Earth Syst. Sci. Data, 17, 5337-5353, 2025
https://doi.org/10.5194/essd-17-5337-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth System
Science

Data

Open Access

Introduction

An operational SMOS soil freeze-thaw product

Kimmo Rautiainen', Manu Holmberg!, Juval Cohen!, Arnaud Mialon?, Mike Schwank>*,
Juha Lemmetyinen!, Antonio de la Fuente’, and Yann Kerr?

Finnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, Finland
2CESBIO, Université Toulouse 3, CNES/CNRS/IRD/INRAe/UPS, 18 Avenue Edouard Belin,
31401 Toulouse CEDEX 9, France
3GAMMA Remote Sensing Research and Consulting AG, Worbstr. 225, 3073 Guimligen, Switzerland
4Swiss Federal Institute WSL, Ziircherstrasse 111, 8903 Birmensdorf, Switzerland
SESA — ESRIN, Largo Galileo Galilei 1, 00044, Frascati, Italy

Correspondence: Kimmo Rautiainen (kimmo.rautiainen @ fmi.fi)

Received: 7 February 2025 — Discussion started: 22 April 2025
Revised: 24 July 2025 — Accepted: 25 July 2025 — Published: 15 October 2025

Abstract. The Soil Moisture and Ocean Salinity (SMOS) satellite is a valuable tool for monitoring global soil
freeze—-thaw dynamics, particularly in high-latitude environments where these processes are important for un-
derstanding ecosystem and carbon cycle dynamics. This paper introduces the updated SMOS Level-3 (L3) Soil
Freeze—Thaw (FT) product and details its threshold-based classification algorithm, which utilizes L-band passive
microwave measurements to detect soil freeze—thaw transitions; this is possible due to the difference in dielec-
tric properties between frozen and thawed soils at this frequency band. The algorithm applies gridded brightness
temperature data from the SMOS satellite, augmented with ancillary datasets of air temperature and snow cover,
to generate global estimates of the freeze—thaw state. A recent update to the algorithm includes improved noise
reduction through temporal filtering. Validation results against in situ soil moisture and temperature measure-
ments and comparisons to ERAS5-Land reanalysis data demonstrate the ability of the product to detect the day of
first freezing, an important metric for better understanding greenhouse gas fluxes and ecosystem dynamics, with
improved accuracy. However, limitations remain, particularly in regions affected by radio frequency interference
(RFI) and during spring melt periods, when wet snow hinders soil thaw detection. Despite these challenges,
the SMOS FT product provides crucial data for carbon cycle studies, particularly in relation to methane fluxes,
as soil freezing affects methane emissions in high-latitude regions. The SMOS L3FT dataset is available at
https://doi.org/10.57780/sm1-fbf89e0 (ESA, 2023).

Monitoring the freeze—thaw cycle is essential because it

More than half of the land in the Northern Hemisphere under-
goes seasonal freezing and thawing each year, making it one
of the most widespread environmental processes on Earth
(Zhang et al., 2003). Seasonal soil freezing and thawing is
not only a critical environmental phenomenon but also a key
indicator of climate change and variability (Frauenfeld and
Zhang, 2011; Peng et al., 2016). Soil freeze—thaw cycles are
closely linked to surface temperature fluctuations and snow
cover dynamics, playing an important role in regulating the
Earth’s energy balance (Sokratov and Barry, 2002).
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directly impacts global ecosystems, hydrology, and climate
systems. As soil freezes and thaws, it drives a range of eco-
logical processes, including carbon and nutrient cycling, soil
moisture dynamics, vegetation growth, and the activity of
soil organisms. Thawing periods release stored water, influ-
encing surface runoff, groundwater recharge, and the emis-
sion of greenhouse gases such as carbon dioxide and methane
(Song et al., 2017; Wagner-Riddle et al., 2017; Boswell et al.,
2020; Yang and Wang, 2019; Hayashi, 2013; Nikrad et al.,
2016). These emissions are particularly relevant in the con-
text of climate change, as thawing permafrost can release
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significant amounts of previously trapped carbon, creating
a feedback loop that accelerates global warming (Johnston
et al., 2014; Knoblauch et al., 2017). The freeze—thaw cy-
cle also has substantial implications for infrastructure, as the
freezing and thawing of soil can damage buildings, roads,
and pipelines due to frost heave and ground subsidence.
Agriculture is similarly affected, with the timing and inten-
sity of freeze—thaw events influencing soil fertility, crop via-
bility, and water availability (Kreyling et al., 2008; Krogstad
et al., 2022). Therefore, accurate monitoring and prediction
of soil freeze—thaw cycles are crucial not only for under-
standing natural ecosystems but also for mitigating risks and
optimizing land-use practices in affected regions.

Global monitoring of the soil freeze—thaw cycle is vital for
advancing our understanding of ecosystem dynamics, refin-
ing climate models, and managing natural resources. High-
latitude and high-altitude regions are particularly sensitive
to freeze—thaw cycles, where even minor changes can dis-
proportionately affect local environments and contribute to
broader global changes (Shiklomanov, 2012). L-band pas-
sive microwave remote sensing is particularly effective for
detecting soil freeze—thaw transitions due to the high contrast
in permittivity between liquid water and ice at L-band fre-
quencies (1-2 GHz) (Rautiainen et al., 2014). Compared to
higher frequencies, the L-band allows for deeper penetration
into the soil, enabling observations several centimetres be-
neath the surface. As measurement frequency increases, the
proportion of the signal originating from the soil decreases,
with higher-frequency bands interacting more strongly with
surface vegetation or snow cover in winter. These subsur-
face observations are critical, as the significant difference in
the dielectric constant between frozen and thawed soil re-
sults in pronounced changes in soil emissivity that L-band
radiometers can effectively detect, ensuring high sensitivity
to freeze—thaw dynamics.

Over the past decades, several global data products have
been developed to monitor soil freeze—thaw cycles. These
include the Freeze-Thaw Earth System Data Record (FT-
ESDR) (Kim et al., 2017), the Soil Moisture and Ocean
Salinity Level-3 Soil Freeze—Thaw (SMOS L3FT) product
(ESA, 2023; Rautiainen et al., 2016), and the Soil Mois-
ture Active Passive Freeze-Thaw (SMAP FT) product (Derk-
sen et al., 2017). The FT-ESDR combines data from the
Advanced Microwave Scanning Radiometer (AMSR-E) on
NASA’s Aqua satellite and the SSMIS on the Defense Me-
teorological Satellite Program platforms, providing a long-
term, consistent dataset for global monitoring of freeze—thaw
cycles, particularly useful for analysing inter-annual variabil-
ity and long-term trends. However, the FT-ESDR relies on
high-frequency (36.5 GHz) radiometer data, primarily sens-
ing the freeze—thaw status at the very surface of the land-
scape, and is therefore more affected by the vegetation and
snow cover. In contrast, the SMAP FT and SMOS L3FT
products are based on low-frequency passive L-band bright-
ness temperatures, which are more sensitive to thermal emis-
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sion originating from the soil. Although the SMAP mission
originally included an active L-band radar, the radar instru-
ment unfortunately failed shortly after the mission’s launch.

This paper describes the updated SMOS L3FT algorithm
and introduces the dataset to the community (ESA, 2023).
The SMOS L3FT product has been publicly available since
2018. Developed by the Finnish Meteorological Institute in
collaboration with GAMMA Remote Sensing, Switzerland,
the product is accessible through the European Space Agency
(ESA) SMOS and the Finnish Meteorological Institute (FMI)
dissemination services. In November 2023, the SMOS L3FT
product underwent a major processor update from version 2
to version 3, with all data reprocessed.

2 Data

2.1 Data used for the soil freeze and thaw detection
2.1.1  SMOS brightness temperatures

The ESA SMOS mission (Kerr et al., 2010), launched in
2010, was the first satellite mission to provide continuous L-
band observations covering the whole globe. For the SMOS
L3FT product, the primary input data are the CATDS (Centre
Aval de Traitement des Données SMOS) level-3 brightness
temperatures (L3TB) dataset, version 331 (Al Bitar et al.,
2017; CATDS, 2024). The L3TB data are in the ground po-
larization frame, with horizontal (H) and vertical (V) linear
polarizations, and are provided in the Equal-Area Scalable
Earth 2 (EASE-2) grid (Brodzik et al., 2012) with a polar pro-
jection at a 25km x 25 km grid cell size. On each overpass,
SMOS measures an incidence angle profile of the bright-
ness temperature. In the L3TB data, the profiles are averaged
into incident angle bins with 5° intervals. Daily CATDS files
include all swaths observed over the Northern Hemisphere.
The variables used are the H and V polarized brightness tem-
peratures, their standard deviations and radiometric accura-
cies, the number of views, the number of views suspected to
be affected by radio frequency interference (RFI), the obser-
vation acquisition times, and the incidence angles relative to
nadir. The SMOS L3FT algorithm uses only data from the
incidence angle bin of 50-55°.

2.1.2 Two-metre air temperature

Daily air temperature data at 2 m above ground level are pro-
vided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). The operational L3FT processor uti-
lizes the Atmospheric Model High-Resolution 10 d Forecast
data from ECMWF’s real-time forecast system. During re-
processing, the near-real-time air temperature data are re-
placed with the corresponding air temperature data from the
ERAS-Land reanalysis, which are available with a latency of
up to 1 month (Mufioz Sabater et al., 2021; Mufioz Sabater,
2019). The most recent reprocessing was performed in Oc-
tober 2023, and all data after 10 October 2023 have been
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processed using ECMWF near-real-time data. Both the op-
erational 10d high-resolution forecasts and the ERAS-Land
reanalysis from ECMWF are provided on a grid with a spatial
resolution of 0.1° x 0.1° (approximately 11.1km x 11.1km
at the Equator and 11.1km x 5.6km at 60° latitude), offer-
ing daily temperature values at 6h intervals (0, 6, 12 and
18 h). The SMOS L3FT processor calculates the daily mean
from these ECMWF air temperatures. The data are repro-
jected to the EASE-2 grid and resampled to a spatial resolu-
tion of 25km x 25 km using the nearest-neighbour interpo-
lation method.

2.1.3 Snow extent

The SMOS L3FT algorithm uses the global snow extent data
produced by the United States National Ice Center (USNIC)
using the Interactive Multisensor Snow and Ice Mapping
System (IMS) (U.S. National Ice Center, 2008). These IMS
Daily Northern Hemisphere Snow and Ice Analysis data,
originally in 4 km resolution with polar stereographic pro-
jection, are reprojected to the EASE-2 grid at 25 km x 25 km
resolution using the majority interpolation method. Although
IMS provides daily global snow extent, its quality may be af-
fected by persistent cloud cover and polar night conditions,
which limit the availability of optical observations. In such
cases, the IMS algorithm relies more on passive microwave
inputs and temporal persistence from previous days’ esti-
mates (U.S. National Ice Center, 2008; Helfrich et al., 2019).
Given the coarse spatial resolution of the SMOS L3FT prod-
uct, these limitations are not considered critical for our ap-
plication.

2.2 Data used for the validation
2.2.1  Soil moisture and soil temperature

The soil moisture (SM) and soil temperature (ST) data
are obtained from the International Soil Moisture Network
(ISMN) (Dorigo et al., 2011, 2021). Data are available from
over 70 networks worldwide, seven of which provide near-
real-time updates. Here, ISMN data from six different net-
works are used to validate the SMOS freeze—thaw product.
We use only data from those stations that measure both SM
and ST from the top surface layer, at depths of 5 cm and/or
10 cm. These networks include SNOTEL — Snow Teleme-
try Network (Leavesley et al., 2008), SCAN — Soil Climate
Analysis Network (Schaefer et al., 2007), USCRN - U.S.
Climate Reference Network (Bell et al., 2013), RISMA -
Real-Time In Situ Soil Monitoring for Agriculture (Ojo et al.,
2015), BNZ LTER - Bonanza Creek Long-Term Ecological
Research, and FMI — Finnish Meteorological Institute soil
moisture and soil temperature observations (Ikonen et al.,
2016, 2018).
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2.2.2 ERA5-Land reanalysis data

The ECMWF ERAS5-Land global atmospheric reanalysis
dataset provides a consistent and long-term record of me-
teorological parameters over land surfaces (Mufioz Sabater
etal., 2021). We used the air temperature at 2 m, soil temper-
ature in layer 1 (0-7 cm depth), and snow depth. The data,
provided on a 0.1° x 0.1° latitude—longitude grid, are repro-
jected to the 25 km x 25 km EASE-2 grid used by the SMOS
L3FT product. This is done using the Geospatial Data Ab-
straction Library (GDAL), with average resampling applied
during resolution matching to ensure consistency with the
SMOS grid.

2.2.3 Land cover

The ESA CCI Land Cover time series v2.0.7 (1992-2015)
data (ESA, 2017), originally provided at 300 m spatial reso-
lution, are used to define the land cover distribution on the
EASE-2 grid. The land cover classes were aggregated from
the original 23 classes into six classes: agriculture, forest, low
vegetation, wetland, open water, and other (permanent ice,
barren, urban). This aggregated land cover information was
then regridded to the 25 km EASE-2 grid and used during the
validation process to determine whether the land cover class
at each in situ sensor location represented the larger EASE-2
grid cell.

3 SMOS freeze and thaw (FT) retrieval algorithm

3.1 Algorithm outline

The SMOS FT detection algorithm is based on the physi-
cal principle that L-band brightness temperatures vary sig-
nificantly between frozen and thawed soils due to the dis-
tinct differences in their dielectric properties. Thawed soil
contains liquid water, which has a much higher dielectric
constant (¢/~ 90) at the L-band than the ice in frozen soil
(e7 = 3.2) (Mitzler et al., 2006). This large dielectric contrast
directly influences the soil’s emissivity and, consequently,
the brightness temperature detected by the satellite.

As predicted by Fresnel’s equations as well as by empiri-
cal observations (Rautiainen et al., 2014), the strong decline
of free liquid water during soil freezing has two effects: first,
both horizontal and vertical emissivities are increased, lead-
ing to an increase in the corresponding brightness tempera-
tures. Second, the difference between horizontal and verti-
cal emissivities is decreased, resulting in a reduction in the
polarization contrast. By contrast, thawed soils — due to the
presence of liquid water — exhibit lower emissivities and a
larger polarization difference. Notably, dry and frozen soils
behave similarly from a dielectric standpoint, causing similar
effects on L-band brightness temperatures.

To detect the FT state of the soil, the algorithm computes
the normalized polarization ratio (NPR), which we denote by
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Figure 1. Soil’s emissivity 1 — I'P°l(¢) for vertical and horizontal
polarizations (solid line; left y axis) and the corresponding normal-
ized polarization ratio (dashed line; right y axis) as a function of the
soil’s relative permittivity &.

Y and is defined as

Ty + TV

where Tg’ and Té'l are the vertically and horizontally polar-
ized brightness temperatures, respectively. NPR reflects both
the absolute level of emissivities and their polarization con-
trast, making it a sensitive indicator of freeze—thaw transi-
tions. The conceptual motivation for using NPR can be un-
derstood by considering the idealized case of a bare soil sur-
face, for which the brightness temperature can be expressed
as

T2 = (1 — TP Tygit 4 TP T gy )

Omitting the downwelling brightness temperature 7 sky and
substituting Eq. (2) into Eq. (1) eliminates the effect of soil’s
physical temperature Ty, leaving only the dielectric effect.
Ideally, this insensitivity to physical temperature variations
allows robustly capturing changes in soil moisture and FT
transitions without the need for an explicit temperature cor-
rection. Figure 1 shows the modelled effect of the changing
soil permittivity to the NPR at the used observation angle
0 = 52.5°, following Fresnel’s law for smooth interface.
However, in practice, the idealized assumptions repre-
sented by Eq. (2) and Fig. 1 do not fully hold. Surface
roughness, vegetation and forest cover, snow, and sub-pixel
heterogeneity within the SMOS footprint all act to dampen
the sensitivity of brightness temperature to soil permittiv-
ity changes. These factors reduce the interpretability of the
polarization-dependent brightness temperature response and
introduce geophysical noise that can be misclassified as
freeze or thaw. As a result, the algorithm must be designed
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to tolerate such uncertainties while remaining sensitive to ac-
tual transitions in the soil freeze—thaw state.

Building on this physical rationale, the algorithm applies
a threshold-based classification to determine the soil freeze—
thaw state from the observed NPR values. Each T is com-
pared to empirically established frozen and thawed soil ref-
erence values, denoted by Yy and Yy, respectively. The re-
sulting soil state estimates are further regularized by air tem-
perature reanalysis data. The algorithm workflow scheme is
shown in Fig. 2 and described in detail in the sections below.
As mentioned earlier, the SMOS FT algorithm primarily re-
lies on CATDS L3 brightness temperature data as its main in-
put. The ascending and descending orbits are processed sep-
arately, resulting in two L3FT estimates for the two orbits.

3.2 Data selection and quality filtering

The brightness temperature measurements that are suspected
to have reduced quality are filtered out. The SMOS L3FT
processor uses CATDS L3TB data, which are already aver-
aged within incidence angle bins; hence, the quality flags, in-
cluding the suspected RFI proportion, are interpreted as sum-
mary statistics, and individual brightness temperature mea-
surements are no longer accessible at this stage. Table 1 sum-
marizes the quality filtering criteria. First, the brightness tem-
perature values should be within the physically meaningful
range. In the context of FT detection, values above 300 K
can be omitted. Second, it is required that the incident angle
bin contains at least five measurements. Third, the ratio
_ Tg deviation 3)
T'g accuracy
between the sample standard deviation of the measurements
and the average radiometric accuracy within the incident an-
gle bin is expected to be bounded both from above and below
with values of 2 and 0.1, respectively. Fourth, the proportion
of measurements suspected to be contaminated by RFI within
the incident angle bin must be less than 40 %.

3.3 Noise removal and temporal averaging

The individual SMOS L3 brightness temperatures, although
averaged over the incident angle bin, contain noise that hin-
ders the FT detection. To remove noise from the NPR time
series computed from the L3TB, a temporal filtering is per-
formed. In the SMOS L3FT processor, a simple Kalman fil-
tering approach is used (Kalman, 1960; Sarkka, 2013). Every
grid cell is filtered independently from every other, and the
time series from a given grid cell is modelled as a dynamic
linear model; hence,

{T(m)

Y31 (k)

=T (tr—1)+ Wg,

4
=Y+ Vg, X

where Y'(t;) denotes the true physical NPR at time instance
tr and Yp3TB(f%) denotes the noisy NPR that is computed
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Figure 2. The SMOS soil FT detection algorithm workflow.

Table 1. Data filtering criteria in the SMOS L3FT processor.

SMOS L3FT product /

Description

Criteria

Realistic brightness temperature values

Sufficient number of views within the incident angle bin
Realistic sample deviation compared to radiometric accuracy

Low RFI contamination

0K <7y M <300K
Nviews >5
01<yx<2

NRFI/ Nyiews < 0.4

from the L3 brightness temperatures at time #; by Eq. (1).
Wi and V}, are the observation and model noise terms at time
tx, which were modelled as Gaussian random variables:

rw ~ N, w)),

5
Vi  ~N(O,v). ©)

The NPR observation noise variance v,% and the process noise

variance w,% were estimated as follows:

vz _ var Tg’(tk)+var Té{(ztk) ’
k (1Y )+ T 1) (6)
w} =02t — 1),

where ¥ is a tuning parameter, Tp(#) refers to the brightness
temperature values at time f;, and var(-) refers to the error
variance of the brightness temperatures, which are provided
in the data. The Kalman filter provides an optimal estimate
of Y () from the noisy time series Y1318 (), balancing the
noisy observations with their uncertainties to improve the
signal quality. Figure 3 shows an example of the observed
time series before and after applying the Kalman filter. The
advantage of the Kalman filtering approach over, e.g., a run-
ning mean is that the observations are weighted according
to their uncertainty; in addition, the filtering parameter ¥ can
be estimated from an observed time series by maximizing the
likelihood of the observed time series with respect to ¥ (see,
e.g., the book by Sarkki, 2013). The estimation is performed
for the EASE-2 grid cell over Sodankyl4, Finland, one of the
applied validation sites (Ikonen et al., 2016), and the obtained
value 99 = 0.003 is used globally.
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3.4 Frozen and thawed ground references

NPR varies between grid cells due to differences in land
cover, soil properties, vegetation cover, and environmental
conditions. As a result, each cell exhibits unique frozen and
thawed soil references: Y and Yy,. To detect the freeze—
thaw transitions, we scale the observed NPR signal:

T —7Y

Tee= —2 |
T Y — Y

(7

where Y is the scaled NPR. Note that Y and Yy, are spe-
cific to each grid cell and that they are empirically derived
from the L3TB time series in conjunction with two auxiliary
datasets: ERAS-Land air temperature and IMS snow extent.
By scaling the T values in this way, the algorithm adapts to
the local conditions of each cell, enabling accurate determi-
nation of the soil state from the current observations.

The methodology used to define the reference values from
the NPR time series is described below. If the daily mean air
temperature was below —3 °C and there was snow cover, the
data were eligible for the frozen soil reference. Similarly, if
the snow melt-off occurred at least 28 d ago and the daily air
temperature was above 43 °C, the data were eligible for the
thawed soil reference. This decision logic is shown in Fig. 4.
Reference values were derived from data collected between 1
January 2014 and 4 September 2023, with the end date lim-
ited by the availability of ECMWF ERAS-Land data at the
time of reprocessing. The first years of data were excluded
due to the higher presence of RFI. From the selected period,

Earth Syst. Sci. Data, 17, 5337-5353, 2025
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Figure 4. The logic for selecting the candidate data for the frozen
and thawed soil references.

all eligible frozen and thawed reference data were collected,
and the 50 most extreme values were identified. The median
of these values was used to define the frozen Y- and thawed
Y, reference values.

3.5 Data classification

The FT class was estimated from the scaled NPR value Y.
according to Table 2. The thresholds of 50 % and 70 % were
acquired in previous studies by fitting the scaled NPR value
to frost tube observations in Finland (Rautiainen et al., 2016).

Earth Syst. Sci. Data, 17, 5337-5353, 2025

Table 2. Thresholds for the soil state categories with respect to the
parameter A and with respect to frozen and thawed soil references.

Category  Soil state Condition

1 thawed Ysec <50%
partially frozen 50% < Ysc <70%

3 frozen 70% < Ysc

3.6 Removal of obvious errors and the processing mask

Even after the preprocessing steps for filtering the observa-
tional data, the initial freeze—thaw (FT) classification based
on the scaled NPR value may contain errors, in particular
over regions where some residual RFI is present or where the
separation of frozen and thawed references is small. Some of
the obviously erroneous ground condition classifications can
be mitigated using the auxiliary data: ECMWEF air tempera-
ture and IMS snow extent. A processing mask (PM) was gen-
erated using these auxiliary data to estimate the season oc-
curring in each grid cell. Additionally, the previously defined
PM state restricted the selection of the new value. PM con-
tains eight different values for four seasons (two for each).
They are described in Table 3 with the selection criteria and
the allowed transitions.

PM affects the final estimate according to the following
rules: (1) if PM(¢) is 3, 4, 7, or 8 (indicating freezing and
melting periods), the mask has no effect. (2) If PM(z) is 1
or 2 (indicating a summer period), all FT state estimates are
forced into the thawed soil category. (3) During the winter
period (when PM() is 5 or 6), the mask prevents the soil state
from changing towards the thawed state. However, neither
the frozen state nor the partially frozen state is forced.

https://doi.org/10.5194/essd-17-5337-2025
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Table 3. The nine values of processing mask PM(z) for time 7 (day), the criteria for their conditions, the respective seasons, and the allowed
transitions PM(#) — PM(z + 1). The variables T, and T,;; denote the daily mean and 10 d mean air temperatures, respectively.

PM(t) Definition Season Definition criteria Allowed transition

PM(t) — PM(r + 1)
0 undetermined, initial value only  none 1,3,5,7
1 summer summer Ty > 0°C or Ty, > 0°C 1,2
2 late summer summer Ty < 0°C 1,2,3
3 freezing period, early phase autumn Ty < 0°C 2,3,4
4 freezing period, longer evolved — autumn  Tj;, < —1°C or Ty, < 0°C for 10d 3,4,5
5 winter winter m < -3°C 5,6
6 late winter winter Ty > 0°C 5,6,7
7 melting period spring Tyir > 3°C or Ty > 3°C 5,7, 8
8 end phase of melting period spring Tyir > 3°C or Tyir > 3°C and no snow 1,7,8

4 Validation values ranging from 0 to 1, where 0 corresponds to thawed

4.1 Validation with in situ data

The soil freeze-thaw (FT) estimates were compared against
the ISMN SM and ST data. The scale mismatch between
satellite-based and in situ observations presents significant
challenges when interpreting the comparison results. In situ
sensors measure the soil state at a single point, whereas
SMOS observations represent an area with an effective foot-
print of 30-50 km, depending on the location within the snap-
shot scene (McMullan et al., 2008; Kerr et al., 2010).

Temporal uncertainty also affects the comparison because
SMOS does not always provide daily observations for a given
location. Due to its orbital configuration and data gaps caused
by radio frequency interference (RFI), particularly in Eurasia
(Oliva et al., 2016), the satellite may miss critical transition
days. This can delay or obscure the detection of the actual
freeze onset. In contrast, in situ data are typically available at
hourly resolution, allowing precise identification of freezing
events. Although SMOS and in situ data can be time-matched
when observations are available, the discontinuous temporal
sampling of SMOS introduces uncertainty that must be con-
sidered in the comparison.

The SMOS FT product estimates the soil state at three lev-
els (Table 2). To compare the SMOS FT estimates against
the in situ data, a similar parameter indicating the soil state
at the sensor location needs to be defined from the in situ ob-
servations. The soil state at the in situ sensor locations was
quantified using a soil FT index (SFTI). This index was de-
rived by analysing the relationship between the measured soil
volumetric liquid water content (LWC) and soil temperature,
represented by the soil freezing characteristic curve (SFCC).
A simultaneous decrease in both LWC and temperature in-
dicates soil freezing, whereas an increase in both parameters
suggests soil thawing. This method is based on the approach
developed by Pardo Lara et al. (2020) and is further elab-
orated and explained in detail by Cohen et al. (2021). The
SFTTI is a site-specific metric representing the soil state, with
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soil and 1 to fully frozen soil. For comparison purposes, we
used three SFTI thresholds: 50 %, 70 %, and 90 %. The SFTI
time series were then converted into three sets of binary data,
each indicating whether the soil at the sensor locations was
classified as either frozen or thawed based on these threshold
values, with higher thresholds reflecting a stronger indica-
tion of frozen conditions. These binary datasets were com-
pared with the SMOS FT estimates. The day of first freezing
(DoFF) in autumn was chosen as the comparison parame-
ter because it plays a critical role in greenhouse gas (GHG)
emissions, particularly methane (Arndt et al., 2019; Tenka-
nen et al., 2021). Previous studies have shown that soil FT
estimates derived from L-band passive microwave data are
most accurate during the autumn and cold winter periods. In
the spring, direct observations from the ground, even at L-
band frequencies, are effectively blocked by the wet snow
layer (Roy et al., 2015; Rautiainen et al., 2016). As a result,
the SMOS FT estimates during this period often reflect the
condition of the snowpack (e.g. presence of wet snow) rather
than the actual soil thawing. Although in situ sensors provide
accurate information about the soil state itself, the springtime
SMOS FT signal cannot be directly interpreted as soil thaw,
which limits its suitability for soil FT validation during this
season.

DoFF is defined here as the first day in autumn that is
followed by at least 5 consecutive days of frozen soil. For
SMOS data, an additional condition was applied: five con-
secutive observations must estimate a frozen soil state. Due
to SMOS’s orbit configuration, global coverage is achieved
every 3d, with combined ascending and descending over-
passes enabling daily observations north of approximately
60° N (Kerr et al., 2010). However, because the SMOS L3FT
retrievals are computed separately for each orbit, near-daily
coverage for either ascending or descending observations is
attained only at latitudes above ~ 65° N. This is also evident
in the SMOS observation frequency map shown in Fig. 8.
Additionally, data quality filtering, especially due to radio
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frequency interference (RFI), further reduces the effective
observation frequency, particularly in Eurasia. As a result,
the five observations required to confirm freezing typically
span 5-15 d, depending on latitude and data quality. This lim-
ited temporal resolution may delay the DoFF detection rela-
tive to the actual onset of soil freezing. To account for tem-
poral uncertainty due to irregular SMOS sampling, we define
the day of first potential freezing (DoFPF) as the last obser-
vation that still indicated a thawed state before the confirmed
onset of freezing (DoFF). This ensures that the actual tran-
sition lies between DoFPF and DoFF. The period between
these two dates represents the time during which SMOS FT
estimates indicate the onset of soil freezing in autumn. Simi-
larly, DoFF was determined from in situ SFTI measurements
using the three previously selected thresholds (50 %, 70 %,
and 90 %) for comparison.

Figure 5 compares the day of first freezing (DoFF) de-
rived from in situ measurements with SMOS freeze—thaw
(FT) product estimates, showing results for both ascending
and descending orbits. The error bars indicate the range of
uncertainty for both the SMOS FT product and the in situ
measurements in estimating DoFF. For SMOS, the error bars
extend from the day of first potential freezing (DoFPF) to the
day of first freezing (DoFF), with the midpoint marker repre-
senting the average estimate. The SMOS FT error bar reflects
the variability in satellite observation times, which can span
multiple days due to the satellite’s overpass frequency. For in
situ measurements, the error bars reflect the range between
the 50 % and 90 % thresholds, with the marker also set at the
midpoint. The error bars for in situ data reflect the variabil-
ity in defining the exact timing of freezing based on the SFTI
thresholds. A wider range between the 50 % and 90 % thresh-
olds suggests more gradual soil freezing, introducing greater
uncertainty into the timing of DoFF. In contrast, narrower er-
ror bars indicate a more abrupt freeze transition and therefore
a more certain timing estimate at the sensor location. The
bias, Pearson correlation (R), and standard deviation of dif-
ference (SDD) values were calculated for the midpoints. For
SMOS, the result represents the effective FT state within the
grid cell. For the in situ measurements, the data may be from
only one sensor location, or there may be several locations
around the grid cell. If multiple sensors are included, the
SFTI data were averaged considering the land class informa-
tion of the sensor locations and the land class distribution of
the associated grid cell. Prior to comparison, in situ data were
excluded if they were not representative of the larger EASE-2
grid cells. Several criteria for representativeness were given:
(a) the land cover similarity check with the aggregated land
cover data (Sect. 2.2.3) — the land cover on at least one sensor
location had to be the same as the dominant land cover within
the EASE-2 grid cell, the total land cover classes where the
sensors were located had to cover 70 % or more of the EASE-
2 grid cell, and a maximum allowable fraction of 5 % within
a grid cell was permitted for open water. Likewise, the com-
bined fraction of all types in the “other” category (perma-

Earth Syst. Sci. Data, 17, 5337-5353, 2025

K. Rautiainen et al.: An operational SMOS soil freeze—thaw product

nent ice, barren land, and urban areas) could not exceed 5 %.
(b) The freezing degree day (FDD) check — for each EASE-
2 grid cell and for each autumn/early winter period, FDDs
were calculated using the ERAS-Land air temperature data.
If the FDDs were 0 °C or more than 500 °C (i.e. the cumula-
tive sum of daily freezing degree days) at the time when the
in situ sensor indicated frozen ground (at the 70 % thresh-
old), the in situ sensor was considered unrepresentative of
the entire grid cell area. (c) The soil frost depth (SFD) check
— we estimated the expected average soil frost depth for each
grid cell using a simple regression model based on ERAS-
Land air temperature and snow depth data. The change in
soil frost depth (ASFD) was estimated using the regression
model from Gregow et al. (2011):

ASFD = ay +ap - FDDyg + a3 - dsnow ®)

where snow depth dgpow is in centimetres and the regres-
sion coefficients are a; =0.591cm, as =0.079cm°C~!,
and a3 = —0.161. FDD is the 10d freezing degree days:

10
FDDg = Zmax((), -T), ©)]
i=1

and T; is the daily average temperature on day i (in °C).
Similarly, if the estimated frost depth was 0 cm or more than
100 cm when the in situ sensor indicated soil freezing (70 %
threshold), the in situ sensor could not represent the entire
grid cell around it. As a result of the quality checks, the
number of data points (N) in the comparison exercise was
reduced from 550 to 131.

Tables 4 and 5 present the comparison metrics at vari-
ous representativeness levels for SMOS DoFF and in situ
SFTI DoFF using the 50 % threshold. The largest reduction
in data points occurred during the land class similarity check
(criterion a), which also significantly improved the metrics.
The FDD check (criterion b) identified nine additional cases
where the in situ soil freezing estimates clearly contradicted
the ERAS-Land data, resulting in noticeable improvements
in the statistics. The final criterion (c), which involved com-
parison against model-based soil frost depth information, ex-
cluded 45 more cases and led to slight further improvements
in the results.

The metrics shown in Fig. 5 demonstrate the performance
of the SMOS FT product. Note that these metrics are based
on the midpoint values of the uncertainty ranges shown in the
figure: for SMOS, the midpoint between the day of first po-
tential freezing (DoFPF) and the day of first freezing (DoFF),
and for the in situ data, the midpoint between the 50 % and
90 % SFTI thresholds. This differs from the comparison met-
rics in Tables 4 and 5, which are computed directly between
SMOS DoFF and the in situ DoFF derived from the 50 %
SFTI threshold.
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Table 4. The comparison result metrics for ascending orbit SMOS DoFF and in situ SFTI DoFF using the 50 % threshold. The representa-
tiveness checks (land class (LC), FDD, and SFD) were applied cumulatively: for example, “SFD check (c)” includes only those data points

that passed both the LC (a) and FDD (b) checks.

Similarity Number of data  Bias in Pearson  SDD in
check points (N) days correlation (R) days
All data included 550 —14.6 0.33 34.1
LC check (a) 185 —8.1 0.51 26.8
FDD check (b) 176 —6.7 0.65 21.2
SFD check (c) 131 -9.7 0.71 19.4

Table 5. The comparison result metrics for descending orbit SMOS DoFF and in situ SFTI DoFF using the 50 % threshold. The representa-

tiveness checks (LC, FDD, and SFD) were applied cumulatively.

Similarity Number of data  Bias in Pearson SDD in
check points (N) days correlation (R) days
All data included 550 —15.8 0.31 34.0
LC check (a) 185 —-9.1 0.56 24.7
FDD check (b) 176 -75 0.70 18.9
SFD check (c¢) 131 —10.6 0.75 17.4

For the descending orbits (Fig. 5b), the bias is —6.3d,
with a Pearson correlation of (.71 and an SDD of 18.6d.
This indicates that, on average, the SMOS product estimates
the day of first freezing later than in situ measurements. The
relatively high correlation reflects strong agreement between
SMOS estimates and in situ data, suggesting that the prod-
uct reliably captures the freeze—thaw transition in autumn,
despite the temporal and spatial differences between satellite
and in situ observations. The SDD highlights the deviation
between the two datasets, which is typical considering the
challenges of matching large-scale satellite observations to
point-based in situ sensors.

For the ascending orbits (Fig. 5a), the bias is —5.0d, with
the same Pearson correlation of 0.71 and an SDD of 19.2d.
This suggests that ascending orbits tend to estimate freezing
later than in situ measurements but 1.3 d earlier compared to
estimates from the descending orbit. This earlier detection of
freezing by ascending orbits aligns with the SMOS satellite’s
sun-synchronous orbit configuration, where ascending orbits
capture morning conditions (06:00 local time) and descend-
ing orbits capture evening conditions (18:00 local time). The
colder morning temperatures likely cause soil freeze—thaw
transitions to be detected slightly earlier during ascending
passes.

4.2 Comparison with ERA5-Land soil temperature data

We compared the SMOS FT with the ERAS5-Land soil tem-
perature (level 1 representing a depth of 0-7cm) product
to analyse their differences and compatibility. From the two
products, SMOS is an observation-based product sensitive
to the dielectric changes associated with soil freezing, while

https://doi.org/10.5194/essd-17-5337-2025

ERAS is a model-based product representing the tempera-
ture of the soil. The two products were compared by deriv-
ing a day of first freezing (DoFF) from each dataset for each
freezing period between 2010 and 2024.

Figure 6 shows maps of the average DoFF derived from
SMOS FT ascending and descending orbits separately and
from the ERAS soil temperature product. SMOS FT and
ERAS5 show broadly similar DoFF patterns, particularly at
high latitudes. However, discrepancies become more evident
at lower latitudes, where SMOS has fewer observations and
is more affected by RFI, especially in Eurasia. Differences
also reflect expected latitudinal variation in the DoFF dynam-
ics.

To better highlight spatial differences, we introduce DoFF
difference maps in Fig. 6d—f. These show SMOS ascending
minus ERAS (d), SMOS descending minus ERA5 (e), and
SMOS ascending minus descending (f). All maps use a cen-
tred colour scale to emphasize spatial variability. The SMOS
FT product tends to estimate later freezing compared to
ERAS, with median differences of +10.7 and +12.3 d for as-
cending and descending overpasses, respectively. These dif-
ferences are spatially heterogeneous. Notably, larger DoFF
differences occur in regions with dense forest cover, partic-
ularly in boreal Eurasia and parts of North America, where
increased vegetation canopy attenuates the L-band signal and
amplifies NPR uncertainty; in regions affected by strong RFI,
such as Eastern Europe and parts of Russia, where the SMOS
observation density is lower and retrieval quality is reduced;
and in mountainous or topographically complex terrain (e.g.
Scandinavia, Alaska), where sub-grid heterogeneity can lead
to mismatches between model-based and radiometric obser-
vations.
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to DoFF, with the marker set at the centre. (b) Same as (a) but for descending orbit data.

Table 6. Statistics corresponding to Fig. 7.

ens the observed FT signal, making the freeze—thaw detec-
tion more difficult, and, on the other hand, creates their own

Case Bias (days) SDD (days) R contribution to the SMOS observation that are not fully ac-
ERA-ASC ~13.0 142 08l counted for in the SMOS FT product.

ERA-DSC —14.3 142  0.81

DSC-ASC 1.4 5.9 0.97

Figure 7 shows scatter plots comparing the mean days of
first freezing between the datasets. The associated statistics
are shown in Table 6. In general, SMOS seems to estimate
later freezing than the ERAS soil temperature would indicate
(13-14 d on global average). Possible reasons for this differ-
ence include the following: (1) the SMOS observation fre-
quency — it is possible that SMOS observes the freezing later
simply due to delayed good quality observation with respect
to the soil freezing. RFI is a usual disruption to the SMOS
observations. (2) The estimation of the day of first freezing
from the two datasets is slightly different, as the SMOS ob-
servation times have to be accounted for. (3) Systematic er-
rors in the ERAS soil temperature data — in particular, the first
freezing is derived by looking at the time when the soil tem-
perature drops below 0 °C. This estimate might be sensitive
to errors in the modelled temperature values.

Furthermore, land cover distribution within the SMOS
footprint affects the SMOS FT performance. High areal cov-
erage of forest and water bodies, on the one hand, damp-
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5 Product limitations

5.1 General limitations

The SMOS FT retrieval algorithm detects permittivity
changes caused by the phase transition (or change in the ag-
gregate state) of liquid soil water to ice. In regions with dry
soils, this permittivity change is inherently small because
the soil already has a low dielectric constant — even when
unfrozen. As a result, the polarization contrast, and conse-
quently the variability in the normalized polarization ratio
(NPR), is limited. The low NPR dynamics reduces the sensi-
tivity of the algorithm to freeze—thaw transitions in such en-
vironments. Also, areas with a very thin or non-existent soil
layer (e.g. rocky areas and mountains) are challenging. At
the L-band, the typical penetration depth ranges from a few
centimetres to 10—15 cm, depending on the amount of free
liquid water in the soil. Therefore, the detection of soil con-
ditions based on L-band observations is limited to the near-
surface layer, which is still significantly thicker compared to
the surface layer detected by higher-frequency radiometers
and optical sensors.

https://doi.org/10.5194/essd-17-5337-2025



K. Rautiainen et al.: An operational SMOS soil freeze—thaw product 5347

Mean SMOS L3FT freezing DOY
Ascending orbit

(a)

SMOS asc - ERA freezing DOY
Median difference = 10.7

360 - 360 360

Mean SMOS L3FT freezing DOY Mean ERA5 derived freezing DOY

Descending orbit
340
320
300
280
260

(b)
21 - 9
SMOS dsc - ERA freezing DOY SMOS asc - SMOS dsc freezing DOY

Median difference = 12.3 Median difference = -1.2

-1

(@
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5.2 Spatial and temporal coverage

SMOS observations cover the entire globe twice in 3d. The
northernmost land areas have daily overflights due to the or-
bit configuration. Prior to the SMOS mission, passive L-band
microwave observations were only made in space during the
Skylab 3 mission in 1973 (Jackson and Eagleman, 2004).
The revelation of the strong presence of man-made RFI in
the protected frequency band (1400-1427 MHz) following
the SMOS launch was a surprise (Oliva et al., 2012, 2016).
As a consequence of the RFI level, spatial coverage over
the Eurasian continent is severely hampered, moreover in-
creasing significantly over Eastern Europe after 2022. Fig-
ure 8 shows the average observation interval (in days) of the
SMOS FT product for the period 1 June 2010-31 December
2021 for ascending and descending orbits. The more frequent
observations towards the north due to the orbit configuration
are clearly visible. The presence of RFI increases towards
the south on the Eurasian continent and primarily affects the
descending orbit observations due to the forward tilt of the
instrument. The North American continent is much less af-
fected by RFI contamination, except for the first years of
SMOS operation. Figure 9 shows the average observation in-
terval (in days) for the period 1 January 2022 to 1 June 2024.
The increased RFI contamination over Europe is clearly vis-
ible, hampering the SMOS FT product over a considerable
area. While SMOS has provided valuable L-band observa-
tions since 2010, RFI, particularly over parts of Eurasia, re-
mains a significant challenge for data continuity. The Soil
Moisture Active Passive (SMAP) mission, launched in 2015,
also operates in the L-band and incorporates onboard RFI
detection and mitigation techniques that help reduce the im-
pact of radio interference in some regions (Piepmeier et al.,
2014). As such, SMAP can serve as a complementary source
of L-band brightness temperature data for freeze—thaw ap-
plications, particularly in areas where SMOS data quality is
frequently compromised.

An important feature of the SMOS FT product is that it
contains data indicating the date of the last acquired obser-
vation for each location. This information is crucial for in-
terpreting the data accurately, as it allows users to assess the
timeliness of the observations. If the last observation was ac-
quired several days before the release of the current prod-
uct, there may be a significant gap in the data. During this
period, changes in the soil state, such as a transition from
thawed to frozen conditions, could have occurred at any point
between the latest observation and the current product date.
Users must be aware that large gaps in observation frequency
can introduce uncertainty in the soil state estimates, making it
essential to consult the last observation date when analysing
the product data.

Earth Syst. Sci. Data, 17, 5337-5353, 2025

K. Rautiainen et al.: An operational SMOS soil freeze—thaw product

5.3 Wet snow

The presence of wet snow hampers the ability of SMOS L-
band observations to detect soil conditions, particularly dur-
ing spring. As snow begins to melt, its high liquid water con-
tent attenuates the microwave signal from the underlying soil
and strongly affects the observed brightness temperatures,
especially in horizontal polarization (Pellarin et al., 2016).
This leads to increased polarization contrast and elevated
values of the normalized polarization ratio (NPR), similar
to those observed for thawed, moist soils. While snowmelt
and soil thaw often occur concurrently in spring, the timing
can vary, and the L-band signal cannot unambiguously dis-
tinguish between wet snow and actual thawed soil. Conse-
quently, the SMOS FT algorithm may misinterpret the pres-
ence of wet snow as an early soil thaw, introducing uncer-
tainty in the retrieval during the spring melt period. Varia-
tions in L-band brightness temperature in spring should thus
rather be interpreted as information about the presence of lig-
uid water in snow (Rautiainen and Holmberg, 2023). How-
ever, due to the partial penetration of L-band microwave ra-
diation even in wet snow, the interpretation of the signal is
less straightforward than at higher frequencies. On the other
hand, this carries the potential to retrieve the liquid water
content of snow (Houtz et al., 2021) and also the density
of snow (Schwank et al., 2015; Lemmetyinen et al., 2016;
Naderpour et al., 2017).

6 Data availability

The operational SMOS L3FT data record DOI is

https://doi.org/10.57780/sm1-fbf89e0 (ESA, 2023).
Data are available from the ESA SMOS online
dissemination  service  (https://doi.org/10.57780/sm1-

fbf89e0) and from the FMI dissemination service (https:
/Nitdb.fmi.fi/outgoing/SMOS-FTService/Operational FT/,
last access: 2 October 2025). The associated documentation,
the algorithm theoretical baseline document, the product de-
scription document, and the read-me-first note are available
from both services.

The input datasets used in this study are publicly avail-
able: CATDS L3TB brightness temperatures (Al Bitar
et al, 2017, https://doi.org/10.12770/6294e08c-baec-
4282-a251-33fee22ec67f), IMS Daily Northern Hemi-
sphere Snow and Ice Analysis (U.S. National Ice
Center, 2008, https://doi.org/10.7265/N52R3PMC),
and ERAS-Land reanalysis (Mufoz Sabater, 2019,
https://doi.org/10.24381/cds.e2161bac).

7 Conclusions

The SMOS FT product provides daily monitoring of the
freeze—thaw (FT) state of Northern Hemisphere land surfaces
at a spatial resolution of 25 km. The first operational SMOS
FT product, made public in 2018, was developed from the
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Figure 8. Average observation interval of the SMOS FT product, measured in days. The average is computed between 1 June 2010 and 31

December 2021 for (a) ascending and (b) descending orbits.
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Figure 9. Same as Fig. 8 but for the time period 1 January 2022 to 1 June 2024.

prototype algorithm presented by Rautiainen et al. (2016).
The updated SMOS FT product (version 3.01), presented
here, offers a tool for monitoring seasonal freeze—thaw cy-
cles, particularly across high-latitude regions. The L-band
passive microwave observations used in this product are ef-
fective in detecting soil FT transitions due to the sensitivity
of L-band brightness temperatures to changes in soil permit-
tivity between frozen and thawed states.

The updated SMOS FT algorithm incorporates several im-
provements. These include enhanced noise removal through
temporal filtering of the SMOS signal, which has improved
the accuracy and reliability of the freeze—thaw detection. The
validation of the SMOS FT estimates against in situ SM and
ST data from the international soil moisture network, along
with comparisons to the ERAS-Land reanalysis soil temper-
ature data, demonstrates the product’s robustness in identify-
ing the day of first freezing in autumn, a critical parameter
for greenhouse gas emissions studies.

https://doi.org/10.5194/essd-17-5337-2025

However, certain limitations do remain. The SMOS FT
product is less effective in regions with dry soils, thin soil
layers, dense forested regions, or significant radio frequency
interference (RFI), particularly in Eurasia. Additionally, the
presence of wet snow in spring can obscure soil thawing de-
tection, and variations in L-band signals during spring should
be interpreted as an indication of wet snow rather than soil
conditions; however, unambiguous detection of wet snow
from the L-band is itself also more challenging than at higher
frequencies due to partial penetration in wet snow. Further-
more, after the spring of 2022, the exceptionally strong pres-
ence of RFI over Eastern Europe has hindered the SMOS FT
product over large areas.

In conclusion, while the SMOS FT product shows strong
performance in high-latitude environments, future work
should focus on addressing the limitations posed by RFI
and wet snow layers. Continued refinement of the algorithm
and further validation in different environmental conditions
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will enhance the product’s utility for climate change studies,
ecosystem monitoring, and land-use management.

Additionally, SMOS FT data have been utilized in the Car-
bonTracker Europe inverse modelling system at the Finnish
Meteorological Institute to improve methane flux estimates
at high latitudes. By aiding in the characterization of cold-
season emissions, the integration of SMOS FT data has
demonstrated its value in reducing uncertainties and sup-
porting studies of methane dynamics in northern ecosystems
(Erkkila et al., 2023; Tenkanen et al., 2021).
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downloaded from http://maps.elie.ucl.ac.be/CCl/viewer/download.
php (last access: 2 October 2025), and the ERAS-Land data
were downloaded from https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-land (last access: 2 October 2025). An earlier ver-
sion of this paper has been reviewed for language clarity using an
Al-assisted tool (ChatGPT). The authors take full responsibility for
the content and interpretations presented.
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