percentile of the posterior distribution.
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Amazon forest northeast of the Amazon and Rio Negro rivers 95th percentile FWI
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Figure S68: Bias correction for Amazon forest northeast of the Amazon and Rio Negro
rivers. Historical ensemble of HadGEMS3 (yellow) compared to ERA5 (grey) 95th percentile
of FWI for the historical period (1960-2013), shown as probability density before correction
(a) and after correction (b), and one member shown as a time series (¢, where HadGEM3 is
shown in red, ERA5 in blue and corrected HadGEM3 in purple). HadGEM3 ensemble for
2024 shown before bias-correction (d). ERA5 2024 event shown as black vertical line on all
probability density plots.
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Pantanal 95th percentile FWI
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Figure S69: As for Figure S68, but for Pantanal & Chiquitano
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Congo basin 95th percentile FWI
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Figure S70: As for Figure S68, but for Congo basin
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