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Abstract. Soil moisture (SM) data records longer than 30 years are critical for climate change research and var-
ious applications. However, only a few such long-term global SM datasets exist, and they often suffer from large
biases, low spatial resolution, or spatiotemporal incompleteness. Here, we generated a consistent and seamless
global surface SM product (0-5 cm) spanning 1982-2021 using a deep learning (DL) model. The model was
trained with the GLASS-MODIS SM product and was designed to integrate four decades of Advanced Very
High Resolution Radiometer (AVHRR)-derived albedo and land surface temperature, the land component of
the fifth generation of European ReAnalysis (ERA5-Land) SM, and terrain and soil texture datasets as input
features. Considering the temporal autocorrelation of SM, we explored two types of DL models that are adept
at processing sequential data, including three long short-term memory (LSTM)-based models, i.e., the basic
LSTM, bidirectional LSTM (Bi-LSTM), and attention-based LSTM (AtLSTM), and a transformer model. We
also compared the performance of the DL models with the tree-based eXtreme Gradient Boosting (XGBoost)
model, known for its high efficiency and accuracy. Our results show that all four DL models outperformed the
benchmark XGBoost model, with the AtLSTM model achieving the highest accuracy on the test set, particu-
larly at high SM levels ( > 0.4m> m™3). These results suggest that under some challenging conditions, utilizing
temporal information and adding an attention module can effectively enhance the estimation accuracy of SM.
Subsequent analysis of attention weights revealed that the AtLSTM model could automatically learn the neces-
sary temporal information from adjacent positions in the sequence, which is critical for accurate SM estimation.
The best-performing AtLSTM model was then adopted to produce a four-decade seamless global SM dataset
at 5 km spatial resolution, denoted as the GLASS-AVHRR SM product. Validation of the GLASS-AVHRR SM
product using 45 independent International Soil Moisture Network (ISMN) stations prior to 2000 yielded a me-
dian correlation coefficient (R) of 0.73 and an unbiased root mean square error (ubRMSE) of 0.041 m>m3.
When validated against SM datasets from three post-2000 field-scale COsmic-ray Soil Moisture Observing Sys-
tem (COSMOS) networks, the median R values ranged from 0.63 to 0.79, and the median ubRMSE values
ranged from 0.044 to 0.065 m> m~3. Further validation across 22 upscaled 9 km Soil Moisture Active Passive
(SMAP) core validation sites indicated that it could well capture the temporal variations in measured SM and re-
mained unaffected by the large wet biases present in the input ERAS5-Land SM product. Moreover, characterized
by complete spatial coverage and low biases, this four-decade, 5 km GLASS-AVHRR SM product exhibited high
spatial and temporal consistency with the 1 km GLASS-MODIS SM product and contained much richer spatial
details than both the long-term ERAS5-Land SM product (0.1°) and European Space Agency Climate Change
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Initiative combined SM product (0.25°). The annual average GLASS-AVHRR SM dataset from 1982 to 2021
is available at https://doi.org/10.5281/zenodo.14198201 (Zhang et al., 2024b), and the complete product can be
freely downloaded from https://glass.hku.hk/archive/SM/AVHRR/ (last access: 18 September 2025).

1 Introduction

Soil moisture (SM) is an essential climate-sensitive variable
that exhibits high spatial and temporal variability. It can be
measured directly by in situ sensors or indirectly through
model simulations or remote sensing techniques (Liang and
Wang, 2020). Accurate knowledge of the spatial and tem-
poral distribution of SM can benefit applications across vari-
ous Earth system domains, including climate, hydrology, and
agriculture (Dorigo et al., 2017; Peng et al., 2021a). While
local- to regional-scale hydrological and agricultural appli-
cations like watershed runoff modeling, evapotranspiration
estimation, and crop yield prediction demand SM products
with high spatial resolution (< 1km) (Hssaine et al., 2018;
Schoener and Stone, 2019; Zhuo et al., 2019), continental-
to global-scale climate-change-related applications, such as
SM trend analyses and drought monitoring, generally re-
quire long-term data availability (> 30years), in addition to
moderate spatial resolution and high accuracy (Cheng et al.,
2015; Grillakis, 2019).

Long-term point-scale SM can be measured directly by
in situ sensors; thus, great efforts have been devoted world-
wide to deploying and maintaining a series of operational
SM networks. In situ SM datasets from some networks were
shared by data organizations, which were then processed and
released in a harmonized format to the public by the In-
ternational Soil Moisture Network (ISMN) data repository
(Dorigo et al., 2021). Still, these networks are too sparse
and unevenly distributed in space, and each covers a differ-
ent observation period, hindering their use in large-scale ap-
plications. Currently, large-scale SM products are typically
obtained through model simulations or remote sensing tech-
niques. Driven by long-term forcing variables, land surface
models or data assimilation systems can simulate decades
of spatiotemporally continuous SM products at the global
scale, with an increasingly finer spatial resolution. Several
commonly used SM products include those generated by
the Modern-Era Retrospective analysis for Research and Ap-
plications version 2 (MERRA-2) at 0.5° from 1980 to the
present (Gelaro et al., 2017), the Global Land Data Assimi-
lation System version 2 (GLDAS-2) at 1°/0.25° from 1948 to
the present (Rodell et al., 2004), and the land component of
the fifth generation of European ReAnalysis (ERAS5-Land) at
0.1° from 1950 to the present (Mufioz-Sabater et al., 2021).
Recently, models that focus on the dynamic simulation of
evapotranspiration and SM, such as the fourth generation of
the Global Land Evaporation Amsterdam Model (GLEAM4)
(0.1°, 1980-2023) and the Simple Terrestrial Hydrosphere
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model version 2 (SiTHv2) (0.1°, 1982-2020), have also pro-
vided long-term global SM products by integrating multi-
source satellite data and hydrometeorological variables (Mi-
ralles et al., 2025; Zhang et al., 2024a). Yet, these SM prod-
ucts may suffer from large uncertainties arising from defec-
tive forcing data, imperfect model parameterization, and the
uneven spatial distribution of input meteorological observa-
tions, particularly the limited observational coverage in trop-
ical regions (Ling et al., 2021; Zhang et al., 2024a).

Alternatively, microwave remote sensing techniques have
been utilized for SM retrieval since the 1970s (Schmugge
et al., 1974). Various global SM products have been de-
veloped from a range of active or passive microwave sen-
sors, such as the advanced scatterometer aboard the Mete-
orological Operational satellites (Bartalis et al., 2007), the
microwave radiation imager on Fengyun-3 satellites (Kang
et al., 2021), and the L-band radiometers on the Soil Mois-
ture and Ocean Salinity (SMOS) and Soil Moisture Ac-
tive Passive (SMAP) satellites (Chan et al., 2018; Entekhabi
et al., 2010; Kerr et al., 2012; Li et al., 2022c, b; Wigneron
etal., 2021). However, the temporal coverage of these single-
sensor SM products is typically short, as constrained by the
operational lifespan of the satellites. In this context, the Euro-
pean Space Agency (ESA) Climate Change Initiative (CCI)
program released a long-term global SM product spanning
the period since 1978, which merged multiple active and pas-
sive microwave SM products retrieved from different satellite
instruments (Dorigo et al., 2017). Despite being the longest
satellite SM dataset currently available, the ESA CCI com-
bined SM product has a relatively low spatial resolution
(0.25°) and incomplete spatial coverage, which may restrict
its usage in certain applications. According to Zheng et al.
(2023), the percentage of missing data in the ESA CCI com-
bined SM product ranges from 21.8 % to 94.41 % at the daily
scale during the period from 2000 to 2020.

In contrast, optical and thermal remote sensing techniques
are characterized by long observation period, rich spectral
bands, and high spatial resolution, but their relatively low
sensitivity to SM poses challenges in deriving the long-term
global SM product solely from optical and thermal satellite
observations. Over the past few decades, optical and thermal
datasets have been extensively employed to downscale the
coarse-scale microwave or model-simulated SM products.
Most of these downscaling studies empirically or physically
relate vegetation and temperature parameters to SM condi-
tions based on the universal triangle concept (Gillies and
Carlson, 1995; Merlin et al., 2012; Piles et al., 2011). For a
detailed review of the strengths and limitations of various SM
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downscaling algorithms, refer to Sabaghy et al. (2018). In re-
cent years, machine learning models have gradually gained
popularity in SM estimation and the downscaling of coarse-
scale SM products, such as the SMAP, ERAS5-Land, and ESA
CCI SM products (Cheng et al., 2023; Guevara et al., 2021;
Karthikeyan and Mishra, 2021; Zhang et al., 2023; Zheng
et al., 2023), due to their flexibility to integrate multi-source
datasets and ability to implicitly learn the non-linear rela-
tionships between SM and its influencing factors. However,
the above-mentioned downscaling studies primarily concen-
trated on enhancing the spatial resolution of SM products,
typically through integrating the fine-scale Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) datasets, and there
is still a lack of focus on developing long-term SM products
or utilizing the four-decade Advanced Very High Resolution
Radiometer (AVHRR) observations for long-term SM esti-
mation.

Compared with conventional machine learning models,
deep learning (DL) models can automatically extract relevant
features from raw datasets and learn complex non-linear re-
lationships between variables, without the need for careful
feature engineering (LeCun et al., 2015). Recently, signifi-
cant progress has been made in applying DL techniques to
a range of environmental remote sensing research areas, in-
cluding land cover mapping (Huang et al., 2018), data fusion
and downscaling (Wang et al., 2021), and environmental pa-
rameter retrieval (Ma and Liang, 2022; Yuan et al., 2020). In
terms of SM retrieval, Fang et al. (2017) first utilized a long
short-term memory (LSTM) model to predict spatiotempo-
rally continuous SM over the continental United States, with
atmospheric forcings, modeled SM, and static attributes em-
ployed as input features and the SMAP SM product serv-
ing as the training target. Since then, various DL models
have been used in SM estimation (Gao et al., 2022; Sung-
min and Orth, 2021), downscaling (Xu et al., 2022; Zhao
et al., 2022), forecasting (Fang and Shen, 2020; Li et al.,
2022a), and gap-filling (Zhang et al., 2022; Zhou et al., 2023)
studies. Among them, the most frequently used DL models
were the LSTM-based models designed to capture tempo-
ral information from sequential data and the convolutional
neural network (CNN)-based models constructed to extract
spatial patterns from grid data, alongside several other mod-
els such as the deep neural network and deep belief network.
In those studies, input features might include brightness tem-
perature, surface reflectance, meteorological forcings, terrain
and soil properties, land cover, precipitation, and land sur-
face temperature (LST), depending on the types of models
they aimed to simulate, such as radiative transfer models,
downscaling models, or land surface models, while the train-
ing target varied from point-scale in situ SM to coarse-scale
microwave or simulated SM. Despite the diversity of data
sources, research areas, and neural networks, all of those
DL models achieved satisfactory performance, demonstrat-
ing their good fitting and generalization capabilities, as well
as great potential for generating global SM products. Valida-
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tion of those DL models against the ISMN in situ SM dataset
showed that the average correlation coefficient (R) ranged
from 0.672 to 0.715 and that the unbiased root mean square
error (ubRMSE) ranged from 0.041 to 0.061 m*m™ (Gao
et al., 2022; Xu et al., 2022; Zhang et al., 2022). Neverthe-
less, there is still a lack of research that utilizes DL mod-
els to generate long-term global SM data records, as evident
from Table 1. Moreover, while transformer has demonstrated
effectiveness in domains like runoff modeling, drought fore-
casting, and crop mapping (Amanambu et al., 2022; Xu et al.,
2020; Yin et al., 2022), its application in SM estimation re-
mains scarce.

In this context, we aim to develop a long-term global
SM estimation framework based on DL using mainly the
long-archived AVHRR satellite observations. Specifically,
the AVHRR albedo and LST products from the Global LAnd
Surface Satellite (GLASS) product suite, the ERA5-Land re-
analysis SM product, and auxiliary terrain and soil texture
datasets are used as inputs, and the global 1km GLASS-
MODIS SM product (2000-2020) generated by Zhang et al.
(2023) is used as the target to train different types of DL
models. In particular, three LSTM-based models, i.e., the ba-
sic LSTM, bidirectional LSTM (Bi-LSTM), and attention-
based LSTM (AtLSTM), along with a transformer model,
all of which are adept at processing sequential data, are ex-
plored. Then, the best-performing model is employed to gen-
erate a four-decade (1982-2021) spatiotemporally continu-
ous global surface SM dataset (0—5 cm) at 5km resolution,
denoted as the GLASS-AVHRR SM product. The specific
objectives of this study are:

1. To develop a DL-based global SM estimation model
by integrating multi-source datasets and leveraging their
complementary strengths in order to derive a seamless
and reliable long-term global SM product;

2. To compare the performance of different DL models,
i.e., the basic LSTM, Bi-LSTM, AtLSTM, and trans-
former, with the benchmark eXtreme Gradient Boosting
(XGBoost) model and to investigate the effect of input
sequence length on model accuracy;

3. To fully evaluate the accuracy and spatiotemporal con-
sistency of the derived long-term GLASS-AVHRR SM
product through validation against in situ SM datasets
across different spatial scales and intercomparison with
other long-term global SM products.

2 Datasets

The multi-source datasets used in this study to develop
the long-term SM estimation model are summarized in Ta-
ble 2. The input variables were extracted from the GLASS-
AVHRR albedo and LST products, the ERA5-Land reanaly-
sis SM product, the Multi-Error-Removed Improved-Terrain
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Table 1. Main characteristics of currently available long-term (> 30years) global SM products.

Category SM products Spatial resolution ~ Temporal coverage  Spatial integrity =~ References

Microwave ESA CCIv7.1 0.25°  1978-2022 Incomplete Dorigo et al. (2017)

Reanalysis GLDAS-2 1°/0.25°  1948—present Seamless Rodell et al. (2004)
MERRA-2 0.5°  1980—present Seamless Gelaro et al. (2017)
ERAS-Land 0.1°  1950-present Seamless Muiioz-Sabater et al. (2021)

Model-simulated GLEAM4 0.1°  1980-2023 Seamless Miralles et al. (2025)
SiTHv2 0.1°  1982-2020 Seamless Zhang et al. (2024a)

DL-based GLASS-AVHRR Skm  1982-2021 Seamless This study

(MERIT) digital elevation model (DEM), and the Soil-
Grids datasets, while the target variable was obtained from
the GLASS-MODIS SM product. These input features are
widely used in machine-learning-based and DL-based SM
estimation studies. This section also introduces the ISMN,
COsmic-ray Soil Moisture Observing System (COSMOS),
and SMAP core validation sites (CVSs) in situ SM datasets
used for validation, alongside the long-term ESA CCI SM
product used for intercomparison.

2.1 GLASS-AVHRR albedo and LST products

As part of the GLASS product suite, the GLASS-AVHRR
albedo and LST products were generated mainly from the
long-archived AVHRR satellite observations dating back to
the 1980s and are characterized by long-term temporal cover-
age, spatial continuity, and high accuracy (Liang et al., 2021).
In particular, the GLASS-AVHRR albedo product was re-
trieved through a direct estimation algorithm (Qu et al., 2014)
and a spatiotemporal filtering algorithm (Liu et al., 2013).
The latest version (V5) of the GLASS-AVHRR albedo prod-
uct at 5 km spatial resolution can be downloaded from http:
/Iwww.glass.umd.edu/Albedo/MIX/ (last access: 18 Septem-
ber 2025). Here, the black-sky visible, near-infrared, and
shortwave albedo were extracted and used as input variables,
with the original 8 d temporal resolution interpolated to daily
using linear interpolation to align with the training target.
Meanwhile, the global all-sky GLASS-AVHRR LST prod-
uct was estimated using a surface-energy-balance-based al-
gorithm (Jia, 2023; Jia et al., 2024), which will be released
soon. The daily mean LST at 5 km resolution was also used
here as an input variable.

2.2 ERAS5-Land SM product

ERAS-Land is a state-of-the-art long-term reanalysis dataset
that includes multiple variables related to water and energy
cycles spanning from 1950 to the present (Mufoz-Sabater
et al.,, 2021). It offers seamless global coverage with an
hourly temporal resolution and 0.1° spatial resolution. Pre-
vious validation studies show that although it typically ex-
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hibited high temporal correlations with in situ SM datasets,
it often suffered from large biases (Gao et al., 2022; Xing
etal., 2023; Zheng et al., 2022). Here, the first-layer (0—7 cm)
ERAS5-Land SM product was downloaded from https://cds.
climate.copernicus.eu/ (last access: 18 September 2025). The
daily mean SM was then calculated and up-sampled to 5 km
through bilinear interpolation before being used as an input
variable for the model to provide SM background informa-
tion. Moreover, the ERA5-Land SM product was validated
against in situ SM datasets and intercompared with the gen-
erated GLASS-AVHRR SM product.

2.3 Terrain and soil texture datasets

Topography and soil properties are the main factors that
affect the spatial distribution of SM at fine scales. Here,
we used the MERIT DEM (http://hydro.iis.u-tokyo.ac.jp/
~yamadai/MERIT_DEMY/, last access: 18 September 2025),
a high-accuracy DEM generated by integrating multiple
spaceborne DEMs (Yamazaki et al., 2017). This dataset cov-
ers 90°N-60° S over land at a resolution of 90 m and shows
significant improvement in flat regions compared to previous
spaceborne DEMs. After downloading the MERIT DEM, it
was then used to derive elevation, slope, and aspect. Mean-
while, we also used the 250 m SoilGrids product (https:
/Iwww.isric.org/explore/soilgrids, last access: 18 September
2025), a high-resolution soil property dataset generated from
global soil profiles and environmental variables using ma-
chine learning models (Poggio et al., 2021). Specifically, the
mean sand, silt, and clay content of the top soil layer (0-
5 cm) were extracted from the SoilGrids product. All of these
terrain and soil texture variables were resampled to 5 km be-
fore being used as inputs to the SM estimation model.

2.4 GLASS-MODIS SM product

The training target used in this study was the global 1 km spa-
tiotemporally continuous GLASS-MODIS surface SM prod-
uct (0-5cm), which was generated using an XGBoost ma-
chine learning model that integrated the GLASS-MODIS
albedo, LST, and leaf area index (LAI) products with multi-
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Table 2. Summary of the multi-source datasets used to develop the long-term SM product.

Dataset Variable Temporal resolution ~ Spatial resolution  Usage References

GLASS-AVHRR  Albedo 8d Skm input Qu et al. (2014); Liu et al. (2013)
LST daily Skm input  Jia (2023)

ERAS5-Land SM hourly 0.1° input Muiioz-Sabater et al. (2021)

MERIT DEM Elevation, slope, aspect — 90m input  Yamazaki et al. (2017)

SoilGrids Clay, sand, silt - 250 m input  Poggio et al. (2021)

GLASS-MODIS SM daily 1km target  Zhang et al. (2023)

source datasets. In situ SM from the representative ISMN sta-
tions distributed globally was utilized by the XGBoost model
as the training target (Zhang et al., 2023). This product ex-
hibits high spatial and temporal consistency with both the
ESA CCI and SMAP/Sentinel-1 L2 Radiometer/Radar SM
products while maintaining a more complete spatial cover-
age. The daily GLASS-MODIS SM product from 2000 to
2020 is freely available at https://glass.hku.hk/archive/SM/
MODIS/ (last access: 18 September 2025). Here, we derived
training samples from the 5 km resampled GLASS-MODIS
SM product rather than directly using in situ SM as the train-
ing target, as the global SM product could provide a much
richer and representative training set than the sparse ISMN
SM dataset.

2.5 In situ SM datasets

After generating the GLASS-AVHRR SM product using the
developed DL model, three types of in situ SM datasets at
different spatial scales were adopted to evaluate its accu-
racy and consistency. The characteristics of these in situ SM
datasets are listed in Table 3, and the spatial distribution
of the corresponding SM stations is shown in Fig. Al. The
first type is the point-scale ISMN SM dataset (Dorigo et al.,
2021), providing a valuable reference for validating gridded
SM products, despite the relatively poor spatial representa-
tiveness of some SM stations. There were 1672 ISMN sta-
tions available for validation during Period I (2000-2018).
Among them, 715 spatially representative stations were se-
lected using the triple collocation method, as described in
detail in Zhang et al. (2023). Although SM datasets from
these representative stations were previously used as the tar-
get to train the GLASS-MODIS SM estimation model, mak-
ing them only partially independent, they can be used here
to assess the consistency between the GLASS-AVHRR and
GLASS-MODIS SM products. Moreover, the 45 fully inde-
pendent ISMN stations from Period II (1982—-1999) can be
used to evaluate the accuracy of the GLASS-AVHRR SM
product during the earlier years. The daily mean SM was cal-
culated by averaging the hourly SM measurements at the top
soil layer (05 cm) obtained from https://ismn.earth/ (last ac-
cess: 18 September 2025), considering only those flagged as
“G” for good quality.

https://doi.org/10.5194/essd-17-5181-2025

The second type is the COsmic-ray Soil Moisture Ob-
serving System (COSMOS) SM dataset, which includes
area-averaged SM measurements at the field scale from
three COSMOS networks: COSMOS (Zreda et al., 2012),
COSMOS-UK (Cooper et al., 2021), and COSMOS-Europe
(Bogena et al., 2022). The COSMOS sensors detect low-
energy cosmic-ray neutrons above the ground, which can
be converted to SM within a footprint radius of 130-240m
and a penetration depth of up to 83 cm, depending on fac-
tors such as air humidity, SM, and vegetation (Kohli et al.,
2015). Although data from the COSMOS and COSMOS-
UK networks had been integrated into the ISMN database,
they were excluded from the training dataset of the GLASS-
MODIS SM estimation model because their observation
depths exceeded the 5 cm threshold. Recently, data from the
COSMOS-Europe network have been released and can be
accessed at https://doi.org/10.34731/x9s3-kr48. Collectively,
these post-2000 SM datasets can serve as an independent
source for validating the GLASS-AVHRR SM product at an
intermediate scale. After filtering based on the quality flags
and aligning with the GLASS-AVHRR SM product, there
were 102 COSMOS, 45 COSMOS-UK, and 51 COSMOS-
Europe stations available for validation. The distribution of
sensing depths for each station across the three COSMOS
networks is presented in Fig. A2. While COSMOS sensors
measure SM at relatively deeper layers, they have been used
to validate microwave and modeled surface SM products and
show good correlations with them (Montzka et al., 2017;
Peng et al., 2021b).

The third type is the SMAP/in situ core validation site
(CVS) match-up dataset, which contains the upscaled in situ
SM measurements derived from multiple quality-controlled
stations that have been aligned with the SMAP SM products
(Colliander et al., 2017). A total of 22 globally distributed
CVSs were matched with the SMAP-Sentinel L2 SM prod-
uct gridded at 9km resolution (SMAPL2SMSP9 km). This
independent 9 km SMAP CVS in situ dataset can be used to
validate the GLASS-AVHRR SM product with reduced im-
pact of scale difference. It covers the period from 2015 to the
present and can be downloaded from https://nsidc.org/data/
nsidc-0712/versions/1 (last access: 18 September 2025).
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Table 3. Characteristics of three types of in situ SM datasets used in this study at different spatial scales.

Dataset Group of stations No.of Spatial scale  Sensing depth  Time period References
stations
ISMN All ISMN (Period I) 1672  Point-scale 0-5cm 2000-2018  Dorigo et al. (2021)
Representative ISMN (Period I) 715 2000-2018
ISMN (Period II) 45 1982-1999
COSMOS COSMOS 102 130-240m 15-83cm 2008-2018  Zreda et al. (2012)
COSMOS-UK 45 2013-2018  Cooper et al. (2021)
COSMOS-Europe 51 2011-2018 Bogena et al. (2022)
CVS SMAP CVS 22 9km 0-5cm 2015-2021  Colliander et al. (2017)

2.6 ESA CCI SM product

The European Space Agency (ESA) launched the Climate
Change Initiative (CCI) SM project to develop the ESA
CCI SM dataset, a global daily multi-decadal dataset aimed
at supporting climate research (Dorigo et al., 2017). This
dataset merged multiple microwave SM products into active-
only, passive-only, and combined active—passive products,
respectively. Here, we used the ESA CCI SM v7.1 com-
bined product at a resolution of 0.25° (https://climate.esa.
int/en/projects/soil-moisture/data/, last access: 18 September
2025), which covers the period 1978-2021. Despite being the
most widely used long-term satellite SM product, it suffers
from spatial incompleteness due to the lack of satellite obser-
vations in the earlier years, the observation gaps in satellite
orbits, and the physical limitations of microwave observa-
tions for SM retrieval over densely vegetated areas (Dorigo
et al., 2017). In this study, the spatial consistency between the
ESA CCI combined SM product and our GLASS-AVHRR
product was investigated.

3 Methods

Figure 1 shows the flowchart of the proposed long-term
global GLASS-AVHRR SM estimation framework, which
consists of three main parts: data preprocessing and train-
ing sample preparation, model training and performance
comparison, and generation and evaluation of the GLASS-
AVHRR SM product.

3.1 Training samples

The global GLASS-MODIS SM product resampled at 5 km
was used as the training target of the long-term SM estima-
tion model, from which a large number of representative and
evenly distributed training samples could be obtained. Con-
sidering that the size of training samples would be too large
if all the pixels were included, these samples were selected
at 25 km (5 pixels) intervals along both the longitude and lat-
itude, and a total of 135 360 pixels were chosen after exclud-
ing those with a large proportion of missing values. Based on
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the geographic coordinates of these pixels, the values corre-
sponding to each input feature as well as the target SM for
the years 2005, 2010, and 2015 were extracted, which col-
lectively formed the time-series training samples. While the
three years were selected to represent different periods within
the available time span (2000-2020), this selection may in-
troduce some uncertainty, as climate and environmental con-
ditions can vary annually, and extreme weather or climate
events in certain years may affect the representativeness of
variables such as LST and SM. Nevertheless, this approach
was adopted to control the sample size while ensuring the
representativeness of samples across different years. These
samples were then randomly divided into training, validation,
and test datasets at a ratio of 7 : 2 : 1 based on their locations,
ensuring spatial independence, with distances between any
two samples exceeding 25 km, thereby minimizing the influ-
ence of spatial autocorrelation. While the training and vali-
dation datasets were used to train and tune the hyperparame-
ters of the models, the accuracy of the models was evaluated
on the test dataset. Figure 2 clearly illustrates the process of
constructing time-series input samples for the DL models.
Note that the input features need to be scaled before training
a DL model, which helps to speed up the convergence pro-
cess, avoids bias towards larger-scale features, and improves
the model stability. Here, each input feature was standardized
by subtracting the mean and then dividing by the standard de-
viation, whereas for the target SM, no further processing is
needed because it is, by definition, scaled.

3.2 Benchmark model

When generating the global 1 km GLASS-MODIS SM prod-
uct, an XGBoost model was employed to integrate the multi-
source datasets because of its good performance and high
training and predicting speed. Here, we used the XGBoost
model as a benchmark and compared its performance with
the DL models (LSTM-based and transformer) to analyze
whether the DL models exhibit an advantage over this widely
used machine learning model in SM estimation. The XG-
Boost model (Chen and Guestrin, 2016) is a type of gra-
dient boosting model, in which multiple trees are itera-
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tively constructed through correcting the prediction residu-
als of the preceding trees. A schematic diagram of the XG-
Boost model is shown in Fig. 3e, where predictions from
multiple trees are combined to make the final SM predic-
tion. The key hyperparameters were configured as follows:
n_estimators = 1000, learning_rate = 0.1, and max_depth =
8. The time-series training samples constructed above were
put together to train the XGBoost model, and the overall ac-
curacy achieved by the XGBoost model on the test dataset
was then compared with that of the DL models as a bench-
mark.

3.3 Models based on long short-term memory

The LSTM network (Hochreiter and Schmidhuber, 1997) is
a special type of recurrent neural network (RNN) designed
to solve the problems of gradient vanishing and exploding
when training long sequences. The basic LSTM network in-
troduces the memory cell, which is a special type of hidden
state that shares the same shape as the hidden state but is de-
signed to record long-term information. Each recurrent unit
within the LSTM has three distinct gates, i.e., the forget gate,
input gate, and output gate, as illustrated in Fig. 3a. The for-
mulas used to calculate the three gates ( f;, i;, 0;), cell state
(ct), and hidden state (h;) are given below:

fi=oWyrlhi—1,x:]1+by), (D
ir =0(W.lh—1,x]+ b)), 2
or =0 Wo.[ht—1,x:]1+ Do), 3)
¢t = frxci—1 +ipxtanh(We.[h;—1, x: 1+ be), )
hy = os*tanh(cy), 5)

where x; represents the input datasets at time step ¢ and i,
is the hidden state at the previous time step; f;, ir, and oy
are all calculated as linear functions of x; and &,_; with dif-
ferent weights and biases and are then rescaled using a non-
linear sigmoid (o) function. The o function acts as the gating
function for the three gates, with an output ranging between
0 and 1, thereby determining which portion of the informa-
tion passes through the gates. Both the ¢ and tanh functions
add non-linearity to the LSTM network. The bidirectional
LSTM (Bi-LSTM) extends the LSTM network by incorpo-
rating both forward and backward LSTM units within a sin-
gle layer, allowing the model to capture contextual informa-
tion from both directions before concatenating their outputs.
As displayed in Fig. 3b, the Bi-LSTM model can learn bidi-
rectional (preceding and following) information at each time
step.

The LSTM network has different architectures, including
many-to-one (MTO) and many-to-many (MTM). In research
areas like crop mapping and runoff prediction, the MTO ar-
chitecture is primarily adopted, which uses inputs from mul-
tiple time steps to output estimates for a single time step. Al-
ternatively, we adopted the MTM architecture, which takes
time-series inputs and outputs SM estimates for all time steps
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simultaneously by feeding the hidden states from all time
steps into a fully connected layer. We also conducted an ex-
periment to compare the estimation accuracy of these two
architectures.

In addition to the basic LSTM and Bi-LSTM networks in-
troduced above, an attention module was added to the Bi-
LSTM network, referred to as the AtLSTM network, to ex-
plore if the estimation accuracy of SM could be further im-
proved. The AtLSTM network was constructed based on
Bahdanau et al. (2014) and Xu et al. (2020) and adapted here
for the MTM architecture. As illustrated in Fig. 3c, the atten-
tion module generates the attention weights («), which are
then multiplied with the hidden states () to get the weighted
hidden states (h*). @ and h* can be calculated as follows:

e, = Wy.h; +bg, (6)
a;,; = softmax(e;,;) = M (N
Zj:l exp(er, ;)

T
h;k = Za,‘,,’*h,’, (8)
i=1

where W, and b, denote the learnable parameters that map
the hidden states /4 into a weight matrix e and T is the se-
quence length of the input features. The weight matrix (with
the shape of T x T) is then rescaled by a softmax function
to obtain the attention weights for each hidden state, which
range between 0 and 1 and sum to 1. The weighted hidden
states 1™ are then fed into a fully connected layer to esti-
mate the target variable. Intuitively, higher attention weights
indicate that the corresponding hidden states have a greater
influence on the estimation of SM at a specific time step.

In this study, the LSTM-based models were implemented
using the open-source PyTorch 2.0 framework. The mean
square error (MSE) was used as the loss function, and the
Adam optimizer was adopted to update the learnable param-
eters of the models. Several key hyperparameters were tuned,
including the hidden size, number of epochs, and learning
rate (Zhang et al., 2021). For each model, the hidden size
was determined after testing values of 64, 128, 256, and 512;
the number of epochs, after testing 20, 50, 100, and 200; and
the learning rate, after testing 0.1, 0.01, 0.001, and 0.0001.
The final settings of the major hyperparameters for the three
LSTM-based models are listed in Table 4.

3.4 Transformer

The transformer network is a DL architecture based entirely
on attention mechanisms, dropping the recurrent structure
to avoid the constraint of sequential calculation. After be-
ing proposed by Vaswani et al. (2017), transformer soon be-
come the state-of-the-art model for natural language process-
ing and has also been applied successfully to areas like com-
puter vision (Dosovitskiy et al., 2020) and time-series anal-
ysis (Wen et al., 2022). Its core component is the multi-head
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Figure 3. Schematic diagrams of the five models used in this study: (a) LSTM, (b) Bi-LSTM, (c) AtLSTM, (d) transformer, and (e¢) XGBoost.
In subplots (a—d), x;, yr, and h; represent the input datasets, SM prediction, and hidden state output by the models at time step ¢, respectively.

Table 4. Key hyperparameters configured for the DL models used in this study.

Hyperparameters LSTM Bi-LSTM  AtLSTM  Transformer
Hidden size 256 256 256 64
Number of heads / / / 4
Number of epochs 100 100 200 100
Number of layers 1 1 1 1
Batch size 100 100 100 100
Learning rate 1x1073  1x1073 1x107* 1x1073
Sequence length 425 425 425 365

self-attention layers, which can relate any two positions in
a sequence. More specifically, multi-head attention involves
applying the attention function to multiple sets of key, value,
and query vectors in parallel, thus enabling the model to fo-
cus on different parts of the input sequence simultaneously.
Unlike the attention function used in the AtLSTM model
(Egs. 6-7), transformer uses the scaled dot-product attention
o, which can be calculated as follows:

)v
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T

x(Q,K, V)= softmax(Q ©)]

Vi

where Q, K, and V refer to the query, key, and value vectors,
respectively, which are derived by multiplying the embedded
input sequence with the corresponding learnable projection
matrix, and dy, is the dimension of the key and query vectors.
Additionally, with the help of a positional encoding function,
the transformer network can retain some ordinal information
for elements in the input sequence. A detailed description of
transformer and the multi-head self-attention mechanism can
be found in Vaswani et al. (2017). Compared with recurrent
or convolutional neural networks, the transformer network
can efficiently parallelize much larger amounts of compu-
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tation and capture long-range dependencies in the input se-
quence more easily. Here, we used only the encoder portion
of the original transformer network to map the input fea-
tures into hidden representations, which were then fed into a
fully connected layer to output the time-series SM estimates
(Fig. 3d). The same training samples, optimizer, and loss
function used for the LSTM-based models were employed
to train the transformer network, with the settings of its hy-
perparameters also listed in Table 4. Notably, the number of
heads is a unique hyperparameter of transformer that refers
to the number of parallel self-attention layers of the encoder.

3.5 Evaluation of the models and GLASS-AVHRR SM
product

After training the benchmark XGBoost model and the four
DL models described above using the same training sam-
ples distributed worldwide, their performances on the test set
were then compared from multiple perspectives, including
comparisons between the DL models and XGBoost model,
between the DL models with different attention mechanisms,
and between the DL models with MTM or MTO archi-
tectures. Moreover, the effect of the input sequence length
on model accuracy was investigated using the LSTM-based
models, and a preliminary interpretability analysis was per-
formed through visualizing the attention weights of both the
AtLSTM and transformer models. Then, the best-performing
model, along with the multi-source input datasets, was em-
ployed to generate the global daily GLASS-AVHRR SM
product at 5 km resolution from 1982 to 2021. To fully as-
sess the derived long-term SM product, different SM datasets
and evaluation strategies were combined, including overall
accuracy evaluation, scatter plot analysis, time-series plot
comparison, and spatial consistency examination. Specifi-
cally, the accuracy of this product was first evaluated against
the point-scale ISMN, field-scale COSMOS, and upscaled
9 km SMAP CVS in situ SM datasets, respectively. Then, the
GLASS-AVHRR SM product was intercompared with the
GLASS-MODIS SM product and two widely used long-term
global SM products, namely, ERAS-Land and ESA CCI, to
investigate their spatial consistency.

4 Results

4.1 Comparison of model performance

Table 5 lists the performance metrics achieved by the bench-
mark tree-based XGBoost model and four DL models on
the training set, validation set, and two types of test sets,
respectively. The XGBoost model achieved similar overall
accuracy across the training, validation, and test sets, with
a coefficient of determination (R?) of 0.984 and RMSE of
0.012m*>m™3 on the training set and an R* of 0.982 and
RMSE of 0.013 m3m~3 on both the validation and test sets,
indicating a low tendency for overfitting. The fairly high
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overall accuracy of the benchmark XGBoost model may be
attributed to the large number of training samples, specifi-
cally 135360 pixels per day over 3 years, evenly distributed
across the globe on a daily basis. To evaluate the impact of
sample size on model performance, we conducted an experi-
ment by reducing the number of training samples. When the
sample size was reduced by a factor of 100, the accuracy
of the XGBoost model dropped considerably, with an R? of
0.96 and RMSE of 0.017 m® m™> on the test set. This high-
lights the importance of having sufficient samples to achieve
high accuracy with XGBoost and indicates the advantage of
using the GLASS-MODIS SM product as the training tar-
get, which can provide much richer samples than the sparse
in situ ISMN SM dataset. Meanwhile, Table 5 also shows
that the accuracy of the XGBoost model decreases drastically
on the test set with SM observations exceeding 0.4 m3m~3,
yielding an R? of 0.413 and RMSE of 0.022 m3m~3, likely
due to the relatively smaller portion of samples at high SM
levels.

In comparison, the LSTM model developed using time-
series training samples performed slightly better than the
XGBoost model, with the R? on the test set increasing
to 0.983, and when the Bi-LSTM model was employed,
the overall accuracy on the test set was further improved,
with the R? increasing to 0.985 and RMSE decreasing to
0.012m3m~3. Although the increase in the overall accuracy
might not be significant, the Bi-LSTM model exhibited sig-
nificant improvement over the XGBoost model at high SM
levels, achieving an R? of 0.482 and RMSE of 0.020 m?> m—3
on the test set for observations exceeding 0.4m3>m™3. As
also can be seen from the density scatter plots in Fig. 4, the
majority of samples had SM values below 0.4 m3>m™~3 (indi-
cated by the red dots), where all models achieved high pre-
diction accuracy. However, on the relatively infrequent sam-
ples with high SM values, where the XGBoost model tended
to yield lower estimates, both the LSTM and Bi-LSTM mod-
els provided more accurate estimates. Given the temporal au-
tocorrelation of SM, these results suggest that learning both
forward and backward temporal information from the time-
series training samples enhances the ability of DL models to
estimate SM more accurately, especially at high SM levels
with sparser samples.

Then, after adding the attention module into the Bi-LSTM
model, the derived AtLSTM model achieved the best per-
formance, with an R? of 0.987 and RMSE of 0.011 m3 m—3
on the test set. In contrast, despite the fact that the trans-
former model also incorporated an attention module, its ac-
curacy was slightly lower than that of the AtLSTM model
on the test set and significantly lower on samples with high
SM levels (> 0.4m>m~3) in our experiments. As mentioned
above, the main advantage of the transformer model is its
ability to capture long-range dependencies and handle long
sequences effectively. However, soil moisture often exhibits
high temporal variability, meaning it can change rapidly due
to factors such as rainfall and evaporation. In this context,

https://doi.org/10.5194/essd-17-5181-2025



Y. Zhang et al.: A seamless global daily 5 km soil moisture product from 1982 to 2021

5191

Table 5. Performance metrics of the benchmark XGBoost model and four DL models on the training set, validation set, and two types of test

sets.
Model Training set ‘ Validation set ‘ Test set ‘ Test set (> 0.4 m3 m73)
R> RMSEm’m™) | R?> RMSEm’m™3)| R?> RMSEm’m=®) | R?> RMSE@m’m™3)
XGBoost 0.984 0.012 | 0.982 0.013 | 0.982 0.013 | 0413 0.022
LSTM 0.986 0.012 | 0.983 0.013 | 0.983 0.013 | 0.424 0.021
Bi-LSTM 0.988 0.011 | 0.984 0.012 | 0.985 0.012 | 0.482 0.020
AtLSTM 0.990 0.010 | 0.986 0.011 | 0.987 0.011 | 0.621 0.016
Transformer  0.990 0.010 | 0.984 0.012 | 0.985 0.012 | 0.460 0.021
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Figure 4. Scatter plots between target SM and predicted SM for the (a) XGBoost, (b) LSTM, (¢) Bi-LSTM, (d) AtLSTM, and (e) transformer
models on the test set. The colors of the dots indicate different probability densities, and the black line represents the 1 : 1 line.

short-term adjacent temporal information can be critical for
accurate SM estimation. The slightly better performance of
the AtLSTM model compared with the transformer model
may be attributed to its superior ability to capture these short-
term adjacent dependencies, which are critical for modeling
the nuances in rapidly changing SM levels. This will be fur-
ther investigated through the analysis of attentional weights
below. Additionally, a feature importance analysis was con-
ducted for the best-performing AtLSTM model, as shown in
Fig. A3. Specifically, the gradients of the model’s output with
respect to each input feature were computed on the test set,
and the absolute values of these gradients were then aver-
aged across all samples and time steps. Input features with
larger average gradients are considered to exert a more sig-
nificant influence on the model’s predictions. The results in-
dicate that elevation, black-sky visible albedo, ERA5-Land
reanalysis SM, and slope are the most influential features
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for the AtLSTM model. In particular, although elevation is
a static variable, it plays a critical role in shaping the spatial
distribution of SM by influencing precipitation, temperature,
vegetation type, and evaporation processes. Its impact on the
spatial variability of SM tends to be more stable and consis-
tent over time. In contrast, the contributions of dynamic input
features such as ERAS5-Land SM may fluctuate across time
and space and can be diminished by inherent uncertainties
and biases in the input data. Moreover, their importance may
be influenced by correlations with other input features. To
further investigate the importance of multi-source datasets
for the performance of the AtLSTM model, we conducted
ablation experiments by individually removing the ERAS-
Land SM and the GLASS-AVHRR albedo and LST products
from the input datasets. The results show that the AtLSTM
model’s accuracy on the test set decreased significantly, with
R? dropping to 0.954 and 0.968 and RMSE increasing to
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0.020 and 0.018 m3>m—3, respectively. These results demon-
strate that by integrating multi-source datasets and leverag-
ing their complementary strengths, the AtLSTM model can
achieve substantially improved accuracy in long-term SM es-
timation.

While the numerical differences in overall accuracy
among all these models may not seem remarkable, a more
intuitive comparison can be drawn from their density scatter
plots. As shown in Fig. 4, on the majority of samples, both
the best-performing AtLSTM model and benchmark XG-
Boost model can achieve high prediction accuracy, resulting
in a relatively small difference in their overall performance
on the test set. However, there remains a small portion of
samples that are more challenging to predict, on which the
SM estimates from the AtLSTM model are much closer to
the 1:1 line compared with the XGBoost model. Further-
more, the AtLSTM model significantly improves upon the
tendency of the XGBoost model to produce lower estimates
at high SM levels, achieving an R?> of 0.621 and RMSE
of 0.016 m>m™3 on the test set for observations exceeding
0.4m3m3. Overall, while both the XGBoost model and
the four DL models can achieve high SM estimation accu-
racy, the AtLSTM model yields the highest accuracy among
them and performs well across different SM levels, with a
low tendency for overfitting. This suggests that utilizing bidi-
rectional temporal information from the input sequence and
adding an attention module are both effective in further im-
proving the estimation accuracy of SM.

As mentioned in Sect. 3.3, we chose to use the MTM archi-
tecture when developing the DL models to output time-series
SM estimates at once. Here, to compare the accuracy of the
MTM architecture with the more commonly used MTO ar-
chitecture, as well as to investigate the effect of input se-
quence length on model accuracy, we calculated performance
metrics for the LSTM models utilizing these two different ar-
chitectures under varying lengths of input sequences. Specif-
ically, both types of models were trained using input features
from a given date (e.g., the first day of 2015) and n days (0-
29) prior to that date, respectively, and the accuracy of the
models was then evaluated on the test set for that given date.
To reduce the training time, the number of epochs for these
LSTM models was set to 20. It can be seen from the R? and
RMSE curves in Fig. 5a that as the length of the input se-
quence increased, the accuracy of the LSTM model with the
MTO architecture also increased, and then the accuracy lev-
eled off at a sequence length of about 10d. This indicates
that while accounting for temporal information can be ben-
eficial for current SM estimation, only the most recent input
sequences have a remarkable effect on the model’s accuracy.
In comparison, the LSTM model with the MTM architec-
ture, which can output a sequence of SM estimates simul-
taneously, achieved similar accuracy to that of the MTO ar-
chitecture, and its R? and RMSE curves stabilized at a se-
quence length of about 5d. This demonstrates the feasibil-
ity of adopting the MTM architecture in the LSTM model,
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which not only considerably reduces the production time but
also maintains the estimation accuracy.

Moreover, we also investigated the effect of the input se-
quence length on the overall accuracy of the AtLSTM model
with the MTM architecture, and the performance metrics
were calculated here based on SM estimates over the entire
time series instead of on a given date. To reduce the train-
ing time and account for the smaller learning rate used for
the AtLSTM model (Table 4), the number of epochs was set
to 50. As displayed in Fig. 5b, the overall accuracy of the
AtLSTM model increased sharply as the length of the in-
put sequence increased, and then the accuracy plateaued at
a sequence length of about 4 d. The more rapid stabilization
of the AtLSTM model’s accuracy may be attributed to the
incorporation of the Bi-LSTM module in the model, which
can utilize both forward and backward temporal informa-
tion. In addition, it seems that when the input sequence is
long enough, the model can automatically learn the neces-
sary temporal information to accurately estimate SM at each
position in the sequence. However, it should be noted that at
the beginning or end of the sequence, the model’s accuracy
tends to decrease, as only forward or backward information
can be utilized, which is a common issue encountered by the
LSTM-based models with the MTM architecture. Therefore,
to facilitate the production process, the sequence length of
the LSTM-based models was finally set to 425d, and both
the first 30 and last 30 values were discarded (a rather suf-
ficient number) after the model output the time-series SM
estimates so that an entire year’s SM estimates could be ob-
tained in a single run. Note that, during both the training and
production phases, the first and last 30d of each 425d se-
quence were padded with actual data from adjacent years to
ensure consistency.

Although data-driven DL models are commonly perceived
as “black boxes”, there are many techniques that can be em-
ployed to increase the interpretability of DL models. In the
case of attention-based deep neural networks, this can be
achieved by analyzing the distribution of attention weights.
In a long sequence, perhaps only a portion of the information
is critical to the model prediction at a given time step, and
the attention mechanism enables the model to focus on these
critical positions. In particular, the attention module of the
AtLSTM model can dynamically adjust the weights of the
hidden states output by the model at each time step. Figure 6a
illustrates the distribution of the averaged attention weights
calculated using the best-performing AtLSTM model on the
test set (40 608 samples). To show more detail, only the atten-
tion weights of 30 consecutive days selected from the entire
sequence (425d) are displayed here, and attention weights
less than 0.0001 are masked out. It is observed that, for the
hidden state at each time step in the sequence (vertical axis),
the largest attention weight was located approximately 3 d
around that time step (horizontal axis). This indicates that
when the attention module of the AtLSTM model learns to
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Figure 5. Performance metrics of (a) the LSTM models with two different types of architectures (MTO and MTM) and (b) the AtLSTM
model with the MTM architecture, trained using varying lengths of input sequences on the test set. The blue and red curves represent the R?

and RMSE curves, respectively.

readjust the hidden states, it primarily utilizes the temporal
information from adjacent positions in the sequence.

In contrast, as a core component of the transformer model,
the multi-head self-attention layers can capture various as-
pects of relationships between different positions within a
sequence, and the attention weights generated by these lay-
ers are then directly applied to the embedded input sequence.
Figure 6b shows, as a comparison, the distribution of atten-
tion weights calculated by averaging the outputs from the
four attention heads of the transformer model. The attention
weight heatmap of the transformer model is quite different
from that of the AtLSTM model, with the weight at each
position being much smaller and dispersed. This is likely
because the self-attention module can relate any two posi-
tions in the sequence, and inputs from more distant positions
may contribute more to the model output at the current time
step. In addition, for each time step in the sequence (vertical
axis), there were some common positions (horizontal axis)
with larger weights that were more important for model pre-
diction. Despite the distinct attention mechanisms employed
by these two DL models, both of them achieved high SM
estimation accuracy. Given that SM is temporally autocor-
related and highly variable over time, the slightly better per-
formance of the AtLSTM compared to the transformer model
may be attributed to the fact that it extracts temporal informa-
tion mainly from adjacent positions in the sequence, rather
than from more distant ones, for SM estimation.

4.2 Validation of the GLASS-AVHRR SM product

After generating the GLASS-AVHRR SM product using the
best-performing AtLSTM model with the MTM architecture,
permanent snow and ice as well as water bodies were masked
out with the help of the MODIS land cover type product
(MCD12C1) (Friedl and Sulla-Menashe, 2022). The derived
SM product was then evaluated against three types of in situ
SM datasets at different spatial scales. The first type is the
point-scale ISMN SM dataset, which is distributed globally
and covers a wide range of land cover types. There were
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1672 ISMN stations and 715 spatially representative stations
available for validation during Period I (2000-2018). The
distribution of validation metrics achieved by the GLASS-
AVHRR SM product on these partially independent ISMN
stations during Period I, grouped by all stations and repre-
sentative stations, is presented in Fig. 7, alongside those of
the GLASS-MODIS and ERAS5-Land SM products for com-
parison. The GLASS-AVHRR SM product achieved compa-
rable performance to that of the GLASS-MODIS SM prod-
uct across all ISMN stations and representative stations dur-
ing Period I. In addition, both GLASS SM products per-
formed significantly better at the representative stations. This
demonstrates the high level of consistency in accuracy be-
tween the two GLASS SM products. Note that the valida-
tion metrics for the GLASS-MODIS product were derived
using a site-independent cross-validation method, which was
designed to accurately reflect the product’s performance
over unknown areas. Given the consistency in the distribu-
tion of validation metrics between the GLASS-AVHRR and
GLASS-MODIS SM products, the accuracy achieved by the
GLASS-AVHRR product at these partially independent sta-
tions should also approach its true accuracy. In contrast, al-
though the ERAS5-Land SM product achieved a similar distri-
bution of R to the two GLASS SM products across all ISMN
stations and representative stations, it exhibited much larger
biases and ubRMSE values.

To conduct a more independent evaluation of the GLASS-
AVHRR SM product, the ISMN SM dataset from Period
IT (1982-1999) was also collected. After excluding stations
that overlapped with the 715 representative stations from Pe-
riod I, only 45 independent stations remained for evalua-
tion during Period II. The observations at these stations were
also quite limited; hence, the validation metrics derived from
them may not provide a comprehensive assessment. Never-
theless, it can be seen from Fig. 7 that the GLASS-AVHRR
product achieved rather high accuracy at these stations, with
amedian R of 0.73 and a median ubRMSE of 0.041 m* m~3.
Likewise, while the ERA5-Land SM product exhibited a sim-
ilar distribution of R to the GLASS-AVHRR product at these

Earth Syst. Sci. Data, 17, 5181-5207, 2025
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samples). Only the attention weights of 30 consecutive days selected from the entire sequence are displayed here for illustration.
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stations, it achieved much larger biases and ubRMSE values. SM product at an intermediate scale. As shown in Fig. 7,
The second type of in situ SM dataset comprises field-scale the GLASS-AVHRR, GLASS-MODIS, and ERA5-Land SM
measurements from three COSMOS networks, i.e., COS- products all achieved good performance across the three

MOS, COSMOS-UK, and COSMOS-Europe, which can COSMOS networks. The two GLASS SM products showed
provide an independent evaluation of the GLASS-AVHRR comparable overall accuracy across these networks, although
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some site-specific discrepancies were observed, which are
likely due to differences in the satellite remote sensing in-
puts and spatial resolution. Yet, their accuracies varied con-
siderably across these networks, with the median R ranging
from 0.63 to 0.79 and the median ubRMSE ranging from
0.044 to 0.065m>m™3 for the GLASS-AVHRR product.
This variability may be attributed to the different footprint
radii of COSMOS sensors, which result in varying degree of
spatial representativeness and spatial mismatches with grid-
ded SM products. These factors can introduce uncertainty
into the validation results, particularly affecting the bias and
ubRMSE metrics. The biases of the GLASS-AVHRR SM
product on the COSMOS-UK network were much larger than
those on the other two COSMOS networks, with the me-
dian bias reaching —0.09m3 m~3. This is likely due to the
greater sensing depth of the COSMOS-UK network, which
has a median depth of 30cm, compared to 21 and 22 cm
for the COSMOS and COSMOS-Europe networks, respec-
tively (Fig. A2). Moreover, both the GLASS-AVHRR and
ERAS5-Land SM products exhibited larger ubRMSE values
on the COSMOS-UK network. This may be related to the
increased uncertainty of COSMOS measurements in organic
soils or humid regions, which are prevalent in the UK, as also
reported by Zheng et al. (2024). Meanwhile, although the
first-layer (0O—7 cm) ERAS-Land SM product was used here
for evaluation, it still exhibited large wet biases across these
COSMOS networks, further suggesting its extensive overes-
timation issue.

Despite the high accuracy achieved when validating the
GLASS-AVHRR SM product using both the point-scale
ISMN and field-scale COSMOS in situ SM datasets, the val-
idation results were inevitably affected by the scale differ-
ences between these datasets. Therefore, the upscaled 9 km
SMAP CVS in situ SM dataset from 22 different locations
was also utilized to validate the GLASS-AVHRR SM product
from 2015 to 2021 as a complement. Specifically, the mean
SM values of the 5 km GLASS-AVHRR SM product within
a 2 x 2 window corresponding to each 9 km SMAP CVS grid
were first calculated, and then the validation metrics for the
GLASS-AVHRR SM product were estimated at each CVS,
as listed in Table 6. As a comparison, validation metrics for
the ERAS-Land SM product (~ 9km horizontal resolution)
were also calculated at each CVS and are presented in the
table.

At most of the CVSs, the GLASS-AVHRR SM product
achieved similar R values to the ERAS-Land SM product,
except at the Little River site, where the R value for the
GLASS-AVHRR product was significantly lower. This is
probably because the land cover type at this site is “Crop-
land or Natural mosaic”, making the upscaled in situ SM
measurements less representative and the validation results at
this site less reliable. Meanwhile, while the GLASS-AVHRR
SM product exhibited notable dry biases only at a few CVSs,
the ERAS-Land SM product showed large wet biases at most
of the CVSs, as also reported in detail by Lal et al. (2022).
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The varying degrees of bias in these two SM products can be
more intuitively observed through their scatter plots against
the upscaled in situ SM at each CVS (Fig. 8). As one of the
main inputs for generating the GLASS-AVHRR SM prod-
uct, the ERAS5-Land reanalysis SM exhibited notable wet bi-
ases at almost all CVSs, especially at REMEDHUSI, Lit-
tle River, and Benin, which were largely corrected by the
GLASS-AVHRR product, with the data points on the scat-
ter plots being much closer to the 1:1 line. This can be
attributed to the use of the GLASS-MODIS SM product as
the training target, although it may have also contributed to
the slight dry bias in the GLASS-AVHRR SM product, given
that optical and thermal satellite SM estimates typically rep-
resent a shallower depth than in situ SM datasets. In addition,
at the CVS where the ERAS-Land product exhibited a large
wet bias, the RMSE and ubRMSE values of the GLASS-
AVHRR product were often much lower than those of the
ERAS5-Land product. The average R and ubRMSE values
achieved by the GLASS-AVHRR SM product at 22 CVSs
were 0.77 and 0.037 m3>m~—3, respectively, similar to those
reported for the 9 km SMAP-Sentinel L2 SM product, which
were 0.79 and 0.035 m3 m~3, respectively (Das et al., 2020).
When combining all the CVS in situ SM measurements, an
overall R of 0.82 and ubRMSE of 0.054m®>m~> were ob-
tained by the GLASS-AVHRR SM product, showing signif-
icant improvement over the ERA5-Land SM product, which
had values of 0.65 and 0.083 m>m™3, respectively. This is
also evident from the more concentrated scatter points of the
GLASS-AVHRR SM product displayed in Fig. 8.

To intuitively examine the ability of the GLASS-AVHRR
SM product to capture temporal variations in measured SM
and its temporal consistency with the GLASS-MODIS prod-
uct, time-series curves for the GLASS-AVHRR (aggregated
at 10km), GLASS-MODIS (aggregated at 9km), and in
situ SM (upscaled at 9km) at six CVSs with different land
cover types were plotted, with the ERA5-Land SM prod-
uct (~ 9km horizontal resolution) also included for refer-
ence (Fig. 9). Through extending the GLASS-MODIS SM
product from 2000 back to 1982, the GLASS-AVHRR SM
product attained complete temporal coverage from 1982 to
2021, and a high degree of temporal consistency between
these two products could be observed from the time-series
plots. Despite the fact that the ERA5-Land SM product also
had long-term temporal coverage, it exhibited large wet bi-
ases when compared with the upscaled in situ SM at all
six CVSs, whereas both the GLASS-MODIS and GLASS-
AVHRR SM products aligned more closely with the dynamic
ranges of measured SM. As mentioned above, the GLASS-
AVHRR SM product exhibited notable dry biases at a few
CVSs. However, as can be seen from the time-series curves
at REMEDHUS? (Fig. 9a) and Yancol (Fig. 9f), suspicious
abrupt rises in measured SM, as well as temporary spikes in
SM (possibly caused by irrigation), might also have partially
contributed to these dry biases. Overall, the GLASS-AVHRR
SM product could well capture the temporal variations in
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Table 6. Validation metrics for the GLASS-AVHRR and ERAS5-Land SM products at 22 upscaled 9 km SMAP core validation sites, with the

best-performing metrics highlighted in bold.

Site GLASS-AVHRR ‘ ERAS5-Land LC No.
R Bias RMSE  ubRMSE R Bias RMSE  ubRMSE
(m3 m—3) (m3 m—3) (m3 m—3) (m3 m—3) (m3 m—3) (m3 m—3)
HOBE 0.61 —0.07 0.100 0.069 | 0.63 —0.02 0.069 0.066 Croplands 252
Kenaston1 0.76 —0.07 0.078 0.036 | 0.72 0.02 0.051 0.048  Croplands 87
Kenaston2 0.80 —0.08 0.084 0.035 | 0.77 0.01 0.046 0.045  Croplands 87
Carman 0.71 0.01 0.042 0.042 | 0.61 0.10 0.115 0.053  Croplands 145
South Fork 0.61 0.00 0.062 0.062 | 0.67 0.07 0.096 0.060 Croplands 179
St. Josephs 0.71 —0.07 0.077 0.037 | 0.75 0.05 0.063 0.035 Croplands 115
REMEDHUS1  0.87 0.05 0.051 0.022 | 0.86 0.16 0.172 0.071  Croplands 557
REMEDHUS2  0.86 —0.04 0.050 0.034 | 0.84 0.09 0.101 0.046  Croplands 540
Valencia 0.54 —0.01 0.047 0.045 | 0.59 0.08 0.111 0.078  Savannas 107
Tonzi Ranch 0.95 0.00 0.030 0.030 | 0.94 0.09 0.097 0.045 Savannas 79
Fort Cobb 0.81 0.01 0.034 0.034 | 0.83 0.08 0.085 0.040  Grasslands 248
Little Washita (.78 0.01 0.039 0.038 | 0.77 0.05 0.071 0.049  Grasslands 225
Walnut Gulchl ~ 0.71 0.01 0.030 0.027 | 0.69 0.01 0.062 0.061  Shrublands 159
Walnut Gulch2  0.74 0.04 0.042 0.021 | 0.71 0.11 0.126 0.062  Shrublands 189
Little River 0.36 0.00 0.043 0.043 | 0.76 0.22 0.225 0.040  Cropland/ 84
Natural mosaic
TxSON1 0.87 0.00 0.024 0.024 | 0.88 0.09 0.100 0.040  Grasslands 55
TxSON2 0.90 0.02 0.028 0.023 | 091 0.07 0.076 0.038  Grasslands 103
Niger 0.73 0.00 0.018 0.017 | 0.69 0.04 0.061 0.046  Grasslands 138
Benin 0.91 0.04 0.052 0.037 | 0.88 0.22 0.228 0.062  Savannas 217
Monte Buey 0.78 —0.07 0.081 0.035 | 0.74 0.01 0.053 0.052  Croplands 120
Yancol 0.92 —0.02 0.049 0.043 | 0.87 0.04 0.064 0.050  Croplands 121
Yanco2 0.90 0.00 0.035 0.035 | 0.86 0.09 0.095 0.041  Grasslands 117
Average 0.77 —0.01 0.050 0.037 | 0.77 0.08 0.099 0.053 / /
All 0.82 —0.01 0.054 0.054 | 0.65 0.09 0.119 0.083 / 3924

measured SM at these CVSs, except for the Little River site
(Fig. 9d), where the land cover type is “Cropland or Natu-
ral mosaic”. Measured SM at this site did not show a clear
seasonal pattern as at the other sites, and there was less con-
sistency between the two GLASS SM products, likely due
to the stronger spatial heterogeneity of this site. In addition,
at the Walnut Gulchl site (Fig. 9¢), where the dominant land
cover type is “Shrublands”, while the GLASS-AVHRR prod-
uct captured high SM values well, it slightly overestimated
when the measured SM approached zero.

4.3 Spatial consistency with global SM products

To further investigate the spatial consistency between the
GLASS-AVHRR and GLASS-MODIS SM products, as well
as with two widely used long-term global SM products,
mean SM maps of the GLASS-AVHRR, GLASS-MODIS,
ESA CCI, and ERAS5-Land products were plotted for Jan-
uvary and July of 2016 (Fig. 10). It can be seen that the
GLASS-AVHRR SM product had the most complete spa-
tial coverage among these products, after masking out per-
manent snow and ice and water bodies (Fig. 10g and h).
Despite the spatiotemporal continuity of the ERAS-Land re-
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analysis SM product, it yielded negative SM values close to
0 in parts of northern Africa, especially in July, which were
masked out here (Fig. 10c and d). The ESA CCI combined
SM product exhibited substantial spatial gaps above 30°N
in January, in addition to the persistent absence of valid es-
timates in some densely vegetated regions (e.g., the Congo
River and Amazon River basins), due to the attenuation of
microwave signals in these areas (Fig. 10a and b) (Dorigo
et al., 2017). Meanwhile, because of the lack of GLASS-
MODIS albedo products at high latitudes during the cold
season, GLASS-MODIS SM estimates were unavailable at
high latitudes (above 60°N) in January (Fig. 10e). Never-
theless, this does not affect the complete spatial coverage of
the GLASS-AVHRR SM product, although it should still be
used with caution in areas covered by seasonal snow and ice.
In this regard, the performance of the GLASS-AVHRR SM
product during the winter season (December—February) was
evaluated using ISMN stations located above 30° N latitude,
retaining only those with more than 100 matched records.
The product achieved a median R value of 0.69 at 374 rep-
resentative ISMN stations during Period I (2000-2018) and
0.63 at 19 stations during Period II (1982-1999). Therefore,
despite its relatively lower accuracy in winter, the GLASS-
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Figure 8. Scatter plots between the upscaled in situ SM and the corresponding estimated SM from the GLASS-AVHRR or ERAS-Land

product at each SMAP core validation site.

AVHRR SM product still can provide valuable estimates and
serve as a useful complement to the ESA CCI SM product.

In terms of the spatial distribution patterns of SM, the
GLASS-AVHRR and GLASS-MODIS SM products showed
a high degree of consistency, which further demonstrates the
effectiveness of the developed DL model. In general, both
GLASS SM products were slightly drier than the ESA CCI
combined SM product, probably because optical and ther-
mal satellite SM estimates typically represent a shallower
depth compared to microwave SM products. In contrast, the
ERAS5-Land SM product was much wetter than the other
three SM products, especially in regions with high SM lev-
els. While the three satellite SM products generally ranged
between 0 and 0.5m>m™3, the ERA5-Land reanalysis SM
product showed a range of 0-0.7 m® m~3, indicating a clear
tendency for overestimation. Although varying degrees of bi-
ases existed among the four global SM products, similar spa-
tial patterns could be observed in all of them, characterized
by higher SM values in the eastern United States, northern
South America, central Africa, and southern Asia and lower
SM values in the western United States, the Middle East,
northern and southern Africa, and Australia. Moreover, July
was slightly drier than January for all four SM products, par-
ticularly in regions such as the western United States, eastern
South America, and central Asia.
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Figure 11 presents a zoomed-in comparison between the
four SM products across the Tibetan Plateau in July 2016.
The Tibetan Plateau, located in central Asia, is the high-
est and most extensive plateau in the world, with an aver-
age elevation exceeding 4000 m. Its climate is extreme and
varied, featuring significant seasonal and interannual varia-
tions. The unique topographic and climatic characteristics of
the Tibetan Plateau make it one of the hotspots for global
climate change research. As can be observed from Fig. 11,
all of the SM products show similar spatial distribution pat-
terns: lower SM levels in the western and northern parts of
the plateau, where rainfall is scarce and vegetation is sparse,
and higher SM levels in the eastern and southern regions,
where rainfall is more abundant and vegetation is denser.
The GLASS-AVHRR SM product also exhibited high spa-
tial consistency with the GLASS-MODIS SM product over
the Tibetan Plateau, indicating that the adopted DL model
effectively learned spatial features from the target SM prod-
uct without introducing significant biases. Compared to the
other three products, the ERAS-land SM product was much
wetter in the southern part of the plateau, and the large
positive bias in the ERAS-land reanalysis SM over the Ti-
betan Plateau was also reported in a previous study (Xing
et al., 2021). Notably, there were many small patches with
abrupt SM changes in the ERA5-land product (Fig. 11c),
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Figure 9. Time-series plots of the GLASS-AVHRR (aggregated at 10 km), GLASS-MODIS (aggregated at 9 km), ERA5-Land (~ 9km
horizontal resolution), and in situ SM (upscaled at 9 km) at six CVSs with different land cover types for the period 1982-2021.

which were markedly improved in both the GLASS-AVHRR
and GLASS-MODIS SM products. Moreover, compared to
the ERAS5-land and ESA CCI SM products at coarser res-
olutions, the GLASS-AVHRR SM product contained much
richer spatial details and could well capture the distribution
patterns of topography and vegetation.
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5 Discussion

This study aimed to develop a long-term global SM esti-
mation framework using DL models to derive a temporally
consistent SM product with reliable accuracy over the last
four decades. Therefore, we mainly explored two types of
widely used DL models that are adept at processing sequen-
tial data: the LSTM-based models and transformer. While
LSTM has been utilized to retrieve SM since 2017 (Fang
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Figure 10. Mean global SM maps of the (a, b) 0.25° ESA CCI combined, (¢, d) 0.1° ERAS5-Land, (e, f) 1 km GLASS-MODIS, and
(g, h) 5km GLASS-AVHRR SM product in January and July of 2016. Permanent snow and ice as well as water bodies have been masked out
using the MODIS land cover product (MCD12C1), while SM values at northern high latitudes in January should be interpreted with caution

due to the widespread presence of permafrost, snow, and ice.

et al., 2017), the state-of-the-art transformer model is still
rarely used for SM estimation. Specifically, the accuracy of
these DL models was compared from multiple perspectives,
such as comparisons between the DL models and the bench-
mark tree-based XGBoost model, between models with dif-
ferent attention mechanisms, or between models with dif-
ferent application architectures. The results showed that the
attention-based LSTM (AtLSTM) model achieved the best
performance on the test set and that the MTM architecture
could output a sequence of SM estimates simultaneously
while maintaining similar accuracy to that of the MTO ar-
chitecture. Note that transformer was reported to outperform
the LSTM-based models in several hydrological applications
due to its ability to better handle long sequences and relate
any two positions in the sequence (Amanambu et al., 2022;
Yin et al., 2022). Meanwhile, according to Xu et al. (2021),
transformer achieved similar accuracy to the AtLSTM model
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in multi-temporal crop mapping tasks. However, Zeng et al.
(2023) found that a simple linear model can outperform
transformer in long-term time-series forecasting tasks and as-
cribed this to the temporal information loss associated with
the self-attention mechanism. Therefore, the superiority of
transformer for time-series forecasting or estimating remains
a topic of ongoing debate (Amanambu et al., 2022; Xu et al.,
2021; Yin et al., 2022; Zeng et al., 2023). In our study, the ac-
curacy of the transformer model was slightly lower than that
of the AtLSTM model, particularly for samples with high SM
levels (> 0.4m> m~3). Given the high temporal variability of
SM and the relatively short temporal length of SM memory,
which typically ranges from 5 to 40d and diminishes with
increasing time lags (Orth and Seneviratne, 2012), this re-
sult may be attributed to the superior ability of the AtLSTM
model to capture short-term adjacent dependencies. Yet, ad-
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ditional experiments with diverse training datasets are neces-
sary to confirm the general applicability of this result.

We also investigated the effect of input sequence length
on model accuracy, and it was found that the overall accu-
racy of the AtLSTM model with the MTM architecture lev-
eled off at a sequence length of about 4 d. Subsequent analy-
sis of the distribution of attention weights indicated that the
model could automatically learn the necessary temporal in-
formation from adjacent positions in the sequence to accu-
rately estimate SM. Despite the fact that the overall accu-
racy of the LSTM-based models with the MTM architec-
ture would converge as long as the length of the input se-
quence is sufficiently long, the models’ accuracy is typically
lower at the beginning or end of the sequence, and the af-
fected estimates need to be identified and removed. In con-
trast, most of the current LSTM or transformer application
architecture is MTO, and the accuracy remains unaffected
at both ends of the sequence. However, it is still necessary
to identify the optimal sequence length during the training
process to improve model efficiency, as the amount of input
data would increase substantially with increasing sequence
length. Here, we mainly explored the ability of the LSTM-
based models and transformer to capture temporal informa-
tion from time-series input datasets for SM estimation. Fu-
ture research could consider incorporating spatial patterns by
combining the AtLSTM or transformer models with CNNs
or adapting the network of transformer to improve its appli-
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cability for time-series estimating tasks. Moreover, different
input features and data sources can be integrated to investi-
gate whether the estimation accuracy of SM can be further
improved.

To examine the accuracy and consistency of the generated
four-decade global daily GLASS-AVHRR SM product, dif-
ferent strategies were combined to fully evaluate it, including
the validation against in situ SM datasets from point-scale
ISMN stations, field-scale COSMOS networks, and upscaled
9km SMAP CVSs, separately, as well as the intercompar-
ison with two widely used long-term global SM products.
However, the evaluation of the GLASS-AVHRR SM prod-
uct is still subject to certain limitations. The ISMN in situ
SM dataset prior to 2000 is relatively scarce, with only 45
independent stations available for evaluation during this pe-
riod, and a large-scale difference exists between this point-
scale SM dataset and the 5 km GLASS-AVHRR SM product.
The COSMOS sensors generally have varying footprint radii
and sensing depths, and their measurements tend to exhibit
higher uncertainties in organic soils or humid regions, which
can lead to spatial and vertical representativeness issues. Ad-
ditionally, there is only a limited number of upscaled SMAP
CVSs, and the data collected may also contain errors caused
by varying degrees of spatial representativeness.

Although the validation results demonstrated that the
GLASS-AVHRR SM product achieved high accuracy across
different spatial scales, its performance was inevitably influ-
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enced by the GLASS-MODIS SM product, which served as
the training target for the SM estimation model. Meanwhile,
as a data-driven product, the quality of the GLASS-AVHRR
SM product largely depends on the selected input features,
their accuracy and consistency, and the representativeness of
the training data. Potential uncertainties may arise from bi-
ases or errors in the satellite and reanalysis inputs. In partic-
ular, the reduced model accuracy observed in the high SM
range is likely due to the inherent imbalance in the numerical
distribution of SM samples and increased uncertainty in the
accuracy of input features under wet surface conditions. In
terms of feature selection, due to constraints such as record
length, spatiotemporal completeness, and accuracy require-
ments, some informative but less consistently available vari-
ables may have been excluded, further contributing to the un-
certainties in the final SM product. Moreover, as the ERAS-
Land reanalysis SM was used as one of the input features,
the generated product cannot be considered entirely indepen-
dent. Future research could explore developing a fully inde-
pendent, long-term, and seamless global SM product with
sufficiently reliable accuracy.

Nevertheless, intercomparison with the long-term ERAS-
Land and ESA CCI combined SM products showed that
the derived GLASS-AVHRR SM product achieved the most
complete spatial coverage, contained much richer spatial
details, and remained unaffected by the large wet biases
present in the input ERA5-Land SM product. While cumu-
lative distribution function (CDF)-based methods can also
be used for bias correction, they typically adjust statistical
distributions locally, which limits their spatial generaliza-
tion capability, particularly in regions lacking in situ SM
data. In addition, they often overlook the temporal depen-
dencies and non-linear dynamics inherent in SM time se-
ries. Therefore, both the proposed DL-based SM estimation
framework and the derived long-term global SM product
present clear value. It should be noted that the ESA CCI com-
bined SM product was generated by synthesizing SM prod-
ucts retrieved from multiple microwave sensors using dif-
ferent algorithms. This approach was necessary because no
single microwave sensor covered the sufficiently long time
period (> 30years) required for a climate data record, but
it also inevitably led to variations in the product’s accuracy
over time and space (Dorigo et al., 2012). In contrast, the
GLASS-AVHRR SM product was estimated using mainly
the seamless GLASS-AVHRR albedo and LST products re-
trieved from the long-archived AVHRR satellite observations
spanning four decades, which ensured its spatial and tem-
poral completeness and consistency. Moreover, although mi-
crowave sensors are more sensitive to SM, their signals are
significantly attenuated in densely vegetated areas, resulting
in persistent data gaps in the ESA CCI product. Although
the GLASS-AVHRR SM product is less accurate in these re-
gions (with a median R of 0.57 at 20 COSMOS forest sta-
tions), it can provide a valuable complement to microwave
SM products. In future research, greater efforts should be de-
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voted to both the development and validation of long-term
SM climate data records, and it is also crucial to assess the
long-term trends in these SM datasets.

6 Data availability

The seamless global 5km SM product (GLASS-AVHRR
SM) at daily scale from 1982 to 2021 is freely acces-
sible at https://glass.hku.hk/archive/SM/AVHRR/ (last ac-
cess: 18 September 2025). Additionally, the annual average
GLASS-AVHRR SM dataset was generated, which can be
downloaded from https://doi.org/10.5281/zenodo.14198201
(Zhang et al., 2024b). Note that this product represents the
volumetric water content in the uppermost soil layer (0-
5 cm), with areas of permanent snow and ice and water bod-
ies masked. A scale factor of 1000 was applied, with missing
values filled with —9999.

7 Conclusions

A four-decade (1982-2021) seamless global surface SM
product (0-5cm) at 5km resolution was derived here, de-
noted as the GLASS-AVHRR SM product. This product was
estimated using mainly the long-archived AVHRR satellite
observations and multi-source datasets based on DL. Specif-
ically, a large number of evenly distributed training samples
extracted from the global 1km daily GLASS-MODIS SM
product were used as the target to train three LSTM-based
models (LSTM, Bi-LSTM, and AtLSTM) and a transformer
model, with an XGBoost model employed as the benchmark.
After identifying the AtLSTM as the best-performing model,
it was ultimately adopted to generate the long-term GLASS-
AVHRR SM product, which was then fully evaluated for re-
liability and consistency. The main results are summarized as
follows:

1. Evaluation of the models on the test set showed
that all four DL models outperformed the benchmark
XGBoost model, particularly at high SM levels (>
0.4m3 m_3). Notably, the AtLSTM model achieved the
best performance, with an R? of 0.987 and RMSE of
0.011 m3m™3, and its SM estimates were much closer
to the 1 : 1 line than those from the other models. These
results indicate that utilizing bidirectional temporal in-
formation from the input sequence as well as adding an
attention module are both effective in improving the ac-
curacy in estimating SM. Meanwhile, The MTM archi-
tecture adopted in this study achieved similar accuracy
to that of the MTO architecture while being able to out-
put a sequence of SM estimates simultaneously and con-
siderably reduce the production time.

2. The AtLSTM model with the MTM architecture was
then employed to investigate the effect of input se-
quence length on model accuracy, and it was found that
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the overall accuracy of the model leveled off at a se-
quence length of about 4 d. Further analysis of the atten-
tion weights revealed that the AtLSTM model with the
MTM architecture could automatically learn the nec-
essary information from adjacent positions in the se-
quence to accurately estimate SM at each position. In
contrast, the temporal information learned by the self-
attention module of the transformer model was more
dispersedly distributed, and the slightly lower accuracy
of the transformer model than the AtLSTM model might
be attributed to the typically high temporal variability of
SM and the fact that short-term adjacent temporal infor-
mation played a more critical role in the accurate esti-
mation of SM.

3. The derived GLASS-AVHRR SM product was first
evaluated using 45 independent point-scale ISMN sta-
tions prior to 2000, resulting in a median R of 0.73
and ubRMSE of 0.041 m>m~3. Then, the product was
validated against SM datasets from three post-2000
field-scale COSMOS networks, with median R values
ranging from 0.63 to 0.79 and median ubRMSE val-
ues between 0.044 and 0.065m>m™3. Validation of
the GLASS-AVHRR SM product at 22 upscaled 9 km
SMAP CVSs yielded an overall R of 0.82 and ubRMSE
of 0.054 m>m~3. Whereas the ERA5-Land SM prod-
uct had large wet biases at most of the CVSs, the
GLASS-AVHRR SM product basically corrected these
biases. Moreover, the time-series plots at six CVSs fur-
ther demonstrated that the GLASS-AVHRR SM product
could well capture the temporal variations in measured
SM and showed a high degree of temporal consistency
with the GLASS-MODIS SM product.

4. Finally, the GLASS-AVHRR SM product was intercom-
pared with two widely used long-term global SM prod-
ucts to investigate their spatial consistency. With the
most complete spatial coverage, the GLASS-AVHRR
SM product was slightly drier than the ESA CCI com-
bined SM product, possibly due to the shallower depth it
represents, whereas the ERAS5-Land SM product exhib-
ited a clear tendency for overestimation. Although sim-
ilar spatial patterns of SM could be observed in all of
these products, the GLASS-AVHRR SM product con-
tained much richer spatial details than the two long-term
SM products at coarser resolutions.

Our study demonstrates the feasibility of utilizing the
attention-based DL model and AVHRR satellite observa-
tions to generate a long-term global SM product. The de-
rived GLASS-AVHRR SM product has the advantages of
long-term coverage, spatial and temporal integrity, reliable
accuracy, and consistency. As a reliable extension of the
GLASS-MODIS SM product and a valuable complement to
microwave SM products, this four-decade global SM prod-
uct will be beneficial for a range of large-scale climate-
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change-related research. Future studies could combine other
DL models or integrate different data sources to further im-
prove the quality of the long-term SM product.
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Appendix A: Supplementary figures
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Figure A1. The spatial distribution of SM stations for each in situ SM dataset used in this study. Period I refers to 2000-2018, and Period II
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Figure A3. Importance ranking of 11 input features for the At-
LSTM model based on gradient analysis.
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