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Abstract. Accurate and high-resolution spatial soil information is crucial for efficient and sustainable land use,
management, and conservation. Since the establishment of digital soil mapping (DSM) and the GlobalSoilMap
working group, significant advances have been made in terms of the availability and quality of spatial soil in-
formation globally. However, accurately predicting soil variation over large and complex areas with limited
samples remains a challenge, especially for China, which has diverse soil landscapes. To address this challenge,
we utilised 11 209 representative multi-source legacy soil profiles (including the Second National Soil Survey of
China, the World Soil Information Service, the First National Soil Survey of China, and regional databases) and
high-resolution soil-forming environment characterisation. Using advanced ensemble machine learning and a
high-performance parallel-computing strategy, we developed comprehensive maps of 23 soil physical and chem-
ical properties at six standard depth layers from 0 to 2 m in China at a 90 m spatial resolution (China dataset
of soil properties for land surface modelling version 2, CSDLv2). Data-splitting and independent-sample val-
idation strategies were employed to evaluate the accuracy of the predicted maps’ quality. The results showed
that the predicted maps were significantly more accurate and detailed compared to traditional soil type linkage
methods (i.e. CSDLv1, the first version of the dataset), SoilGrids 2.0, and HWSD 2.0 products, effectively rep-
resenting the spatial variation of soil properties across China. The prediction accuracy of soil properties at all
depth intervals ranged from good to moderate, with median model efficiency coefficients for most soil proper-
ties ranging from 0.29 to 0.70 during data-splitting validation and from 0.25 to 0.84 during independent-sample
validation. The wide range between the 5 % lower and 95 % upper prediction limits may indicate substantial
room for improvement in current predictions. The relative importance of environmental covariates in predic-
tions varied with soil property and depth, indicating the complexity of interactions among multiple factors
in the soil formation processes. As the soil profiles used in this study mainly originate from the Second Na-
tional Soil Survey of China, conducted during the 1970s and 1980s, they could provide new perspectives on
soil changes, together with existing maps based on soil profiles from the 2010s. The findings of this study make
important contributions to the GlobalSoilMap project and can also be used for regional Earth system modelling
and land surface modelling to better represent the role of soil in hydrological and biogeochemical cycles in
China. This dataset is freely available at https://www.scidb.cn/s/ZZJzAz (last access: 17 November 2024) or
https://doi.org/10.11888/Terre.tpdc.301235 (Shi and Shangguan, 2024).
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1 Introduction

Soil plays a pivotal role in the Earth’s systems, facilitating the
cycling of water, energy, and carbon across varying temporal
and spatial scales. Its significance lies in regulating ecosys-
tems by providing vital nutrients to living organisms; stor-
ing and cycling water, heat, carbon, and essential nutrients;
and serving as a medium for vegetation growth and structural
support (Chaney et al., 2019; Crow et al., 2012). Soil data are
essential for land surface models (LSMs), which form a part
of Earth system models (ESMs) (Dai et al., 2019b; Luo et al.,
2016). The diverse range of soil properties and their precise
representation are crucial for robust land surface modelling,
influencing various environmental, agricultural, and ecolog-
ical assessments. There is an urgent need for detailed, ac-
curate, and up-to-date soil information to develop solutions
for these challenges and to inform decision-making related
to natural resource management (Arrouays et al., 2014a; Dai
et al., 2019b; Li et al., 2024).

In recent years, the national and global maps of soil prop-
erties have gained significant traction in research (Arrouays
et al., 2017), with a surge of studies focusing on map-
ping one or more soil properties at high resolutions, such
as 90 m, spanning various countries. These include large-
scale endeavours in Australia (Grundy et al., 2015; Viscarra
Rossel et al., 2015), France (Chen et al., 2023; Mulder et al.,
2016), Chile (Dinamarca et al., 2023; Padarian et al., 2017),
Japan (Yamashita et al., 2024), Netherlands (Helfenstein et
al., 2024), and the United States (Ramcharan et al., 2018;
Thompson et al., 2020). Chaney et al. (2019) developed 30 m
probabilistic maps of soil properties across the United States.
Denmark has also developed national maps of soil texture at
a finer 30 m resolution (Adhikari et al., 2013). Additionally,
broader-scale-resolution maps, ranging from 250 to 5000 m,
have also been investigated at the national level, exemplified
by Brazil (Gomes et al., 2019). These efforts have been ex-
panded to continental scales, including Africa (Hengl et al.,
2015, 2021) and Europe (Heuvelink et al., 2016), and ulti-
mately to global levels, as seen in datasets such as the Global
Soil Dataset for use in Earth System Models (GSDE, Shang-
guan et al., 2014), the Harmonized World Soil Database ver-
sion 2.0 (HWSD 2.0, FAO and IIASA, 2023), and SoilGrids
2.0 (Poggio et al., 2021).

Shangguan et al. (2013) pioneered the development of a
comprehensive dataset of soil characteristics specifically de-
signed for land surface modelling over China (i.e. China
Soil Dataset for Land Surface Modelling, CSDLv1, the first
version dataset of this study). This dataset, based on 8979
legacy soil profiles and the Soil Map of China (1 : 1000000),
employs the conventional polygon linkage method (Batjes,
1995, 2002; Shangguan et al., 2012) to develop soil phys-
ical and chemical properties. It provides a spatial resolu-
tion of 30 arcsec (about 1 km at the Equator) and includes
over 20 properties at eight vertical soil depths (Shangguan et
al., 2013). The dataset has been successfully applied in var-

ious fields. Despite its significant contributions to regional
land surface modelling and geoscientific research, over time,
several issues and shortcomings have been identified. First,
while the dataset utilised soil profiles solely from the Second
National Soil Survey of China (1979–1985), there is now a
broader array of available soil profiles, including those from
the World Soil Information Service (WoSIS, Batjes et al.,
2020), regional database (Shangguan et al., 2012), and the
First National Soil Survey of China (National Soil Survey
Office, 1964). The integration of these soil profiles promises
to substantially enhance the spatial representation and cov-
erage of the dataset. Second, this dataset relies on the tradi-
tional polygon linkage method based on soil transformation
rules (Shangguan et al., 2013, 2014), where results depend
heavily on the accuracy of soil classification maps and are
estimated as the average of a soil class or polygon, leading to
discontinuous spatial estimates. The emergence of digital soil
mapping (DSM) techniques (McBratney et al., 2003), partic-
ularly the success of machine learning in large-scale spatial
prediction (Hengl et al., 2017; Poggio et al., 2021; Yan et al.,
2020), presents a methodological advancement for this study.
Recent studies indicate that advanced machine learning mod-
els often outperform simpler ones, with the size of the sample
also emerging as a crucial factor influencing model perfor-
mance (Padarian et al., 2020).

For China, mapping datasets encompassing one or mul-
tiple soil properties have already been developed. Liang
et al. (2019) and Chen et al. (2019) both developed high-
resolution grid maps across China based on about 5000
legacy soil profiles collected from the Second National Soil
Survey of China, providing more detailed information for ar-
eas with spatial heterogeneity. However, Liang et al. (2019)
focused solely on spatial estimates for soil organic carbon
in the topsoil (0–20 cm layer), while Chen et al. (2019) con-
centrated solely on spatial estimates for soil pH in the same
layer. Both studies lack estimations for other soil property
variables and deeper soil layers. Approximately 4000 legacy
soil profiles were utilised by Zhou et al. (2019a) to develop a
high-resolution national-scale dataset for total nitrogen in the
topsoil (0–20 cm layer) at a 90 m resolution using machine
learning methods. Similarly, Song et al. (2020) used over
5000 soil profiles from the 2010s to produce high-resolution
maps of soil organic carbon at six standard depths (0–5, 5–
15, 15–30, 30–60, 60–100, and 100–200 cm) across China,
achieving explained variances ranging from 0.16 to 0.57. Be-
sides this, Liu et al. (2022a) also employed machine learn-
ing methods to develop China’s inaugural high-resolution
national soil information grid dataset at a 90 m resolution,
utilising soil samples from the most recent National Soil Se-
ries of China (2009–2019). This dataset has contributed sig-
nificantly to soil management, agricultural production, hy-
drological modelling, ecological development, and climate
change mitigation. However, the study relied solely on a con-
strained set of about 4500 soil profiles collected during the
recent national soil survey, generating national grid maps for
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only some fundamental soil properties, including pH (H2O),
organic carbon, cation exchange capacity, total nitrogen, to-
tal phosphorus, total potassium, bulk density, gravel content,
soil texture, and soil thickness. The limitations stem from
the absence of more comprehensive national grid maps for
soil properties, including the fractions of total phosphorus
and potassium readily available for plant absorption (avail-
able phosphorus, AP; available potassium, AK), an index of
the potential capacity of the soil to supply nitrogen (alkali-
hydrolysable nitrogen, AN), porosity, and others, imposing
constraints on applications that necessitate a broader spec-
trum of soil property information. Additionally, there are
abundant legacy soil profiles stored in global or regional
databases (e.g. WoSIS, Batjes et al., 2020). These legacy soil
profiles serve as a primary data source for digital soil map-
ping (Lagacherie et al., 2024; Song et al., 2020; Yang et al.,
2022). For China, the Second National Soil Survey serves
as a significant source of legacy soil profiles, offering valu-
able insights into soil properties and characteristics (Shang-
guan et al., 2013). Therefore, these rich legacy soil profile
data should be fully utilised as they better reflect historical
mapping results, providing a new perspective for studying
temporal changes in soil properties (Song et al., 2020). In
summary, the existing dataset has several limitations, includ-
ing its reliance on the traditional polygon linkage method;
a limited number of soil profile samples; and the fact that
it only contains basic soil property variables, lacking more
comprehensive soil properties. Given these limitations, there
is a compelling need to develop a new version of the dataset
to address these challenges.

This paper aims to develop a new version of the CSDL
(CSDLv2), with comprehensive soil physical and chemical
properties for China at a 90 m resolution. This work builds on
its previous version (CSDLv1, Shangguan et al., 2013), inte-
grating advanced machine learning algorithms, multi-source
soil profile samples, and high-resolution environmental co-
variates related to soil formation. The key advancements of
this second-edition dataset, compared to the first edition, are
as follows:

1. integration of multi-source soil profile samples, includ-
ing data from the Second National Soil Survey of China
(Shangguan et al., 2013), the World Soil Information
Service (Batjes et al., 2020), the First National Soil Sur-
vey of China (National Soil Survey Office, 1964), and
regional databases (Shangguan et al., 2012), rather than
relying solely on data from the Second National Soil
Survey, as in CSDLv1, thereby enhancing the spatial
representation of soil profiles;

2. application of advanced machine learning methods, re-
placing the conventional soil polygon linkage method
used in CSDLv1;

3. consideration of high-resolution environmental covari-
ates as predictors for the machine learning models, al-

lowing the model to capture more detailed spatial re-
lationships between soil properties and environmental
factors;

4. enhancement of the spatial resolution from the original
1 km to 90 m as a result of the improvements in points
1–3, providing more detailed and accurate spatial pre-
dictions of soil properties.

Additionally, compared to existing datasets, this second
edition offers a major innovation: over 20 comprehensive
soil property variables were developed, while most current
research focuses on mapping only a few basic soil proper-
ties.

2 Materials and methods

The workflow of this study is shown in Fig. 1. Five main
processes are involved in this framework:

1. harmonising and preparing soil point data and environ-
mental covariates;

2. incorporating laboratory measurements of multiple soil
profiles and overlaying them with covariates to generate
a regression matrix for modelling;

3. using cross-validation to obtain optimal modelling pa-
rameters;

4. fitting prediction models based on the regression matrix;

5. applying spatial prediction models using high-
resolution covariates and evaluating the models using
data-splitting and independent-sample validation, as
well as uncertainty maps.

2.1 Study area and soil profiles

2.1.1 Study area

China, located in East Asia along the west coast of the Pa-
cific Ocean, extends from 3°51′ to 53°33′ N latitude and from
73°33′ to 135°05′ E longitude, covering an east–west dis-
tance of about 5000 km and featuring a continental coastline
exceeding 18 000 km. The terrain of the land area of China
exhibits a distinctive “ladder” pattern, with higher elevations
in the west descending to lower elevations in the east, as
shown in Fig. 2b. Mountains, plateaus, and hills comprise
about 67 % of the land area, while basins and plains make up
the remaining 33 % (Qin et al., 2016). China’s topography is
highly complex, encompassing an array of landforms such as
extensive mountain ranges, vast plateaus, fertile plains, and
deep basins. This diverse landscape is further complicated by
a range of climatic zones determined by variations in temper-
ature, precipitation, and altitude. These zones include tem-
perate, subtropical, and tropical climates, with the temperate
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Figure 1. The statistical framework for developing national-scale soil property mapping in this study.

zone being the largest (Fan et al., 2016). Given the complex-
ity and diversity of China’s geographical and climatic con-
ditions, the study of soil property mapping across this vast
nation is of paramount importance.

2.1.2 Soil profiles

Typical soil profiles representing the main soil landscapes
were collected from four data sources: the Second National
Soil Survey of China (SNSSC, National Soil Survey Office,
1996), the World Soil Information Service (WoSIS, Batjes
et al., 2020), regional datasets (Shangguan et al., 2012), and
the First National Soil Survey of China (FNSSC, National
Soil Survey Office, 1964). A total of 11 209 soil profiles
were gathered, with the distribution details being as follows:

8979 from the SNSSC, 1540 from the WoSIS database, 614
from regional datasets, and 76 from the FNSSC. Their spa-
tial distribution is illustrated in Fig. 2a, with different colours
representing each data source. The soil property variables
considered in this study are listed in Table 1. The SNSSC,
conducted primarily between 1979 and 1985, provided the
majority of soil profiles, although coordinates were approx-
imated due to GPS limitations at the time, impacting map-
ping accuracy (Lagacherie et al., 2024). Shi et al. (2024) im-
proved the location accuracy of soil profiles in the SNSSC by
aligning detailed profile descriptions with environmental co-
variates. The WoSIS, managed by the International Soil Ref-
erence and Information Centre (ISRIC), is a comprehensive
global database that consolidates soil profile data from vari-
ous sources under a common standard (Batjes et al., 2020).
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Figure 2. (a) Spatial distribution of the 11 209 soil profiles collected from various data sources: black dots indicate the Second National Soil
Survey of China (second survey), green dots correspond to the World Soil Information Service (WoSIS), orange dots denote regional data,
and red dots represent the First National Soil Survey of China (first survey). The red window indicates the area selected for visualising the
spatial patterns of soil properties. (b) Geographical map of the land area of China.

These data are standardised and harmonised to facilitate
global soil research and to enhance the accuracy of digital
soil mapping efforts. It is worth noting that the WoSIS con-
tains soil profiles from the SNSSC. The following approach
was employed to determine and eliminate potentially dupli-
cate soil profiles in the WoSIS database that may overlap with
those in the SNSSC: soil profiles were considered to be dupli-
cates if they had identical depths of soil horizons or included
at least three identical depths, exhibited similar soil property
values, and had close geographic coordinates (latitude and
longitude). Consequently, 101 duplicate soil profiles were re-
moved from the WoSIS database, leaving 1540 soil profiles
for this study. The regional dataset was collected from five ar-
eas in 2008 and 2009 (Shangguan et al., 2012). The FNSSC,
initiated in 1958, laid the foundation for China’s soil science
database and agricultural soil classification. The laboratory
methods for obtaining and assessing soil profile data from
the SNSSC and WoSIS databases are detailed in Shangguan
et al. (2013) and Batjes et al. (2020), respectively. All data are
exclusively from soil profiles, with no inclusion of boreholes
or augerings. The regional database includes only surface
data, while the SNSSC and WoSIS datasets contain full soil
profiles. Because soil profiles are extracted from soil survey
books of the FNSSC or the SNSSC, there may be one or sev-
eral soil profiles for each soil type. As a result, though there is
no sampling design for the major data sources, it may be con-
sidered to be soil-type-based stratified sampling for the final
soil profile database. For soil properties sensitive to temporal
changes, such as soil pH, organic carbon (OC) content, cation
exchange capacity (CEC), total nitrogen (TN), total phospho-

rus (TP), total potassium (TK), alkali-hydrolysable nitrogen
(AN), available phosphorus (AP), and available potassium
(AK), we used only soil profile data from the SNSSC. In con-
trast, for properties less sensitive to temporal changes, such
as sand, silt, clay, bulk density (BD), gravel, and porosity, we
combined data from multiple sources. Since most soil pro-
files are from the SNSSC, the maps in the CSDLv2 mainly
represent the status of soil in the 1980s. The probability den-
sity distribution of topsoil (0–5 cm) properties from different
data sources is provided in Fig. S1 in the Supplement. To
align with international soil mapping standards, a continuous
depth function using equal-area splines was applied to hori-
zon data, defining six standard layers (0–5, 5–15, 15–30, 30–
60, 60–100, and 100–200 cm) (Arrouays et al., 2014b, 2015).
Detailed descriptions of the equal-area splines can be found
in Bishop et al. (1999) and Liu et al. (2022a).

2.2 Environmental covariates

Following the SCORPAN (soil, climate, organisms, topogra-
phy, parent material, age, and location) concept (McBratney
et al., 2003), over 150 environmental covariates associated
with soil formation were collected to investigate the spatial
distribution of soil properties for this work. A summary of
some high-resolution covariates is provided in Table 2, while
the complete list can be found in Table S1. These environ-
mental covariates offer information on the factors related to
soil properties.
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Table 1. List of information of soil profile data.

Soil property Notation Units Description Maps

Bulk density BD g cm−3 Bulk density of the fine-earth fraction oven
dried

Fig. S2

Sand Sand % Gravimetric percentage of sand (2–0.05 mm) in
the fine-earth fraction of the soil

Fig. S5

Silt Silt % Gravimetric percentage of silt (0.05–0.02 mm)
in the fine-earth fraction of the soil

Fig. S8

Clay Clay % Gravimetric percentage of clay (<0.02 mm) in
the fine-earth fraction of the soil

Fig. S11

Rock fragment Gravel g per 100 g Volumetric content of fragments >2 mm in the
whole soil

Fig. S14

Porosity Porosity cm3 cm−3 Volume fraction of void space (pores) in a ma-
terial

Fig. S17

Wet colour R (wet), G (wet), B (wet) – RGB-quantified soil colour for wet soil Figs. S20, S23, S26

Dry colour R (dry), G (dry), B (dry) – RGB-quantified soil colour for dry soil Figs. S29, S32, S35

Wet colour Hue, value, chroma – Soil colour of wet soil is represented by the
Munsell notation with three dimensions: hue,
value, and chroma

Fig. S38

Dry colour Hue, value, chroma – Soil colour of dry soil is represented by the
Munsell notation with three dimensions: hue,
value, and chroma

Fig. S19

pH value (H2O) pH – Negative common logarithm of the activity of
hydronium ions (H+) in water

Fig. S40

Soil organic carbon OC g per 100 g Gravimetric content of organic carbon in the
fine-earth fraction

Fig. S43

Cation exchange
capacity

CEC me per 100 g Capacity of the fine-earth fraction to hold ex-
changeable cations

Fig. S46

Total nitrogen TN g per 100 g Total nitrogen in soil, comprising organic, in-
organic, and ammonium nitrogen, among other
forms

Fig. S49

Total phosphorus TP g per 100 g Total phosphorus in soil includes all phospho-
rus compounds, both organic and inorganic, ir-
respective of their plant availability

Fig. S52

Total potassium TK g per 100 g Total potassium in a soil sample comprises
both exchangeable (plant-available) and non-
exchangeable forms

Fig. S55

Alkali-
hydrolysable
nitrogen

AN mg kg−1 Total amount of nitrogen released from soil
through alkali treatment (i.e. sodium hydroxide
or potassium hydroxide)

Fig. S58

Available
potassium

AK mg kg−1 Portion of potassium in the soil that is readily
accessible for plant uptake

Fig. S61

Available
phosphorous

AP mg kg−1 Fraction of phosphorus in the soil that is soluble
in a chemical extract and readily accessible for
plant uptake

Fig. S64

Earth Syst. Sci. Data, 17, 517–543, 2025 https://doi.org/10.5194/essd-17-517-2025



G. Shi et al.: A China dataset of soil properties 523

Table 2. Summary of the main high-resolution environmental covariates. For the complete list of soil-forming factors, see Table S1.

Factor
definitions

Description Resolution (m) Source

BDTICM Depth to bedrock of China 90 http://globalchange.bnu.edu.cn/research/cdtb.
jsp (last access: 15 February 2024)

B5/B7 The ratio of band 5 (near-infrared) to
band 7 (shortwave infrared 2) surface
reflectance

90 https://www.usgs.gov/landsat-missions/
landsat-collection-2
(last access: 18 February 2024)

NDVI Normalised difference vegetation index 90 Calculated from Landsat 8 Collection 2 Level 2
(LC08C02) on the GEE platform

NDWI Normalised difference water index 90 Calculated from LC08C02 on the GEE platform

surR Surface reflectance 250 https://modis.gsfc.nasa.gov/data/dataprod/
mod09.php (last access: 18 February 2024)

EVI Enhanced vegetation index 90 Calculated from LC08C02 on the GEE platform

SAI Snow area index 90 Calculated from LC08C02 on the GEE platform

NPP Net primary productivity 500 https://lpdaac.usgs.gov/products/
mod17a3hgfv061/
(last access: 18 February 2024)

Canopy height Canopy height 10 https://doi.org/10.3929/ethz-b-000609802 (last
access: 17 February 2024)

Land cover Land cover 30 http://www.sciencemag.org/content/342/6160/
850 (last access: 17 February 2024)

Sentinel-2
(B2, B3, B4,
B8, B9)

Bands 2, 3, 4, 8, and 9 from Sentinel-2 30 Derived from Sentinel-2 on the GEE platform

QA_PIXEL Landsat 8 Collection 2 Level 2 pixel
quality band

90 Derived from LC08C02 on the GEE platform

QA_RADSAT Radiometric saturation quality control 90 Derived from LC08C02 on the GEE platform

SR (B4, B5,
B6, B7)

Surface reflectance of bands 4, 5, 6, and
7

90 Derived from LC08C02 on the GEE platform

ST_ATRAN Atmospheric transmittance 90 Derived from LC08C02 on the GEE platform

ST_B10 Band-10 surface temperature 90 Derived from LC08C02 on the GEE platform

ST_EMSD Emissivity standard deviation 90 Derived from LC08C02 on the GEE platform

ST_TRAD Thermal radiance 90 Derived from LC08C02 on the GEE platform

ST_URAD Downwelled radiance 90 Derived from LC08C02 on the GEE platform

DEM Land surface elevation 90 https://hydro.iis.u-tokyo.ac.jp/~yamadai/
MERIT_DEM/ (last access: 17 February 2024)

Slope Terrain slope 90 Derived from DEM

Land use Land use type 30 https://www.resdc.cn/DOI/DOL.aspx?DOIID=
54 (last access: 17 February 2024)

RTMUSG15 Rock type 250 https://doi.pangaea.de/10.1594/PANGAEA.
788537 (last access: 17 February 2024)
(Hartmann and Moosdorf, 2012)
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Relief covariates were primarily derived from the MERIT
digital elevation model (DEM) dataset (https://hydro.
iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/, last access: 17
February 2024), a high-precision global DEM with a reso-
lution of 3 arcsec (∼ 90 m at the Equator), vertically refer-
enced to the EGM96 geoid and horizontally referenced to the
World Geodetic System 1984 (Yamazaki et al., 2019). This
dataset serves as an improved spaceborne DEM that signif-
icantly reduces the major error components found in other
DEMs, such as NASA’s SRTM3 DEM and the Viewfinder
Panoramas DEMs (Li et al., 2023). Based on this study’s
DEM, other relief covariates such as slope, plan curvature,
profile curvature, and terrain wetness index were calculated
using SAGA GIS (Conrad et al., 2015).

Organism-related covariates were primarily sourced from
six datasets: Landsat 8 Collection 2 Level 2 (LC08C02),
MODIS, GLOBELLAND30, the Global Accessibility Map,
and GlobCover. L8C2L2 is an advanced satellite data prod-
uct released by the United States Geological Survey (USGS).
Landsat 8, part of the Landsat satellite series, is specifically
designed for Earth observation and monitoring. Collection 2
represents an updated version of Landsat data products, in-
corporating various improvements and enhancements. High-
resolution data, such as normalised difference vegetation in-
dex (NDVI), normalised difference water index (NDWI),
band 5 (near-infrared), and band 7 (shortwave infrared 2), at
a 90 m spatial resolution were obtained from this database via
the Google Earth Engine (GEE) platform. MODIS data offer
an efficient method for monitoring biosphere changes and
understanding Earth’s climate system, available at a spatial
resolution of 1 km. GLOBELLAND30, a significant achieve-
ment from China’s global and local land cover remote sens-
ing mapping and technology research project, provides com-
prehensive global land surface coverage at a 30 m resolu-
tion. The Global Accessibility Map illustrates urban and ru-
ral population gradients at a 1 km resolution from the year
2000 to present. Developed by the European Space Agency,
the GlobCover dataset provides a global land cover map at a
1 km resolution.

Climate factors were chiefly obtained from the MODIS,
WorldClim, and CHELSA datasets (DAAC, 2018; Karger et
al., 2020), primarily offered at a 1 km spatial resolution and
covering the years 1970–2000. Soil factors, i.e. soil classi-
fications, were mainly derived from the Harmonized World
Soil Database, also available at a 1 km spatial resolution
(Nachtergaele et al., 2012). Parent material factors were rep-
resented by the depth-to-bedrock maps and a lithological
map (Yan et al., 2020).

All environmental covariates were reprojected to a uni-
fied coordinate reference system, specifically Goode’s ho-
molosine projection applied to the World Geodetic System
(WGS) 1984 projection. This projection was chosen as it is
the most effective at minimising distortions over land among
the equal-area projections available in open-source software
(Moreira De Sousa et al., 2019). Additionally, the nearest-

interpolation and bilinear-interpolation algorithms were ap-
plied to the subtype data (e.g. vegetation type) and continu-
ous variables, respectively, to resample these environmental
covariates to a raster cell size of 90 m resolution for spatial
modelling and map prediction.

Considering the substantial number of available environ-
mental covariates, those with an absolute Pearson correla-
tion coefficient of less than 0.05 in relation to the target vari-
able were excluded. Subsequently, redundant covariates with
a Pearson correlation coefficient greater than 0.8 in relation
to any other covariate were removed to eliminate autocorre-
lation among them. For each pair of environmental covariates
with a correlation exceeding this threshold, only the first one
in alphabetical order was retained for the modelling phase
(Poggio et al., 2021). This process reduced the initial num-
ber of environmental covariates to approximately 80 layers.

In this study, the recursive feature elimination (RFE)
method was implemented using the sklearn.feature_selection
package in Python, which offers a balanced approach be-
tween accuracy and computational efficiency. RFE is a ro-
bust technique, widely recognised for its efficacy in select-
ing optimal covariate sets for regression tree models (Gomes
et al., 2019). The RFE process begins by fitting a model
that includes all environmental factors, evaluating its per-
formance, and ranking the covariates based on their impor-
tance. The least significant factors are systematically elimi-
nated, followed by re-fitting of the model and reassessment
of its performance. This iterative procedure continues un-
til the pool is reduced to a set between zero and the total
number of environmental covariates. This method relies on
out-of-bag (OOB) cross-validation, making it a reliable se-
lection approach for models such as random forests, even
though it does not test every possible combination of co-
variates (Nussbaum et al., 2018). The RFE process is inde-
pendently conducted on each subset, leveraging the default
hyperparameters of the random forest algorithm as provided
by the RandomForestRegressor package in Python. The op-
timal subset of variables is identified when further iterations
no longer yield improvements in model performance, de-
fined by the minimisation of the loss function. For this study,
the OOB root-mean-square error (RMSE) was used as the
loss function. The ultimate set of covariates was identified as
the combination that minimised the loss function. The afore-
mentioned analysis was executed for all target variables and
depths. For instance, with surface (0–5 cm) soil organic car-
bon, 35 environmental covariates remained for analysis after
the filtering process (Fig. 3), marked with a superscript of
“1” in Table S1.

2.3 Digital soil mapping

2.3.1 Spatial prediction and uncertainty

The random forest (RF, Breiman, 2001) and quantile regres-
sion forest (QRF) models were employed to evaluate, over
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Figure 3. Example of the loss function (RMSE) used in the recursive feature elimination (RFE) step of covariate selection for surface
(0–5 cm) soil organic carbon content.

six layers, the statistical relationship between each soil prop-
erty and environmental covariates. The RF model in this
study was used to generate mean predictions, while the QRF
model was applied to produce prediction maps at differ-
ent quantiles, providing a more comprehensive representa-
tion of uncertainty. The QRF algorithm, introduced by Mein-
shausen (2006), is an ensemble machine learning model that
utilises tree structures and bootstrapping techniques to cre-
ate a collection of tree models. Each tree is developed from
a learning set generated by repeatedly sampling calibration
samples through bootstrapping, with node splits influenced
by a randomly selected subset of covariates. The final pre-
diction value for each predetermined quantile is obtained by
averaging the predicted values from all trees. Building on
the foundation of RF, the QRF algorithm present a novel ap-
proach to enhancing regression tree performance (Koenker,
2005). In RF, averaging across multiple tree-based models
results in more accurate predictions compared to using a sin-
gle regression tree. The QRF offers insights into the full
conditional distribution of the dependent variable. Conse-
quently, conditional quantiles can be inferred using the QRF
algorithm. The conditional distribution of Y given X = x

is defined as F (y|X = x)= P (Y ≤ y|X = x). To estimate
F (y|X = x), a weighted empirical cumulative distribution
function is considered:

F̂ (y|X = x)=
∑n

i=1
wi (x,θ )Y{Y≤y}. (1)

The tree-based model developed using the QRF algorithm
follows the RF methodology. However, unlike RF, where
only the mean of the observations within each node is re-
tained, the QRF approach preserves the values of all ob-
servations within each node. This comprehensive set of ob-
servations in each node is utilised to derive the quantiles,
which are subsequently used to construct prediction inter-
vals. These intervals serve as a measure of the prediction
uncertainty, providing a more detailed understanding of the
conditional distribution of the target variable. Additionally,
the uncertainty estimates evaluated by QRF are likely to be
more accurate and interpretable than those derived from re-
gression kriging, particularly in areas with sparse samples
(Liu et al., 2022a). Furthermore, RF and QRF are capable of
handling complex non-linear relationships and multivariate
interactions, offering high predictive power (Gyamerah et al.,
2020). This distinguishing advantage sets RF and QRF apart
from other machine learning algorithms (Liu et al., 2022b).

Separate models were developed independently for each
soil layer, ensuring no overlap of observations from the same
profile across training and testing datasets. The selection of
hyper-parameters, specifically the number of randomly se-
lected variables from all predictors (max_ features) and the
minimum node size (min_samples_leaf), plays a crucial role
in determining the performance of the RF model. These
hyper-parameters significantly influence the model’s predic-
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tive accuracy. Other parameters, such as the number of trees
(n_estimators), were not optimised during the RF’s training
process. To address potential overfitting concerns, the val-
ues of max_features and min_samples_leaf were fine-tuned
using a 10-fold cross-validation method. This approach in-
volved randomly dividing the training dataset into 10 folds;
1/10 of these sub-datasets was utilised as the validation sam-
ple, while the remaining sub-datasets were applied for train-
ing the RF and QRF model. This tuning was conducted using
the gridded direct search approach, with max_features being
explored within the range of [1, 30] at single intervals and
min_ samples_leaf being explored within the range of [5, 30]
at intervals of 5. In this study, the aforementioned hyperpa-
rameter search was conducted for each of the six soil depth
layers for every soil property. These hyperparameters were
then used for modelling and spatial prediction of the corre-
sponding soil property variables at their respective depths. To
maintain brevity, Table S2 presents the tuned model hyper-
parameters for each soil property considered at the 0–5 cm
depth interval.

The relative importance of covariates in the trained RF and
QRF model was assessed to investigate the impact of envi-
ronmental factors on the spatial variations of soil properties.
This importance was determined by evaluating the influence
of each covariate on the model’s prediction performance. The
relative importance of each covariate was quantified using
the increase in mean square error (%IncMSE), a metric de-
rived from permuting the values of a covariate to remove its
information content. By comparing the model’s accuracy be-
fore and after permutation, it was possible to determine how
crucial each covariate was in predicting soil properties. A
higher %IncMSE indicated a greater importance of the co-
variate, signifying that its presence substantially contributed
to the model’s predictive accuracy. This relative importance
allows for a detailed analysis of how different environmental
factors control spatial variations in soil properties, providing
valuable insights for digital soil mapping.

Mapping China, which covers approximately 9.6×
106 km2, at 90 m resolution requires more than 109 pix-
els for each soil property at each depth, posing a consider-
able challenge. Due to the extensive geographic coverage
and high-resolution requirements in soil mapping for this
study, predicting each soil property at a specific depth in-
volves a substantial volume of data, with environmental co-
variate data reaching up to 470 GB. Faced with such exten-
sive data-processing demands, conventional single-machine
resources often prove to be inadequate and challenging to
cope with. Therefore, to overcome the memory limitations
imposed by high-resolution mapping and to enhance the
computational efficiency of spatial prediction, we imple-
mented parallel computing. Initially, we partitioned environ-
mental covariates into distinct 1°× 1° tiles. Using the fi-
nalised model, a single core performed spatial predictions
within each block. Leveraging multiple-core processing, we
simultaneously handled multiple tiles, significantly acceler-

ating spatial predictions. Upon acquiring the outcomes for
every tile, we utilised image mosaicking to seamlessly in-
tegrate these outputs, ultimately assembling the comprehen-
sive map of various soil properties and depths across China.
All the experiments are performed on a Linux server with
Intel Core (TM) i9-10980XE, 3.00 GHz× 64 CPU, 512 GB
RAM (random access memory), and two NVIDIA RTX
A5000 graphics cards. All scripts were written in the open-
source Python programming environment with Python ver-
sion 3.11.4 (https://www.python.org/, last access: 3 Decem-
ber 2024) using PyCharm version 2024.3.28. The Random-
ForestQuantileRegressor and RandomForestRegressor pack-
ages were employed for model construction. The optimisa-
tion of the model was performed using the scikit-learn li-
brary, while the gdal and matplotlib packages were utilised
for data processing and visualisation, respectively.

Using the selected environmental covariates from the
aforementioned feature engineering, the constructed models
were applied to compute four statistical values – the mean,
0.05 quantile (q0.05), median (0.50 quantile, q0.50), and 0.95
quantile (q0.95) – for every 90 m pixel across all standard
depth layers (0–5, 5–15, 15–30, 30–60, 60–100, and 100–
200 cm) as specified by the GlobalSoilMap (Arrouays et al.,
2014b) over China, capturing the conditional distribution of
soil properties. Although the performance differences be-
tween mean predictions using RF and median predictions us-
ing QRF are minimal, their ability to capture extreme values
(i.e. both high and low values) was considered. In this study,
we evaluated the performance of RF and QRF models ac-
cording to both the overall statistical metrics and their capac-
ity to predict extreme values in order to determine the most
suitable model for generating national gridded soil maps of
various soil properties at a 90 m resolution. As shown in Ta-
ble S7, soil properties such as soil pH, silt, clay, TP, red (R)
wet-soil colour, blue (B) wet-soil colour, red (R) dry-soil
colour, and blue (B) dry-soil colour were modelled using
median predictions from QRF as this approach better cap-
tured extreme values. Similarly, the study by Helfenstein et
al. (2024) also assessed mean predictions by RF and median
predictions by QRF, highlighting that, for certain soil prop-
erties, median predictions are more appropriate than mean
predictions. For most other soil properties in this study –
such as sand, BD, OC, gravel, AN, TN, CEC, porosity, TK,
AK, AP, green (G) wet-soil colour, and green (G) dry-soil
colour – mean predictions from RF were used to generate
the 90 m resolution soil maps. The better model was consis-
tent across different depths for the same soil property; thus,
Table S7 only presents the performance comparison of mean
and median predictions for the surface layer (0–5 cm depth
interval), and either the mean or the median is used for the
mapping of a soil property for all depths. The calculated me-
dian, along with the 0.05 and 0.95 quantiles, was also used to
estimate uncertainty. Uncertainty was expressed as the upper
and lower limits of a 90 % prediction interval, represented by
the empirical distribution’s 0.05 and 0.95 quantiles, respec-
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tively. Furthermore, to facilitate comparison, the prediction
interval relative to the median (q0.50) was used as an indi-
cator of uncertainty (Liang et al., 2019; Liu et al., 2022a).
A higher ratio for a pixel indicates greater uncertainty in the
predicted value for that location (Poggio et al., 2021). When
developing the 90 m resolution soil maps in this study, ei-
ther mean or median predictions were selected for storage
efficiency. However, for lower-resolution maps provided at 1
and 10 km, in addition to mean and median predictions, we
also included prediction maps for the 0.05 and 0.95 quan-
tiles. These additional maps are helpful for illustrating data
uncertainty.

For the sand, silt, and clay contents from the FNSSC and
SNSSC, these were measured following the schemes of the
International Society of Soil Science (ISSS) and of Katschin-
ski (Katschinski, 1956). Since most land surface models
(LSMs) and other applications require soil texture data in the
FAO-USDA system, we used several particle size distribution
models (Shangguan et al., 2013) to convert the original ISSS
and Katschinski particle size distribution data into the FAO-
USDA system. A 5 % quality control threshold was applied,
excluding soil profile samples where the sum of the three
fractions fell outside of the 95 %–105 % range (Shangguan
et al., 2013), and they were converted to make sure that their
sum was 100 % by using the weighting approach. For the
mapping of each particle size fraction (sand, silt, and clay),
separate spatial prediction models were developed, and the
weighting approach was applied to ensure that the sum of the
three fractions equaled 100 %.

2.3.2 Evaluation criteria

To validate the performance of RF and QRF models in gen-
erating the CSDLv2, two validation methods were employed
to ensure that the CSDLv2 product has low errors at both
spatial and vertical depth scales against laboratory measure-
ments values. The first method involved randomly selecting
10 % of the multi-source soil profiles as test samples, while
the remaining 90 % were used for training the model (i.e.
data splitting). The second method took the WoSIS dataset
as an external independent validation dataset, with the rest
of the data being used for model training (i.e. independent
samples). We choose the WoSIS as the independent vali-
dation dataset because it has a spatial distribution close to
that of a probability sampling (Brus et al., 2011). Based on
the training soil profiles, these two validation approaches
were implemented to assess the performance accuracy of
predictive mapping for each soil property at various depths.
Three statistics, namely, the mean prediction error (ME),
root-mean-square prediction error (RMSE), and modelling
efficiency coefficient (MEC, Krause et al., 2005), were cal-
culated to evaluate the models’ predictive performance. They
were calculated as follows:

ME=
1
N

∑N

i=1
ε (si) , (2)

RMSE=

√
1
N

∑N

i=1
ε(si)2, (3)

MEC= 1−

∑N
i=1
(
z (si)− ẑ (si)

)2∑N
i=1(z (si)− z)2

, (4)

where z represents the observed soil variable, ẑ is the pre-
dicted soil variable at location si (i = 1, . . .,N ; si ∈ ℘), and
N is the total number of population units in the study area
℘. We regard the prediction error as the difference between
the observed (z) and predicted (ẑ) values of a soil property at
the ith spatial location, denoted by ε (si)= z(si)− ẑ(si). To
guarantee the accuracy and reliability of our results, we per-
formed 20 repetitions of 10-fold cross-validation and calcu-
lated the mean and standard deviation of the measurements.

The soil property maps predicted in this study were
compared to three existing soil map datasets. The first
dataset is SoilGrids 2.0, accessible at https://soilgrids.org/
(last access: 10 January 2024), which has a 250 m reso-
lution (Poggio et al., 2021). It represents an advancement
over previous global soil property maps and is known
as SoilGrids250m (Hengl et al., 2017), incorporating
up-to-date machine learning methods and benefiting from
the expanded availability of standardised soil profile data
worldwide, along with environmental covariates (Poggio
et al., 2021). The second dataset is the CSDLv1, with a
resolution of 1 km (Shangguan et al., 2013), accessible at
http://globalchange.bnu.edu.cn (last access: 5 January 2024).
Lastly, we considered the Harmonized World Soil Database
v2.0 (HWSD 2.0), known for its soil property maps created
via a soil type linkage method, available at https://www.
fao.org/soils-portal/data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v20/en/ (last access: 20
January 2024). The HWSD 2.0 has been synthesised by
integrating regional and national soil data globally (FAO
and IIASA, 2023). To quantify the enhancement of our pre-
dictions over existing soil maps, we calculated the relative
improvement (RI) using both RMSE and MEC metrics,
employing the following equations:

RIRMSE =
RMSEexisting − RMSECSDLv2

RMSEexisting
, (5)

RIMEC =
MECCSDLv2 − MECexisting

MECexisting
, (6)

where RIRMSE and RIMEC denote the relative improvement
concerning RMSEand MEC, respectively. RMSEnew and
MECnew represent the accuracy statistics for predictions in
this study, while RMSEexisting and MECexisting signify the
accuracy statistics for the existing soil maps. An RI of > 0
denotes that the CSDLv2 outperforms the existing soil maps.

Considering the unavoidable impact of various error
sources on any model for DSM, it is essential to quantify
the associated mapping uncertainty (Lilburne et al., 2024;
McBratney et al., 2018). To evaluate uncertainty, the pre-
diction interval coverage probability (PICP) was employed
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based on the randomly held-back soil profile test samples.
PICP represents the proportion of observations at each depth
encapsulated by the corresponding prediction interval (Li et
al., 2023). In this study, the prediction interval was estimated
using the aforementioned QRF model. If the uncertainty esti-
mates are reasonably defined, the PICP should yield an esti-
mate of 90 % for a 90 % (or 0.9) prediction interval. A PICP
significantly greater than 0.9 suggests that the uncertainty has
been underestimated, whereas a PICP significantly less than
0.9 indicates that it has been overestimated (Liu et al., 2020;
Poggio et al., 2021).

3 Results

3.1 Statistical analysis

The probability density distributions of topsoil (0–5 cm)
properties from different data sources are shown in Fig. S1,
with different colours representing different data sources. If
a colour representing a data source is absent in some prob-
ability density distribution charts, this indicates that the soil
property is not available from that data source. As observed
in Fig. S1, the probability density distributions of soil proper-
ties from multiple sources exhibit a generally similar trend,
with minor differences that increase the spatial representa-
tiveness of the soil profile samples, rather than representing
specific soil types. The abundance of soil profile data allows
for a more detailed characterisation of spatial variations in
soil properties, particularly in a large and topographically di-
verse country like China (Liu et al., 2022a). Descriptive sta-
tistical analyses of soil properties across six standard depths
are presented in Table S3. For most soil property variables
at multiple depths, there is an extensive amount of soil pro-
file data. Different soil properties exhibit varying trends with
depth, accompanied by a large range and variation (see co-
efficient of variation). The vertical changes in soil properties
vary depending on the specific soil property and soil type.
For example, the contents of OC and TN generally decrease
with increasing depth in most soil types, exhibiting positive
skewness distributions. However, other properties, such as
soil pH or BD, show different vertical patterns depending
on soil composition and local conditions. Regarding the ho-
mogeneity of variance, Levene’s test between samples from
different depths yielded p values greater than 0.05 for soil
property, indicating no statistically significant differences be-
tween samples from different depths.

3.2 Predictive performance

After training and optimisation, the effectiveness of the RF
and QRF models was evaluated. Using the test set, the
model’s prediction accuracy across multiple depths was as-
sessed using two validation methods: Tables 3 and S4 present
the predictive performance using a data-splitting strategy,
where 10 % of aggregated soil profiles were randomly par-

titioned as the test set. This validation of the CSDLv2 was
compared with the validation of the three existing soil map
datasets using all soil profiles in this study. Table S5 dis-
plays the model’s performance when modelling soil profiles
from remaining data sources, validated independently using
WoSIS data.

Overall, model performance varied depending on the soil
properties. The mean ME values were nearly zero, indicating
that the predictions were generally unbiased. Soil pH was
predicted with the highest accuracy, with MEC performance
ranging from 0.75 to 0.68 across depths in the data-splitting
validation strategy. That is to say that more than 68 % of the
pH variation can be explained, and the predicted values are
in good agreement with the laboratory measurements values.
This result is consistent with previous studies (Chen et al.,
2019; Hu et al., 2024; Lu et al., 2023). The mean MEC values
for sand and clay content were slightly higher than those for
silt content, indicating that sand and clay are slightly more
predictable than silt. As soil depth increased, MEC values
showed a decreasing trend, while RMSE values increased,
suggesting a vertical decline in the predictability of soil tex-
ture. This decline may be attributed to the fact that environ-
mental covariates primarily reflect surface conditions, lead-
ing to reduced correlation with deeper soil properties. Addi-
tionally, the decrease in sample size at greater depths may
also contribute to this trend. Similar observations have been
noted in other related studies (Liu et al., 2020; Poggio et al.,
2021). The model’s predictive performance at the 5–15 cm
depth interval was better than at the 0–5 cm depth interval,
with higher MEC values and lower RMSE values. The pre-
diction accuracy for OC was relatively high, with approxi-
mately 25 % to 60 % of the variation in OC across all depth
layers being explained in both the data-splitting and indepen-
dent validation methods. This performance surpasses the ac-
curacy reported in related literature for OC prediction (Liang
et al., 2019; Padarian et al., 2017). The prediction accuracy
for soil property contents such as BD, gravel, TN, CEC, TK,
and TP is higher at depths of less than 30 cm. These models
can explain 30 % to 60 % of the variation in these soil prop-
erties, with accuracy comparable to that reported in related
studies (Mulder et al., 2016; Ramcharan et al., 2018).

The model’s performance varied with soil depth. For most
soil property variables, including OC, TN, and BD, predic-
tive accuracy decreased significantly with increasing depth.
In contrast, the accuracy for CEC, gravel content, and TK
declined only slightly. This decrease in accuracy for deeper
layers has been noted in previous studies on soil organic car-
bon prediction (Mulder et al., 2016; Padarian et al., 2017),
primarily because most environmental covariates predom-
inantly characterise surface conditions, leading to weaker
correlations with deeper soil layers (Liu et al., 2020). Con-
versely, the prediction accuracy for soil pH increased slightly
with depth. This improvement may be partly due to the in-
creased stability of soil pH in deeper layers over large ar-
eas, leading to more consistent relationships with environ-
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Table 3. Accuracy evaluation of the selected soil properties with the highest prediction accuracy in the CSDLv2, the CSDLv1, SoilGrids
2.0, and the HWSD 2.0 based on the randomly held-back soil profiles. The “number” column indicates the number of samples used during
testing. Refer to Table S4 for the complete accuracy evaluation of the soil properties considered. See Table 1 for the abbreviations and units
of the soil properties of interest.

Property Depth interval Number CSDLv2 CSDLv1 SoilGrids 2.0 HWSD 2.0

MEC RMSE ME MEC RMSE ME MEC RMSE ME MEC RMSE ME

pH 0–5 830 0.69 0.70 0.00 0.48 0.92 −0.03 0.60 0.79 −0.15 0.35 1.03 −0.28
5–15 830 0.70 0.68 0.00 0.50 0.90 −0.02 0.61 0.77 −0.12 0.36 1.02 −0.13

15–30 822 0.70 0.68 0.00 0.26 1.21 −0.41 0.60 0.77 −0.16 0.38 1.03 −0.15
30–60 800 0.68 0.70 −0.00 0.43 0.94 −0.04 0.59 0.78 −0.15 0.38 1.02 −0.17

60–100 648 0.68 0.70 0.00 0.44 0.94 0.04 0.59 0.78 −0.14 0.39 1.01 −0.18
100–200 204 0.75 0.60 0.00 0.53 0.84 −0.05 0.63 0.70 −0.09 0.52 0.87 −0.08

Sand 0–5 874 0.67 12.15 0.05 0.19 22.19 −2.24 0.60 13.08 −1.84 0.20 21.84 2.38
5–15 815 0.71 11.23 0.06 0.18 21.90 −2.28 0.62 11.87 −1.93 0.19 21.43 1.40

15–30 812 0.71 11.41 0.05 0.15 22.58 −1.67 0.62 11.85 −1.71 0.14 21.89 2.63
30–60 784 0.69 12.16 0.06 0.13 23.26 −1.31 0.59 12.68 −1.80 0.12 22.57 3.68

60–100 638 0.68 12.85 0.04 0.11 23.22 −1.30 0.51 13.53 −1.94 0.10 23.45 4.03
100–200 213 0.64 13.72 0.02 0.10 24.22 −1.42 0.49 14.59 −1.88 0.09 24.11 3.98

Silt 0–5 893 0.61 9.81 0.02 0.11 16.78 2.02 0.55 10.54 −0.58 0.10 17.38 −4.44
5–15 832 0.65 8.99 −0.00 0.13 16.31 2.29 0.58 9.22 −0.33 0.10 16.90 −5.55

15–30 830 0.67 8.76 0.00 0.13 16.29 2.12 0.60 9.02 −0.51 0.09 17.30 −6.46
30–60 802 0.63 9.49 0.00 0.11 16.55 1.76 0.57 9.68 −0.41 0.10 17.53 −6.36

60–100 656 0.62 10.08 0.00 0.10 17.05 1.49 0.55 10.34 −0.33 0.10 18.07 −6.15
100–200 221 0.64 10.60 0.01 0.09 17.94 0.70 0.54 11.25 −0.99 0.11 19.14 −5.15

Clay 0–5 914 0.63 6.74 0.01 0.12 11.23 0.21 0.52 7.60 2.49 0.12 11.14 2.06
5–15 854 0.67 6.50 0.01 0.09 11.28 0.03 0.58 7.18 2.36 0.09 11.89 4.23

15–30 851 0.68 6.83 0.01 0.10 11.83 0.61 0.60 7.40 2.28 0.09 12.78 3.95
30–60 523 0.68 7.36 0.02 0.09 12.78 0.14 0.61 7.89 2.22 0.13 13.20 2.70

60–100 675 0.68 7.79 0.02 0.07 13.43 −0.28 0.61 8.33 2.21 0.12 13.65 1.97
100–200 230 0.63 7.96 0.03 0.06 13.00 0.86 0.55 8.67 2.74 0.12 13.06 0.91

BD 0–5 153 0.62 0.12 0.00 0.12 0.20 0.01 0.53 0.13 0.01 0.02 0.27 0.15
5–15 155 0.63 0.11 0.00 0.15 0.19 0.01 0.57 0.12 0.01 0.01 0.29 0.18

15–30 155 0.60 0.11 −0.00 0.11 0.19 0.01 0.54 0.13 0.01 0.01 0.27 0.12
30–60 136 0.55 0.12 −0.00 0.10 0.19 −0.01 0.53 0.13 −0.00 0.01 0.24 0.10

60–100 95 0.57 0.12 −0.00 0.10 0.19 −0.01 0.51 0.13 −0.01 0.02 0.24 0.07
100–200 33 0.47 0.13 0.00 0.05 0.22 0.02 0.42 0.13 −0.01 0.02 0.24 0.07

mental factors (Liu et al., 2020). This observation aligns
with the findings of Padarian et al. (2017). Additionally,
independent-sample validation is an effective approach to as-
sess the validity of models and has been utilised in multiple
studies (Lamichhane et al., 2019). Table S5 summarises the
model’s predictive performance based on independent vali-
dation and compares it with other data products. These re-
sults also demonstrate the reliability of the predictive model.

3.3 Spatial patterns

Figure 4 illustrates the maps of soil physical and chemical
properties at the soil surface (0–5 cm) over China at 90 m
resolution. The spatial distribution of the complete soil prop-
erties (as listed in Table 1) can be found in Figs. S2–24.

As shown in Fig. 4a, the pH values (H2O) in the topsoil
range from 4.3 to 9.8. Soils south of 30° N are predomi-
nantly acidic to strongly acidic, while those in the northern
and northwestern regions are mostly basic or strongly basic.
In some southern hilly and northeastern forested areas, soils

appear to be acidic (pH< 7). In certain northern regions, es-
pecially in desert areas, soils are alkaline (pH> 7). This dis-
tribution aligns with the common understanding that areas
with low precipitation tend to have alkaline soils, whereas
areas with high precipitation tend to have acidic soils.

As shown in Fig. 4b, for BD, northern regions tend to have
higher bulk density due to low organic matter content and fre-
quent agricultural activities. Southern regions generally have
lower bulk density owing to higher organic matter content
and higher porosity. Northwestern arid regions exhibit high
bulk density, while the Qinghai–Tibet Plateau has low bulk
density. Southeastern coastal areas show significant variation
in surface bulk density, heavily influenced by land use prac-
tices.

As shown in Fig. 4c, the spatial predictions of OC content
reveal significant regional differences. The highest OC levels
are found in the eastern Tibetan Plateau, northeastern China,
and northern Xinjiang, where human activities are minimal.
In contrast, the lowest OC content is observed in the north-
western desert regions. OC content shows a decreasing trend
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Figure 4.
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Figure 4. The predicted maps of soil properties considered at the 0–5 cm depth interval for the land area of China. (a) pH (H2O), (b) bulk
density (BD), (c) soil organic carbon content (OC), (d) total nitrogen content (TN), (e, f, g) soil texture (sand, silt, clay content), (h) alkali-
hydrolysable nitrogen content (AN), (i) rock fragment content (gravel), (j) cation exchange capacity content (CEC), (k) porosity, (l) total
potassium content (TK), (m) total phosphorus content (TP), (n) available potassium content (AK), (o) available phosphorous content (AP),
(p, q, r) wet colour (R, G, B), and (s, t, u) dry colour (R, G, B); (v) and (w) represent the dry and wet colours in the Munsell colour system,
respectively. See Figs. S2–S24 in the Supplement for the predicted maps of soil properties at all depth intervals.
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from southeast to northwest, corresponding to the influence
of the southeastern monsoon. OC content is closely related
to climatic conditions and land use practices (Zhang et al.,
2023b; Zhou et al., 2019b). The spatial pattern of total nitro-
gen (TN) is similar to that of OC content. Areas with high
precipitation and good vegetation cover tend to have higher
OC and TN levels, while areas with low precipitation and
poor vegetation cover tend to have lower OC and TN levels.
This is because both OC and TN are closely related to organic
matter input from vegetation. In regions with high vegetation
productivity, organic matter contributes to both carbon and
nitrogen accumulation in the soil, resulting in similar spatial
patterns for OC and TN.

The mean predicted maps of soil texture (clay, silt, and
sand contents) at different depths across China are shown in
Fig. 5e–h, respectively. Overall, clay content was predicted to
be low in the northern and northwestern regions while being
higher in the southern regions. The lowest clay content was
found in the deserts of the northwest, and the highest was
found on the Yunnan–Guizhou Plateau. Relatively higher
clay content was observed in some southern provinces, such
as Guangdong and Guangxi. Silt content was predicted to be
high on the Loess Plateau and in eastern China, while it was
lower in the deserts of the northern and northwestern regions.
These findings were consistent with previous studies (Liu et
al., 2020). The predicted soil texture patterns fit well with
the general characteristics and distribution of known Chinese
soils (Gong et al., 2014).

For CEC, the spatial distribution of surface CEC is shown
in Fig. 4j. CEC represents the total number of exchangeable
cations that soil can absorb, serving as a crucial indicator of
soil fertility, nutrient retention capacity, and buffering capac-
ity, thereby influencing plant growth. Lower CEC value in-
dicate that the soil can store fewer nutrients. The CEC lev-
els are closely related to soil type, climatic conditions, and
land use practices (Beillouin et al., 2022). Generally, soils
with higher clay and organic matter content have higher CEC
values. Figure 4j indicates that higher surface soil CEC val-
ues are found on the Qinghai–Tibet Plateau and in the peat
and forest regions in the northeast (i.e. high-biomass or low-
leaching areas). Lower CEC values are observed in the south-
eastern regions and in the arid and semi-arid areas in the
north, with the lowest CEC values being found in desert ar-
eas. The relatively low CEC in the southeastern regions is at-
tributed to higher temperatures and rainfall, leading to strong
leaching loss of exchangeable substances.

The spatial distributions of TK, TP, and AK are shown in
Fig. 4l, m, and n, respectively. Sedimentary rocks in south-
western China are abundant in phosphorus, leading to rela-
tively higher TP levels in soils derived from these rocks. In
contrast, southern China’s soils typically exhibit lower TP
levels due to extensive weathering and leaching. Alpine re-
gions with significant organic matter accumulation are pre-
dicted to have relatively high TP content. The concentrations
of both TK and AK generally diminish from north to south,

despite their distribution patterns being rather different. Low
levels of TK are found in tropical regions, whereas high lev-
els are located on the Qinghai–Tibet Plateau and in northeast-
ern China. High values of AK are dispersed throughout the
western Tibetan Plateau. The spatial patterns of the variables
of interest listed in Table 1 at multiple depths can be found
in the Supplement (Figs. S2–S26). These spatial distributions
are consistent with those reported in other similar studies (Hu
et al., 2024; Liu et al., 2022a, Poggio et al., 2021).

3.4 Prediction uncertainty

Table S6 lists PICP values for different soil properties at
multiple depths, calculated based on randomly held-back test
samples. For a 90 % (or 0.9) confidence interval, 90 % of the
observations are expected to fall within the predicted lower
and upper limits. It can be seen that the PICP values for all
soil properties at six standard depths are very close to 90 %,
indicating that the predicted lower and upper limits estimated
by the ensemble machine learning method are appropriate.
In other words, the uncertainty estimates are largely reliable.
It was observed that different soil properties exhibit distinct
spatial patterns of prediction uncertainty, but different depths
of the same soil property show similar patterns. The accu-
racy assessment in Figs. S2–S24 shows the uncertainty maps
of soil property predictions. For OC, regions with relatively
simple terrain, such as deserts, the North China Plain, and
the Northeast Plain, exhibit lower uncertainty. In contrast, the
central Qinghai–Tibet Plateau and western Inner Mongolia,
where sampling is sparse and OC content is low, show higher
uncertainty. The Altai region, with its complex terrain and
diverse landscape types, also exhibits relatively high uncer-
tainty. For soil pH, regions with high prediction uncertainty
are found in southwestern China, where samples are sparse
in complex soil landscapes. As soil depth increases, the un-
certainty in predictions for properties like OC and pH gen-
erally decreases due to the more stable nature of subsurface
layers, reduced influence from external factors, and the fact
that deeper soils are less affected by environmental covari-
ates. Additionally, while topsoil is more complex and vari-
able due to its interaction with the environment, subsurface
layers tend to have more consistent properties, leading to less
uncertainty in predictions at depth (Liu et al., 2022a).

3.5 Relative importance of predictors

The relative importance of environmental covariates for soil
property prediction at the 0–5 cm depth interval is shown in
Figs. 6 and S26, displaying only the top 15 most important
environmental covariates. Overall, organism-type covariates
account for a significant proportion among different cate-
gories of environmental factors. There are variations in the
relative importance of environmental covariates across dif-
ferent soil property variables.
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Figure 5. Surface layer (0–5 cm) soil organic carbon (OC) maps derived from our predictions (CSDLv2), SoilGrids 2.0, the CSDLv1, and
the HWSD 2.0, respectively, in a selected area (30.92–32.08° N and 102.92–104.08° E) located in Sichuan Province. This selected area
corresponds to the red window shown in Fig. 1. DEM and land use refer to the land surface elevation and land use type of the selected area,
respectively. The spatial resolutions are 90 m for the CSDLv2, 250 m for SoilGrids 2.0, and 1 km for both the CSDLv1 and the HWSD 2.0.
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Figure 6. Relative importance of the top 15 predictors for the quantile regression forest model in the spatial predictions of soil pH, bulk
density (BD), soil organic carbon (OC), soil texture (sand, silt, clay), total nitrogen (TN), total potassium (TK), cation exchange capacity
(CEC), rock fragment (gravel), porosity, and alkali-hydrolysable nitrogen (AN) at the surface layer (0–5 cm). For other surface soil properties
of interest, including total phosphorus (TP), available potassium (AK), available phosphorus (AP), dry colour (R, G, B), and wet colour (R,
G, B), see Fig. S26. Refer to Table S1 in the Supplement for abbreviations of the environmental covariates.

For soil pH, in the optimal ensemble machine learning
model, the climate factor (MODCF) was identified as the
most important variable, with an importance exceeding 30 %,
which is significantly higher than that of other covariates.
The leaf area index (LAI) ranks second in relative impor-
tance. Previous studies have also indicated that LAI is a key
factor in predicting soil pH (Sun et al., 2023). Other en-
vironmental covariates had relatively smaller contributions.
In terms of covariates types, organism factors accounted for
50 % of the contribution to soil pH prediction, followed by
relief factors (23.9 %) and climate factors (17.4 %).

For OC content, terrestrial ecosystems (TERECOs) and
climate factors (MODCFs) are the most important covariates,
followed by depth to bedrock and elevation (DEM). Shal-
low bedrock typically results in thinner soil layers, which
can limit soil development and the accumulation of OC.
However, soils developed on shallow bedrock do not always
have low OC as the rate of OC accumulation can be signif-
icantly influenced by the type of vegetation present. In con-
trast, deeper bedrock allows for thicker soil layers, providing
more space and time for OC accumulation. DEMs can in-
directly reflect differences in land use and vegetation types,
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which can also affect the distribution of OC content. This
indicates that the prediction of soil organic carbon is influ-
enced by multiple factors. Many studies have shown that or-
ganisms factors (e.g. land use) are the most important predic-
tor (Gomes et al., 2019).

For sand prediction, elevation and mean annual cloud fre-
quency (MODCF) rank as the top two most important co-
variates in the ensemble machine learning model. Altitude
primarily affects soil through gravitational and erosional pro-
cesses, which transport fine particles and leave behind coarse
particles (Li et al., 2023). This is evident in the relatively
higher sand content in most mountainous areas compared to
in adjacent lowland regions. Thermal processes drive physi-
cal weathering, while wind, water, and terrain govern erosion
processes, predominantly shaping the distribution patterns of
sand in China.

For silt prediction, climate-related factors (e.g. MODCF,
and wc2.1_srad) are the most important covariates. Apart
from climate, terrain factors (e.g. DEM, DEM_vbf, and
slope) also play crucial roles in silt prediction. Terrain fea-
tures largely determine gravitational and hydraulic condi-
tions, thereby influencing the erosion, redistribution, and
sorting processes of soil particles. This observation is con-
sistent with previous studies (Hengl et al., 2017), indicating
that climate data can enhance the predictive performance of
soil texture models.

For clay prediction, organism-type covariates (e.g.
TERECO, Table S1) rank as the most important environmen-
tal covariate, followed by the climatic variable wc2.1_srad.
Terrain-related variables (e.g. DEM, DEM_popn, and slope)
rank second in importance overall, exerting their influence by
controlling local moisture and thermal conditions, as well as
redistributing terrain material (Liu et al., 2020). Other stud-
ies have similarly shown that vegetation indices, rock type,
bioclimatic zones, and agricultural indices can help charac-
terise changes in soil clay content (Ge et al., 2019; Hengl et
al., 2017).

For CEC prediction, the most important covariate is ter-
restrial ecosystems (i.e. TERECO). Plant roots can alter the
chemical environment of the soil by secreting organic acids
and other substances, which influence the dissolution and re-
precipitation processes of soil minerals. These changes can
affect the soil’s CEC. Shiri et al. (2017) investigated the re-
lationships of soil carbon content, clay content, and parti-
cle size with CEC. They found that higher organic carbon
and clay content significantly enhance CEC due to their high
specific surface areas and cation retention capacities. This is
consistent with our findings, where areas with higher organic
content, influenced by plant root activity, showed higher CEC
values. The relative importance of the top 15 environmental
covariates for other soil properties across all depths is visu-
alised in Figs. S31–S52.

4 Discussion

4.1 Comparison with previous products

Tables 3, S4, and S5 present the accuracy assessments of our
predictions (i.e. the CSDLv2), the CSDLv1 (Shangguan et
al., 2013), SoilGrids 2.0 (Poggio et al., 2021), and the HWSD
2.0 (FAO and IIASA, 2023) at six standard depth intervals
using data-splitting validation and independent-sample val-
idation methods. Table 3 lists the validation accuracy of se-
lected soil properties with the highest prediction accuracy us-
ing the data-splitting validation method, while Table S4 pro-
vides the complete accuracy assessments for all soil proper-
ties of interest. Table S5 identifies the variables for which the
WoSIS database can serve as an independent sample. Over-
all, our predictions, whether using data-splitting validation
or independent-sample validation, achieved relatively higher
MEC values and lower RMSE values across multiple depths
for most target variables, demonstrating much greater accu-
racy than existing soil property maps (FAO and IIASA, 2023;
Poggio et al., 2021; Shangguan et al., 2013; Song et al., 2020;
Zhou et al., 2019b). Specifically, using data-splitting vali-
dation as an example, our predictions for pH demonstrated
an absolute improvement in the mean MEC for all layers,
increasing from 0.60 to 0.70, while the RMSE decreased
from 0.77 to 0.68 compared to SoilGrids 2.0. In compari-
son to the CSDLv1, our prediction performance for pH im-
proved from 0.44 to 0.70, with the RMSE being reduced
from 0.96 to 0.68. Compared to the HWSD 2.0, the predic-
tion performance showed the greatest improvement in MEC
and the most significant reduction in RMSE. The MEC val-
ues indicated that SoilGrids 2.0 significantly overestimated
TN content, whereas the CSDLv1 and the HWSD 2.0 un-
derestimated it. Additionally, in the independent validation
(Table S5), across predictions of various soil properties at
different depths, this study demonstrates overall predictive
performance that is comparable to or better than SoilGrids
2.0, even though SoilGrids 2.0 used all the soil profiles of the
WoSIS in its production. Moreover, it shows superior perfor-
mance compared to the CSDLv1 and the HWSD 2.0.

Such a national-scale publication of soil maps hides most
of the details. Nevertheless, because the soil properties are
predicted at a 90 m resolution, portions of the maps can be
enlarged to reveal increasingly detailed information up to the
limit of that resolution. Using the example of surface (0–
5 cm) OC content, Fig. 5 shows a visual comparison within
a window of western Sichuan Province (30.92–32.08° N and
102.92–104.08° E). This window corresponds to the red win-
dow in Fig. 2a. The comparison is between the dataset devel-
oped in this study (CSDLv2) and the widely used SoilGrids
2.0, the CSDLv1, and the HWSD 2.0. The OC map pro-
duced in this study clearly reveals spatial variability with lo-
cal morphology and provides more detailed information than
the other three maps. Moreover, the CSDLv2 and SoilGrids
2.0 datasets, both products of advanced digital soil mapping
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techniques, exhibit notably higher OC content compared to
the other two datasets generated through the linkage method
across the majority of this region. This finding aligns well
with our understanding of the area’s environmental condi-
tions: the cold climate at high elevations (Fig. 5, DEM), cou-
pled with extensive forest and grassland cover (Fig. 5, land
use), creates an ideal setting for the accumulation of OC in
the soil. Figures S67–S71 show the spatial details of other
soil properties, including TN, gravel, porosity AN, and AP.
Therefore, the fine-soil property map, with a spatial resolu-
tion of 90 m, can better present the spatial variability of soil
properties in related research, which can aid in precision agri-
culture and soil management.

To characterise the spatial pattern differences between the
CSDLv2 and the CSDLv1, Fig. 7a, c, and e illustrate the
spatial difference maps of OC, sand, and clay predictions
in the CSDLv2 subtracted from those in the CSDLv1 as an
example. For OC, the differences are mainly observed on
the Tibetan Plateau, the Yunnan–Guizhou Plateau, and the
Northeast Plain, where OC content is higher in the CSDLv2
than in the CSDLv1. For sand, the CSDLv2 shows relatively
lower sand content in desert and semi-desert areas (e.g. Tak-
lamakan Desert), while relatively higher sand content is ob-
served in southern coastal regions. For clay, an opposite trend
to sand is observed. The possible cause of these differences
may be attributed to the linkage method used in developing
the CSDLv1, which averaged all soil profiles for a given soil
type or soil polygon, neglecting local spatial variation in soil
properties. Additionally, as shown in Fig. 5, the two datasets
derived by means of DSM technology (i.e. the CSDLv2 and
SoilGrids 2.0) had similar spatial patterns and higher values
than the other two, indicating an underestimation of OC con-
tent by the linkage method in this region. The scatterplots
in Fig. 7b, d, and f show the comparison between the CS-
DLv2, the CSDLv1, and the observed data. From the bivari-
ate kernel density estimates and correlation coefficients, it
is evident that the CSDLv2 has a stronger correlation with
the observed data. It can also be seen that the scatter points
for the CSDLv1, based on the linkage method, are more dis-
persed, whereas the scatter points for the CSDLv2, based on
DSM technology, are more concentrated. Compared to the
CSDLv2, the CSDLv1 showed a significant underestimation
of OC and a significant overestimation and underestimation
of sand and clay, respectively. This may be due to the bet-
ter fitting ability of DSM technology with the available data.
However, the use of the ensemble learning algorithm, which
averages predictions from multiple trees, tends to smooth out
extreme values during spatial extrapolation, potentially re-
ducing variability in certain regions. On the whole, the CS-
DLv2 provides a more accurate estimation of soil properties
than the CSDLv1; thus, it may have significant influences on
land surface modelling due to the large differences in spa-
tial distribution. Further studies are needed to demonstrate
the impact of the new soil dataset compared to the old ver-

sion and compared to global soil datasets by running a land
surface model (Li et al., 2020).

Based on the experimental results and analysis, compared
to the CSDLv1, the main advantages of the CSDLv2 include
the following aspects. First, the CSDLv2’s spatial resolution
is 90 m, aligning with the resolution of the most important
input layers used for the predictions, and this is an improve-
ment over the CSDLv1’s 1 km resolution. This addresses
the long-standing issue of lacking detailed and accurate soil
information and enhances the modelling of energy, water,
and momentum processes in the land surface model. Sec-
ond, high-resolution environmental covariates related to soil
formation were used with advanced machine learning algo-
rithms, replacing traditional soil transformation rules. In re-
cent years, digital soil mapping technology has made signifi-
cant progress, particularly with the success of machine learn-
ing in large-scale spatial predictions (Poggio et al., 2021).
Numerous studies have shown that advanced machine learn-
ing models typically have better predictive performance than
simpler models (Yan et al., 2020). Third, an RGB soil colour
system (i.e. red, green, and blue) has been added, resolving
the inconvenience of only having the Munsell colour sys-
tem in the first-edition dataset. This addition enhances the
visual representation of soil colours and allows for better
integration with digital platforms, remote sensing applica-
tions, and computer displays (Al-Naji et al., 2021). Finally,
global validation was conducted using data splitting and in-
dependent samples, and prediction uncertainty was quantita-
tively provided using QRF rather than merely offering qual-
ity control information. Compared to other related data prod-
ucts, the CSDLv2 encompasses more than 20 comprehensive
soil physical and chemical properties, whereas most exist-
ing studies focus on mapping one or several fundamental soil
properties, lacking comprehensive soil property dataset prod-
ucts (Liang et al., 2019; Chen et al., 2019; Zhou et al., 2019a;
Liu et al., 2022a; Liu et al., 2020). For instance, AN serves
as an indicator of soil fertility, reflecting the potential release
of organic nitrogen and ammonium nitrogen in the soil. AK
reflects the potassium available for plant uptake, which is
crucial for plant growth and development. The extensive soil
information has significant applications across various fields.
Additionally, another advantage of the CSDLv2 over both the
CSDLv1 and other related data products is that a large num-
ber of soil profile samples from different data sources were
collected, enhancing the spatial representativeness of the soil
profiles. Sample size is a critical factor affecting model per-
formance (Padarian et al., 2020).

4.2 Potential applications of the CSDLv2

The national-scale high-resolution soil property maps devel-
oped in this study have significant potential for applications
in land surface modelling and Earth system modelling. These
models simulate interactions between the land surface, at-
mosphere, and biosphere, making accurate representation of
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Figure 7. Differences in predicted maps of soil organic carbon (a), sand (c), and clay (e) between the CSDLv2 and CSDLv1 at the 0–
5 cm depth interval and the corresponding scatterplots (b, d, f) indicating how well the predictions of the CSDLv2 and CSDLv1 match the
observations. The red and blue circles are bivariate kernel density estimates. Publisher’s remark: please note that the above figure contains
disputed territories.
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soil properties essential for improving model performance
and predictions. For instance, soil pH is crucial for nutri-
ent solubility, while CEC indicates fertility and nutrient re-
tention capacity in land surface modelling. In biogeochemi-
cal process modelling with land surface modelling, OC, TN,
and TP are key parameters and prognostic variables. These
soil nutrients can be calculated by running models for thou-
sands of years until an equilibrium state is reached, a pro-
cess known as model “spin-up” (i.e. a warm-up period) (Dai
et al., 2019b; Shangguan et al., 2013). However, the non-
linear feedbacks in biogeochemical cycles make such spin-
up time-consuming and less reliable for initialising soil nu-
trients. Therefore, this dataset can also serve as an important
benchmark for initial or calibration variables.

Currently, many soil properties are not yet utilised in land
surface model simulations, with only soil texture, OC, gravel,
and BD being primarily used. However, more soil proper-
ties can theoretically be employed as initial variables in Earth
system modelling. Each soil property plays an important role
in both Earth system modelling and land surface modelling,
and although some properties are not yet used, they hold sig-
nificant potential for future applications. For example, soil
albedo is significantly correlated with the Munsell soil colour
value (hue, value, chroma). In some Earth system models,
parameters derived from pedotransfer functions are used di-
rectly as inputs rather than being calculated within the mod-
els.

Moreover, the CSDLv2 offers extensive possibilities for
research and applications across various fields, including cli-
mate change research and carbon cycling (Chen et al., 2023),
as well as support for the spatial delineation of management
zones in precision agriculture (Piikki et al., 2017). Regarding
soil pH, for agricultural departments and farmers, fine map-
ping of soil pH holds significant value in local and field land
use planning and management as different crops exhibit opti-
mal growth in soils with varying pH ranges (Hu et al., 2024).
For instance, rice thrives best in soils with pH levels between
6.0 and 7.5, whereas peanuts prefer soils with pH levels be-
tween 5.6 and 6.0. Thus, precise soil pH maps provide es-
sential information for agricultural zoning and management.
Furthermore, due to the widespread applicability of soil in-
formation, the CSDLv2 also holds potential applications in
numerous other fields.

4.3 Limitations and outlook

Some advances have been made in this study, but several lim-
itations still need to be addressed in future efforts. First, re-
mote sensing imagery has been used globally for soil prop-
erty mapping (Guo et al., 2022; Xia and Zhang, 2022). With
the advancement of remote sensing technology, more and
more high-spatial-resolution free data have become avail-
able. For example, Xia and Zhang (2022) found that using
high-spatial-resolution GF-2 imagery improved soil property
prediction accuracy compared to medium-resolution imagery

(e.g. Landsat 8 and Sentinel-2 imagery). Therefore, future
digital soil mapping work can focus more on integrating
high-resolution remote sensing products, which can enable
models to capture the complex statistical relationships be-
tween soil properties and environmental covariates at fine
scales (Mulder et al., 2016).

Secondly, soil is a three-dimensional volume with property
variability in all three dimensions. In this study, the vertical
dimension of soil variability was modelled using spline inter-
polation. It is noteworthy that smoothing spline interpolation
standardises soil layer data, which are not error-free, but due
to the lack of a “true” depth function for each soil profile
(vertically dense samples), the standardisation error cannot
be quantitatively estimated (Liu et al., 2022a). Recent pub-
lications have considered observation depth as a covariate
(Hengl et al., 2017; Nauman and Duniway, 2019), creating
a “3D” model, but some studies indicate that this approach
may be overly simplistic or may lead to consistency issues in
the predicted depth sequences (Ma et al., 2021). This might
be true for local datasets, where short-range spatial variabil-
ity and vertical variability have similar magnitudes (Poggio
et al., 2021). Further research is needed to assess the impact
of using depth as a covariate on national datasets and models.
Additionally, alternatives such as 3D models or geostatistical
models utilising 3D spatial autocorrelation are worth explor-
ing (Helfenstein, 2024).

Thirdly, in this study, approximately 150 covariates re-
lated to soil properties, topography, climate, biomes, lithol-
ogy, land use, and existing soil maps were collected. By re-
moving inter-variable correlations and using recursive fea-
ture elimination, approximately 40 optimal variables were
selected to map soil properties across the country. However,
the original environmental variables with a resolution of 90 m
did not play a significant role in variable selection or impor-
tance ranking. Several reasons may explain this. First, many
studies have confirmed that soil properties (e.g. soil pH) are
highly correlated with lithology (e.g. soil group and parent
material) and climatic factors, especially at large scales (Hu
et al., 2024; Lu et al., 2023). Topography downscaling meth-
ods can be used to prepare high-resolution climate covari-
ates (Chen et al., 2024). However, fine and reliable maps
of these factors are typically unavailable, especially at large
spatial scales. Therefore, when introducing these factors to
map soil properties, coarse-resolution raster data (e.g. 1 km)
often have to be used (Liu et al., 2022a; Lu et al., 2023). Sec-
ondly, in this study, some covariates (e.g. elevation and slope)
with an original resolution of 90 m are highly correlated with
soil properties (e.g. soil pH). However, these factors are also
highly correlated with other factors such as mean annual tem-
perature and mean annual precipitation (Guo et al., 2022).
These factors were removed by the recursive feature elimina-
tion algorithm when selecting the optimal variables because
they were highly correlated with the already retained existing
variables. This also led to the relatively lower importance of
these factors in contributing to the models for soil proper-
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ties (e.g. soil pH). Therefore, the final maps of soil proper-
ties with a 90 m resolution in this study will be useful for
practical decision-making. In future work, introducing fine-
resolution environmental covariates is expected to improve
mapping accuracy.

Last but not least, although this study utilised multi-source
soil profile data from different time periods to develop com-
prehensive static maps of soil properties, the CSDLv2 maps
mainly represent the status of soil in the 1980s as most
soil profiles come from the SNSSC. For soil properties that
change over time, other multi-source soil profile data have
not been fully utilised. Together with maps based on data
from other periods, such as the 2010s, as in Liu et al. (2022a),
the CSDLv2 could provide new perspectives for studying
temporal changes in soil properties. However, more efforts
are needed to model the temporal change in soil properties
with more time slices, especially for those soil properties
which may change in the short term. Considering this as-
pect, the undergoing Third National Soil Survey of China
and other legacy soil profiles should be exploited to map time
series of soil properties using spatiotemporal modelling tech-
nology. As the CSDLv2 is developed on the national scale,
the maps are suitable for broad-scale applications, such as
national-scale and large-regional-scale (e.g. provincial-level)
analyses. Although generated at a high resolution (90 m),
these maps may not provide sufficient accuracy for farm-
or field-scale applications, where locally calibrated models
and detailed surveys are recommended. Users should con-
sider the provided accuracy metrics and uncertainty maps to
assess suitability for specific applications (Helfenstein et al.,
2024).

5 Code and data availability

All the resources for the ensemble machine learning model,
including training and testing code, are publicly available
at https://doi.org/10.5281/zenodo.14783774 (Shi and Shang-
guan, 2025). The soil maps in this study for six depth lay-
ers (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm) at
a 90 m spatial resolution across China are openly accessi-
ble: https://www.scidb.cn/s/ZZJzAz (last access: 17 Novem-
ber 2024) or https://doi.org/10.11888/Terre.tpdc.301235 (Shi
and Shangguan, 2024). Users can efficiently download the
datasets provided in the first link of the above statement by
using the file transfer protocol (FTP) account information
provided at the above links and common FTP client tools
such as Filezilla (https://filezilla-project.org/, last access: 15
June 2024) or FlashFXP (https://www.flashfxp.com/, last ac-
cess: 15 June 2024).

To meet the spatial resolution requirements of different
applications, the CSDLv2 not only provides soil properties
at a 90 m resolution but also offers 1 and 10 km resolution
data, with maps of the mean, median, 0.05 and 0.95 quan-
tiles. These 1 and 10 km resolution data were derived from

spatial predictions made by the constructed model using en-
vironmental covariates at the corresponding resolutions. The
dataset is provided in raster format, available in both network
Common Data Form 4 (NetCDF4) and GeoTIFF (GTiff) for-
mats.

6 Conclusions

The second version of the high-resolution national soil infor-
mation grid for China was developed in this study, utilising a
vast number of multi-source legacy soil profile samples and
advanced machine learning techniques, as a replacement for
the first version of the dataset. This version includes over 20
soil physical and chemical properties, with prediction maps
for each soil property covering six standard depths (0–5, 5–
15, 15–30, 30–60, 60–100, and 100–200 cm). By combin-
ing ensemble machine learning with currently available high-
resolution environmental covariates, the spatial variations of
soil properties across China and at different depths can be
effectively predicted. Overall, all the soil property maps per-
formed well, accurately representing the spatial variations of
soil properties. Under both data-splitting and independent-
sample schemes, the CSDLv2 generally outperformed other
gridded soil datasets, including the CSDLv1, SoilGrids 2.0,
and the HWSD 2.0. The CSDLv2 provided more spatial de-
tails and better represented the spatial-variation characteris-
tics of soil properties in China compared to other soil prod-
ucts. Furthermore, as this dataset is primarily based on legacy
soil profiles from the Second National Soil Survey of China
and describes the state of soil properties in the 1980s, it
serves as a valuable complement to maps based on soil pro-
files from the 2010s, providing new perspectives for study-
ing temporal changes in soil properties. These prediction
maps also contribute to China’s input to the GlobalSoilMap
project and can be used for various hydrological and ecolog-
ical analyses and for regional Earth system modelling, es-
pecially for applications requiring high-resolution soil prop-
erty maps. Future work can improve soil property mapping
by employing advanced deep learning methods and incorpo-
rating more observations, particularly in regions with sparse
samples, like western China. Additionally, integrating high-
resolution remote sensing data, developing more accurate 3D
models, and accounting for temporal changes in soil proper-
ties will further enhance the mapping accuracy and useful-
ness of the CSDLv2.
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A., Kilibarda, M., Antonijević, O., Glušica, L., Dobermann,
A., Haefele, S. M., McGrath, S. P., Acquah, G. E., Collinson,
J., Parente, L., Sheykhmousa, M., Saito, K., Johnson, J.-M.,
Chamberlin, J., Silatsa, F. B. T., Yemefack, M., Wendt, J.,
MacMillan, R. A., Wheeler, I., and Crouch, J.: African soil
properties and nutrients mapped at 30 m spatial resolution us-
ing two-scale ensemble machine learning, Sci. Rep., 11, 6130,
https://doi.org/10.1038/s41598-021-85639-y, 2021.

Heuvelink, G. B. M., Kros, J., Reinds, G. J., and De
Vries, W.: Geostatistical prediction and simulation of Euro-
pean soil property maps, Geoderma Regional, 7, 201–215,
https://doi.org/10.1016/j.geodrs.2016.04.002, 2016.

Hu, B., Xie, M., Shi, Z., Li, H., Chen, S., Wang, Z., Zhou,
Y., Ni, H., Geng, Y., Zhu, Q., and Zhang, X.: Fine-
resolution mapping of cropland topsoil pH of Southern China
and its environmental application, Geoderma, 442, 116798,
https://doi.org/10.1016/j.geoderma.2024.116798, 2024.

Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmer-
mann, N. E.: High-resolution monthly precipitation and tem-
perature time series from 2006 to 2100, Sci. Data, 7, 248,
https://doi.org/10.1038/s41597-020-00587-y, 2020.

Katschinski, N. A.: Die mechanische Bodenanalyse und die Klassi-
fikation der Böden nach ihrer mechanischen Zusammensetzung,
Pari, B, 321–327, 1956.

Koenker, R.: Quantile Regression, Cambridge University Press,
https://doi.org/10.1017/CBO9780511754098, 2005.

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different effi-
ciency criteria for hydrological model assessment, Adv. Geosci.,
5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.

Lagacherie, P., Arregui, M., and Fages, D.: Evaluating the quality
of soil legacy data used as input of digital soil mapping models,
Eur. J. Soil Sci., 75, e13463, https://doi.org/10.1111/ejss.13463,
2024.

Lamichhane, S., Kumar, L., and Wilson, B.: Digital soil map-
ping algorithms and covariates for soil organic carbon map-
ping and their implications: A review, Geoderma, 352, 395–413,
https://doi.org/10.1016/j.geoderma.2019.05.031, 2019.

Li, Q., Zhang, C., Shangguan, W., Li, L., and Dai,
Y.: A novel local-global dependency deep learning

https://doi.org/10.5194/essd-17-517-2025 Earth Syst. Sci. Data, 17, 517–543, 2025

https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1029/2011RG000372
https://modis.gsfc.nasa.gov
https://doi.org/10.5194/soil-5-137-2019
https://doi.org/10.1038/s41597-023-02536-x
https://doi.org/10.1016/j.jhydrol.2016.09.060
https://doi.org/10.4060/cc3823en
https://doi.org/10.1016/j.catena.2018.08.021
https://doi.org/10.1016/j.gexplo.2013.01.002
https://doi.org/10.1071/SR15191
https://doi.org/10.3390/agronomy12112742
https://doi.org/10.1016/j.agrformet.2019.107808
https://doi.org/10.1594/PANGAEA.788537
https://doi.org/10.1038/s43247-024-01293-y
https://doi.org/10.5194/essd-16-2941-2024
https://doi.org/10.1371/journal.pone.0125814
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1038/s41598-021-85639-y
https://doi.org/10.1016/j.geodrs.2016.04.002
https://doi.org/10.1016/j.geoderma.2024.116798
https://doi.org/10.1038/s41597-020-00587-y
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1111/ejss.13463
https://doi.org/10.1016/j.geoderma.2019.05.031


542 G. Shi et al.: A China dataset of soil properties

model for soil mapping, Geoderma, 438, 116649,
https://doi.org/10.1016/j.geoderma.2023.116649, 2023.

Li, T., Cui, L., Kuhnert, M., McLaren, T. I., Pandey, R., Liu, H.,
Wang, W., Xu, Z., Xia, A., Dalal, R. C., and Dang, Y. P.: A
comprehensive review of soil organic carbon estimates: Integrat-
ing remote sensing and machine learning technologies, J. Soil.
Sediment., 24, 3556–3571, https://doi.org/10.1007/s11368-024-
03913-8, 2024.

Li, W., Wei, N., Huang L., and Shangguan W.: Impact of
Soil Datasets on the Global Simulation of Land Surface Pro-
cesses, Climatic and Environmental Research, 25, 555–574,
https://doi.org/10.3878/j.issn.1006-9585.2020.20025, 2020 (in
Chinese).

Liang, Z., Chen, S., Yang, Y., Zhao, R., Shi, Z., and Viscarra Rossel,
R. A.: National digital soil map of organic matter in topsoil and
its associated uncertainty in 1980’s China, Geoderma, 335, 47–
56, https://doi.org/10.1016/j.geoderma.2018.08.011, 2019.

Lilburne, L., Helfenstein, A., Heuvelink, G. B. M., and Eger, A.:
Interpreting and evaluating digital soil mapping prediction un-
certainty: A case study using texture from SoilGrids, Geoderma,
450, 117052, https://doi.org/10.1016/j.geoderma.2024.117052,
2024.

Liu, F., Zhang, G.-L., Song, X., Li, D., Zhao, Y., Yang, J.,
Wu, H., and Yang, F.: High-resolution and three-dimensional
mapping of soil texture of China, Geoderma, 361, 114061,
https://doi.org/10.1016/j.geoderma.2019.114061, 2020.

Liu, F., Wu, H., Zhao, Y., Li, D., Yang, J.-L., Song, X., Shi, Z.,
Zhu, A.-X., and Zhang, G.-L.: Mapping high resolution Na-
tional Soil Information Grids of China, Sci. Bull., 67, 328–340,
https://doi.org/10.1016/j.scib.2021.10.013, 2022a.

Liu, F., Yang, F., Zhao, Y., Zhang, G., and Li, D.: Predicting
soil depth in a large and complex area using machine learning
and environmental correlations, J. Integr. Agr., 21, 2422–2434,
https://doi.org/10.1016/S2095-3119(21)63692-4, 2022b.

Lu, Q., Tian, S., and Wei, L.: Digital mapping of soil pH and
carbonates at the European scale using environmental vari-
ables and machine learning, Sci. Total Environ., 856, 159171,
https://doi.org/10.1016/j.scitotenv.2022.159171, 2023.

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V.,
Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi,
A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He,
Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., Jones, C.
D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C.,
Randerson, J. T., Salazar, A., Sierra, C. A., Smith, M. J., Tian, H.,
Todd-Brown, K. E. O., Torn, M., Van Groenigen, K. J., Wang, Y.
P., West, T. O., Wei, Y., Wieder, W. R., Xia, J., Xu, X., Xu, X.,
and Zhou, T.: Toward more realistic projections of soil carbon
dynamics by Earth system models, Global Biogeochem. Cy., 30,
40–56, https://doi.org/10.1002/2015GB005239, 2016.

Ma, Y., Minasny, B., McBratney, A., Poggio, L., and Fa-
jardo, M.: Predicting soil properties in 3D: Should
depth be a covariate?, Geoderma, 383, 114794,
https://doi.org/10.1016/j.geoderma.2020.114794, 2021.

McBratney, A. B., Mendonça Santos, M. L., and Minasny,
B.: On Digital Soil Mapping, Geoderma, 117, 3–52,
https://doi.org/10.1016/S0016-7061(03)00223-4, 2003.

McBratney, A. B., Minasny, B., and Stockmann, U. (Eds.):
Pedometrics, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-63439-5, 2018.

Meinshausen, N.: Quantile Regression Forests, J. Mach. Learn.
Res., 7, 983–999, 2006.

Moreira De Sousa, L., Poggio, L., and Kempen, B.: Compari-
son of FOSS4G Supported Equal-Area Projections Using Dis-
crete Distortion Indicatrices, ISPRS Int. J. Geo-Inf., 8, 351,
https://doi.org/10.3390/ijgi8080351, 2019.

Mulder, V. L., Lacoste, M., Richer-de-Forges, A. C.,
and Arrouays, D.: GlobalSoilMap France: High-
resolution spatial modelling the soils of France up to
two meter depth, Sci. Total Environ., 573, 1352–1369,
https://doi.org/10.1016/j.scitotenv.2016.07.066, 2016.

Nachtergaele, F. O., van Velthuizen, H., Verelst, L., Batjes, N. H.,
Dijkshoorn, J. A., van Engelen, V. W. P., Fischer, G., Jones, A.,
Montanarella, L., Petri, M., Prieler, S., Teixeira, E., Wilberg,
D., and Shi, X.: Harmonized World Soil Database (version
1.0), ISMC [data set], https://soil-modeling.org/resources-links/
data-portal/harmonized-world-soil-database, 2012.

National Soil Survey Office: Agricultural Soils in China, China
Agricultural Press, Beijing, 1964.

National Soil Survey Office: Chinese Soil Genus Records, vol. 6,
China Agriculture Press, Beijing, 1996 (in Chinese).

Nauman, T. W. and Duniway, M. C.: Relative prediction intervals
reveal larger uncertainty in 3D approaches to predictive digi-
tal soil mapping of soil properties with legacy data, Geoderma,
347, 170–184, https://doi.org/10.1016/j.geoderma.2019.03.037,
2019.

Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A.,
Greiner, L., Schaepman, M. E., and Papritz, A.: Evaluation of
digital soil mapping approaches with large sets of environmental
covariates, SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018,
2018.

Padarian, J., Minasny, B., and McBratney, A. B.:
Chile and the Chilean soil grid: A contribution
to GlobalSoilMap, Geoderma Regional, 9, 17–28,
https://doi.org/10.1016/j.geodrs.2016.12.001, 2017.

Padarian, J., Minasny, B., and McBratney, A. B.: Machine learn-
ing and soil sciences: a review aided by machine learning tools,
SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020, 2020.

Piikki, K., Söderström, M., and Stadig, H.: Local adapta-
tion of a national digital soil map for use in precision
agriculture, Advances in Animal Biosciences, 8, 430–432,
https://doi.org/10.1017/S2040470017000966, 2017.

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M.,
Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: pro-
ducing soil information for the globe with quantified spatial un-
certainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-
2021, 2021.

Qin, D., Ding, Y., and Mu, M. (Eds.): Climate and environmental
change in China: 1951–2012, Springer, Berlin; Heidelberg, 152
pp., https://doi.org/10.1007/978-3-662-48482-1, 2016.

Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Walt-
man, S., Wills, S., and Thompson, J.: Soil Property and
Class Maps of the Conterminous United States at 100-Meter
Spatial Resolution, Soil Sci. Soc. Am. J., 82, 186–201,
https://doi.org/10.2136/sssaj2017.04.0122, 2018.

Shangguan, W., Dai, Y., Liu, B., Ye, A., and Yuan, H.: A
soil particle-size distribution dataset for regional land and
climate modelling in China, Geoderma, 171–172, 85–91,
https://doi.org/10.1016/j.geoderma.2011.01.013, 2012.

Earth Syst. Sci. Data, 17, 517–543, 2025 https://doi.org/10.5194/essd-17-517-2025

https://doi.org/10.1016/j.geoderma.2023.116649
https://doi.org/10.1007/s11368-024-03913-8
https://doi.org/10.1007/s11368-024-03913-8
https://doi.org/10.3878/j.issn.1006-9585.2020.20025
https://doi.org/10.1016/j.geoderma.2018.08.011
https://doi.org/10.1016/j.geoderma.2024.117052
https://doi.org/10.1016/j.geoderma.2019.114061
https://doi.org/10.1016/j.scib.2021.10.013
https://doi.org/10.1016/S2095-3119(21)63692-4
https://doi.org/10.1016/j.scitotenv.2022.159171
https://doi.org/10.1002/2015GB005239
https://doi.org/10.1016/j.geoderma.2020.114794
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1007/978-3-319-63439-5
https://doi.org/10.3390/ijgi8080351
https://doi.org/10.1016/j.scitotenv.2016.07.066
https://soil-modeling.org/resources-links/data-portal/harmonized-world-soil-database
https://soil-modeling.org/resources-links/data-portal/harmonized-world-soil-database
https://doi.org/10.1016/j.geoderma.2019.03.037
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.1016/j.geodrs.2016.12.001
https://doi.org/10.5194/soil-6-35-2020
https://doi.org/10.1017/S2040470017000966
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.1007/978-3-662-48482-1
https://doi.org/10.2136/sssaj2017.04.0122
https://doi.org/10.1016/j.geoderma.2011.01.013


G. Shi et al.: A China dataset of soil properties 543

Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D.,
Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen, M., Chu, J., Dou,
Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S.,
Miao, C., and Zhang, Y.: A China data set of soil properties for
land surface modeling, J. Adv. Model. Earth Syst., 5, 212–224,
https://doi.org/10.1002/jame.20026, 2013.

Shangguan, W., Dai, Y., Duan, Q., Liu, B., and Yuan, H.: A global
soil data set for earth system modeling, J. Adv. Model. Earth Sy.,
6, 249–263, https://doi.org/10.1002/2013MS000293, 2014.

Shi, G. and Shangguan, W.: A China dataset of soil prop-
erties for land surface modeling (version 2), National Ti-
betan Plateau/Third Pole Environment Data Center [data set],
https://doi.org/10.11888/Terre.tpdc.301235, 2024.

Shi, G. and Shangguan, W.: shgsong/CSDLv2: A China dataset of
soil properties for land surface modeling (version 2, CSDLv2),
Zenodo [code], https://doi.org/10.5281/zenodo.14783774, 2025.

Shi, G., Shangguan, W., Zhang, Y., Li, Q., Wang, C., and Li,
L.: Reducing location error of legacy soil profiles leads to im-
provement in digital soil mapping, Geoderma, 447, 116912,
https://doi.org/10.1016/j.geoderma.2024.116912, 2024.

Shiri, J., Keshavarzi, A., Kisi, O., Iturraran-Viveros, U.,
Bagherzadeh, A., Mousavi, R., and Karimi, S.: Modeling
soil cation exchange capacity using soil parameters: Assessing
the heuristic models, Comput. Electron. Agr., 135, 242–251,
https://doi.org/10.1016/j.compag.2017.02.016, 2017.

Song, X.-D., Wu, H.-Y., Ju, B., Liu, F., Yang, F., Li, D.-
C., Zhao, Y.-G., Yang, J.-L., and Zhang, G.-L.: Pe-
doclimatic zone-based three-dimensional soil organic
carbon mapping in China, Geoderma, 363, 114145,
https://doi.org/10.1016/j.geoderma.2019.114145, 2020.

Sun, Y., Ma, J., Zhao, W., Qu, Y., Gou, Z., Chen, H., Tian, Y.,
and Wu, F.: Digital mapping of soil organic carbon density in
China using an ensemble model, Environ. Res., 231, 116131,
https://doi.org/10.1016/j.envres.2023.116131, 2023.

Thompson, J. A., Kienast-Brown, S., D’Avello, T., Philippe,
J., and Brungard, C.: Soils2026 and digital soil map-
ping – A foundation for the future of soils informa-
tion in the United States, Geoderma Regional, 22, e00294,
https://doi.org/10.1016/j.geodrs.2020.e00294, 2020.

Viscarra Rossel, R. A., Chen, C., Grundy, M. J., Searle, R., Clifford,
D., and Campbell, P. H.: The Australian three-dimensional soil
grid: Australia’s contribution to the GlobalSoilMap project, Soil
Res., 53, 845, https://doi.org/10.1071/SR14366, 2015.

Xia, C. and Zhang, Y.: Comparison of the use of Landsat
8, Sentinel-2, and Gaofen-2 images for mapping soil pH
in Dehui, northeastern China, Ecol. Inform., 70, 101705,
https://doi.org/10.1016/j.ecoinf.2022.101705, 2022.

Yamashita, N., Ohnuki, Y., Iwahashi, J., and Imaya,
A.: National-scale mapping of soil-thickness proba-
bility in hilly and mountainous areas of Japan using
legacy and modern soil survey, Geoderma, 446, 116896,
https://doi.org/10.1016/j.geoderma.2024.116896, 2024.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen,
G. H., and Pavelsky, T. M.: MERIT Hydro: A High-
Resolution Global Hydrography Map Based on Latest To-
pography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.

Yan, F., Shangguan, W., Zhang, J., and Hu, B.: Depth-to-bedrock
map of China at a spatial resolution of 100 meters, Sci. Data, 7,
2, https://doi.org/10.1038/s41597-019-0345-6, 2020.

Yang, J., Guan, X., Luo, M., and Wang, T.: Cross-system legacy
data applied to digital soil mapping: A case study of Second
National Soil Survey data in China, Geoderma Regional, 28,
e00489, https://doi.org/10.1016/j.geodrs.2022.e00489, 2022.

Zhang, Z., Ding, J., Zhu, C., Wang, J., Ge, X., Li, X., Han,
L., Chen, X., and Wang, J.: Historical and future variation
of soil organic carbon in China, Geoderma, 436, 116557,
https://doi.org/10.1016/j.geoderma.2023.116557, 2023b.

Zhou, Y., Xue, J., Chen, S., Zhou, Y., Liang, Z., Wang, N., and Shi,
Z.: Fine-Resolution Mapping of Soil Total Nitrogen across China
Based on Weighted Model Averaging, Remote Sensing, 12, 85,
https://doi.org/10.3390/rs12010085, 2019a.

Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z., and Lu, Y.: Land
use and climate change effects on soil organic carbon in North
and Northeast China, Sci. Total Environ., 647, 1230–1238,
https://doi.org/10.1016/j.scitotenv.2018.08.016, 2019b.

https://doi.org/10.5194/essd-17-517-2025 Earth Syst. Sci. Data, 17, 517–543, 2025

https://doi.org/10.1002/jame.20026
https://doi.org/10.1002/2013MS000293
https://doi.org/10.11888/Terre.tpdc.301235
https://doi.org/10.5281/zenodo.14783774
https://doi.org/10.1016/j.geoderma.2024.116912
https://doi.org/10.1016/j.compag.2017.02.016
https://doi.org/10.1016/j.geoderma.2019.114145
https://doi.org/10.1016/j.envres.2023.116131
https://doi.org/10.1016/j.geodrs.2020.e00294
https://doi.org/10.1071/SR14366
https://doi.org/10.1016/j.ecoinf.2022.101705
https://doi.org/10.1016/j.geoderma.2024.116896
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1038/s41597-019-0345-6
https://doi.org/10.1016/j.geodrs.2022.e00489
https://doi.org/10.1016/j.geoderma.2023.116557
https://doi.org/10.3390/rs12010085
https://doi.org/10.1016/j.scitotenv.2018.08.016

	Abstract
	Introduction
	Materials and methods
	Study area and soil profiles
	Study area
	Soil profiles

	Environmental covariates
	Digital soil mapping
	Spatial prediction and uncertainty
	Evaluation criteria


	Results
	Statistical analysis
	Predictive performance
	Spatial patterns
	Prediction uncertainty
	Relative importance of predictors

	Discussion
	Comparison with previous products
	Potential applications of the CSDLv2
	Limitations and outlook

	Code and data availability
	Conclusions
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

