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Abstract. The irreversible trend for global warming underscores the necessity for accurate monitoring and
analysis of atmospheric carbon dynamics on a global scale. Carbon satellites hold significant potential for atmo-
spheric CO2 monitoring. However, existing studies on global CO2 are constrained by coarse resolution (ranging
from 0.25 to 2°) and limited spatial coverage. In this study, we developed a new global dataset of column-
averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full coverage using carbon satellite ob-
servations, multi-source satellite products, and an improved deep learning model. We then investigated changes
in global atmospheric CO2 and anomalies from 2015 to 2021. The reconstructed XCO2 products show a bet-
ter agreement with Total Carbon Column Observing Network (TCCON) measurements, with R2 of 0.92 and
RMSE of 1.54 ppm. The products also provide more accurate information on the global and regional spatial
patterns of XCO2 compared to origin carbon satellite monitoring and previous XCO2 products. The global pat-
tern of XCO2 exhibited a distinct increasing trend with a growth rate of 2.32 ppm yr−1, reaching 414.00 ppm in
2021. Globally, XCO2 showed obvious spatial variability across different latitudes and continents. Higher XCO2
concentrations were primarily observed in the Northern Hemisphere, particularly in regions with intensive an-
thropogenic activity, such as East Asia and North America. We also validated the effectiveness of our XCO2
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products in detecting intensive CO2 emission sources. The XCO2 dataset is publicly accessible on the Zen-
odo platform at https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). Our products enable enhanced
ability in identifying regional- and county-level XCO2 hotpots, carbon emissions and fragmented carbon sinks,
providing a robust basis for targeted global carbon governance policies.

1 Introduction

Carbon dioxide (CO2) is a primary greenhouse gas (GHG).
Anthropogenic activities and land use change since the in-
dustrial revolution have led to a marked increase in atmo-
spheric CO2, which is widely considered to be a major con-
tributor to climate change, reaching a record-high of 414.71
parts per million (ppm) in 2021 (Friedlingstein et al., 2022).
The damaging global climate change caused by atmospheric
increases in CO2 is severe and irreversible (IPCC, 2023;
Kemp et al., 2022; Solomon et al., 2009). Consequently,
the Paris Agreement announced to hold “the increase in the
global average temperature to well below 2 °C above pre-
industrial levels” and pursue efforts “to limit the tempera-
ture increase to 1.5 °C above pre-industrial levels”. It was
also determined that the joined parties should submit their
nationally determined contributions (NDCs) to reduce CO2
emissions.

Accurate monitoring of atmospheric CO2 concentrations
is crucial for measuring global CO2 emissions mitigation as
well as characterizing terrestrial carbon change. Currently,
ground-based and airborne platform-based atmospheric CO2
observation networks, such as the Total Carbon Column Ob-
serving Network (TCCON, https://tccondata.org/, last ac-
cess: 11 September 2025), are capable of providing CO2
measurements with high accuracy (Petzold et al., 2016;
Wunch et al., 2011, 2010). However, these observation net-
works are insufficient to fully explore the spatiotemporal pat-
terns of atmospheric CO2 at a global scale. The launch of
a series of carbon observation satellites in recent years has
provided favorable opportunities for continuous and large-
scale atmospheric CO2 observation (Buchwitz et al., 2015;
Hammerling et al., 2012). The Scanning Imaging Absorp-
tion Spectrometer for Atmospheric Chartography (SCIA-
MACHY) onboard EnviSat was one of the first instruments
to monitor the atmospheric column-averaged dry-air mole
fraction of CO2 (XCO2) (Bovensmann et al., 1999). The
Greenhouse Gases Observing Satellite (GOSAT) launched
by Japan utilized the Thermal And Near-Infrared Sensor for
carbon Observation (TANSO) instrument to monitor XCO2
globally, providing products with a spatial resolution of
10 km every three days (Butz et al., 2011). The Orbiting Car-
bon Observatory-2 (OCO-2) and OCO-3 launched by NASA
provide XCO2 measurements at a finer spatial resolution (El-
dering et al., 2017). These sensors are considered among
the best for XCO2 observation, featuring larger overlapping
swaths that cover areas of ∼ 20× 80 km2 and exhibiting the

least retrieval absolute bias, measuring less than 0.4 ppm (El-
dering et al., 2019; Taylor et al., 2020). However, the nar-
row swath of the sensor can only cover limited spatial areas,
and caused by the cloud and aerosol contaminations, the data
from OCO-2/3 always contain large amount of missing val-
ues (Taylor et al., 2016; Crisp et al., 2017). These limitations
obstacle the better understanding of the atmosphere-land car-
bon cycle over large spatial scale based on satellite observa-
tion.

Consequently, several studies have concentrated on gen-
erating spatially continuous XCO2 products based on satel-
lite observations (He et al., 2022; Siabi et al., 2019; Zhang
and Liu, 2023). One potential solution is the application of
diverse interpolation methods (He et al., 2020; Zeng et al.,
2014). However, their results encounter large uncertainty in
regions with sparse data coverage, due to the coarse spatial
resolution of the original data. In addition, data fusion tech-
niques have gained recognition as an effective method for
obtaining full-coverage XCO2 data (Sheng et al., 2022; He
et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). These
techniques can be broadly categorized into two groups. The
first category leverages the spatiotemporal correlation inher-
ent in multi-source XCO2 data, fusing them based on this
spatiotemporal information (Wang et al., 2023; Sheng et al.,
2022). For instance, Wang et al. (2023) introduced a spa-
tiotemporal self-supervised fusion model and generate seam-
less global XCO2 data at a spatial resolution of 0.25°. The
second category is regression-based methods, which aim to
fill the gap by capturing the nonlinear relationship between
multi-source XCO2 measurements and related covariates (He
et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). The
specific methodologies include traditional statistical models,
geostatistical models and machine learning models. Siabi et
al. (2019) employed the Artificial Neural Network (ANN)
to establish correlation between XCO2 and eight environ-
mental variables. Zhang and Liu (2023) utilized the convo-
lution neural networks (CNN) coupled with attention mech-
anisms to produce full-coverage XCO2 data across China.
Recently, Zhang et al. (2023) developed high spatial reso-
lution global CO2 concentration data based on deep forest
model and multi-source satellite products.

Although the development of CO2 observation satellites
and the application of machine learning methods have sig-
nificantly improved the estimation accuracy of XCO2, cur-
rent studies still face several limitations. Firstly, due to the
sparse distribution of satellite XCO2 data, previous studies
always relied on assimilation and reanalysis XCO2 data, such
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as CAMS XCO2 with coarse spatial resolution (0.75°). This
reliance often results in final products that closely mirror
the assimilation and reanalysis results, leading to an over-
smoothed distribution that undermines the high-resolution
advantages of satellite data. Furthermore, most current stud-
ies estimated the spatial distribution of CO2 primarily based
on vegetation and meteorological information, with limited
consideration of the impact of human activities and emis-
sions, despite these have significant influence on atmospheric
CO2 variability. This limitation also led to estimation results
that fail to adequately capture the impact of anthropogenic
emissions on atmospheric CO2. In addition, most studies that
employ regression models to estimate full-coverage XCO2
are limited to regional or national scales due to the weak
transferability of these models (Chen et al., 2022). Only a
few studies (Zhang et al., 2023) have explored global-scale
CO2 estimation using machine learning approaches, high-
lighting the need for further research to enhance model gen-
eralizability and scalability. Therefore, we intent to develop
the global full-coverage XCO2 products with the capacity to
capture both large-scale patterns and fine spatial details. This
development leveraged satellite carbon monitoring, multi-
source high spatial resolution auxiliary variables and ad-
vanced methods that exhibit spatiotemporal transferability to
overcome the aforementioned limitations.

In this study, we leveraged time-series OCO-2/3 XCO2
data and various related environmental variables from multi-
source satellites to generate global full-coverage XCO2 prod-
ucts. The advanced deep learning method was adopted to
model time-series XCO2 and incorporate terrestrial flux, an-
thropogenic flux and climatic impacts into the parameteriza-
tion process. These products are designed to meet the fol-
lowing criteria: (1) high validated accuracy to ensure the re-
liability of the estimates, (2) high spatial resolution capable
of capturing fine-scale variations in CO2 concentrations, and
(3) global full-coverage that overcomes missing values in
satellite carbon observations. Our XCO2 products achieved
full global coverage with a spatial resolution of 0.05° and
a monthly temporal resolution from 2015 to 2021. We also
validated our XCO2 products against in-situ XCO2 data and
other XCO2 products. Based on our high-resolution prod-
ucts, we explored the spatial and temporal pattern of atmo-
spheric CO2 globally and identified regions with intense CO2
emission. Our findings aim to enhance the understanding of
carbon dynamics on a global scale through data reconstruc-
tion and analysis.

2 Materials and methods

In this study, we utilized Google Earth Engine (GEE) to inte-
grate OCO-2/3 XCO2 data and multiple environmental vari-
ables as data inputs. In addition, the attention-based Bidirec-
tional Long Short-Term Memory (At-BiLSTM) model was
trained for building the relationship between OCO-2/3 XCO2

and the related environmental variables. Then, we recon-
structed the global monthly XCO2 and validated the accuracy
of the products against TCCON XCO2 data and the origi-
nal OCO-2/3 XCO2 data. We also analyzed the spatial and
temporal variation of XCO2 over the globe and detect the in-
tense CO2 emission regions. The methodology framework is
shown in Fig. 1.

2.1 Datasets

2.1.1 OCO XCO2 data

In this study, we utilized the satellite-based XCO2 data from
OCO-2 and OCO-3, covering the period from December
2014 to December 2021. The OCO-2/3 measure at three
near-infrared wavelength bands, that are 0.76 µm Oxygen A-
band, 1.61 µm weak CO2, and 2.06 µm strong CO2 bands
(Crisp et al., 2004). The full physics retrieval algorithm
was used to retrieve the XCO2 based on the observation
of the two satellites (Crisp et al., 2021). Previous studies
(Taylor et al., 2023) suggested that the OCO-2 and OCO-
3 XCO2 measurements are in broad consistency and can
therefore be used together in scientific analyses. The OCO-3
Level 2 XCO2 Lite version 10.4r data (OCO3_L2_Lite_FP
V10.4r) (OCO-2/OCO-3 Science Team, 2022) from 2020
to 2021 and the OCO-2 Level 2 XCO2 Lite version 11r
(OCO2_L2_Lite_FP V11r) (OCO-2 Science Team, 2020)
from 2015 to 2019 were downloaded from Goddard Earth
Sciences Data and Information Services Center (GES DISC,
https://disc.gsfc.nasa.gov/, last access: 11 September 2025).
The products were aggregated as a daily file (Fig. 2) with
a spatial resolution of 2.25 km× 1.29 km (O’Dell et al.,
2018). The XCO2 data were quality filtered, and only good-
quality data (i.e., xco2_quality_flag= 0) were considered.
To generate the monthly products with a spatial resolution
of 0.05°× 0.05°, we converted the daily data to monthly
data by averaging the sparse XCO2 data within a range of
0.05°× 0.05° over one month.

2.1.2 TCCON XCO2 data

The Total Carbon Column Observing Network (TCCON) is
a global network for measuring atmospheric CO2, methane
(CH4), carbon monoxide (CO) and other trace gases in the at-
mosphere. The XCO2 data from TCCON were demonstrated
to have high accuracy with ∼ 0.2 % of XCO2 (Wunch et al.,
2011). Consequently, the data have been used widely for the
validation of satellite observations such as OCO-2, OCO-
3 and GOSAT (Deng et al., 2016; Wunch et al., 2017). In
this research, we used the GGG2014 and GGG2020 datasets
from 23 sites (Fig. 3 and Table 1) around the world to vali-
date the reconstructed XCO2 products.
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Figure 1. The workflow for mapping and exploring global XCO2 dynamics and drivers.

Figure 2. Footprints of OCO-2 and OCO-3 XCO2 data on 20 January 2018 and 4 December 2021 (with quality filtering) as examples.

2.1.3 Environmental variables

In the selection of environmental variables, our primary fo-
cus was on processes within the terrestrial carbon cycle.
The carbon cycle on land can be conceptualized as two flux
exchange processes influenced by the climatic conditions

(Fig. 4). The CO2 in the atmosphere is fixed by vegetation
photosynthesis and the carbon is released back into the at-
mosphere by respiration and disturbance processes (Beer et
al., 2010; Pan et al., 2011). The carbon fluxes through these
processes we considered as the land flux. Since Industrial
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Figure 3. The locations of the TCCON sites.

Table 1. The information on the TCCON in situ stations.

ID Site name Longitude Latitude Start date End date (yyyy/mm/dd)

1 saga01 (JP) 130.29 33.24 2011/07/28 2021/06/30
2 xianghe01 (PRC) 116.96 39.80 2018/06/14 2022/04/09
3 burgos01 (PH) 120.65 18.53 2017/03/03 2021/08/20
4 harwell01 (UK) −1.32 51.57 2021/05/30 2022/05/22
5 bremen01 (DE) 8.85 53.10 2009/01/06 2021/06/24
6 tsukuba02 (JP) 140.12 36.05 2014/03/28 2021/03/31
7 lauder03 (NZ) −97.49 36.60 2018/10/02 2022/11/14
8 edwards01 (US) −117.88 34.96 2013/07/20 2022/12/25
9 nicosia01 (CY) 33.38 35.14 2019/09/06 2021/06/01
10 izana01 (ES) −16.5 28.31 2014/01/02 2022/10/31
11 orleans01 (FR) 2.11 47.96 2009/09/06 2022/04/24
12 hefei01 (PRC) 119.17 31.90 2015/11/02 2020/12/31
13 easttroutlake01 (CA) −104.99 54.35 2016/10/03 2022/08/13
14 karlsruhe01 (DE) 8.44 49.10 2014/01/15 2023/01/20
15 paris01 (FR) 2.36 48.85 2014/09/23 2022/03/28
16 garmisch01 (DE) 11.06 47.48 2007/07/18 2021/10/18
17 rikubetsu01 (JP) 143.77 43.46 2014/06/24 2021/06/30
18 lamont01 (US) 169.68 −45.04 2011/04/16 2022/12/19
19 reunion01 (RE) 55.48 −20.90 2015/03/01 2020/07/18
20 darwin01 (AU) 130.93 −12.46 2005/08/28 2020/04/30
21 Wollongong (AU) 150.88 −34.41 2008/06/26 2020/06/30
22 Manaus01(BR) −60.60 −3.21 2014/09/30 2015/07/27
23 parkfalls01 (US) −90.27 45.94 2004/06/02 2020/12/29

JP: Japan, DE: Germany, FI: Finland, FR: French, RE: Réunion Island, AU: Australia, BR: Brazil; US: United States, PRC:
People’s Republic of China, NO: Norway, CY: Cyprus, NZ: New Zealand, PH: Philippines, UK: United Kingdom, CA:
Canada.

Era, anthropogenic carbon from land use change (e.g., de-
forestation) and fossil fuels and cement become important
parts of atmospheric CO2 (Friedlingstein et al., 2010), which
we considered as the anthropogenic flux. Meanwhile, the two
processes are directly or indirectly driven by the climatic fea-
tures (Sitch et al., 2015; Chen et al., 2021). Consequently, we
explored the potential drivers of XCO2 from the perspective
of the carbon cycle at atmosphere-land interface. Multiple
satellite products and reanalysis data from three aspects (i.e.,

land flux, anthropogenic flux and climatic impacts) were se-
lected to consider their various effects on the XCO2.

The key factors selected related to the land flux included
gross primary productivity (GPP), enhanced vegetation in-
dex (EVI), land surface temperature (LST), vegetation con-
tinuous fields (VCF), and normalized difference snow index
(NDSI). These products are all obtained from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS), which
has been operated for over 20 years and produced various
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Figure 4. Simplified illustration of the global carbon cycle on land (referring to IPCC, 2023). Noting that the carbon cycle in the ocean was
not considered in our study and we only focused on the fast exchange fluxes. The slow carbon exchanges (e.g., chemical weathering, volcanic
emissions) which are generally assumed as relatively constant over the last few centuries (Sundquist, 1986), were not included here.

satellite products with fine spatial resolution and accuracy.
The EVI and NDSI were converted to monthly data using
the maximum value composite (MVC) method. The GPP
and LST were converted to monthly data by the averaging
method.

The rising anthropogenic activities have greatly influenced
atmospheric CO2 (Friedlingstein et al., 2022). In this study,
five anthropogenic factors, including land use/cover change
(LUCC), nighttime lights (NTL), and three trace gases (i.e.,
sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon
monoxide (CO)) were selected. The LUCC was obtained
from MODIS MCD12Q1 with a spatial resolution of 500
m. The monthly Suomi National Polar-orbiting Partnership-
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS)
day/night band (DNB) NTL products (spatial resolution of
15 arcsec, ∼ 500 m) were obtained from the Earth Observa-
tion Group (EOG) of the Colorado School of Mines. We also
used the SO2, NO2 and CO products from the TROPOspheric
Monitoring Instrument (TROPOMI) onboard Sentinel-5 Pre-
cursor (S5P), a global air monitoring satellite for the Coper-
nicus mission. The data were also converted to the same tem-
poral resolution (i.e., monthly).

The selected climatic factors affecting XCO2 were sur-
face pressure (SP), 10 m wind speed (WS), precipitation flux
(PRE), 2 m air temperature (Temp), and total evaporation

(E). These data are from the reanalysis products (Hersbach
et al., 2020) developed at the European Center for Medium
Weather Forecasting (ECMWF, https://www.ecmwf.int/, last
access: 11 September 2025). The WS is calculated using the
products of 10 m wind components ofU and V . All data were
converted to monthly time-series. The bilinear interpolation
approach was employed both to fill gaps in the ancillary data
and to convert the data at different spatial resolutions to 0.05°
resolution. The data preprocessing was conducted on GEE, R
and ArcGIS 10.3. Details of these products are listed in Ta-
ble 2.

2.2 Deep learning-based XCO2 reconstruction

Given the complexity temporal dependence and nonlinear re-
lationship between XCO2 and the environmental variables,
we selected the At-BiLSTM model to relate the XCO2 data
with the 16 response variables affecting atmospheric CO2,
and further reconstruct the XCO2 data at a fine spatial res-
olution. The LSTM model is a variant of RNN that excels
in modeling temporal sequences and capture long-range de-
pendencies (Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005), which is essential for understanding
the seasonal variations of XCO2 and dynamic feedbacks be-
tween XCO2 and environmental drivers we selected. Each
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Table 2. Ancillary variables selected in this study.

Variables Spatial resolution Temporal resolution Product names Category

GPP 500 m 8 d MOD17A2H Land flux-related
EVI 1 km 16 d MOD13A2
LST 1 km daily MOD11A1
VCF 250 m annual MOD44B
NDSI 500 m daily MOD10A1
LUCC 500 m annual MCD12Q1 Anthropogenic flux-related
NTL 15 arcsec monthly VNP46A2
SO2 ∼ 1 km daily OFFL/L3_SO2
NO2 OFFL/L3_NO2
CO OFFL/L3_CO
SP ∼ 10 km monthly ERA5-Land Climatic impacts
E

Wind-v
Wind-u
Pre
Temp

LSTM cell includes an input gate, a forget gate and an out-
put gate. The forget gate ft determines which information
from the previous time step to forget (Eq. 1):

ft = σ (Wf ·
[
ht−1,xt

]
+ bf) (1)

where σ , Wf, [ht−1,xt ], and bf denotes the sigmoid activa-
tion function, vectors of weights, concatenation of the hidden
state at timestep t−1 and the current input, and the bias vec-
tor, respectively.

The input gate it governs the selective storage of the data
in current time step, and the output from forget gate ft and
input gate it are combined in the cell state Ct (Eqs. 2–3):

it = σ
(
Wi ·

[
ht−1,xt

]
+ bi

)
(2)

Ct = ft ·Ct−1+ it · tanh
(
Wc ·

[
ht−1,xt

]
+ bc

)
(3)

where Wi and Wc denote the weight matrix for the input
gate and the current cell state, respectively; bi and bc are the
bias vector of the input gate and the current cell state, respec-
tively; Ct−1 and tanh represent the cell state at timestep t−1
and the activation function.

Lastly, the output gate ot controls the flow of information
from the cell state to the next time step (Eq. 4).

ot = σ (Wo ·
[
ht−1,xt

]
+ bo) (4)

where Wo and bo denotes the weight matrix and the bias vec-
tor of the output gate, respectively.

These gate structures effectively manage the flow of in-
formation within the LSTM, enabling it to capture the tem-
poral dependencies present in the data (Yuan et al., 2020;
Wang et al., 2022). Bidirectional LSTM consists of two di-
rectional LSTM, in which the data flows forward and back-
ward (Graves et al., 2013). The bidirectional structure was
chosen to enhance the capability of LSTM by allowing the

model to consider both past and future context in the time se-
ries, thereby providing a more comprehensive understanding
of the underlying temporal dynamics.

We also defined a multi-dimensional attention layer be-
hind the BiLSTM to focus on more critical timesteps and
give them higher weights (Bahdanau et al., 2016). This is
particularly important when dealing with high-dimensional
input data comprising multi-timestep variables, as it allows
the model to assign different weights to different timesteps,
thereby improving interpretability and predictive perfor-
mance (Liu and Guo, 2019; Wang et al., 2024b). Based on
this framework, the At-BiLSTM model offers a robust and
flexible framework for linking XCO2 with multiple environ-
mental variables and reconstructing XCO2 at a fine spatial
resolution with improved accuracy and spatiotemporal con-
sistency.

The At-BiLSTM consists of one input layer, three Bidi-
rectional LSTM (Bi-LSTM) layers, one attention layer, one
dropout layer to prevent overfitting, and one fully connected
layer (i.e., dense layer) for the final output. Each Bi-LSTM
includes 512 hidden units and tanh activation in both forward
and backward directions. The attention mechanism learns a
weight distribution over the time dimension using a Dense
layer with softmax activation, then multiplies these weights
with the BiLSTM output to emphasize important time steps.
The detailed deployment and output are provided in Ta-
ble 3. The model was implemented using the TensorFlow
and Keras deep learning APIs in Python. A time step of 3
was used, and the model was trained for 200 epochs with
the mean squared error (MSE) as the loss function. A step-
wise decay strategy was applied to the learning rate, where
the rate was reduced by a factor of 10 every 50 epochs to
enhance training stability and convergence. Prior to training,
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all input data were normalized using the mean and standard
deviation of the dataset.

In this study, we adopted the sample-based cross-
validation (CV) method to evaluate the model performance
and the in-situ validation to assess the accuracy of re-
constructed XCO2 products. We also compared the recon-
structed XCO2 products with the original OCO XCO2 prod-
ucts and the CAMS-EGG4 GHGs data. Four metrics, in-
cluding coefficient of determination (R2), root mean squared
error (RMSE), mean absolute error (MAE) and mean bias,
were calculated as follow, to assess the model performance.

R2
= 1−

∑n
i=1(yi − fi)2∑n
i=1(yi − y)2 (5)

RMSE=

√∑n
i=1(yi − fi)2

n
(6)

MAE=
∑n
i=1| (fi − yi) |

n
(7)

where n is the total number of data samples, and fi , yi are the
observed results and model-estimated results, respectively.

3 Results

3.1 Validation of the reconstructed XCO2 product

3.1.1 Model validation results

Given the distinct seasonal variation in XCO2 concentra-
tions, we conducted the sample-based CV to evaluate the
model performance during different seasons (Fig. 5). The
model demonstrated high accuracy across all seasons, with
R2 values exceeding 0.81, MAE less than 0.73 ppm, and
RMSE less than 1.09 ppm. The model performed better in
spring and summer, as indicated by the densest cluster of
points being closest to the 1 : 1 line. Conversely, the model
performed worst in winter, when photosynthesis is weakest,
leading to greater estimation deviation. These variations are
likely influenced by the ecosystem CO2 exchange during dif-
ferent seasons. Overall, the model effectively captured the
seasonal variation of XCO2 and provided unbiased XCO2 es-
timations.

We further validated the model performance across dif-
ferent continents. Table 4 presents the validation results for
six continents. The model performance varied across conti-
nents. Notably, the model achieved the highest accuracy in
Africa and Europe, with R2 of 0.80 and 0.81, and RMSE val-
ues of 1.02 and 1.14 ppm, respectively. In contrast, the model
demonstrated relatively low accuracy in Oceania and South
America, both located in the southern hemisphere. Despite
this, the RMSE of the model in these continents were 1.22
and 0.66 ppm, respectively, indicating that the model main-
tained acceptable estimation accuracy in these regions.

3.1.2 In situ validation results

The TCCON in situ XCO2 data were adopted for validating
the accuracy of the reconstructed XCO2 over the globe. The
validation results for our reconstructed XCO2 and the ori-
gin OCO-2/3 XCO2 are displayed in Fig. 6. The two XCO2
data showed similar precision with the R2 value of 0.91
and 0.92, respectively (Fig. 6c–d). While the reconstructed
XCO2 greatly increases the data coverage with the valida-
tion sample increasing from 578 to 1432. Meanwhile, the re-
constructed XCO2 has a smaller RMSE and MAE with val-
ues of 1.58 and 1.22 ppm, respectively, compared with the
OCO XCO2. These results indicate that the reconstructed
XCO2 had a closer agreement with TCCON XCO2. We also
displayed the mean bias of OCO and reconstructed XCO2
in each TCCON site (Fig. 6a–b). As shown in Fig. 6a, the
OCO-2/3 observation tend to overestimate the XCO2, while
the reconstructed XCO2 could amend the underestimation
of OCO XCO2. Over 68 % of the validation sites of recon-
structed XCO2 had a mean bias less between ±0.4 ppm.
Given the orbital constraints of the ISS (Eldering et al.,
2019), OCO-3 measurements were restricted to latitudes be-
low ±52°. Consequently, substantial missing values of OCO
XCO2 data were shown around 50° N, introducing a potential
bias. In contrast, the reconstructed XCO2 effectively solves
this problem and demonstrates markedly enhanced perfor-
mance.

Figure 7 shows the individual in situ validation results
of the reconstructed XCO2 against TCCON site in differ-
ent continents (except Antarctica). The sample numbers are
varying in different sites due to the observation constraints,
while the validation results from all sites showed satisfying
performance. The R2 for all sites are over 0.88 and the MAE
are less than 1.46 ppm. The reconstructed XCO2 data per-
forms the best in sites lauder03 and karlsruhe01, which lo-
cated in North America and Europe, respectively. While the
reconstructed XCO2 performed worst in saga01 which lo-
cated in Asia, potentially due to the high CO2 concentrations
in these regions. Overall, the reconstructed XCO2 showed
high consistency with the in situ XCO2 observation in differ-
ent regions over the globe.

To assess the performance of our reconstructed XCO2 in
temporal analysis, we compared the time series for monthly
OCO-2/3, reconstructed and TCCON XCO2 data from De-
cember 2014 to December 2021. As depicted in Fig. 8, the
reconstructed XCO2 exhibits similar temporal patterns com-
pared to the TCCON data, with the mean RMSE and MAE of
1.47 and 1.07 ppm. While the OCO-2/3 XCO2 exhibits some
overestimation for high values and underestimation for low
values compared with TCCON data. In contrast, the recon-
structed XCO2 provided more stable estimate results.
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Table 3. Architecture of the At-BiLSTM model.

Layer Name Layer Parameters Output size

Bi-LSTM Input layer – 3× 16
Bi-LSTM1 units= 512, activation= “tanh” 3× 1024
Bi-LSTM2 units= 512, activation= “tanh” 3× 1024
Bi-LSTM3 units= 512, activation= “tanh” 3× 1024

Attention Permute – 1024× 3
Dense units= 3, activation= “softmax” 1024× 3
Permute – 3× 1024
Multiply – 3× 1024

Dropout rate= 0.5

Full-connect Dense units= 1 1

Figure 5. Density scatterplots of sample-based CV results during different seasons. The proportion of the number of points is represented
as the color of the points. The black dashed lines and grey solid lines denote the linear regression fitted lines and the 1 : 1 line, respectively.
The R2, RMSE (ppm), MAE (ppm), and mean bias (ppm) are provided.

3.2 Spatiotemporal pattern of global XCO2

The global distribution of annual mean XCO2 concentra-
tion from 2015 to 2021 is illustrated in Fig. 9. The results
reveal pronounced spatial heterogeneity in XCO2 concen-
trations, characterized by a marked hemispheric asymmetry.
Specifically, the Northern Hemisphere exhibited systemati-
cally elevated XCO2 levels compared to the Southern Hemi-

sphere, consistent with latitudinal gradients driven by anthro-
pogenic emission patterns and atmospheric transport dynam-
ics. Regionally, North America, East Asia, Central Africa,
and northwest of Southern America were identified as persis-
tent hotspots of enhanced XCO2. The high concentrations of
XCO2 in North America and East Asia stem primarily from
the fossil fuel emission from energy production and trans-
portation sectors. Whereas the tropical regions (i.e., Cen-
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Table 4. Model performance in different continents.

R2 RMSE (ppm) MAE (ppm) Mean bias (ppm)

Africa 0.80 1.02 0.70 −0.009
Asia 0.73 1.27 0.85 0.002
Europe 0.81 1.14 0.77 −0.030
North America 0.73 1.26 0.83 −0.020
South America 0.59 1.22 0.86 −0.012
Oceania 0.67 0.66 0.4 0.051

Figure 6. The mean bias of the (a) OCO observed XCO2, and (b) reconstructed XCO2 against global TCCON XCO2; (c) density scatterplots
of the validation results for OCO observed XCO2, and (d) reconstructed XCO2 against the TCCON XCO2. The proportion of the number
of points is represented as the color of the points. The number of samples n, linear regression relation, R2, RMSE (ppm), MAE (ppm), and
mean bias are provided.

tral Africa and South America) are influenced by coupled
biomass burning and land-use changes.

We also provided the annual OCO-2 XCO2 data from
2015 to 2019 and OCO-3 XCO2 data from 2020 to 2021 in
Fig. 10. Spatially, our reconstructed XCO2 dataset (Fig. 9)
demonstrates robust consistency with satellite observations,
particularly in mid-latitude industrialized regions where both
datasets capture emission hotspots. Notably, OCO-3 exhibits
denser observational sampling due to its improved spatial
coverage and swath width compared to OCO-2’s narrow
tracks. However, persistent data gaps remain prevalent in
both two satellite products after annual aggregating. These
spatial coverage limitations hinder fine-scale global analysis,
particularly in assessing localized emission sources and re-
gional scale carbon flux.

Figure 11 presents the spatial distribution of the 7-year
(2015–2021) averaged XCO2 concentration and trend over
the globe. The average XCO2 concentration from 2015 to
2021 was 406.90± 0.80 ppm worldwide. The highest con-
centration of XCO2 mainly occurs in the northern low-to-
mid-latitudes (10–45° N). More frequent human activities
and carbon emissions contributed to higher atmospheric CO2
concentrations in the Northern Hemisphere. In contrast, the
lowest XCO2 concentration was 404.02 ppm, occurring in
the Southern Hemisphere where 81 % of the area is ocean.
The oceans act as a vital carbon sink and absorb most at-
mospheric CO2. For the continent scale, the XCO2 concen-
trations showed a slight variation (±1 ppm) between differ-
ent continents. The largest XCO2 were mainly occurred in
Asia and North America over years, while the lowest XCO2
concentration all presented in Oceania (Table 5). In terms
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Figure 7. Scatterplots of the TCCON in situ validation results of the reconstructed XCO2 on different TCCON sites over the globe.

Figure 8. Comparison of the temporal variation of XCO2 data from OCO-2/3 (blue dots), TCCON (green dots), and the reconstructed
products (yellow dots).

of temporal trend, the atmospheric CO2 exhibited a distinct
increasing trend over time, with the mean growth rate of
2.32 ppm yr−1. The large growth rate meanly occurs in the
northern low latitudes (0–30° N), especially the Middle East
and North Africa (growth rate over 2.5 ppm yr−1). Globally,
the XCO2 increased by 14.16 ppm over seven years (Ta-
ble 4), especially in 2021, with increased values of up to

3 ppm. This result is consistent with the Global Carbon Bud-
get 2022 (Friedlingstein et al., 2022), which reported that the
global average atmospheric CO2 increased sharply in 2021
and reached 414.71 ppm.
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Figure 9. The global spatial distribution of reconstructed annual mean XCO2 concentration from 2015 to 2021.

Table 5. The reconstructed XCO2 concentrations at different continents from 2015 to 2021. Note that the bold font highlights the highest
XCO2 concentrations among different continents in each year.

Continents XCO2 concentrations (ppm)

2015 2016 2017 2018 2019 2020 2021 Increase

Africa 399.26 402.66 404.98 406.71 409.26 411.13 414.11 14.85
Asia 399.57 403.03 405.80 407.37 409.68 411.39 414.38 14.81
Europe 399.55 402.88 405.77 406.96 409.48 411.30 414.17 14.62
North America 399.60 402.95 405.76 407.32 409.70 411.61 414.28 14.68
South America 398.94 401.96 404.27 406.17 408.78 410.47 413.57 14.63
Oceania 398.03 401.04 403.31 405.53 408.13 409.82 412.55 14.52
Global 399.84 401.56 405.16 407.50 409.21 411.07 414.00 14.16

3.3 The distribution of XCO2 anomaly

To better explore the dynamics of global carbon change, we
further calculated the XCO2 anomalies based on the full-
coverage XCO2 products and presented their global distribu-
tions from 2015 to 2021 (Fig. 12). The XCO2 anomalies were
calculated by the statistical filtering method, that is, subtract-
ing the global median XCO2 value from the global XCO2

distribution (Hakkarainen et al., 2016). The spatial pattern
of XCO2 anomalies were relatively consistent over seven
years with no significant variations. From the global perspec-
tive, high XCO2 anomalies mainly occurred in the North-
ern Hemisphere. East Asia has the largest XCO2 anomalies
with values ranging from 2 to 3 ppm, such as the east part of
China. The Middle East, North Africa and the southern part
of Northern America also experienced high XCO2 anoma-
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Figure 10. The global spatial distribution of annual mean OCO-2/OCO-3 XCO2 concentration from 2015 to 2021.

lies. Nevertheless, negative XCO2 anomalies were also iden-
tified in the Northern Hemisphere, specifically in regions
such as Tibet in China, eastern Canada, and southern Russia.
Most negative XCO2 anomalies were observed in the South-
ern Hemisphere, which behaves as a carbon sink. However,
some positive XCO2 anomalies are also observed in the trop-
ical regions (e.g., Amazonia), which indicates the Amazonia
has changed into a carbon source due to the deforestation and
fire occurrence in recent years (Hubau et al., 2020; Gatti et
al., 2021).

Figure 13 illustrates the detailed spatial distribution of
XCO2 concentrations and anomalies over six regions with
high XCO2 retrievals in 2020. High concentrations of XCO2
were typically associated with energy-intensive heavy indus-
trial activities, such as Toa Oil Keihin Refinery Factory lo-
cated in Kawasaki City, Japan (Fig. 13f), and the Shipping-
port Industrial Park in Pennsylvania, United States (Fig. 13a).
Moreover, certain metropolitan transport hubs also exhib-
ited elevated CO2 anomalies attributable to dense popula-
tions and intensive activities. Examples included Shanghai
Station in China (Fig. 13e) and John F. Kennedy Interna-
tional Airport in New York, USA (Fig. 13b). Attention has

also been drawn to natural sources of emissions. Driven
by the significant impact of agricultural mechanization and
agro-industrial activities on cropland (Lin and Xu, 2018),
the XCO2 anomalies also occurred in the agricultural ar-
eas northwestern Jiangsu, China (Fig. 13d). Additionally, we
also observed the high XCO2 anomalies in Amazonia forest
in Colombia, which have been suffered from deforestation
(Gatti et al., 2023). In conclusion, our products could suc-
cessfully capture the XCO2 anomalies from different sources
over the globe.

4 Discussion

4.1 Comparison with previous studies

To validate the effectiveness of our model and resulting
XCO2 products, we compared our results with current stud-
ies which focuses on global XCO2 reconstruction (Table 6).
As for the in-situ validation, most existing studies report high
accuracy with almost all R2 over 0.9, RMSE less than 2 ppm.
Regarding spatial resolution, the various products differ sub-
stantially, ranging from 1° down to 0.01°. It should be noted
that increasing spatial resolution tends to compromise the
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Figure 11. The global spatial distribution of (a) reconstructed 7-year averaged XCO2 concentration, and (b) its trend from 2015 to 2021
(ppm yr−1 denotes parts per million per year).

accuracy of XCO2 retrievals. However, our XCO2 product
achieves an optimal balance between spatial detail and mea-
surement precision, exhibiting both high spatial resolution
(0.05°) and robust accuracy (R2

= 0.91, RMSE= 1.54 ppm)
in comprehensive evaluations.

To evaluate the advancement of our XCO2 product, we
compared it with original OCO-2 observations and pub-
licly available global XCO2 datasets (Wang et al., 2023;
Sheng et al., 2022; Zhang et al., 2023) across four re-
gions: North America, Europe with northern Africa, Asia,
and Oceania (Fig. 14) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discon-
tinuities, limiting the capacity to analyze monthly XCO2
variability at regional and national scales. Existing XCO2
products (spatial resolution of 0.25, 1, and 0.1°, respec-
tively) broadly reproduce large-scale XCO2 patterns but fail
to resolve fine-scale heterogeneity. In comparison, our re-
constructed XCO2, with the highest spatial resolution, pro-
vides a more detailed and accurate representation of the re-
gional XCO2 patterns. For example, lower XCO2 concen-
trations are clearly identified in eastern Canada (The first
row of Fig. 14) and Papua New Guinea (The fourth row of
Fig. 14), regions characterized by dense forest cover. This
correspondence highlights the substantial carbon sink po-
tential of these forested areas. Our high-resolution product
better identifies the CO2 heterogeneity associated with dif-
ferent land cover types, whereas the coarse-resolution prod-

ucts smooth these signals. This limitation primarily stems
from the neglect of high-resolution land cover dynamics
and dependence on coarse-resolution assimilated/reanalysis
datasets (e.g., CAMS XCO2, CarbonTracker), resulting in
oversmoothed spatial patterns that obscure satellite-derived
high-resolution signals. Unlike assimilation-dependent ap-
proaches, our method avoids XCO2 reanalysis inputs, pre-
serving satellite-scale fidelity through high-resolution envi-
ronmental variables modeling while maintaining precision.

4.2 Limitations and future improvements

Though our XCO2 products achieved full spatial coverage
and high accuracy, however, there are still several limita-
tions need further improvement. In terms of the satellite
data, OCO-2 and OCO-3 provide different spatiotemporal
coverages. Analyzing OCO-2 and OCO-3 data simultane-
ously may introduce several uncertainties due to these dif-
ferences. However, OCO-3 has a similar sensor and inherits
the retrieval algorithms of OCO-2. According to Taylor et
al. (2023), the mean differences between OCO-3 and OCO-
2 are around 0.2 ppm over land. Therefore, we suppose that
the discrepancies between their datasets are minimal, and the
combined analysis of data from these two satellites will have
a negligible impact on our results.

Additionally, though our model integrates multiple envi-
ronmental variables associated with surface carbon flux vari-
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Figure 12. The global spatial distribution of annual XCO2 anomaly from 2015 to 2021.

Table 6. Comparison between current studies focusing on global XCO2 reconstruction.

Model Spatial In-situ validation Reference
resolution (with TCCON)

R2 RMSE MAE
(ppm) (ppm)

Attentional-based LSTM 0.05° 0.91 1.54 1.22 Our study
Deep forest 0.1° 0.96 1.01 – Zhang et al. (2023)
S-STDCT 0.25° 0.95 1.18 – Wang et al. (2023)
Spatiotemporal kriging 1° 0.97 1.13 0.88 Sheng et al. (2022)
MLE & OI 0.5° 0.92 2.62 1.53 Jin et al. (2022)
ERT 0.01° 0.83 1.79 – Li et al. (2022)

∗ S-STDCT: Self-supervised spatiotemporal discrete cosine transform; MLE & OI: maximum likelihood estimation
method and optimal interpolation; ERT: Extremely randomized trees.

ations, it does not account for vertical atmospheric trans-
port. As XCO2 represents the column-averaged CO2 concen-
tration, vertical redistribution of CO2 through atmospheric
transport (e.g., mixing, convection) can alter the relationship
between surface carbon fluxes and column concentrations
(Shirai et al., 2012). The absence of such vertical transport
indicators may reduce the model’s accuracy in regions or pe-

riods with strong vertical mixing. Future efforts will incor-
porate vertical transport-related variables, such as planetary
boundary layer height, vertical wind components, and other
reanalysis-derived indicators, to better represent the atmo-
spheric processes that influence the column-averaged CO2
signal.
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Figure 13. Examples of XCO2 hotspots in six regions for 2020 detected using the reconstructed products. The subplots present the spatial
distribution of XCO2 concentrations, anomalies (the red panels), and the emission sources (the true color images from © Google Earth),
respectively. The global map in the middle presents the land use and land cover types over the globe.

Moreover, while OCO missions currently provide some
of the most accurate carbon satellite-based XCO2 retrievals,
they still encounter some retrieval errors and data gaps driven
by algorithmic limitations and variable meteorological con-
ditions. A critical research frontier is the refinement of XCO2
retrieval algorithms to mitigate systematic biases in high-
aerosol-load regions (e.g., industrial regions and biomass-
burning plumes). Additionally, next-generation hyperspec-
tral satellites, such as the upcoming CO2M (Copernicus An-
thropogenic CO2 Monitoring Mission) with 2× 2 km2 reso-
lution and GeoCarb (Geostationary Carbon Observatory) of-
fering hourly monitoring, will enhance spatial-temporal cov-
erage and reduce cloud-induced data gaps (Reuter et al.,
2025).

5 Data availability

The XCO2 dataset produced in this paper is available
at https://doi.org/10.5281/zenodo.12706142 (Wang et al.,
2024a). It includes monthly global XCO2 data at 0.05° reso-
lution, covering the period from December 2014 to Decem-
ber 2021. The dataset is archived in netCDF4 format, with
units in parts per million (ppm).

6 Conclusion

As a major driver of global warming, the monitoring of CO2
changes, especially anthropogenic CO2 emissions, is of crit-
ical importance. The launch of carbon satellites offers a sig-
nificant advancement for CO2 monitoring. However, the lim-
ited spatial coverage of satellite observations constrains the
utility of XCO2 data. While current XCO2 products exhibit
relatively high validation accuracy, their coarse spatial reso-
lution remains inadequate for applications such as regional-
or county-level emission monitoring, as well as for the de-
tection and inversion of large emission sources. To address
these issues, we reconstructed a global full-coverage XCO2
product at a fine spatial resolution of 0.05° and temporal res-
olution of 1 month from 2015 to 2021. The advanced deep
learning method was adopted to model time-series XCO2
and incorporate terrestrial flux, anthropogenic flux and cli-
matic impacts into the parameterization process. Through
comprehensive evaluations, including cross-validation, in-
situ validation, spatial distribution assessment and compar-
ison with other XCO2 products, our reconstructed XCO2
products demonstrates significant improvements in both ac-
curacy and spatial resolution. The main conclusions and con-
tributions are as following:

1. The advanced At-BiLSTM model could successfully es-
tablished the nonlinear relationship between satellite-
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Figure 14. Comparison between the OCO-2 XCO2 data, accessible XCO2 products from Wang et al. (2023), Sheng et al. (2022), Zhang et
al. (2023), and our reconstructed XCO2 data in four regions, using the products of January of 2015 as an example.

derived XCO2 and a set of key environmental vari-
ables. And the reconstructed XCO2 based on our model
shows relatively good agreement with TCCON XCO2,
with R2, RMSE, and MAE values of 0.91, 1.58, and
1.22 ppm, respectively.

2. The reconstructed XCO2 product overcomes the ex-
tensive data gaps typically caused by narrow satel-
lite swaths and retrieval interference from clouds and
aerosols, achieving complete global coverage. More-
over, relative to existing publicly available full-coverage
XCO2 datasets, our product offers the finest spatial res-
olution (0.05°) while maintaining comparable accuracy.

3. Our method avoids coarse XCO2 reanalysis in-
puts, preserving satellite-scale fidelity through high-
resolution environmental variables modeling. Conse-
quently, the products enable enhanced ability in identi-
fying regional- and county-level XCO2 hotpots, carbon
emissions and fragmented carbon sinks, providing a ro-
bust basis for targeted global carbon governance poli-
cies.
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