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Abstract. Accurate precipitation estimates are essential for a wide range of applications, including climate
research (Pendergrass et al., 2017), water resource management (Camici et al., 2024; Fischer and Knutti, 2016;
Kucera et al., 2013), agriculture (Beck et al., 2021; Ru et al., 2022), and natural hazard assessment (Serrano
et al.,5 2010,Maggioni and Massari, 2018, Peiro et al., 2024; Smith et al., 2023). However, developing high-
quality, long-term daily datasets at fine spatial resolutions remains challenging due to the inherent variability
and heterogeneity of precipitation patterns. This study introduces the HYdroclimatic PERformance-enhanced
Precipitation (HYPER-P, https://doi.org/10.5281/zenodo.15025514, Filippucci et al., 2024b) product, covering
Europe and part of the Mediterranean basin from 2007 to 2022 at a 1 km daily resolution. HYPER-P is derived
by downscaling and merging multiple data sources, including remote sensing products from Top-Down (TD) and
Bottom-Up (BU) approaches, reanalysis datasets, and gridded in situ observations. The downscaling leverages
on CHELSA climatology data (Karger et al., 2017), while the merging is obtained through a weighted average
approach informed by Triple Collocation Analysis.

Four merged products were developed based on multiple combinations of satellite products, observation and
reanalysis datasets. The evaluation of these products was conducted through high-resolution validation in three
Mediterranean regions with dense observational networks and coarse-resolution validation across Europe and
a portion of North Africa. Results indicate that the combination of TD and BU satellite approaches enhance
precipitation estimates, with merged products outperforming the parent datasets, especially in regions with sparse
gauge coverage. The inclusion of ERAS5-Land (Hersbach et al., 2020; Muifioz Sabater, 2019) further improves
accuracy over areas characterized by complex topography. The merging of satellite products, particularly the one
including ERAS5-Land, shows overall strong performance, although challenges remain in validating precipitation
estimates where ground observations are limited. This work contributes to advancing precipitation monitoring
capabilities, offering valuable tools for scientific and operational applications across Europe and beyond.
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1 Introduction

Precipitation estimates are crucial in many fields of research
such as climate studies (Pendergrass et al., 2017), water cycle
research (Pellet et al., 2024), droughts (Vicente-Serrano et
al., 2010), floods (Maggioni and Massari, 2018), landslides
(Peiro et al., 2024; Smith et al., 2023), ecosystem dynamic
(Huxman et al., 2004), agriculture (Beck et al., 2021; Ru
et al., 2022) and water resource management (Camici et al.,
2025; Fischer and Knutti, 2016; Kucera et al., 2013). How-
ever, finding a high-quality, long-term daily precipitation at
kilometer spatial resolution dataset is not straightforward, es-
pecially over data scarce region and complex terrain, given
the spatial heterogeneity and temporal variability in precipi-
tation.

In Europe and in the Mediterranean region, many ob-
servational, satellite-based and reanalysis datasets are avail-
able. Notable examples of ground-based datasets are E-OBS
(Haylock et al., 2008; Cornes et al., 2018; all acronyms are
defined in Appendix A) and EMO-5 (Gomes et al., 2020)
for the whole of Europe, and other regional datasets like
SAFRAN for France, Spain, and Tunisia (Quintana-Segui
et al., 2008; Vidal et al., 2010; Quintana-Segui et al., 2017;
Tramblay et al., 2019) or MCM for Italy (Sinclair and Pe-
gram, 2005; Bruno et al., 2021). These datasets, that rely
mainly on rain-gauge observations, are the most reliable and
widely used tool for directly measuring precipitation in Eu-
rope. However, they are often characterized by uneven dis-
tribution of ground monitoring networks, like, for example,
the case of the Mediterranean region compared to Europe
(Girons lopez et al., 2015), thus leading to potentially sig-
nificant interpolation errors. Radar measurements are also
increasingly available in Europe, with more than 200 oper-
ational weather radars managed by the EUMETNET within
the OPERA (Huuskonen et al., 2014). This technology al-
lows for the collection of reliable precipitation information
with high temporal resolution (often in the range of min-
utes), wide spatial coverage (a single weather radar can cover
a circular area with a radius of 100-250 km) and better spa-
tial accuracy compared to rain gauges, which only measure
precipitation at their exact location). Radars do not measure
rainfall directly; instead, they detect the reflectivity of precip-
itation particles. Radar measurements are hence often com-
bined with rain gauges, to adjust the measurements and ob-
tain more reliable precipitation estimates. However, also this
network is heterogeneous in hardware, signal processing, fre-
quency and scanning strategy, therefore their combination is
difficult and prone to errors. Moreover, most of the exist-
ing weather radars are mainly located in developed countries
(Heistermann et al., 2013).

Satellite and reanalysis datasets are widely used alterna-
tives to overcome the problem of spatial accuracy varia-
tions. The Global Precipitation Measurement (GPM) mis-
sion, launched in 2014 by NASA and JAXA in collabora-
tion with GES DISC, revolutionized precipitation retrieval
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with a multi-sensor integration approach (Hou et al., 2014).
GPM intercalibrates, merges, and interpolates data from var-
ious instruments to generate half-hourly precipitation esti-
mates on a 0.1° grid across the 60° N-S domain via the In-
tegrated Multi-Satellite Retrievals for GPM (IMERG; Huft-
man et al., 2024). It offers three Level 3 products with dif-
ferent timeliness and calibration approaches: IMERG-ER,
IMERG-LR, and IMERG-FR. While IMERG employs a
Top-Down (TD) approach, based on the inversion of the at-
mospheric signals to obtain instantaneous rainfall rates, other
satellite rainfall products developed in the last decade are
based on indirect and alternative approaches. For example,
SM2RAIN-ASCAT (Brocca et al., 2014, 2019) is obtained
with a Bottom-Up (BU) approach, i.e. by inverting the soil
water balance equation for rainfall (only the liquid phase of
precipitation) starting from satellite soil moisture observa-
tions derived from ASCAT SM data (H SAF, 2020). Rainfall
data are generated for the entire terrestrial globe, excluding
frozen areas, and are available on a 0.1° grid.

While invaluable, SPEs face various challenges. Specif-
ically, precipitation products obtained from the Top-Down
approach have limitations related to the instantaneous nature
of the measurement (related to the satellite overpass) with re-
spect to the sporadic nature of natural phenomenon, leading
to errors influenced by precipitation type, satellite orbit, and
swath width (Kucera et al., 2013; Behrangi and Wen, 2017).
Additional issues include biases, difficulties in light precip-
itation estimation, and detection over snow and ice (Ferraro
et al., 1995; Kidd and Levizzani, 2011). The GPM’s DPR
has mitigated some of these issues, but further improvements
are needed (Tan et al., 2016; Gebregiorgis et al., 2018). Simi-
larly, alternative approaches, like SM2RAIN, have also some
limitations, due to e.g. the underestimation of the rainfall
when the soil saturates, the low accuracy of SM (and there-
fore rainfall) for dense vegetation coverage and complex to-
pography) and the sensitiveness to SM variations induced by
noise (Brocca et al., 2014, 2019).

Model reanalysis datasets like ERA-Interim and ERAS
(Dee et al., 2011; Hersbach et al., 2020; Muiioz Sabater,
2019) provide an alternative to satellite and ground-based
precipitation data. While effective for simulating large-scale
weather patterns, their low spatial resolution and limitations
in sub-grid process parameterization hinder accurate repre-
sentation of convective systems (Ebert et al., 2007). In other
words, reanalysis and satellite datasets are widely used alter-
native but also suffer from uncertainty especially over moun-
tainous regions (Maggioni et al., 2017; Gomis-Cebolla et al.,
2023) and challenge to detect small scale precipitation pat-
terns typical of complex landscapes such as the Alpine region
(Girotto et al., 2024).

Recently, some studies have proposed merged precipi-
tation datasets as an alternative to single source estimates
(Beck et al., 2019; Pellarin et al., 2013; Massari et al., 2020)
which, thanks to optimal merging, have shown to overcome
the problems of parent datasets (Beck et al., 2017; Brocca et
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al., 2020; Camici et al., 2018). Still the spatial resolution of
these products remains quite coarse relative to the fine land-
scape features of the European regions.

The aim of this paper is to present the HYdroclimatic
PERformance-enhanced Precipitation (HYPER-P) product
available over Europe and part of the mediterranean basin
from 2007 to 2022 at 1 km/daily spatial and temporal resolu-
tion, as well as its quality and its potential usage.

This product is generated by downscaling and merg-
ing multiple precipitation datasets from different sources:
rain gauges, satellite observations (using both top-down
and bottom-up approaches), and reanalysis data. The parent
datasets are selected based on criteria such as low latency
availability or potential, broad spatial coverage, and high ac-
curacy. As a result, the merged product can be made avail-
able globally with relatively short latency — approximately
one week. Radar measurements are not included in the merg-
ing process due to the lack of a global radar dataset and the
limited number of weather radars, particularly in developing
countries, but they can be used as a valuable reference. Lo-
cal (intended as not-global) datasets from radar and gauge
were not included in the merging, but they were used as in-
dependent references for assessing the performance of the
merged product. The parent products are first downscaled
using monthly pattern information obtained by CHELSA cli-
matology dataset and then merged using a weighted average
where relative weights have been calculated based on the rel-
ative quality derived from TC Analysis (Gruber et al., 2016,
2017, Massari et al., 2017; Chen et al., 2021). Due to its po-
tential low latency, HYPER-P can be useful for climatologi-
cal applications like hydrological modeling, agricultural and
drought monitoring or climatological studies. Specifically,
HYPER-P is expected to be particularly valuable for com-
pletely or nearly ungauged areas, which lack stable and high-
resolution information from ground networks (gauges and/or
radars). The evaluation of the dataset is carried out at both
high- and coarse-resolution. The high resolution is based on
high-density ground-based rainfall networks over three dif-
ferent regions, while the coarse one is obtained through the
comparison against gridded precipitation datasets available
over Europe as E-OBS and EMO. Various satellite precipita-
tion products are also evaluated in the same areas for com-
parison.

This paper is organized as follows: after the introduc-
tion, the study area and the datasets used in this study
are described. Subsequently, the downscaling and merging
procedures are explained in detail, along with the perfor-
mance metrics adopted for product assessment. Next, high-
resolution validation is performed at 1 km spatial resolution
over three sub-regions of the Mediterranean Basin with dense
rain gauges and/or radar networks. This is followed by a
broader coarse-resolution analysis across the full domain,
using the highest-performing products aggregated to 10 km
resolution. Finally, the results of the two validations are uti-
lized to assess the merged products and evaluate their valid-
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ity across the European region and a portion of north Africa
regions.

2 Data

2.1 Study Area

The target area of this study is the Europe and mediterranean
regions, specifically the area between —11.9 and 44.8° E and
27.7 and 62.3°N. The Europe region represent diverse cli-
matic zones, which play a crucial role in precipitation dy-
namics. Specifically, the following climates are found in
different areas: Oceanic Climate (Cfb), found in Western
Europe, particularly along the Atlantic coast, this climate
is characterized by mild temperatures and relatively high,
evenly distributed precipitation throughout the year; Conti-
nental Climate (Dfb, Dfc), dominates Eastern and Central
Europe, marked by greater seasonal temperature variation,
with cold winters and warm summers, and moderate pre-
cipitation, often peaking in summer; Mediterranean Climate
(Csa, Csb), prevails in Southern Europe, particularly around
the Mediterranean Basin. It features hot, dry summers and
mild, wet winters; Subarctic and Polar Climates (Dfc, ET),
present in Northern Europe and high-altitude regions, such
as Scandinavia and parts of the Alps, with cold winters,
short summers, and generally low precipitation, even if the
orographic lift in some cases affect the precipitation pat-
tern (Bonacina, 1945). These regions provide distinct hydro-
logical contexts, with variability in precipitation driven by
geographical, seasonal, and synoptic-scale atmospheric pro-
cesses.

2.2 Dataset selections

Several precipitation datasets have been downloaded and
processed to create a more reliable high-resolution precip-
itation product over the study area and validate it. Specif-
ically, we collected seven reference datasets: four high-
resolution (MCM, SAFRAN, COMEPHORE and EMO)
and three medium resolution reference datasets (CPC, E-
OBS and ERA5-Land). These datasets were used to validate
the coarse-resolution satellite from the bottom-up and top-
down approaches (CHIRP, SM2RAIN-ASCAT, IMERG-LR,
CPC), their downscaling and the merged products. The fol-
lowing section provides a detailed description of these, and
all the other datasets used in the analysis. The details of each
dataset are reported in Table 1.

2.2.1 Reference datasets

— COMEPHORE. Comephore (Tabary et al., 2012) pre-
cipitation reanalysis is available between 1997 and
2021. The precipitation estimates are obtained using the
data from the French operational weather radars net-
work ARAMIS, corrected by hourly rain gauges ob-
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Table 1. Characteristics of the precipitation dataset selected for intercomparison: name, temporal resolution, spatial sampling, spatial cover-
age, period availability, and source (satellite TD: Top-down approach, satellite BU: Bottom-up approach).

Dataset Temporal Spatial Spatial Period Source
resolution sampling  coverage

Reference =~ COMEPHORE Hourly 0.009° Hérault Basin  1997-2021  Reanalysis (Gauge + Radar)
CPC Daily 0.5° World (Land)  1979-date  Gauge
EMO Daily larcmin  Europe 1990-2022  Gauge, reanalysis
E-OBS Daily 0.1° Europe 1950-2021 Gauge
ERAS5-Land Hourly 0.1° World (Land)  1950-date  Reanalysis
MCM Daily 0.009° Po basin 2016-2021 Gauge, radar
SAIH Daily 0.009° Ebro Basin 1987-date  Gauge

Satellite CHIRP Daily 0.05° 50°S:50°N  1981-date  Satellite TD
GSMAP Daily 0.1° 60°S:60°N  2003-date  Satellite TD
IMERG Late Run Half-hourly  0.1° World 2000—date  Satellite TD
PERSIANN Daily 0.04° 60°S:60°N  2003-date  Satellite TD
SM2RAIN-ASCAT  Daily 125km  World (Land)  2007-2023  Satellite BU

servations interpolated by kriging (around 4000). The
COMEPHORE product has a spatial resolution of 1 km
and a temporal resolution of 1h over the Hérault basin
(~ 18000 km?). The hourly precipitation was accumu-
lated to daily scale in this study.

CPC. This dataset is part of products suite from the
CPC Unified Precipitation Project that are underway
at NOAA CPC. The dataset is obtained by combining
all gauge information sources available at CPC (around
17000) and by taking advantage of the optimal inter-
polation objective analysis technique (Xie et al., 2007).
See Chen et al. (2008), for further details. Precipitation
data are available with a spatial resolution of 0.5° lat-
itude x 0.5° longitude. The daily precipitation product
was provided by the NOAA PSL, Boulder, Colorado,
USA, from their website at https://psl.noaa.gov (last ac-
cess: 14 October 2024). This product is available with
low latency (around three days).

EMO. EMO is a European high-resolution, daily mete-
orological dataset built on historical and real time ob-
servations developed within Copernicus EMS. Among
the released variables, the product provides total pre-
cipitation. The insitu observations are quality checked
and then interpolated through SPHEREMAP and Ya-
mamoto methods (Gomes et al., 2020). Currently, EMO
is available in two spatial resolutions: EMO-5 provides
grids with a spatial resolution of 5km x 5km and cov-
ers the period from 1990 to 2019. EMO-1 provides grids
with a spatial resolution of larcminxlarcmin (approx.
1.5 km) and covers the period from 1990-2022. EMO-1
version 1 was adopted in this analysis

E-OBS. E-OBS is a land-only gridded daily observa-
tional dataset for precipitation and other meteorological
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variables in Europe. This dataset is based on observa-
tions from meteorological stations over Europe (14 212
stations with data after 2007 in version 28e), which
are provided by the NMHSs and other data holding in-
stitutes (Cornes et al., 2018). The product is available
at daily temporal resolution and 10km spatial resolu-
tion. Version 25.0e was adopted for this study. Note
that, in some areas, E-OBS observations are derived
by aggregating precipitation networks with time inter-
vals that differ from the standard 00:00-24:00 period
(Overeem et al., 2023), This can potentially cause un-
certainty on the assessment precipitation products us-
ing E-OBS. However, considering that E-OBS is not the
only dataset used as reference and the importance of
assessing HYPER-P against widely used precipitation
products, the uncertainty is deemed acceptable.

ERAS5-Land. ERAS5-Land, provides hourly data of vari-
ous land surface variables from 1950 onwards, combin-
ing models with observations. It was produced by re-
playing the land component of the ECMWF ERAS cli-
mate reanalysis and it is characterized by an improved
spatial resolution (0.1°), while the temporal resolution is
1h (Hersbach et al., 2020; Muiioz Sabater, 2019). The
hourly precipitation was accumulated to daily scale in
this study.

MCM. High-resolution precipitation fields over the
Po basin (around 80000km?) were estimated with
the MCM technique, which incorporates precipitation
gauges and radar estimates to infer 1 km precipitation
observations at hourly time scale (Bruno et al., 2021).
MCM is an improvement of the Conditional Merging
proposed by Sinclair and Pegram (2005), which esti-
mates the structure of covariance and the length of spa-
tial correlation at every gauge, taking it from the cumu-
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lated radar precipitation fields. For the Po River basin,
MCM is based on 1377 precipitation gauges and on
the mosaic of the Italian weather radars. This product
has been developed and shared by the CIMA Research
Foundation.

SAIH. A high-resolution forcing dataset of precipita-
tion based on the SAFRAN analysis system (Quintana-
Segui, 2016, 2017) has been created by the Ebro Ob-
servatory for the Ebro basin area (~ 83 000 km?2). This
dataset uses in-situ data from the SAIH and includes
precipitation data gathered from 333 stations over the
Ebro basin every 15 min. There are several versions of
this dataset at different resolutions. The 1km resolu-
tion product has been created specifically for the ESA
4DMED-Hydrology project. It covers the period 2008—
2020.

2.2.2 Satellite datasets
— CHIRP. The CHIRP is a quasi-global precipitation data

set. The product uses IR data to retrieve precipitation at
high-resolution (Funk et al., 2015; Shen et al., 2020).
The data set runs from 1981 to the near present. The
CHIRP satellite was developed by the USGS in collab-
oration with the Climate Hazards Group at the Univer-
sity of California. CHIRP combines Thermal Infrared
satellite precipitation estimates from the Globally Grid-
ded Satellite (GriSat) and the Climate Prediction Cen-
ter dataset (CPC TIR) from NOAA to produce the pre-
cipitation dataset. It is therefore based on a TD ap-
proach, basing precipitation information from cloud and
atmosphere measurements. The CHIRP product pro-
vides satellite estimates at high spatiotemporal resolu-
tion covering regions between 50°S to 50°N of lati-
tudes. The selected version does not use any rain-gauge
data.

IMERG-LR. The IMERG algorithm uses data obtained
from GPM mission to estimate precipitation over the
majority of Earth’s surface (Huffman et al., 2024). The
precipitation is obtained by exploiting the TD approach,
where the precipitation particles are sensed from dif-
ferent satellite sensors in various regions of the elec-
tromagnetic spectrum: VIS, IR, and MW. The result-
ing product spatial resolution is 0.1°, while the temporal
resolution is 30 min. Here, the Late-run version 6 of the
dataset is adopted, characterized by 12—18 h latency. In
this study, the precipitation data were accumulated to
obtain daily measurements. The selected version does
not use any rain-gauge data.

GSMAP. The GSMAP is developed by JAXA. The prod-
uct takes advantage of the GPM mission constella-
tion satellites to provide hourly rain rates (Kubota et
al., 2020). The precipitation estimation is based on the
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merging of microwave and infrared retrievals through
LEO and GEO platforms. It relies on the TD approach.
The product covers 60° S to 60° N globally. The selected
version does not use any rain-gauge data.

— PERSIANN. PERSIANN-CCS (here in after PER-
SIANN) is developed by the CHRS at the University
of California, Irvine. The product is based on the use of
neural network function procedures to compute precip-
itation rate at each 0.04° x 0.04° pixel through infrared
images provided by geostationary satellites, hence it is
based on the TD approach (Ashouri et al., 2015). The
product covers 60° S to 60° N latitude. The selected ver-
sion does not use any rain-gauge data.

— SM2RAIN-ASCAT. This dataset is a new global scale
rainfall product obtained from ASCAT satellite soil
moisture data through the SM2RAIN algorithm (Brocca
et al., 2014, 2019). This algorithm is based on the BU
approach, since it infers the precipitation from SM vari-
ations by resolving the soil water balance equation. The
SM2RAIN-ASCAT rainfall dataset (in mmd™") is pro-
vided over a regular grid at 0.1° sampling on a global
scale. The product represents the accumulated rainfall
between 00:00 and 23:59 UTC of the indicated day.
The SM2RAIN method was applied to the ASCAT soil
moisture product (Wagner et al., 2013), H SAF H119-
H120 product, for the period from January 2007 to De-
cember 2021 (15 years). It is potentially available with
low latency. The selected version does not use any rain-
gauge data.

All the above precipitation data (reference and merged)
were linearly interpolated each day at midnight UTC, with a
maximum gap of empty data of 5d.

2.2.3 Additional datasets

Two additional datasets were collected to obtain a water
mask (DEM ASTER) and statistical information regard-
ing high-resolution precipitation patterns (CHELSA dataset).
Brief descriptions of them are provided below:

— CHELSA. CHELSA (Karger et al., 2017) is a very high-
resolution (30 arcsec, ~ 1 km) global downscaled cli-
mate dataset currently hosted by the WSL. It is based
on a mechanistical statistical downscaling of global re-
analysis data or global circulation model output, and
it includes climate layers for various time periods and
variables. The precipitation algorithm incorporates oro-
graphic predictors including wind fields, valley expo-
sition, and boundary layer height, with a subsequent
bias correction. Monthly precipitation data from 2000
to 2019 were downloaded.

— ASTER GDEM. Elevation data were obtained by the
ASTER, one of five instruments aboard NASA’s Terra
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spacecraft (launched in 1999). The ASTER GDEM cov-
ers land surfaces between 83°N and 83° with a spa-
tial resolution of 1arcsec (~30m resolution at the
Equator). Here, version 3 data was used to obtain
the average DEM at 1km scale and generate a wa-
ter mask (NASA/METI/AIST/Japan Spacesystems, and
U.S./Japan ASTER Science Team, 2018).

3 Methods

3.1 Downscaling Procedure

One product for each category (Gauge/Radar, Reanalysis,
Satellite TD and BU) was selected for downscaling at 1 km
spatial resolution, using CHELSA climate information. The
products were selected with the criteria of maximum spatial
coverage, lowest latency, higher spatial resolution and accu-
racy. The selected products were CPC for Gauge data, ERAS-
Land for Reanalysis, IMERG-LR for satellite TD approach
and SM2RAIN-ASCAT for satellite BU approach. A regular
grid of 0.009° spatial resolution (1 km at equator) was cre-
ated for the whole study area. Only land pixels are used for
this analysis. A mask is derived from ASTER dem to mask
water pixels.

A downscaling procedure is carried out for each precipi-
tation product by using the high-resolution information con-
tained in CHELSA. The downscaling procedure is developed
starting from the work of Terzago et al. (2018). The main
steps of the procedure are shown in Fig. 1. CHELSA data are
extracted and bilinear interpolated on the chosen grid (be-
cause the CHELSA grid is different from the target one).
Since CHELSA dataset is not available in real-time but only
up to June 2019, a single standard year climatology was used
for the full period: first, monthly aggregates were converted
into average daily precipitation by dividing each of them
by the number of days in the corresponding month. Then,
CHELSA estimates for the same month across 2000-2019
were averaged to obtain 12 maps, each representative of a dif-
ferent month, thereby producing the standard year estimates
(Fig. 1a). The average monthly values of the standard year
were then attributed to the central day of each corresponding
month of the study period. Linear interpolation was then ap-
plied to obtain a daily estimate across the entire study period,
thus avoiding step patterns after the downscaling. CHELSA
information is used just for the relative precipitation patterns
(not the value itself), to spatialize the coarse-resolution infor-
mation of the selected precipitation products. Indeed, the pat-
tern information of CHELSA is derived from the modelling
of orographic predictors of wind fields, valley exposition and
boundary layer height and therefore can be considered a reli-
able estimation of the real precipitation distribution (Karger
et al., 2017). The relative pattern is hence obtained by di-
viding the CHELSA precipitation amount by the results of a
moving gaussian spatial filter applied to the same data. The
moving gaussian filter is used to reproduce the parent product
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original spatial sampling, therefore its standard deviation is
fixed to half the spatial sampling of the downscaled precipita-
tion product, i.e. 5, 5, 6 and 25 km for ERAS-Land, IMERG,
SM2RAIN_ASCAT, and CPC, respectively (Fig. 1b).

The precipitation datasets to be downscaled (Fig. 1c) are
first resampled to the project grid through a bilinear interpo-
lation, to exploit the spatial information of the original prod-
uct at its fullest. A moving gaussian spatial filter with the
same standard deviation of the previous is then applied to
the interpolated data, to smooth the precipitation pattern ob-
tained by the bilinear interpolation (Fig. 1d). The obtained
filtered data are hence multiplied for the CHELSA-derived
weights, obtaining a “pre-downscaled” product (Fig. 1e). Al-
though this strategy does not allow a precise downscaling of
the single storm pattern, due to the absence of a concurrent
high-resolution pattern, it is useful to better spatialize coarse
resolution information through the year.

The downscaling process applied at daily temporal reso-
lution may introduce errors derived by the use of monthly
CHELSA data. To mitigate these errors, a correction factor
was applied to preserve the pattern of the parent data. This
factor was obtained by first aggregating the pre-downscaled
precipitation data at coarse resolution and then calculat-
ing the ratio between this aggregation and the original pre-
downscaled precipitation. A moving gaussian spatial filter
was applied to smooth transitions and avoid step behaviors
(Fig. 1g). The downscaled data are finally obtained by mul-
tiplying the pre-downscaled data by the correction factor
(Fig. 1h). The coarse-resolution aggregation of the down-
scaled data shows that the original coarse precipitation val-
ues are mainly maintained (Fig. 1i), since slight changes in
precipitation are almost always present when spatial interpo-
lation algorithms are applied.

The procedure ensures the reproduction of climatolog-
ically consistent monthly precipitation patterns using the
CHELSA product, while preserving sub-monthly precipita-
tion variability and maintaining the total precipitation at the
coarse scale as evaluated by the parent product.

3.2 Merging Procedure

The objective product should be available with a relatively
low latency (e.g., a week), therefore ERA5-Land, CPC,
IMERG-LR and SM2RAIN-ASCAT products are selected to
be downscaled and merged, due to their low latency avail-
ability or potentiality, large coverage and accuracy. The fol-
lowing combinations of the datasets are here tested:

1. M1 = Gauge + Satellite TD;
2. M2 = Gauge + Satellite TD + Satellite BU;
3. M3 = Satellite TD + Satellite BU;

4. M4 =Reanalysis + Satellite TD 4 Satellite BU.
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Figure 1. Example of the downscaling procedure for CPC data of the 21 August 2007 in a small catchment of Italian Alps. (a) original
CHELSA precipitation pattern for August, (b) relative CHELSA spatial pattern for the 21 August, (c) original CPC data, (d) CPC data
after spatial interpolation and gaussian filtering, (e) pre-downscaled data, (f) aggregation of the pre-downscaled data at the original coarse-
resolution, (g) corrective pattern of the pre-downscaled data, (h) downscaled data, (i) aggregation of the downscaled data at the original

coarse-resolution.

The comparison between M1 and M2 combinations allow
us to assess the improvement related to the addition of the
relatively new BU new approach to the merging procedure.
Moreover, ASCAT SM has been available only since 2007,
while CPC and IMERG both have data from 2000 onward. In
M3 combination, a precipitation product derived only from
satellite data is developed to assess the satellite capability
to estimate precipitation also in absence of ground observa-
tions. Finally, the reanalysis product is used in place of the
gauge one in M4 combination, to assess its potential, also
considering the difference in spatial resolution of the selected
products — ~50 and 10km for the CPC and ERA5-Land
products, respectively. TC technique (Gruber et al., 2016,
2017; Massari et al., 2017; Chen et al., 2021) is adopted to
merge the different data. The approach requires three inde-

https://doi.org/10.5194/essd-17-5221-2025

pendent datasets with uncorrelated errors. The mechanism of
TC approach is established on a linear error model, which
can be represented by the equation as:

Xi=a;+Bit +é& (1

where X; (i =1, 2, 3) are collocated measurement systems
linearly related to the true underlying value ¢ with addi-
tive random errors g;, respectively, while «; and §; are the
ordinary least squares intercepts and slopes. By assuming
that the errors from the independent sources have zero mean
(E(g;) =0) and are uncorrelated with each other (Cov(e;,
e;) =0, with i # j) and with t (Cov(e;, t) =0) the variance
of the error of each dataset can be expressed as (McColl et

Earth Syst. Sci. Data, 17, 5221-5258, 2025



5228

SATELLITE
T T T

P. Filippucci et al.: Development of HYPER-P

MERGED REFERENCE
T T T

0.75 + R -y .‘-".‘ 4
05/ -

Monthly
Spatial Pearson [ ]

oas | = |

o

-

Temporal
Pearson [ ]
©

o

T

|

o
n 2
[4;]

[4,]

o @o
T
=2 |
a |
O | | A\

g ) ‘ { ‘ ‘ ‘. \
ET A T — L 1 L
- X ALlALAAS A
w 5_\"/ [ ¥ 6 l S b l < |4 I/, S l A
E Y v _' J, N 4 ‘.
0 1 1 1 1 1 1 1 1
&) f 9 | ] " _“' | [ )
‘-E ol \ | I : ) | | J .
@ |/ : | VA : : | ‘ | - :
=157/ ; ‘ W / *__I I [ NI/ ‘
o / \|/ |
/ | ul i | / [ |
-2
A T e Ut

o Q N
WO P a0 o
© © \& ?Q’?\% P\\*'P‘

o

Pl

Figure 2. Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for the Po
River basin against MCM benchmark (1 km spatial resolution). For each violin, the white dot is the average value, the dark line the median

value, and the shape of the violin reflects the data distribution.

al., 2014):
O — QIQZg”

0p = 02— QB%” @
O - Q&Qf

From the error variance, Gruber et al. (2016) obtained the
SNR value of each dataset of the triplet with respect to the
unknown truth for each pixel of the study area. This index
can be considered a relative indicator of the capacity of the
dataset to contain precipitation information with respect to
the other two. An optimal merging of the products can be
therefore obtained by

PMerged = 01 P + w2 Py +w3 P3 3)
SNR;
w1 =
'~ SNR| + SNR; + SNR;
SNR,
w) =
SNR; 4+ SNR; + SNR3
SNR3
3 4)

~ SNR; + SNR; + SNR;3
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This approach was then applied to all the selected combi-
nations. When just two datasets were selected for merging,
ERAS5-Land product was selected to complete the triplet (not
used in the merging). In these cases, the merged precipitation
can be obtained from Egs. (3) and (4) by ignoring the third
product index (related to ERAS-Land):

PMerged = w1 P1 +an P> 5
with

SNR; SNR;
1 (6)

TSNR; +SNR, > 7 SNR, +SNR,

The obtained weights for all the four combinations are shown
in Appendix B. SM estimates from space are unreliable when
the soil is in frozen conditions. This reduces the applicability
of the BU approach in frozen areas. Since SM2RAIN AS-
CAT data are derived from SM, precipitation estimates ob-
tained in frozen conditions are excluded from the analysis.
The frozen condition mask is obtained from ERAS5-Land, by
selecting all the dates in which the surface temperature of the
first soil layer is below 0. In the masked areas, SM2RAIN
ASCAT product cannot be used, hence the TC fails in obtain-
ing the SNR. In these areas, three different approaches were

https://doi.org/10.5194/essd-17-5221-2025
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tested, according to the analysed products: (a) for M2 com-
bination, in frozen conditions SNR was obtained by replac-
ing SM2RAIN-ASCAT with ERAS-Land in the TC triplet,
i.e. M1 data were used in frozen areas; (b) for M3, the full
weight is given to IMERG data when SM2RAIN-ASCAT is
not available; (c¢) for M4, the SNR of IMERG and ERAS-
Land were interpolated from the nearest 4 valid pixels, and
the precipitation was obtained by merging the two of them.

3.3 Performance metrics

The precipitation estimates assessment against the bench-
marks data was carried out by calculating different metrics,
specifically as follows:

— R expresses the linear relationship between two sets of
data. It ranges between —1 and +1, where —1 indicates
perfect negative linear relationship, +1 means perfect
positive linear relationship and 0 means no statistical
dependency. Pearson’s correlation is here obtained from

R = Z((Pest _E) : (Pobs _E))
X Pest = Pe)? X Pats — P ?

where Pag and Peg are the daily precipitation estimates
and the average precipitation estimates, respectively,
while Pops and Pops are the daily and average observed
precipitation. This index was calculated both in space
and in time. For the spatial Pearson correlation, the pre-
cipitation was first accumulated at monthly temporal
resolution, in order to match CHELSA original resolu-
tion.

— RMSE is a widely used index to measure the error be-
tween an estimated and an observed dataset. Three dif-
ferent sources of error are considered together: decor-
relation, bias and random error. As the name implied,
RMSE is obtained by calculating the square root of the
mean quadratic difference between two datasets:

RMSE = v (Pest - Pobs)2

— BIAS index measures the systematic over- or underes-
timation of one dataset with respect to the benchmark
data. Here, it is obtained from the difference between
the estimated and the observed precipitation. According
to the above definition:

BIAS = Z(Pest - Pobs)

Negative BIAS values indicate precipitation underesti-
mation, while positive bias values mean the opposite.

https://doi.org/10.5194/essd-17-5221-2025
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4 Results

4.1 High-resolution validation

In this section, the performances of all datasets against high
spatial resolution reference data are presented and discussed.
All datasets were linearly interpolated to the same 1 km grid
using bilinear interpolation to enable comparison. The vali-
dation of the precipitation products was conducted in three
selected study areas, where high spatial and temporal resolu-
tion observed datasets were available. Specifically, the vali-
dation was carried out in (1) the Po River basin (Italy), us-
ing MCM data as benchmark; (2) the Hérault basin (France),
using the COMEPHORE precipitation reanalysis as bench-
mark; and (3) the Ebro basin (Spain), using the SAIH me-
teorological dataset as benchmark. The results of the anal-
ysis are shown in Figs. 2—4. Among the satellite precipita-
tion products, PERSIANN performed the worst for all met-
rics and across all study areas, followed by GSMAP and
CHIRP. IMERG-LR and SM2RAIN-ASCAT demonstrated
the best overall performances, with the former exhibiting
higher temporal Pearson’s correlation, and the latter achiev-
ing greater monthly spatial Pearson’s correlation and lower
RMSE. This confirms the selection of SM2RAIN-ASCAT
and IMERG-LR for being merged within the integrated prod-
ucts, as they show superior performance and wider spatial
coverage (CHIRP and PERSIANN are unavailable for high
and low latitudes).

The assessment of reference products is less straightfor-
ward and site dependent: overall, CPC has the lowest perfor-
mance, likely due to its coarse spatial resolution; while the
performance of the remnant products depends on the study
area. In the Po River basin (Fig. 2), ERA5-Land displayed
the best Temporal Pearson’s correlation and good monthly
spatial Pearson’s correlation, despite a general overestima-
tion of precipitation (positive BIAS). In contrast, EMO and
E-OBS tended to underestimate precipitation. In the Hérault
River basin (Fig. 3), instead, ERA5-Land’s performances re-
mained mainly stable, while E-OBS exhibited the highest
spatial correlation. Finally, in the Ebro River basin (Fig. 4),
both EMO and E-OBS performed well: specifically, E-OBS
showed a double-edged pattern in the violin plots of tem-
poral correlation and RMSE, suggesting non-uniform per-
formance across the region. Indeed, since both the bench-
mark (SAIH) and reference (E-OBS) products are derived
from gauge data, it is probable that these discrepancies are
related to a partial overlap in the gauge sensors included in
the two products. This is strongly supported by the results
shown in Fig. 5, which compares the temporal Pearson’s cor-
relation of EMO/E-OBS against observations with the dis-
tribution of their gauge networks in the three study areas. It
is worth noting that the local benchmark gauge distribution
is not shown here; however, the gauge locations in the Ebro
region can be inferred from the patterns in the relative Pear-
son’s correlation map, reflecting the Thiessen polygons used

Earth Syst. Sci. Data, 17, 5221-5258, 2025
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Figure 3. Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for the Hérault
River basin against COMEPHORE benchmark (1 km spatial resolution). For each violin, the white dot is the average value, the dark line the

median value, and the shape of the violin reflects the data distribution.

to create precipitation products; while the MCM network is
available from Fig. 8 of Filippucci et al. (2022). Addition-
ally, both MCM and COMEPHORE are derived from the in-
tegration of pluviometers and meteorological radar measure-
ments, meaning their spatial capability for estimating pre-
cipitation is greater than what might be inferred from gauge
locations alone, thanks to the large coverage of radar mea-
surements and their high spatial resolution (< 1km). Re-
garding EMO and E-OBS, the highest performances in each
study area were observed close to the gauges, indicating that
they are likely used for the generation of both EMO/E-OBS
datasets and the high-resolution local precipitation products.
Despite this fact introducing bias in our analysis, these find-
ings highlight that the performance of gauge-based products
is closely linked to the density and distribution of the gauge
stations.

In general, all merged products outperformed the individ-
ual satellite datasets, and, in some cases, they surpassed also
the reference products. M4 showed the best overall perfor-
mance, followed by M2, M1, and M3. In the Po River basin,
M4 outperformed all the other products across all metrics
except for BIAS. The superior performance of M4 can be at-
tributed to the inclusion of ERAS5-Land precipitation, which
generally outperforms CPC (used in M1 and M2), likely

Earth Syst. Sci. Data, 17, 5221-5258, 2025

due to its finer spatial resolution and better spatial unifor-
mity (CPC performance is constrained by the locations of
the gauges integrated in it). Indeed, the merging of datasets
from different approaches clearly benefits precipitation esti-
mation, as confirmed by the spatial distribution of the per-
formance metrics in the Po River basin, shown in Figs. 6—
8. Low-performance patterns were observed in all satellite
products, including high RMSE in the northwestern portion
of the catchment, as well as low Pearson’s correlation in spe-
cific areas within the Po valley and outside the Italian bor-
ders, and the intersecting curved shapes intersecting in the
center of the basin within the BIAS results. Since these low
performance patterns are similar across all the analyzed prod-
ucts, it is likely that they originated from uncertainty in the
MCM benchmark product. Specifically, the RMSE patterns
are probably due to noise in the radar measurements due to
mountains ground echoes and the low number of gauge sta-
tions in that area. The Pearson’s correlation patterns could be
instead related to the already known absence of gauge out-
side the Italian borders within MCM, while the circular low-
correlation areas could result from poorly performing, spe-
cific gauge stations. Finally, the intersecting curved shapes
of the BIAS likely reflect the influence range of radar mea-

https://doi.org/10.5194/essd-17-5221-2025
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Figure 4. Spatial Pearson’s correlation at monthly scale, Temporal Pearson’s correlation, BIAS error and RMSE at daily scale for the Ebro
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value, and the shape of the violin reflects the data distribution.

surements. Consequently, comparisons in these areas should
be treated with caution.

Among the satellite products, as previously mentioned,
IMERG-LR and SM2RAIN-ASCAT had the best perfor-
mances. However, all satellite products were less reliable
along the northern, western and southern borders of the Po
River basin (Fig. 6a—e), highlighting the challenges of satel-
lite precipitation estimation in complex topographical ar-
eas. BIAS maps (Fig. 7) show that all satellite-based pre-
cipitation products derived from the TD approach signifi-
cantly underestimate precipitation in these regions, whereas
SM2RAIN-ASCAT tends to overestimate it. This is likely
due to the satellite products’ limitations in estimating snow-
fall. Indeed, SM2RAIN-ASCAT does not exhibit underesti-
mation because it measures only liquid precipitation: regions
with negative surface temperatures are masked in this prod-
uct due to the inability to retrieve SM from satellite sensors
under frozen conditions. Notwithstanding this, SM2RAIN-
ASCAT BIAS is large in those areas because satellite SM es-
timates in complex topographical regions are of lower qual-
ity due to shadowing effects and layover (Ulaby et al., 1981).
SM2RAIN-ASCAT product also includes a monthly BIAS
correction using ERAS5-Land rainfall data (total precipitation
— snowfall, Brocca et al. 2019). As a result, its BIAS pat-

https://doi.org/10.5194/essd-17-5221-2025

tern resembles that of ERAS5-Land (e.g., Fig. 7e, m), although
they are not identical, since ERA5-Land precipitation is an-
alyzed (including snowfall contribution) and in any case the
correction is obtained from the climatology of the monthly
averages (Brocca et al., 2019). These limitations are inher-
ited by the merged product M3 (Figs. 6h, 7h and 8h), which
relies solely on SM2RAIN-ASCAT and IMERG-LR, but are
partially mitigated by merging the satellite data with reanal-
ysis data from ERAS5-Land (M4) or gauge data from CPC
(M1, M2). These merged products exhibit consistently good
and uniform performance across all indices in all study ar-
eas, though M1 and M3 tend to underestimate precipitation in
mountainous regions, while M4 shows a tendency to overes-
timate, due to ERAS5-Land probable overestimation of snow-
fall. Lastly, it is important to note the varying performance of
reference products in the Po Valley. For the gauge-based ref-
erence (E-OBS, CPC, EMO) this is likely due to the uneven
gauge networks distribution. Nevertheless, all the merged
products consistently exhibit strong performance across the
region, with M3 outperforming the reference products in the
northern part of the Po Valley. This is particularly signifi-
cant as it demonstrates that satellite-based precipitation prod-
ucts can outperform both reference and models in areas with
sparse gauge networks.

Earth Syst. Sci. Data, 17, 5221-5258, 2025
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The results obtained in the Ebro and Hérault River basins
overall corroborate the above findings. For the sake of
brevity, they are shown in Appendix C.

4.2 Coarse-resolution validation

For the coarse-resolution validation, all products were re-
gridded to a regular 0.1° grid across the entire study region.
The re-gridding was performed using bilinear interpolation
when the original spatial resolution of the considered prod-
uct was greater or equal to the target resolution (~ 10km). In
cases where the original pixels’ dimensions are smaller, spa-
tial aggregation was used. Due to similarities with M4 and
lower performances, the coarse-resolution validation of M1
and M2 is not shown. However, M3 is retained due to its in-
dependence from any reference measurements. PERSIANN
and GSMAP products were also excluded from the compari-
son because of their low performances in the high-resolution
validation. For the coarse-resolution analysis, ERA5-Land

Earth Syst. Sci. Data, 17, 5221-5258, 2025

was not used as benchmark but kept for comparison due to
its inclusion in the M4 product. Similarly, CPC was excluded
because of its overall low performance compared with EMO
and E-OBS. The validation assessment is conducted across
the entire study area, except for the northernmost part of Eu-
rope, due to the extensive snow and ice cover and the low re-
liability of observations. However, precipitation data for this
region are still provided (see the Data Availability section),
albeit with caveats due to the lack of validation.

Figures 9 and 10 show the performance of the selected
precipitation products over the study area against EMO and
E-OBS respectively. It should be noted that CHIRP’s as-
sessment is somewhat biased, as its spatial coverage only
partially overlaps with the study areas (CHIRP is available
between latitude —60 and 60). The results from the high-
resolution validation are confirmed here, with the merged
satellite products performing very well against both EMO
and E-OBS. The merged product based solely on satellite
data outperforms all individual satellite products in most in-

https://doi.org/10.5194/essd-17-5221-2025
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Figure 6. Daily temporal Pearson’s correlation of the selected precipitation datasets against MCM observations for the Po River basin area.

dices, except for RMSE, impacted by the high errors from
IMERG-LR.

M3 generally performs worse than the reference datasets
but merging with ERA5-Land allows notable improvements
across all performance indices, with average results on par
with those of the reference products. The violin plots of the
temporal Pearson’s correlation and RMSE between EMO
and E-OBS again reveal a double-edge pattern, indicating
that the two datasets are similar in at least part of the study
area. This is further confirmed by Fig. 11, where a clear
overlap between portions of EMO and E-OBS gauge net-
works is visible. Indeed, EMO benefits from a larger pool
of data. However, the availability of certain gridded datasets
used (e.g., CarpatClim, Euro4m-APGD, CombiPrecip) fluc-
tuate over time (Thiemig et al., 2022), which suggests that
the accuracy of EMO may also vary based on data availabil-
ity.

Performance index maps are displayed in Figs. 12-15,
showing Pearson’s correlation against EMO and E-OBS
(Figs. 12-13), RMSE against EMO (Fig. 14) and BIAS
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against E-OBS (Fig. 15) for the entire study area. These maps
indicate that the northern, central, and western parts of Eu-
rope exhibit high Pearson’s correlation, low RMSE and near-
zero BIAS between EMO and E-OBS due to the overlap
of rain gauge stations used as data sources. However, per-
formance declines in the remaining regions. A high degree
of agreement between EMO and ERAS5-Land is observed in
eastern and southern Europe (Figs. 12¢g, 14g, 15g), owing to
EMO’s incorporation of ERA-interim data while a lower cor-
respondence can be noticed between E-OBS and ERAS5-Land
in these same areas (Fig. 13g). The RMSE and BIAS results
against E-OBS are similar to those obtained from EMO and
therefore they are not shown here. They are available in Ap-
pendix C, for completeness.

Among the satellite products, CHIRP shows good Pear-
son’s correlation over western Spain and northern and cen-
tral Italy (Figs. 12a, 13a), almost on par with IMERG-LR
(Figs. 12b, 13b). IMERG-LR generally outperforms CHIRP
in the remaining areas in terms of Pearson’s correlation,
but CHIRP has lower RMSE and BIAS (Figs. 14a, 15a)

Earth Syst. Sci. Data, 17, 5221-5258, 2025
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Figure 7. BIAS error of the selected precipitation datasets against MCM observations for the Po River basin area. Blue area means that the
precipitation product overestimate precipitation, while brown area means underestimation.

than IMERG-LR (Figs. 14b, 15b). Indeed, IMERG-LR ex-
hibits large RMSE and BIAS errors across the entire study
area, particularly along coastlines. Notably, IMERG’s per-
formance improves beyond 60° of latitude, likely due to an
intense masking of the snowy/icy period beyond this latitude
(Huffman et al., 2024).

SM2RAIN-ASCAT also performs well in central and
western Europe (Figs. 12c—15c¢), except in topographically
complex areas (due to the above-mentioned issue in the SM
estimation) and along coastlines. The low performance and
missing data near the coastlines in SM2RAIN-ASCAT are
due to an issue in ASCAT SM data (H SAF h119 and h120),
specifically due to an erroneous masking. This issue is ex-
pected to be resolved in future product versions, which could
potentially lead to improvements in both the SM2RAIN-
ASCAT product and the associated merged datasets. Here,
missing SM2RAIN-ASCAT data are replaced by IMERG-
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LR in the M3 merged product, which reduces the drop of
the Pearson correlation but causes high RMSE in these areas
(Fig. 14d). Adding ERAS5-Land within M4 merged product
improves performance, as mentioned before, but the effect
is different according to the selected benchmark: the perfor-
mance improves over northern, central and western Europe
for both the datasets, with increases in Pearson’s correlation
and reductions in both RMSE and BIAS. In the eastern re-
gion, however, low Pearson’s correlation persists against E-
OBS, despite the addition of ERAS5-Land (Fig. 13e), even
though the RMSE decreases (Fig. 14e). In contrast, the com-
parison with EMO shows more substantial improvements
(Fig. 12e), likely due to the strong correspondence between
EMO and ERAS5-Land in the region. Indeed, the low gauge
density in eastern Europe contributes to the uncertainty in
this region, as the benchmark datasets lack sufficient rain
gauge data for accurate precipitation estimates. The absence

https://doi.org/10.5194/essd-17-5221-2025
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Figure 8. Root Mean Square Error (RMSE) of the selected precipitation datasets against MCM observations for the Po River basin area.

of gauge stations in this area limits the reliability of both
EMO and E-OBS products, which are based on spatial in-
terpolation techniques (Cornes et al., 2018). As an example,
EMO uses data from ERA-Interim, thus explaining the accor-
dance with ERAS-Land in this region. However, the results
of the high-resolution validation show that these sources are
not always accurate (e.g. Fig. 6m). All the merged satellite
datasets combining TD and BU approaches perform well in
regions where satellite measurements are reliable (e.g., ex-
cluding mountainous areas). This raises important questions
about whether the low performances observed in individual
satellite products and their merged versions in these areas is
due to satellite limitation in estimating precipitation or the in-
adequacy of the reference products in accurately estimating
precipitation patterns in the region.

https://doi.org/10.5194/essd-17-5221-2025

4.3 Discussion

The validation analysis assessed the performance of the four
integrated precipitation products against coarse and high-
resolution observed data. Among the four products, the best
performing ones were the configurations M3 and M4, based
respectively only on satellite data and on satellite data plus
reanalysis. This is probably due to the native coarse resolu-
tion of the CPC dataset used in configuration M1 and M2,
as well its relatively low number of included rain gauges.
M3 evaluation indicates that this configuration may provide
valuable precipitation information for those areas where rain
gauge networks are less dense. However, it was demonstrated
that M4 configuration is generally the most reliable, in par-
ticular for those areas in which satellite data are known to be
less performing, e.g. mountainous environment. Therefore,
the M4 configuration is selected as the best performing and
it is named HYPER-P (Fig. 16).
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This gridded precipitation product integrates multiple ob-
servational sources, leveraging both satellite-based retrievals
and reanalysis data with a high spatial resolution (1 km). It
has been developed to enhance spatial consistency and tem-
poral coverage of the parent product, improving precipita-
tion estimation compared to individual datasets. However,
some limitations remain. First, the dataset is available only
from 2007 onward, according to ASCAT (and SM2RAIN-
ASCAT) data availability, limiting its use in long-term cli-
mate studies. Second, satellite-based precipitation estimates
exhibit lower performance over complex topography, par-
ticularly in mountainous regions where both gauge-based
and satellite-derived products tend to be less reliable due
to orographic effects and snow-related biases (Girotto et
al., 2024). These limitations are expected to propagate into
the merged product, together with potential underestimation
from satellite-derived estimates. Similarly, also ERA5-Land
limitations could propagate to the new product (e.g. higher
error in case of convective precipitation, Lavers et al., 2022).
Finally, the original coarse resolution of the parent datasets
may generate issues on localized convective precipitation
events, since the downscaling procedure is based on monthly
climatologies. However, using weights derived from TC re-
duces dependency on the parent products in areas where
they perform poorly, as the relative weight decreases, thereby
minimizing propagated issues.

Earth Syst. Sci. Data, 17, 5221-5258, 2025

Despite these constraints, the product is expected to pro-
vide valuable insights into precipitation patterns that will be
useful in multiple research fields. This is demonstrated by the
use of the developed precipitation products in multiple recent
studies:

— In Brocca et al. (2024), the integrated products were
used in the context of the Digital Twin Earth and val-
idated against a hydrological model over the Po Valley,
obtaining Kling-Gupta Efficiency values higher than the
observed products;

— M1 configuration was used in Pellet et al. (2024) in a
simple hydrological model of the Ebro River, resulting
in good performance, closer to those obtained with an
assimilation scheme;

— M2 configuration was used in Peiro et al. (2024) within
a Random Forest machine learning model for predict-
ing landslide susceptibility, achieving high predictive
accuracy, effectively identifying landslide-prone areas
in Italy;

— Sivelle et al. (2025) uses M2 configuration when test-
ing multiple Precipitation and Soil Moisture products
as hydrological model input for 5 catchments in Spain,
France, Italy, Tunisia and Algeria, obtaining better per-
formance than single satellite products, and showing

https://doi.org/10.5194/essd-17-5221-2025
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the datasets are aggregated at 10 km spatial resolution.

positive improvements related to the use of the down-
scaling procedure;

— M2 configuration was used also in Camici et al. (2025)
to create a Water Resources Management database for
the Po River, with promising results;

— M2 configuration was also used by Dari et al. (2025),
within the development of a novel approach for estimat-
ing groundwater recharge, obtaining performance simi-
lar to those generated by using gauge data;

In some cases, the integrated products did not provide ad-
ditional information, as in the case of Al Khoury et al. (2024),
where the M2 product was used in a small karst catchment
in the French Pyrenees, focusing on data-scarce mountain-
ous regions, for hydrological modelling. Here, the use of the
merged product did not improve the model performances,
confirming the limitation of the dataset for mountainous re-
gions and local convective events. Notwithstanding this, the
large use of M1 and M2 demonstrates both their usefulness
and the need of the scientific community for high spatial res-
olution precipitation products. M3 and M4, instead, are still

Earth Syst. Sci. Data, 17, 5221-5258, 2025

to be tested, since they were only recently developed in the
framework of the 4dHydro project (Garcia-Garcia, 2025).

5 Data availability

The merged products analyzed in this study were developed
within the ESA projects 4DMED and 4DHydro. They are
available online at:

M1: IMERG-LR + CPC. https://stac.eurac.edu/browser/#/
collections/rainfall_all_domain/ (last access: 25 September
2025) and https://doi.org/10.5281/zenodo.15025397, avail-
able for the Mediterranean basin for the period 2000-2022
(Filippucci et al., 2023a).

M2: SM2RAIN-ASCAT+IMERG-LR+CPC.
https://doi.org/10.5281/zenodo.10402392, available for
the Mediterranean basin for the period 2015-2022 (Filip-
pucci et al., 2023b).

M3: SM2RAIN-ASCAT+IMERG-LR. https:
/fAdhydro.eu/catalog/ (last access: 25 September 2025)
(path Products = > WP1 Products = > 4DHYDRO
precipitation product: SM2RAIN+GPM) and
https://doi.org/10.5281/zenodo.15025462 (Europe), avail-

https://doi.org/10.5194/essd-17-5221-2025
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Figure 13. Daily temporal Pearson’s correlation of the selected precipitation datasets against E-OBS observations for the full study area. All

the datasets are aggregated at 10 km spatial resolution.

able for the entire Europe and the Tugela Basin (Africa)
from 2007-2022 (Filippucci et al., 2024a).

M4: SM2RAIN-ASCAT+IMERG-LR+ERAS-Land.
https://4dhydro.eu/catalog/ (last access: 25 September
2025) (path Products => WP1 Products =>4DHYDRO
precipitation  product: ERAS54+SM2RAIN+GPM) or
https://doi.org/10.5281/zenodo.15025514 (Europe), avail-
able for the entire Europe and the Tugela Basin (Africa)
from 2007-2022 (Filippucci et al., 2024b).

6 Conclusions

In this study, a new precipitation product named HYPER-P,
characterized by high spatial resolution and accuracy, is de-
rived for Europe and mediterranean basin from downscaling
and merging multiple data sources, including remote sens-
ing products, reanalysis datasets, and gridded in situ obser-
vations, in the period 2007 to 2022. For this purpose, mul-
tiple precipitation products derived from gauges, radars, re-
analysis and satellite observations are mutually compared. A
total of twelve different precipitation products — five from
satellites, six from reference products and one from re-
analysis — were collected for the study area and re-gridded
to resolutions of 1 and 10km. For each type of precipi-

https://doi.org/10.5194/essd-17-5221-2025

tation product, datasets characterized by high performance
metrics, broad spatial coverage and low latency availability
were downscaled and merged to obtain enhanced precipita-
tion products that leverage the complementary strengths of
each estimation approach. Specifically, four merged prod-
ucts were developed: M1, satellite TD approach (IMERG-
LR) + gauge (CPC); M2, satellite TD approach (IMERG-
LR) + satellite BU approach (SM2RAIN-ASCAT) + gauge
(CPC); M3, satellite TD approach (IMERG-LR) + satellite
BU approach (SM2RAIN-ASCAT); and M4, satellite TD ap-
proach (IMERG-LR) + satellite BU approach (SM2RAIN-
ASCAT) + reanalysis (ERAS-Land). The performance of the
merged datasets, individual satellite products and reference
datasets was evaluated through two validation analyses con-
ducted at high and coarse spatial resolution, respectively. The
high-resolution analysis was performed across three regions
in the Mediterranean Basin with dense gauge/radar networks:
the Po River Basin, the Hérault River Basin and the Ebro
River Basin. This analysis allowed the selection of the best
performing products and understanding the mutual limita-
tions of the datasets, such as the low accuracy of satellite
products over the mountainous regions and the performance
drop of reference datasets in areas with low gauge density. A
selection of products was subsequently assessed over most of

Earth Syst. Sci. Data, 17, 5221-5258, 2025
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Figure 14. Root Mean Square Error (RMSE) of the selected precipitation datasets against EMO observations for the full study area. All the

datasets are aggregated at 10 km spatial resolution.

Europe and Mediterranean basin within the coarse-resolution
validation, where all the data was aggregated to a 10 km reso-
lution and then compared against EMO and E-OBS reference
datasets.

Satellite data demonstrated a generally strong capability
in estimating precipitation, and the combination of BU and
TD approaches effectively leverages the strengths of both
SM2RAIN-ASCAT and IMERG-LR. This merged product
estimate precipitation with high reliability across most of
the analyzed areas, even outperforming datasets based on
in-situ and reanalysis data in regions with low gauge den-
sity. The inclusion of ERAS5-Land further enhances these re-
sults, particularly improving precipitation accuracy in topo-
graphically complex regions where satellite data alone of-
ten struggles to achieve good results. However, evaluating
precipitation products by using traditional techniques in re-
gions with scarce observed data, such as eastern Europe,
is not trivial. In these areas, the merged product obtained
from the combination of SM2RAIN-ASCAT, IMERG-LR
and ERAS5-Land seems to be the best performing against
EMO and E-OBS benchmarks, but the low reliability of these
reference datasets due to the unavailability of gauge mea-
surements raises concerns about the robustness of the find-
ings. Hence, the merged product was selected as HYPER-

Earth Syst. Sci. Data, 17, 5221-5258, 2025

P product and, along with satellite-only merged product
(SM2RAIN-ASCAT and IMERG-LR), will be undertaken a
hydrological validation within the ESA 4DHydro project to
further assess the optimal precipitation dataset through the
capability of reproducing observed discharge. The results of
this ongoing project, together with the findings of this anal-
ysis, will enable the scientific community to further advance
its understanding of available precipitation products, partic-
ularly in terms of their respective strengths and weaknesses.
This knowledge will potentially contribute to the develop-
ment of a global, high-resolution precipitation product with
short latency, which integrates and complements the various
existing datasets. Future improvements will focus on refin-
ing the downscaling methodology by incorporating higher-
resolution datasets, such as Sentinel-1-derived soil moisture,
to enhance spatial detail and accuracy, particularly in regions
where traditional precipitation estimates remain uncertain.
Efforts will also aim to extend the dataset both spatially and
temporally, especially in areas with sparse rain gauge cover-
age.
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Appendix A: Acronyms

ASCAT
ASTER
GDEM
BU
CHELSA
CHIRP
CHRS
CPC

DPR

EMO
EMS
ERAS
EUMNET
E-OBS
GEO
GPM
GSMAP
H SAF
IMERG-ER
IMERG-LR
IMERG-FR
IR

JAXA
LEO

Mi1

M2

M3

M4

MCM
MW
NHMS
NOAA
OPERA
PERSIANN
R

RMSE
SAIH

SM
SM2RAIN
SNR

SPEs

SRM

TC

TD

VIS

USGS
WSL
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Advanced Scatterometer

Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model

Bottom-Up

Climatologies at high-resolution for the Earth’s land surface areas
Climate Hazards Group InfraRed Precipitation

Center for Hydrometeorology and Remote Sensing

Climate Prediction Center

Dual-frequency Precipitation Radar

European Meteorological Observations

Emergency Management Service

European Centre for Medium-Range Weather Forecasts, ECMWF, Reanalysis 5th Generation
European National Meteorological Services

ENSEMBLES daily gridded observational

Geostationary Orbit

Global Precipitation Measurement Mission

Global Satellite Mapping of Precipitation

Satellite Application Facility on support to Operational Hydrology and Water Management
Integrated Multi-satellitE Retrievals for GPM — Early Run
Integrated Multi-satellitE Retrievals for GPM — Late Run
Integrated Multi-satellitE Retrievals for GPM — Final Run
Infrared

Japan Aerospace Exploration Agency

Low Earth orbit

Merge 1

Merge 2

Merge 3

Merge 4

Modified Conditional Merging

Microwave

National Meteorological and Hydrological Services

National Oceanic and Atmospheric Administration

Operational Program for Exchange of Weather Radar Information
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
Linear Pearson Correlation

Root Mean Square Error

Spanish Automatic System of Hydrologic Information

Soil Moisture

Soil Moisture to Rainfall

Signal to Noise Ratio

Satellite Precipitation Estimates

Snow Multidata Mapping and Modeling

Triple Collocation

Top-Down

Visible

United States Geological Survey

Swiss Federal Institute for Forest, Snow and Landscape Research
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Appendix B: Merging weights distribution

The weights used for dataset merging, obtained from the
application of the TC, are shown here. Figure B1 presents
the weights for configuration M1, where CPC is merged
with IMERG-LR. As expected, CPC has the highest weights
across most of the northern Mediterranean basin due to
the presence of dense meteorological gauge networks. The
weights used in configuration M2 are shown in Fig. B2.
Here, the results differ slightly: CPC remains the most used
product in the northern part of the basin, but IMERG-LR
and SM2RAIN-ASCAT also contribute significantly to many
areas. Specifically, IMERG-LR is selected over topograph-
ically complex regions, where ASCAT SM retrievals (and
therefore SM2RAIN-ASCAT rainfall estimations) are less
reliable. Figure B3 illustrates the weights for configura-
tion M3, where only SM2RAIN-ASCAT and IMERG-LR
are used. In this case, IMERG-LR is the dominant product
at higher latitudes, where frozen soil conditions often hin-
der soil moisture (SM) retrieval and, consequently, rainfall
estimation from space. Conversely, SM2RAIN-ASCAT has
greater weight in the southern areas. Finally, Fig. B4 shows
the weights for configuration M4. Here, ERAS5-Land has the
greatest weight across most of Europe due to the limitations
of satellite products in frozen regions. However, in African
regions and parts of Eastern Europe, the weights of the satel-
lite datasets increase, likely due to the scarcity of observa-
tional data in these areas. Over most of the coastal areas,
ASCAT SM data are not available or less accurate, there-
fore there the SM2RAIN-ASCAT dataset is not used in any
configuration.
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5243

Earth Syst. Sci. Data, 17, 5221-5258, 2025



5244

P. Filippucci et al.: Development of HYPER-P

M1 configuration weights
=T

5 1 1
R XY 5 = ;
b W Sy
P %
. oo \esow e
50°N — b, i i " T
uremberg CZECHI. S P o
P o 5 SVSa yRRAINE 0.9 09
onr Motk
K sovaxia e St onero
Rennes 2 Yy N G et S
/| Oradea A u
FrANCE i A N o 0.8 0.8
PR St ;
ROMANIA (i
o R
45°N | Biscoy U iRl = |
g < 0.7 0.7
) -106 06
5
o 40°N — = 3 g
N e . S B s D
2 —05 % {05 =
= 2 2
PR T $ 0§ e 5 g w (6]
. =
04 0.4
35°N — sray
hate
0.3 0.3
I L ) Neandda - ponsud
10| ) h Cairo , : A o
30°N — : ‘g, / - o2 0.2
.
J ALGERIA Z
il Sabha LIBYA e Arabiar
an et pover 0.1 0.1
= Libyan Desert
. _
25°N 200 km |- N
= SN Sahara Desert
100 mi B | ahara Drser ‘ Esri, , TomTom, Garmin, FAO, NOAA, USGS| 0 0
0° 10°E 20°E 30°E
Longitude

Figure B1. Weights distribution for configuration M1: areas where CPC has the greater weight are highlighted in blue while those where

IMERG-LR is prevalently used are highlighted in brown.

Earth Syst. Sci. Data, 17, 5221-5258, 2025

https://doi.org/10.5194/essd-17-5221-2025



P. Filippucci et al.: Development of HYPER-P 5245

M2 configuration weights
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Figure B3. Weights distribution for configuration M3: areas where SM2RAIN-ASCAT has the greater weight are highlighted in blue while

those where IMERG-LR is prevalently used are highlighted in brown.
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Figure B4. Weights distribution for configuration M4: areas colored in red, green and blue highlight the pixels where ERA5-Land, IMERG-
LR and SM2RAIN-ASCAT have the greater weight, respectively.
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Appendix C: Performance indices at high and coarse
resolution
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Figure C1. Daily temporal Pearson’s correlation of the selected precipitation datasets against SATH observations for the Ebro River basin
area.

Here, the daily Pearson’s correlation (Figs. C1, C2),
RMSE (Figs. C3, C4) and BIAS (Figs. C5, C6) maps of the
high spatial resolution analyzed products against the local
high spatial resolution precipitation benchmarks are shown
for Ebro River basin (Figs. C1, C3, C5) and the Hérault River
basin (Figs. C2, C4, C6). The RMSE (Fig. C7) and BIAS
(Fig. C8) performance of the coarse spatial resolution against
E-OBS for the full study area are also shown.

Resolution against E-OBS for the full study area are also
shown.
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Figure C2. Daily temporal Pearson’s correlation of the selected precipitation datasets against COMEPHORE observations for the Hérault
River basin area.
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Figure C3. Root Mean Square Error (RMSE) of the selected precipitation datasets against SAIH observations for the Ebro River basin area.
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Figure C4. Root Mean Square Error (RMSE) of the selected precipitation datasets against COMEPHORE observations for the Hérault River

basin area.
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Figure C5. BIAS error of the selected precipitation datasets against SAIH observations for the Ebro River basin area. Blue area means that
the precipitation product overestimate precipitation, while brown area means underestimation.
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Figure C6. BIAS error of the selected precipitation datasets against COMEPHORE observations for the Hérault River basin area. Blue area
means that the precipitation product overestimate precipitation, while brown area means underestimation.
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Figure C7. Root Mean Square Error (RMSE) of the selected precipitation datasets against E-OBS observations for the full study area. All

the datasets are aggregated at 10 km spatial resolution.
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