

Supplement of

A China dataset of soil properties for land surface modelling (version 2, CSDLv2)

Gaosong Shi et al.

Correspondence to: Wei Shangguan (shgwei@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Contents

S1 The frequency distributions of soil properties	1
S2 Bulk density (BD)	2
S2.1 Prediction maps	2
S2.2 Accuracy assessment	
S2.3 Variable importance	4
S3 Sand	5
S3.1 Prediction maps	5
S3.2 Accuracy assessment	6
S3.3 Variable importance	7
S4 Silt	
S4.1 Prediction maps	8
S4.2 Accuracy assessment	9
S4.3 Variable importance	
S5 Clay	11
S5.1 Prediction maps	
S5.2 Accuracy assessment	
S5.3 Variable importance	
S6 Rock fragment (gravel)	14
S6.1 Prediction maps	14
S6.2 Accuracy assessment	15
S6.3 Variable importance	16
S7 Porosity	17
S7.1 Prediction maps	17
S7.2 Accuracy assessment	
S7.3 Variable importance	
S8 Red (R) of wet soil color	20
S8.1 Prediction maps	20
S8.2 Accuracy assessment	21
S8.3 Variable importance	
S9 Green (G) of wet soil color	23
S9.1 Prediction maps	23
S9.2 Accuracy assessment	

S9.3 Variable importance	25
S10 Blue (B) of wet soil color	
S10.1 Prediction maps	
S10.2 Accuracy assessment	27
S10.3 Variable importance	
S11 Red (R) of dry soil color	
S11.1 Prediction maps	
S11.2 Accuracy assessment	
S11.3 Variable importance	
S12 Green (G) of dry soil color	
S12.1 Prediction maps	
S12.2 Accuracy assessment	
S12.3 Variable importance	
S13 Blue (B) of dry soil color	
S13.1 Prediction maps	
S13.2 Accuracy assessment	
S13.3 Variable importance	
S14 Wet soil colours	
S14.1 Prediction maps	
S15 Dry soil colours	
S15.1 Prediction maps	
S16 pH	
S16.1 Prediction maps	
S16.2 Accuracy assessment	41
S16.3 Variable importance	
S17 Soil organic carbon (OC)	
S17.1 Prediction maps	43
S17.2 Accuracy assessment	
S17.3 Variable importance	
S18 Cation exchange capacity (CEC)	
S18.1 Prediction maps	46
S18.2 Accuracy assessment	47
S18.3 Variable importance	
S19 Total nitrogen (TN)	

S19.1 Prediction maps	49
S19.2 Accuracy assessment	
S19.3 Variable importance	51
S20 Total phosphorus (TP)	
S20.1 Prediction maps	
S20.2 Accuracy assessment	53
S20.3 Variable importance	54
S21 Total potassium (TK)	55
S21.1 Prediction maps	55
S21.2 Accuracy assessment	56
S21.3 Variable importance	57
S22 Alkali-hydrolysable nitrogen (AN)	58
S22.1 Prediction maps	58
S22.2 Accuracy assessment	59
S22.3 Variable importance	60
S23 Available potassium (AK)	61
S23.1 Prediction maps	61
S23.2 Accuracy assessment	
S23.3 Variable importance	63
S24 Available phosphorus (AP)	64
S24.1 Prediction maps	64
S24.2 Accuracy assessment	65
S24.3 Variable importance	66
S25 Spatial details of total nitrogen (TN)	67
S26 Spatial details of rock fragment (gravel)	68
S27 Spatial details of porosity	69
S28 Spatial details of alkali-hydrolysable nitrogen (AN)	70
S29 Spatial details of available phosphorus (AP)	71
Table S1. List of environmental covariates used to characterize soil-forming environments	72
Table S2. Tuned model parameters for each soil property considered at 0-5 cm depth interval. See	Table 1 for
abbreviations and units of the soil properties considered.	
Table S3. Statistical description of soil properties at six depth intervals. Refer to Table 1 for the abbreviation	ons and units
of the soil properties interested.	

S1 The frequency distributions of soil properties

Figure S1. The frequency distributions of soil properties at 0-5 cm depth interval.

S2 Bulk density (BD)

5 S2.1 Prediction maps

Figure S2. The predicted maps of bulk density (BD) at multiple depths (g/cm^3) . (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S3. The maps of uncertainty of bulk density (BD) predictions at the six depth intervals.

S2.3 Variable importance

Figure S4. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of bulk density (BD) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S3 Sand

S3.1 Prediction maps

Figure S5. The predicted maps of sand content at multiple depths (%). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S6. The maps of uncertainty of sand content predictions at the six depth intervals.

S3.3 Variable importance

Figure S7. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of sand at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S4 Silt

S4.1 Prediction maps

Figure S8. The predicted maps of silt content at multiple depths (%). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

35 Figure S9. The maps of uncertainty of silt content predictions at the six depth intervals.

S4.3 Variable importance

Figure S10. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of silt at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

40 S5 Clay

S5.1 Prediction maps

Figure S11. The predicted maps of clay content at multiple depths (%). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S12. The maps of uncertainty of clay content predictions at the six depth intervals.

S5.3 Variable importance

Figure S13. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of clay at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S6 Rock fragment (gravel)

S6.1 Prediction maps

55 **Figure S14.** The predicted maps of Rock fragment (gravel) content at multiple depths (g/100g). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S15. The maps of uncertainty of rock fragment (gravel) predictions at the six depth intervals.

Figure S16. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of rock fragment (gravel) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S7 Porosity

65 S7.1 Prediction maps

Figure S17. The predicted maps of porosity at multiple depths (cm^3/cm^3). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S18. The maps of uncertainty of porosity predictions at the six depth intervals.

S7.3 Variable importance

Figure S19. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of porosity at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S8 Red (R) of wet soil color

S8.1 Prediction maps

Figure S20. The predicted maps of the red (R) component of wet soil color at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm; and (f) 100-200 cm depth interval. The R component represents the red channel in the RGB soil color system.

Figure S21. The maps of uncertainty of the red (R) component of wet soil color predictions at the six depth intervals.

S8.3 Variable importance

Figure S22. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of the red (R) component of wet soil color at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S9 Green (G) of wet soil color

S9.1 Prediction maps

95 Figure S24. The maps of uncertainty of the green (G) component of wet soil color predictions at the six depth intervals.

S9.3 Variable importance

Figure S25. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of the green (G) component of wet soil color at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

100 S10 Blue (B) of wet soil color

S10.1 Prediction maps

Figure S26. The predicted maps of the blue (B) component of wet soil color at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm; and (f) 100-200 cm depth interval. The B component represents the blue channel in the RGB soil color system.

Figure S27. The maps of uncertainty of the blue (B) component of wet soil color predictions at the six depth intervals.

S10.3 Variable importance

Figure S28. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of the blue (B) component of wet soil color at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S11 Red (R) of dry soil color

S11.1 Prediction maps

Figure S29. The predicted maps of the red (R) component of dry soil color at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm; and (f) 100-200 cm depth interval. The R component represents the red channel in the RGB soil color system.

Figure S30. The maps of uncertainty of the red (R) component of dry soil color predictions at the six depth intervals.

Figure S31. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of the red (R) component of dry soil color at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.
S12 Green (G) of dry soil color

125 S12.1 Prediction maps

Figure S32. The predicted maps of the green (G) component of dry soil color at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm; and (f) 100-200 cm depth interval. The G component represents the green channel in the RGB soil color system.

Figure S33. The maps of uncertainty of the green (G) component of dry soil color predictions at the six depth intervals.

Figure S34. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of the green (G) component of dry soil color at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S13 Blue (B) of dry soil color

S13.1 Prediction maps

Figure S35. The predicted maps of the blue (B) component of dry soil color at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm; and (f) 100-200 cm depth interval. The B component represents the blue channel in the RGB soil color system.

Figure S36. The maps of uncertainty of the blue (B) component of dry soil color predictions at the six depth intervals.

S13.3 Variable importance

Figure S37. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of the blue (B) component of dry soil color at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S14 Wet soil colours

S14.1 Prediction maps

Figure S38. The predicted maps of wet soil colours at multiple depths. The colour bar only displays six representative colours, with some less distinctive colours aggregated for clarity. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

S15 Dry soil colours

155 S15.1 Prediction maps

Figure S39. The predicted maps of dry soil colours at multiple depths. The colour bar only displays six representative colours, with some less distinctive colours aggregated for clarity. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

160 **S16 pH**

S16.1 Prediction maps

Figure S40. The predicted maps of soil pH at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S41. The maps of uncertainty of soil soil pH predictions at the six depth intervals.

S16.3 Variable importance

Figure S42. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of soil pH at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S17 Soil organic carbon (OC)

S17.1 Prediction maps

175 **Figure S43.** The predicted maps of soil organic carbon (OC) content at multiple depths (g/100g). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S44. The maps of uncertainty of soil organic carbon (OC) content predictions at the six depth intervals.

Figure S45. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of soil organic carbon content (OC) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S18 Cation exchange capacity (CEC)

185 S18.1 Prediction maps

Figure S46. The predicted maps of cation exchange capacity (CEC) content at multiple depths (me/100g). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S47. The maps of uncertainty of cation exchange capacity (CEC) predictions at the six depth intervals.

S18.3 Variable importance

Figure S48. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of cation exchange capacity (CEC) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S19 Total nitrogen (TN)

S19.1 Prediction maps

Figure S49. The predicted maps of total nitrogen (TN) content at multiple depths (g/100g). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-200 60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S50. The maps of uncertainty of total nitrogen (TN) predictions at the six depth intervals.

S19.3 Variable importance

Figure S51. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of total nitrogen (TN) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S20 Total phosphorus (TP)

S20.1 Prediction maps

Figure S52. The predicted maps of total phosphorus (TP) content at multiple depths (g/100g). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S53. The maps of uncertainty of total phosphorus (TP) predictions at the six depth intervals.

S20.3 Variable importance

Figure S54. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of total phosphorus (TP) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

220 S21 Total potassium (TK)

S21.1 Prediction maps

Figure S55. The predicted maps of total potassium (TK) content at multiple depths (g/100g). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S56. The maps of uncertainty of total potassium (TK) predictions at the six depth intervals.

S21.3 Variable importance

Figure S57. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of total potassium (TK) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S22 Alkali-hydrolysable nitrogen (AN)

S22.1 Prediction maps

Figure S58. The predicted maps of alkali-hydrolysable nitrogen (AN) content at multiple depths (mg/kg). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S59. The maps of uncertainty of alkali-hydrolysable nitrogen (AN) predictions at the six depth intervals.

Figure S60. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of alkalihydrolysable nitrogen (AN) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S23 Available potassium (AK)

245 S23.1 Prediction maps

Figure S61. The predicted maps of available potassium (AK) content at multiple depths (mg/kg). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S62. The maps of uncertainty of available potassium (AK) predictions at the six depth intervals.

S23.3 Variable importance

Figure S63. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of available potassium (AK) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

S24 Available phosphorus (AP)

S24.1 Prediction maps

Figure S64. The predicted maps of available phosphorus (AP) content at multiple depths (mg/kg). (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S65. The maps of uncertainty of available phosphorus (AP) predictions at the six depth intervals.

S24.3 Variable importance

Figure S66. Relative importance of the top 15 predictors for the Quantile Regression Forest model in the spatial predictions of available phosphorus (AP) at the six depth intervals. See Table S6 for abbreviations of the environmental covariates.

Figure S67. Surface layer (0-5cm) total nitrogen (TN) maps derived from our predictions (CSDLv2), SoilGrids 2.0, CSDLv1, and HWSD 2.0, respectively, in a selected area (102.92°-104.08°E and 30.92°-32.08°N) located in Sichuan Province. This selected area corresponds to the red window shown in Figure 1. DEM and landuse refer to the land surface elevation and land use type of the selected area, respectively. The spatial resolutions are 90 m for CSDLv2, 250 m for SoilGrids 2.0, and 1 km for both CSDLv1 and HWSD 2.0.
S26 Spatial details of rock fragment (gravel)

Figure S68. Surface layer (0-5cm) rock fragment (gravel) maps derived from our predictions (CSDLv2), SoilGrids 2.0, CSDLv1, and HWSD 2.0, respectively, in a selected area (102.92°-104.08°E and 30.92°-32.08°N) located in Sichuan province. This selected area corresponds to the red window shown in Figure 1. DEM and landuse refer to the land surface elevation and land use type of the selected area, respectively. The spatial resolutions are 90 m for CSDLv2, 250 m for SoilGrids 2.0, and 1 km for both CSDLv1 and HWSD 2.0.

Figure S69. Surface layer (0-5 cm) porosity maps derived from our predictions (CSDLv2) and CSDLv1, respectively, in a selected area (102.92°-104.08°E and 30.92°-32.08°N) located in Sichuan province. This selected area corresponds to the red window shown in Figure 1. DEM and land use refer to the land surface elevation and land use type of the selected area, respectively. The spatial resolutions are 90 m for CSDLv2 and 1 km for CSDLv1. Note that porosity data is not available in SoilGrids 2.0 and HWSD 2.0, therefore no visualizations are provided for these datasets.

69

S28 Spatial details of alkali-hydrolysable nitrogen (AN)

Figure S70. Surface layer (0-5 cm) alkali-hydrolysable nitrogen (AN) maps derived from our predictions (CSDLv2) and CSDLv1, respectively, in a selected area (102.92°-104.08°E and 30.92°-32.08°N) located in Sichuan province. This selected area corresponds to the red window shown in Figure 1. DEM and land use refer to the land surface elevation and land use type of the selected area, respectively. The spatial resolutions are 90 m for CSDLv2 and 1 km for CSDLv1. Note that AN data is not available in SoilGrids 2.0 and HWSD 2.0, therefore no visualizations are provided for these datasets.

S29 Spatial details of available phosphorus (AP)

295

300

Figure S71. Surface layer (0-5 cm) available phosphorous (AP) maps derived from our predictions (CSDLv2) and CSDLv1, respectively, in a selected area (102.92°-104.08°E and 30.92°-32.08°N) located in Sichuan province. This selected area corresponds to the red window shown in Figure 1. DEM and land use refer to the land surface elevation and land use type of the selected area, respectively. The spatial resolutions are 90 m for CSDLv2 and 1 km for CSDLv1. Note that AP data is not available in SoilGrids 2.0 and HWSD 2.0, therefore no visualizations are provided for these datasets.

Factors	Description	Resolution	Common Juda and
definitions	Description	(m)	Source data set
<mark>Soil (28)</mark>			
			https://www.fao.org/soils-portal/data-hub/soil-
STGHWS ¹	Dominant soil group	5000	maps-and-databases/harmonized-world-soil-
			database-v12/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GVRHWS	Percent coverage Vertisols	1000	maps-and-databases/harmonized-world-soil-
			database-v34/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GUMHWS	Percent coverage Umbrisols	1000	maps-and-databases/harmonized-world-soil-
			database-v33/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GSTHWS	Percent coverage Stagnosols	1000	maps-and-databases/harmonized-world-soil-
			database-v37/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GSNHWS	Percent coverage Solonetz	1000	maps-and-databases/harmonized-world-soil-
			database-v32/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GSCHWS	Percent coverage Solonchaks	1000	maps-and-databases/harmonized-world-soil-
			database-v31/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GRGHWS	Percent coverage Regosols	1000	maps-and-databases/harmonized-world-soil-
			database-v30/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GPZHWS	Percent coverage Podzols	1000	maps-and-databases/harmonized-world-soil-
			database-v29/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GPTHWS	Percent coverage Plinthosols	1000	maps-and-databases/harmonized-world-soil-
			database-v28/en/

Table S1. List of environmental covariates used to characterize soil-forming environments.

Factors	Description	Resolution	Course data act
definitions	Description	(m)	Source data set
	-		https://www.fao.org/soils-portal/data-hub/soil-
GPLHWS	Percent coverage Planosols	1000	maps-and-databases/harmonized-world-soil-
			database-v27/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GLPHWS ¹	Percent coverage Leptosols	1000	maps-and-databases/harmonized-world-soil-
			database-v26/en/
	Darcont coverage		https://www.fao.org/soils-portal/data-hub/soil-
GKSHWS	Vestenozoms	1000	maps-and-databases/harmonized-world-soil-
	Kastanozems		database-v25/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GHSHWS	Percent coverage Histosols	1000	maps-and-databases/harmonized-world-soil-
			database-v24/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GGYHWS ¹	Percent coverage Gypsisols	1000	maps-and-databases/harmonized-world-soil-
			database-v23/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GGLHWS	Percent coverage Gleysols	1000	maps-and-databases/harmonized-world-soil-
			database-v22/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GFRHWS	Percent coverage Ferralsols	1000	maps-and-databases/harmonized-world-soil-
			database-v20/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GFLHWS	Percent coverage Fluvisols	1000	maps-and-databases/harmonized-world-soil-
			database-v21/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GCRHWS	Percent coverage Cryosols	1000	maps-and-databases/harmonized-world-soil-
			database-v19/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GCMHWS ¹	Percent coverage Cambisols	1000	maps-and-databases/harmonized-world-soil-
			database-v17/en/

Factors	Description	Resolution	Source data set
definitions	Description	(m)	Som ce data set
	-		https://www.fao.org/soils-portal/data-hub/soil-
GCLHWS	Percent coverage Calcisols	1000	maps-and-databases/harmonized-world-soil-
			database-v16/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GCHHWS	Percent coverage Chernozems	1000	maps-and-databases/harmonized-world-soil-
			database-v18/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GATHWS	Percent coverage Anthrosols	1000	maps-and-databases/harmonized-world-soil-
			database-v36/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GARHWS	Percent coverage Arenosols	1000	maps-and-databases/harmonized-world-soil-
			database-v15/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GANHWS	Percent coverage Andosols	1000	maps-and-databases/harmonized-world-soil-
			database-v14/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GALHWS	Percent coverage Alisols	1000	maps-and-databases/harmonized-world-soil-
			database-v35/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GACHWS	Percent coverage Acrisols	1000	maps-and-databases/harmonized-world-soil-
			database-v12/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GABHWS	Percent coverage Albeluvisols	1000	maps-and-databases/harmonized-world-soil-
			database-v13/en/
BDTICM ¹	Depth to bedrock of China	90	http://globalchange.bnu.edu.cn/research/cdtb.jsp
Climate (36)			
TYCHOD	Mean Long-term Surface	1000	https://modia_sefs_sess_ses
I AOMOD'	Temperature Oct/Nov	1000	nups://mouis.gsic.nasa.gov
	Mean Long-term Surface	1000	https://modia.cofo.com.com
TAOMOD	Temperature Aug/Sep	1000	nttps://modis.gsfc.nasa.gov

Factors	Description	Resolution	Source data sat
definitions	Description	(m)	Source data set
TX4MOD	Mean Long-term Surface	1000	https://modis.gsfc.nasa.gov
174WIOD	Temperature Jun/Jul	1000	https://mouis.gsrc.nasa.gov
TX3MOD	Mean Long-term Surface	1000	https://modis.gsfc.nasa.gov
1745WIOD	Temperature Apr/May	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
TX2MOD	Mean Long-term Surface	1000	https://modis.gsfc.nasa.gov
17/201012	Temperature Feb/Mar	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
$TX1MOD^1$	Mean value of the day-time	1000	https://modis.gsfc.pasa.gov
IXIMOD	LST	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
TNSMOD ¹	Standard deviation Long-term	1000	https://modis.gsfc.nasa.gov
11.01.10D	night surface temperature	1000	https://iiodis.gore.husu.gov
TNMMOD	Mean value Long-term night	1000	https://modis.gsfc.nasa.gov
	surface temperature	1000	https://iiodis.gore.husu.gov
TNI MOD	Minimum Long-term surface	1000	https://modis.gsfc.nasa.gov
TILLIOD	temperature	1000	https://iiodis.gsteinasu.gov
TNHMOD ¹	Maximum Long-term night	1000	https://modis.gsfc.nasa.gov
minice	surface temperature	1000	hapsi, nouis.gorenasa.gor
TDSMOD	Standard deviation of day-	1000	https://modis.gsfc.nasa.gov
TESHIOE	time LST	1000	hapon, moustporenasa.go (
TDMMOD	Mean Long-term day surface	1000	https://modis.gsfc.nasa.gov
TEIMINE	temperature	1000	hapsi, nouis.gorenasa.gor
TDLMOD	Minimum Long-term day	1000	https://modis.gsfc.nasa.gov
122002	surface temperature	1000	helps, monsteren ander
TDHMOD	Maximum Long-term day	1000	https://modis.gsfc.nasa.gov
12111102	surface temperature	1000	helps, monsteren ander
PX4WCL	Long-term Precipitation	1000	https://www.worldclim.org/
1111101	Aug/Sep/Oct	1000	https://www.worldonintorg/
PX3WCL	Long-term Precipitation of	1000	https://www.worldelim.org/
	May/Jun/Jul	1000	in point in a condeminion gr
PX2WCL	Long-term Precipitation of	1000	https://www.worldclim.org/
	Feb/Mar/Apr	1000	

Factors	Description	Resolution	Source data set
definitions	Description	(m)	bource data set
PX1WCL	Long-term precipitation of	1000	https://www.worldclim.org/
1111102	Nov/Dec/Jan	1000	
PREGSM ¹	Mean monthly precipitation	1000	http://chelsa-climate.org/
1120011	(annual)	1000	
P12DWD	Monthly precipitation for	5000	http://chelsa-climate.org/
	December		e e e e e e e e e e e e e e e e e e e
P11DWD	Mean precipitation of	1000	http://chelsa-climate.org/
	November		
P10DWD	Mean precipitation of October	1000	http://chelsa-climate.org/
P09DWD	Mean precipitation of	1000	http://chelsa-climate.org/
	September		
P08DWD	Mean precipitation of August	1000	http://chelsa-climate.org/
P07DWD	Mean precipitation of July	1000	http://chelsa-climate.org/
P06DWD	Mean precipitation of June	1000	http://chelsa-climate.org/
P05DWD	Mean precipitation of May	1000	http://chelsa-climate.org/
P04DWD	Mean precipitation of April	1000	http://chelsa-climate.org/
P03DWD	Mean precipitation of Mar	1000	http://chelsa-climate.org/
	Monthly precipitation for	1000	http://chelsa_climate.org/
1020110	February	1000	http://enelsa.ennate.org/
$P01DWD^1$	Monthly precipitation for	1000	http://chelsa_climate.org/
1012.02	January	1000	http://enelsa.chilate.org/
MODCF ¹	FC	1000	http://journals.plos.org/plosbiology/article?id=10.1
model	Le	1000	371/journal.pbio.1002415
L15IGB	Snow and ice index	1000	https://modis.gsfc.nasa.gov
INSSRF ¹	Standard deviation Potential	1000	https://www.worldgrids.com
INSSIL	incoming solar radiation	1000	https://www.wondgilds.com
INMSRF ¹	Mean potential incoming solar	1000	https://www.worldgrids.com
INNORL	radiation	1000	0 http://chelsa-climate.org/ 0 http://journals.plos.org/plosbiology/article?id=10 371/journal.pbio.1002415 10 0 https://www.worldgrids.com 0 https://www.worldgrids.com 0 http://due.esrin.esa.int/page_globcover.php
G22ESA	Permanent snow and ice	1000	http://due.esrin.esa.int/page_globcover.php
Organisms (50)			

Factors	Description	Resolution	Source data set
definitions	Description	Resolution (m) a 90 a 90 b 90 a 90 b 250 b 500 b 500 b 90 b 500 b 90 c 90	Source data set
	The ratio of Band 5 (near-		- https://www.usgs.gov/landsat-missions/landsat-
B5/B7 ¹	infrared) to Band 7 (shortwave	90	collection-2
	infrared 2) surface reflectance		
	Normalized Difference	90	Calculated from Landsat 8 Collection 2 Level-2
	Vegetation Index	90	(LC08C02) on the GEE platform
	Normalized Difference Water	90	Calculated from Landsat 8 Collection 2 Level-2
NDWI	Index	90	(LC08C02) on the GEE platform
D]	Saufa an Deflectour an	250	https://modis.gsfc.nasa.gov/data/dataprod/mod09.p
Surk	Surface Reflectance	230	hp
EVI	Enhanced Vegetation Index	500	Calculated from LC08C02 on the GEE platform
SAI^1	Snow Area Index	500	Calculated from LC08C02 on the GEE platform
LAI^1	Leaf Area Index	90	Calculated from LC08C02 on the GEE platform
NPP	Net Primary Productivity	500	https://lpdaac.usgs.gov/products/mod17a3hgfv061/
landuse ¹	Land use type	30	https://www.resdc.cn/DOI/DOI.aspx?DOIID = 54
CanopyHeight ¹	Canopy Height	10	https://doi.org/10.3929/ethz-b-000609802
Sentinel2B21	Band2 from Sentinel2	90	Derived from Sentinel2 on the GEE platform
Sentinel2B3	Band3 from Sentinel2	90	Derived from Sentinel2 on the GEE platform
Sentinel2B4	Band4 from Sentinel2	90	Derived from Sentinel2 on the GEE platform
Sentinel2B8	Band8 from Sentinel2	90	Derived from Sentinel2 on the GEE platform
Sentinel2B9	Band9 from Sentinel2	90	Derived from Sentinel2 on the GEE platform
OA DIVEL	Landsat 8 Collection 2 Level-	00	Derived from LC02C02 on the CEE plotform
QA_PIAEL	2 Pixel Quality Band	90	Derived from LC08C02 on the GEE platform
OA BADSAT	Radiometric Saturation	00	Derived from LC08C02 on the CEE platform
QA_KADSAT	Quality control	90	Derived from EC08C02 on the GEE platform
SR_B4^1	Surface Reflectance of Band4	90	Derived from LC08C02 on the GEE platform
SR_B5	Surface Reflectance of Band5	90	Derived from LC08C02 on the GEE platform
SR_B6	Surface Reflectance of Band6	90	Derived from LC08C02 on the GEE platform
SR_B7	Surface Reflectance of Band7	90	Derived from LC08C02 on the GEE platform
ST_ATRAN	Atmospheric Transmittance	90	Derived from LC08C02 on the GEE platform
ST_B10	Band 10 Surface Temperature	90	Derived from LC08C02 on the GEE platform
ST_EMSD	Emissivity standard deviation	90	Derived from LC08C02 on the GEE platform

Factors	Decorintion	Resolution	Source data set
definitions	Description	(m)	Source data set
ST_TRAD	Thermal Radiance	90	Derived from LC08C02 on the GEE platform
ST_URAD	Downwelled Radiance	90	Derived from LC08C02 on the GEE platform
wc2.1_prec		1000	
$wc2.1_srad^1$	solar radiation (kJ m-2 day-1)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_tavg	average temperature (°C)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_tmax	maximum temperature (°C)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_tmin	minimum temperature (°C)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_prec	precipitation (mm)	1000	https://worldclim.org/data/worldclim21.html
$wc2.1_wind^1$	wind speed (m s-1)	1000	https://worldclim.org/data/worldclim21.html
DANCE0105	Range of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123
KANGEUIUJ	Vegetation Index	1000	68/abstract
$PDMGPW^1$	Average population density	5000	https://www.worldgrids.com
MA V0105	Maximum of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123
MAA0105	Vegetation Index	1000	67/abstract
LCEE10	ESA land cover	200	http://maps.elie.ucl.ac.be/CCI/viewer/download/ES
LCEEIU	ESA Ialid Cover	300	ACCI-LC-PUG-v2.5.pdf
L16IGB	Barren or sparsely vegetated	1000	https://modis.gsfc.nasa.gov
L14IGB	Cropland/natural vegetation mosaic	1000	https://modis.gsfc.nasa.gov
L13IGB	Urban and built-up	1000	https://modis.gsfc.nasa.gov
L12IGB	Croplands index	1000	https://modis.gsfc.nasa.gov
L11IGB	Permanent Wetlands	1000	https://modis.gsfc.nasa.gov
L10IGB	Grasslands	1000	https://modis.gsfc.nasa.gov
L09IGB	Savannas	1000	https://modis.gsfc.nasa.gov
L06IGB	Closed shrublands	1000	https://modis.gsfc.nasa.gov
L05IGB	Mixed forests index	1000	https://modis.gsfc.nasa.gov
L04IGB ¹	Deciduous broadleaf forest	1000	https://modis.gsfc.nasa.gov
L03IGB	Deciduous needleleaf forest	1000	https://modis.gsfc.nasa.gov
L02IGB	Evergreen broadleaf forest	1000	https://modis.gsfc.nasa.gov
L01IGB	Evergreen needleleaf forest	1000	https://modis.gsfc.nasa.gov

Factors	Description	Resolution	Courses data ant
definitions	Description	(m)	Source data set
GLCIRC	Global Land Cover map for	1000	http://www.globallandcover.com/
OLEIKE	the year 2000	1000	http://www.globanandcover.com/
GLCESA	Land Cover classes	1000	http://due.esrin.esa.int/page_globcover.php
GACGEM ¹	Global accessibility map	1000	http://globalaccessibilitymap.com/
G21ESA	Water bodies	1000	http://due.esrin.esa.int/page_globcover.php
G20ESA	Bare areas	1000	http://due.esrin.esa.int/page_globcover.php
CLOESA	Artificial surfaces and	1000	http://dua again aga int/paga. alahaguan nhn
GI9ESA	associated areas	1000	http://due.esrifi.esa.int/page_grobcover.php
	Closed to open grassland or		
CIPERA	woody vegetation on regularly	1000	http://dua again aga int/paga. alahaguan nhn
GIOESA	flooded or waterlogged soil -	1000	http://due.esrifi.esa.int/page_grobcover.php
	Fresh, brackish or saline water		
	Closed broadleaved forest or		
	shrubland permanently	1000	
GI/ESA	flooded - Saline or brackish	1000	http://due.esrin.esa.int/page_giobcover.pnp
	water		
	Closed to open broadleaved		
G16ESA	forest regularly flooded -	1000	http://due.esrin.esa.int/page_globcover.php
	Fresh or brackish water		
G15ESA	Sparse (<15%) vegetation	1000	http://due.esrin.esa.int/page_globcover.php
G14ESA	Closed to open shrubland	1000	http://due.esrin.esa.int/page_globcover.php
G12IGB	Land cover types for 2012	1000	https://modis.gsfc.nasa.gov
G11IGB	Land cover types for 2011	1000	https://modis.gsfc.nasa.gov
C11ESA	Mosaic forest or shrubland /	1000	
GHESA	grassland	1000	http://due.esrin.esa.int/page_globcover.pnp
G10IGB	Land cover types for 2010	1000	https://modis.gsfc.nasa.gov
	Closed to open mixed		
G10ESA	broadleaved and needleleaved	1000	http://due.esrin.esa.int/page_globcover.php
	forest		
COOFSA	Open needleleaved deciduous	1000	
GUYESA	or evergreen forest	1000	http://due.esrin.esa.int/page_giobcover.php

Factors definitions	Description	Resolution (m)	Source data set
	Closed needleleaved	_	
G08ESA	evergreen forest	1000	http://due.esrin.esa.int/page_globcover.php
	Open broadleaved deciduous	1000	
G0/ESA	forest/woodland	1000	http://due.esrin.esa.int/page_globcover.php
	Closed to open broadleaved		
G05ESA	evergreen or semi-deciduous	1000	http://due.esrin.esa.int/page_globcover.php
	forest		
G04IGB	Land cover types for 2004	1000	https://modis.gsfc.nasa.gov
G04ESA	Mosaic vegetation / cropland	1000	http://due.esrin.esa.int/page_globcover.php
G03ESA	Mosaic cropland / vegetation	1000	http://due.esrin.esa.int/page_globcover.php
G02IGB	Land cover types for 2002	1000	https://modis.gsfc.nasa.gov
G02ESA	Rainfed croplands	1000	http://due.esrin.esa.int/page_globcover.php
G01IGB	Land cover types for 2001	1000	https://modis.gsfc.nasa.gov
COLESA	Post-flooding or irrigated	1000	http://dua.agrin.aga.int/paga.glabaayar.php
OULSA	croplands (or aquatic)	1000	http://duc.esini.esa.ini/page_gioocover.php
EVSMOD	Standard deviation MODIS	1000	https://modis.gsfa.pasa.gov
EVSINOD	Enhanced Vegetation Index	1000	https://mouis.gsrc.nasa.gov
	Mean MODIS Enhanced	1000	https://modis.gsfa.pasa.gov
EVIMINOD	Vegetation Index	1000	https://mouis.gsrc.nasa.gov
EVENNESS	Evenness of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123
EVENNESS	Vegetation Index	1000	66/abstract
ENTROPY	Disorderliness of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123
ENTROLI	Vegetation Index	1000	65/abstract
COVER	Land cover of 2010	300	http://www.sciencemag.org/content/342/6160/850
TERECO ¹	Terrestrial Ecosystems	250	https://landscape12.arcgis.com/arcgis/rest/services/
TERECO	Terresular Leosystems	250	World_Terrestrial_Ecosystems/ImageServer
Relief (13)			
L3POBI	Physiographic landform units	1000	https://www.worldgrids.com
	(SCALA project)		F
\mathbf{DEM}^1	Land surface elevation	90	https://hydro.iis.u-
		20	tokyo.ac.jp/~yamadai/MERIT_DEM/

Factors	Description	Resolution	Source data sat
definitions	Description	(m)	Source data set
slope ¹	Terrain slope	90	Derived from DEM
DEM and	Local downslopa Curvetura	00	http://hydro.iis.u-
DEW_ciu	Local downslope Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM or	Local unclone Curveture	00	http://hydro.iis.u-
DEWI_cru	Local upsiope Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM on	Downstone Curveture	00	http://hydro.iis.u-
DEM_CIV	Downstope Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM dum	Deviation from Mean Value	00	http://hydro.iis.u-
DEM_dviii	(surface roughness) x9	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM dum2	Deviation from Mean Value	00	http://hydro.iis.u-
DEM_dvIII2	(surface roughness) x13	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM mm	Malton Duggadnass Number	00	http://hydro.iis.u-
	Menon Ruggeoness Number	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM nonn ¹	Negative Topographic	00	http://hydro.iis.u-
DEM_liopii	Openness	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM nonn	Positive Topographic	00	http://hydro.iis.u-
DEM_popu	Openness	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM mof	Dectila Cuertatura	00	http://hydro.iis.u-
DEM_prof	Prome Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM to:	Topognaphic Desition Index	00	http://hydro.iis.u-
DEM_tpi	Topographic Position Index	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
DEM turil	Tono graphia Watnaga Inday	00	http://hydro.iis.u-
DEM_tw1	ropographic wetness fildex	90	tokyo.ac.jp/~yamadai/MERIT_DEM/
	Multiresolution Index of	00	http://hydro.iis.u-
DEM_VDI	Valley Bottom Flatness	90 tokyo.ac 90 tokyo.ac r 90 tokyo.ac 90 tokyo.ac 90 tokyo.ac 90 tokyo.ac 90 tokyo.ac 90 tokyo.ac 90 tokyo.ac	tokyo.ac.jp/~yamadai/MERIT_DEM/
Parent material			
<mark>(2)</mark>			
			USGS Geosciences and Environmental Change
RTMUSC151	Rock type	250	Science Center (GECSC) based on the Global
RTMUSG15 ¹	Rock type	250	Lithological Map database v1.1 (GLiM, Hartmann

and Moosdorf, 2012).

Factors definitions	Description	Resolution (m)	Source data set
SEDDEP	Average soil and sedimentary deposit thickness	1000	https://www.ornl.gov/
Other (2)			
	MODIS LAI based soil		
SMKMOD	productive area mask of the	5000	https://modis.gsfc.nasa.gov
	world		
LMTGSH ¹	Land mask based on GSHHS	1000	https://www.worldgrids.com
¹ variables used in t	he modeling of soil organic carbon	content at 0-5 cr	n depth interval.

Number of covariates nodesize Property mtry pН Sand Silt Clay BD OC Gravel AN TN CEC Porosity ΤK TP AK AP R (Wet) G (Wet) B (Wet) R (Dry) G (Dry) B (Dry)

Table S2. Tuned model parameters for each soil property considered at 0-5 cm depth interval. See305Table 1 for abbreviations and units of the soil properties considered.

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
рН								
0-5	9623	10.59	2.64	7.12	1.28	0.18	-0.48	-0.71
5-15	9632	10.53	2.66	7.14	1.27	0.18	-0.49	-0.71
15-30	9596	10.61	2.76	7.21	1.25	0.17	-0.54	-0.64
30-60	9288	10.50	2.99	7.28	1.25	0.17	-0.61	-0.56
60-100	7711	10.36	2.97	7.33	1.26	0.17	-0.66	-0.56
100-200	2584	10.28	2.94	7.61	1.23	0.16	-1.02	0.15
sand								
0-5	8743	102.63	0.00	40.26	21.18	0.53	0.36	-0.51
5-15	8152	99.99	0.00	40.12	21.01	0.52	0.30	-0.56
15-30	8122	99.99	0.02	39.23	21.13	0.54	0.36	-0.51
30-60	7844	101.84	0.02	38.70	22.03	0.57	0.40	-0.57
60-100	6389	101.33	0.00	37.93	22.88	0.60	0.47	-0.56
100-200	2127	101.82	0.22	37.01	23.18	0.63	0.62	-0.33
silt								
0-5	8926	96.45	0.00	40.60	15.88	0.39	-0.07	-0.20
5-15	8324	95.23	0.00	40.18	15.34	0.38	-0.02	-0.13
15-30	8300	92.53	0.00	39.90	15.29	0.38	-0.05	-0.19
30-60	8018	97.19	0.00	39.36	15.73	0.40	-0.01	-0.21
60-100	6562	102.40	0.00	39.52	16.38	0.41	0.01	-0.16
100-200	2207	100.57	0.00	41.14	17.74	0.43	-0.08	-0.27
clay								
0-5	9142	100.00	0.04	19.23	11.01	0.57	1.06	1.70
5-15	8539	100.00	0.08	19.70	11.20	0.57	1.02	1.44
15-30	8509	100.00	0.03	20.91	11.95	0.57	1.01	1.35
30-60	8225	100.00	0.00	22.02	13.02	0.59	0.96	1.20
60-100	6748	100.00	0.00	22.79	13.78	0.60	0.90	0.92
100-200	2302	84.67	0.04	22.16	13.35	0.60	0.96	1.22

Table S3. Statistical description of soil properties at six depth intervals. Refer to Table 1 for the abbreviations and units of the soil properties interested.

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
BD								
0-5	1531	2.21	0.14	1.24	0.20	0.16	-0.69	2.84
5-15	1556	2.18	0.18	1.26	0.19	0.15	-0.80	2.97
15-30	1551	2.12	0.18	1.34	0.19	0.14	-1.10	3.47
30-60	1362	2.10	0.34	1.40	0.19	0.13	-1.05	3.52
60-100	955	2.60	0.26	1.43	0.19	0.13	-0.94	4.27
100-200	331	2.13	0.54	1.44	0.19	0.13	-0.72	4.48
OC								
0-5	9758	41.99	0.00	2.26	3.13	1.39	4.67	30.98
5-15	9164	61.83	0.00	2.03	2.78	1.37	5.67	55.93
15-30	9147	52.10	0.00	1.45	2.12	1.47	7.93	105.75
30-60	8811	43.07	0.00	0.97	1.72	1.77	10.57	165.14
60-100	7156	47.56	0.00	0.70	1.55	2.20	13.90	266.53
100-200	2306	45.22	0.00	0.54	1.83	3.35	15.04	271.28
gravel								
0-5	1994	97.42	0.00	20.10	18.25	0.91	1.14	0.69
5-15	2041	95.00	0.00	20.42	18.27	0.89	1.10	0.60
15-30	2016	95.00	0.00	22.99	19.86	0.86	0.95	0.18
30-60	1911	95.33	0.00	25.64	21.19	0.83	0.78	-0.25
60-100	1288	94.11	0.00	26.15	21.25	0.81	0.73	-0.36
100-200	163	87.90	0.02	22.68	21.21	0.93	1.10	0.53
AN								
0-5	3447	1295.31	0.90	145.04	142.00	0.98	2.71	9.75
5-15	3447	1279.89	0.95	132.51	124.07	0.94	2.82	11.79
15-30	3410	1326.79	1.12	99.77	96.81	0.97	4.04	28.29
30-60	3151	1425.23	0.65	68.43	77.99	1.14	6.36	67.66
60-100	2270	1010.77	0.62	51.85	58.11	1.12	6.48	73.97
100-200	516	1043.52	0.62	41.87	64.90	1.55	9.69	127.43
TN								
0-5	9446	2.46	0.00	0.19	0.20	1.09	3.67	19.26
5-15	9239	2.46	0.00	0.17	0.18	1.06	4.01	24.93

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
15-30	9219	2.46	0.00	0.13	0.14	1.09	5.58	53.87
30-60	8816	2.49	0.00	0.09	0.11	1.24	8.26	111.67
60-100	7037	2.46	0.00	0.07	0.10	1.38	9.57	142.33
100-200	2219	1.79	0.00	0.05	0.09	1.69	11.89	179.87
CEC								
0-5	6624	123.89	0.16	14.94	10.65	0.71	2.57	11.74
5-15	6627	124.86	0.52	14.53	9.86	0.68	2.47	11.76
15-30	6595	125.40	0.29	13.59	8.96	0.66	2.62	14.92
30-60	6213	116.03	0.22	12.71	8.35	0.66	2.27	11.12
60-100	4809	105.11	0.34	12.21	8.29	0.68	2.54	14.79
100-200	1539	102.90	0.28	12.36	8.00	0.65	2.14	13.08
ТР								
0-5	8229	12.43	0.00	0.08	0.17	1.98	54.57	3808.42
5-15	8229	12.61	0.00	0.08	0.17	2.00	56.58	4081.97
15-30	8193	14.58	0.00	0.08	0.18	2.34	68.24	5468.62
30-60	7822	15.93	0.00	0.07	0.19	2.73	75.01	6237.73
60-100	6160	16.12	0.00	0.07	0.21	3.21	68.67	5123.50
100-200	1882	0.66	0.00	0.06	0.05	0.79	3.55	24.01
porosity								
0-5	734	74.86	32.11	52.14	6.49	0.12	0.35	0.76
5-15	734	74.15	30.57	51.41	6.15	0.12	0.41	0.80
15-30	732	78.23	28.42	49.01	6.07	0.12	0.81	1.89
30-60	659	77.09	22.44	47.40	6.14	0.13	0.83	2.61
60-100	469	78.85	22.91	46.60	6.02	0.13	0.69	2.87
100-200	196	79.42	23.72	45.92	6.64	0.14	0.52	4.08
ТК								
0-5	6729	5.24	0.02	1.95	0.67	0.34	0.05	1.17
5-15	6728	5.24	0.03	1.95	0.66	0.34	0.04	1.16
15-30	6698	5.23	0.03	1.95	0.66	0.34	0.03	1.11
30-60	6360	5.02	0.02	1.95	0.68	0.35	0.03	1.02
60-100	4978	6.16	0.00	1.93	0.70	0.36	0.09	1.06

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
100-200	1344	5.13	0.00	1.93	0.63	0.32	0.18	1.99
AK								
0-5	4984	6405.52	1.00	153.36	183.92	1.20	16.29	490.56
5-15	4990	7440.15	0.92	143.03	170.30	1.19	19.89	747.11
15-30	4951	7803.84	1.00	116.92	151.66	1.30	28.23	1350.57
30-60	4605	6986.45	1.00	99.69	139.19	1.40	28.28	1318.20
60-100	3494	6047.12	0.98	94.69	140.06	1.48	24.32	954.11
100-200	937	861.81	1.75	99.71	84.75	84.75	0.85	3.43
AP								
0-5	4932	398.99	0.10	9.41	13.48	1.43	10.02	208.71
5-15	4934	443.53	0.10	8.76	13.16	1.50	12.68	323.74
15-30	4889	587.27	0.10	6.39	11.85	1.85	26.22	1193.62
30-60	4485	185.08	0.02	4.87	7.74	1.59	8.59	125.29
60-100	3351	235.83	0.03	4.73	8.80	1.86	11.63	227.95
100-200	882	74.62	0.06	4.53	7.11	1.57	4.89	33.14
R (wet)								
0-5	2889	265.92	40.00	139.34	38.89	0.28	-0.06	-0.14
5-15	2940	259.30	23.80	140.47	37.19	0.26	-0.08	-0.16
15-30	2929	256.22	26.33	147.65	34.28	0.23	-0.16	0.07
30-60	2808	256.67	15.27	156.04	34.23	0.22	-0.23	0.39
60-100	2365	261.15	161.39	34.83	34.83	0.22	-0.20	0.28
100-200	801	261.06	53.26	167.02	34.08	0.20	-0.19	0.04
G (wet)								
0-5	2889	266.35	21.00	117.25	37.87	0.32	0.07	-0.12
5-15	2940	255.00	21.00	117.78	36.20	0.31	0.05	-0.23
15-30	2929	255.00	21.00	122.59	33.20	0.27	0.02	-0.17
30-60	2809	255.00	18.09	128.73	33.25	0.26	0.03	-0.06
60-100	2365	257.89	19.81	133.05	33.87	0.25	0.01	-0.29
100-200	801	206.33	40.92	135.84	32.06	0.24	-0.14	-0.41
B (wet)								
0-5	2887	269.35	0.05	92.40	37.61	0.41	0.10	0.02

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
5-15	2939	255.00	0.02	92.17	36.03	0.39	0.06	-0.20
15-30	2828	255.00	7.84	93.58	34.48	0.39	-0.02	-0.49
30-60	2808	255.00	0.51	96.13	36.14	0.38	-0.00	-0.32
60-100	2364	258.83	4.36	98.33	38.14	0.39	-0.06	-0.45
100-200	800	198.68	10.25	98.26	36.66	0.37	-0.21	-0.58
R (dry)								
0-5	1738	265.58	8.00	145.12	36.70	0.25	-0.14	0.05
5-15	1769	256.63	8.00	145.90	34.62	0.24	-0.16	0.07
15-30	1757	236.48	8.00	151.26	32.21	0.21	-0.17	0.19
30-60	1714	251.16	8.00	158.01	33.28	0.21	-0.20	0.38
60-100	1502	257.89	8.00	163.92	33.97	0.21	-0.34	0.57
100-200	665	263.26	8.00	170.09	33.48	0.20	-0.38	0.80
G (dry)								
0-5	1738	267.41	8.00	120.71	36.16	0.30	0.12	0.11
5-15	1769	256.95	8.00	121.01	34.17	0.28	0.10	0.03
15-30	1757	219.37	8.00	124.52	31.78	0.26	0.09	-0.17
30-60	1714	250.37	8.00	128.70	32.81	0.25	0.06	-0.22
60-100	1502	258.48	8.00	133.33	34.06	0.26	-0.03	-0.31
100-200	665	267.38	8.00	133.33	34.06	0.26	-0.03	-0.31
B (dry)								
0-5	1732	269.53	8.00	94.91	37.06	0.39	0.24	0.34
5-15	1768	257.30	5.61	94.34	35.32	0.37	0.17	0.08
15-30	1756	213.47	8.00	95.35	33.29	0.35	0.06	-0.42
30-60	1713	249.42	8.00	96.26	34.41	0.37	0.05	-0.42
60-100	1502	259.21	8.00	99.22	38.33	0.39	0.04	-0.39
100-200	668	268.45	8.00	103.70	38.75	0.37	-0.07	-0.26

CV: coefficient of variation; SD: standard deviation;

Table S4. Accuracy evaluation of the soil properties prediction with CSDLv2, CSDLv1, SoilGrids 2.0, and HWSD 2.0, based on the randomly held-back soil profiles. The "Number" column indicates the number of samples used during testing. See Table 1 for the abbreviations and units of the soil properties interested.

D (Depth	NT 1		CSDLv2			CSDLv1		S	SoilGrids 2.	0		HWSD 2.	0
Property	interval	Number	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME
	0-5	848	0.57	2.04	0.03	0.16	2.86	-0.51	0.24	2.72	1.11	0.04	3.38	-0.50
	5-15	848	0.56	1.82	0.02	0.13	2.60	-0.46	0.46	2.05	0.08	0.03	3.05	-1.15
00	15-30	842	0.45	1.51	0.01	0.12	2.11	-0.36	0.40	1.64	0.03	0.04	2.29	-0.82
UC	30-60	810	0.40	1.28	0.01	0.10	1.76	-0.26	0.34	1.38	0.01	0.02	1.83	-0.51
	60-100	653	0.25	1.30	0.01	0.08	1.64	-0.23	0.20	0.54	-0.01	0.03	1.61	-0.36
	100-200	205	0.23	0.41	0.03	0.07	1.82	-0.32	0.13	1.70	0.04	0.03	1.58	-0.21
	0-5	199	0.49	12.97	0.06	0.13	19.43	-6.31	0.45	13.46	0.36	0.04	21.12	-7.27
	5-15	204	0.51	12.72	0.11	0.06	18.82	-5.63	0.48	13.07	0.55	0.03	21.63	-6.47
graval	15-30	202	0.52	13.68	0.09	0.09	20.77	-5.23	0.49	14.18	-0.13	0.03	23.17	-9.60
graver	30-60	191	0.50	14.85	0.09	0.06	21.83	5.35	0.47	15.37	-0.06	0.03	23.99	-10.69
	60-100	129	0.47	15.25	0.14	0.05	22.45	2.91	0.43	15.86	-0.07	0.03	24.47	-8.93
	100-200	16	0.35	14.84	0.03	0.04	23.34	-3.97	0.30	16.60	2.66	0.05	23.43	-8.13
	0-5	341	0.53	96.32	1.48	0.14	131.81	-11.55	-	-	-	-	-	-
	5-15	340	0.52	84.08	1.28	0.14	114.91	-10.35	-	-	-	-	-	-
AN	15-30	337	0.37	73.85	0.71	0.09	92.90	-6.05	-	-	-	-	-	-
AIN	30-60	311	0.33	62.78	0.96	0.02	78.46	-3.38	-	-	-	-	-	-
	60-100	223	0.25	48.92	0.74	0.02	59.46	-6.55	-	-	-	-	-	-
	100-200	50	0.24	20.41	-0.11	0.01	98.61	-8.46	-	-	-	-	-	-
	0-5	664	0.44	0.15	0.00	0.19	0.18	-0.03	0.14	0.23	0.13	0.04	2.46	-0.79
	5-15	664	0.40	0.14	0.00	0.17	0.17	-0.03	0.31	0.15	0.01	0.02	2.50	-1.46
TN	15-30	661	0.28	0.12	0.00	0.08	0.14	-0.03	0.21	0.13	0.01	0.02	2.27	-1.48
110	30-60	623	0.18	0.06	0.00	0.01	0.02	-0.02	0.13	0.11	0.00	0.02	2.33	-1.44
	60-100	491	0.25	0.04	0.00	0.01	0.10	-0.02	0.08	0.09	-0.00	0.03	2.45	-1.48
	100-200	133	0.20	0.02	0.00	0.01	0.09	-0.03	0.02	0.09	0.00	0.02	2.92	-1.56
	0-5	637	0.34	8.49	0.16	0.07	10.23	-1.27	0.17	11.55	5.58	0.02	12.37	1.73
CEC	5-15	637	0.33	7.90	0.15	0.06	9.51	-1.22	0.16	10.27	4.01	0.02	11.02	0.69
	15-30	633	0.28	7.44	0.13	0.04	9.10	-1.17	0.14	9.91	4.50	0.03	9.23	0.52

	30-60	597	0.27	7.01	0.12	0.03	8.47	-1.23	0.13	9.69	4.80	0.03	8.87	0.58
	60-100	459	0.24	7.05	0.14	0.05	8.79	1.30	0.10	9.73	4.97	0.02	8.86	0.73
	100-200	144	0.25	6.86	0.06	0.08	8.91	1.42	0.11	9.70	4.86	0.02	8.45	1.09
	0-5	814	0.29	0.05	0.00	0.01	0.17	-0.02	-	-	-	-	-	-
	5-15	814	0.30	0.05	0.00	0.01	0.15	-0.01	-	-	-	-	-	-
TD	15-30	809	0.29	0.05	0.00	0.02	0.15	-0.02	-	-	-	-	-	-
IP	30-60	774	0.25	0.05	0.00	0.01	0.19	-0.02	-	-	-	-	-	-
	60-100	608	0.23	0.05	0.00	0.02	0.12	-0.02	-	-	-	-	-	-
	100-200	186	0.23	0.04	0.00	0.01	0.07	-0.04	-	-	-	-	-	-
	0-5	73	0.28	5.47	-0.02	0.03	6.48	-0.03	-	-	-	-	-	-
	5-15	73	0.27	5.22	-0.03	0.01	6.11	-0.36	-	-	-	-	-	-
norosity	15-30	73	0.23	5.02	-0.00	0.02	6.01	-0.31	-	-	-	-	-	-
porosity	30-60	64	0.20	3.95	0.01	0.01	6.28	-0.07	-	-	-	-	-	-
	60-100	47	0.21	2.70	-0.00	0.01	6.58	0.08	-	-	-	-	-	-
	100-200	20	0.15	3.94	0.14	0.01	7.02	0.12	-	-	-	-	-	-
	0-5	664	0.25	0.56	0.00	0.01	0.67	-0.07	-	-	-	-	-	-
	5-15	663	0.26	0.55	0.00	0.01	0.67	-0.07	-	-	-	-	-	-
TV	15-30	661	0.27	0.55	0.00	0.00	0.66	-0.05	-	-	-	-	-	-
IK	30-60	627	0.25	0.57	0.00	0.00	0.67	-0.04	-	-	-	-	-	-
	60-100	490	0.22	0.61	0.00	0.00	0.71	-0.06	-	-	-	-	-	-
	100-200	133	0.16	0.50	-0.00	0.00	2.12	-0.08	-	-	-	-	-	-
	0-5	491	0.27	110.72	1.22	0.03	181.65	-24.17	-	-	-	-	-	-
	5-15	492	0.24	102.74	1.27	0.02	168.75	-23.75	-	-	-	-	-	-
A 17	15-30	488	0.24	83.50	1.10	0.02	150.73	-20.54	-	-	-	-	-	-
AK	30-60	454	0.21	76.76	0.98	0.01	140.83	-17.93	-	-	-	-	-	-
	60-100	344	0.16	79.33	1.46	0.01	142.55	-20.97	-	-	-	-	-	-
	100-200	92	0.12	70.70	0.61	0.00	182.79	-42.54	-	-	-	-	-	-
	0-5	486	0.14	9.58	0.26	0.09	11.86	-3.37	-	-	-	-	-	-
	5-15	486	0.13	8.84	0.23	0.07	11.03	-3.21	-	-	-	-	-	-
۸D	15-30	482	0.12	6.77	0.19	0.07	8.57	-2.18	-	-	-	-	-	-
AL	30-60	442	0.10	5.81	0.08	0.09	7.74	-1.84	-	-	-	-	-	-
	60-100	330	0.12	6.20	0.08	0.06	9.04	-1.93	-	-	-	-	-	-
	100-200	87	0.12	6.16	0.07	0.00	20.47	-5.64	-	-	-	-	-	-

"-" indicates that the soil property was not mapped or not included in the dataset.

315 Table S5. Predictive performance of CSDLv2, SoilGrids 2.0, CSDLv2, and HWSD 2.0 based on validation with testing profiles from WoSIS. Refer to Table 1 for the abbreviations and units of the soil properties interested.

Durante	Depth		CSDLv2		CSDLv1 SoilGrids 2			.0	HWSD 2.0				
Property	interval	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME
	0-5	0.84	0.57	0.15	0.64	0.84	0.08	0.87	0.51	0.14	0.51	0.99	-0.17
	5-15	0.85	0.54	0.14	0.66	0.81	0.08	0.88	0.49	0.14	0.52	0.97	-0.02
	15-30	0.84	0.56	0.10	0.29	1.16	-0.37	0.87	0.49	0.13	0.57	0.93	-0.04
рн	30-60	0.85	0.52	0.11	0.66	0.80	0.05	0.87	0.50	0.10	0.58	0.91	-0.06
	60-100	0.85	0.53	0.12	0.67	0.80	0.46	0.87	0.51	0.10	0.58	0.91	-0.07
	100-200	0.84	0.38	-0.03	0.61	0.90	0.10	0.86	0.53	0.13	0.61	0.92	0.04
	0-5	0.79	9.81	-2.36	0.03	24.10	-9.98	0.75	10.71	-5.46	0.01	21.44	-2.76
	5-15	0.82	9.21	-2.02	0.05	23.63	-9.69	0.78	10.05	-5.03	0.06	21.44	-3.81
cand	15-30	0.83	9.11	-1.33	0.04	23.59	-8.92	0.81	9.39	-4.26	0.06	21.03	-2.96
sanu	30-60	0.83	9.24	-1.22	0.03	23.90	-9.01	0.82	9.41	-4.16	0.12	20.80	-2.11
	60-100	0.84	9.36	-1.57	0.04	23.91	-8.83	0.79	10.47	-4.51	0.10	21.50	-1.83
	100-200	0.79	10.77	-3.16	0.01	26.70	-9.99	0.75	11.99	-5.98	0.01	23.16	-3.37
	0-5	0.72	7.56	3.47	0.03	19.25	11.27	0.68	8.24	3.53	0.05	15.45	2.78
	5-15	0.74	7.23	3.17	0.04	18.93	11.02	0.73	7.65	3.05	0.06	15.19	1.46
cilt	15-30	0.78	6.66	2.89	0.03	19.00	11.08	0.76	7.13	2.85	0.07	14.93	0.94
SIIt	30-60	0.76	6.95	3.09	0.04	18.75	10.88	0.73	7.50	3.05	0.07	14.75	1.30
	60-100	0.73	7.42	3.18	0.05	18.37	10.04	0.71	7.91	3.17	0.07	14.95	1.27
	100-200	0.74	7.75	3.14	0.04	18.53	9.23	0.72	8.10	3.62	0.05	16.67	2.16
	0-5	0.74	5.51	0.15	0.07	11.84	-1.48	0.71	6.66	2.33	0.05	12.01	0.54
	5-15	0.78	5.10	0.12	0.11	11.74	-1.75	0.75	6.24	2.11	0.04	12.19	2.86
clay	15-30	0.78	5.21	-0.35	0.12	12.62	-2.81	0.79	6.21	1.66	0.14	12.33	2.65
Clay	30-60	0.82	5.36	-0.69	0.17	13.14	-2.45	0.83	5.98	1.22	0.20	12.71	1.08
	60-100	0.85	5.74	-0.61	0.20	13.34	-2.16	0.82	6.31	1.21	0.21	13.18	0.31
	100-200	0.83	6.21	0.07	0.18	13.61	0.48	0.79	7.01	2.42	0.14	13.71	0.72
	0-5	0.63	19.88	1.43	0.08	31.19	-5.26	0.58	22.34	9.97	0.04	35.46	-3.31
	5-15	0.53	24.48	0.55	0.03	35.18	-5.42	0.35	30.79	-0.17	0.04	38.59	-10.02
OC	15-30	0.46	19.08	0.08	0.02	25.87	-3.24	0.58	17.71	0.31	0.05	28.69	-6.77
	30-60	0.36	9.37	1.24	0.11	7.40	-0.87	0.33	6.09	1.15	0.10	8.14	-2.39
	60-100	0.22	6.62	1.26	0.04	4.26	-0.46	0.20	4.71	0.93	0.11	5.35	-1.12

	100-200	0.16	9.01	1.37	0.10	10.09	-2.09	0.15	7.64	1.15	0.11	5.38	-0.20
	0-5	0.23	7.03	4.85	0.09	9.28	4.86	0.24	6.08	5.12	0.07	10.30	3.25
	5-15	0.25	5.80	3.98	0.07	9.20	3.21	0.22	6.10	4.56	0.05	11.22	4.37
CEC	15-30	0.25	5.89	4.16	0.07	9.19	3.02	0.23	5.89	5.22	0.04	11.56	4.82
CEC	30-60	0.28	5.34	4.05	0.12	8.10	2.51	0.25	5.92	5.11	0.07	9.89	2.89
	60-100	0.25	5.62	4.13	0.09	9.25	4.82	0.21	6.01	4.72	0.06	11.02	3.22
	100-200	0.24	6.42	4.72	0.06	9.32	4.20	0.22	6.13	4.89	0.03	12.68	4.93
	0-5	0.50	1.53	-0.14	0.21	1.93	-0.42	0.44	2.23	0.06	0.26	1.93	-0.34
	5-15	0.53	1.37	-0.11	0.22	1.77	-0.37	0.52	1.46	-0.05	0.17	1.89	-0.77
TN	15-30	0.49	1.05	-0.03	0.33	1.20	-0.25	0.61	0.95	0.01	0.44	1.13	-0.49
IN	30-60	0.34	1.05	0.02	0.33	1.05	-0.14	0.58	0.87	0.01	0.70	0.74	-0.22
	60-100	0.30	0.91	0.05	0.26	0.94	-0.13	0.40	0.88	0.02	0.67	0.66	-0.08
	100-200	0.13	0.54	0.03	0.19	0.64	-0.28	0.21	0.52	0.05	0.26	0.61	-0.02
	0-5	0.68	0.14	-0.01	0.20	0.28	0.05	0.63	0.14	-0.01	0.26	0.34	0.15
	5-15	0.73	0.13	-0.01	0.12	0.27	0.04	0.67	0.12	-0.00	0.21	0.32	0.17
חק	15-30	0.70	0.13	-0.02	0.01	0.24	0.08	0.72	0.10	0.02	0.23	0.32	0.16
вр	30-60	0.57	0.15	-0.02	0.01	0.22	0.04	0.55	0.16	0.02	0.15	0.29	0.15
	60-100	0.56	0.14	-0.05	0.02	0.20	-0.01	0.55	0.15	0.01	0.05	0.26	0.09
	100-200	0.61	0.11	-0.04	0.11	0.19	-0.02	0.59	0.11	-0.01	0.11	0.23	0.05

Table S6. Prediction interval coverage probability (PICP) for each soil property at multiple depths.320Refer to Table 1 for the abbreviations and units of the soil properties interested.

proporty		Depth interval (cm)										
property	0-5	5-15	15-30	30-60	60-100	100-200						
рН	0.90	0.91	0.91	0.91	0.91	0.91						
sand	0.90	0.90	0.90	0.90	0.90	0.91						
silt	0.91	0.90	0.90	0.90	0.90	0.90						
clay	0.90	0.90	0.90	0.90	0.90	0.90						
BD	0.90	0.90	0.91	0.89	0.89	0.89						
OC	0.90	0.90	0.90	0.90	0.90	0.90						
Gravel	0.91	0.90	0.90	0.89	0.90	0.90						
AN	0.90	0.90	0.91	0.90	0.90	0.90						
TN	0.90	0.91	0.90	0.90	0.90	0.90						
CEC	0.90	0.90	0.90	0.90	0.90	0.89						
Porosity	0.90	0.89	0.90	0.90	0.90	0.88						
TK	0.90	0.90	0.90	0.90	0.90	0.90						
TP	0.90	0.91	0.90	0.90	0.90	0.90						
AK	0.90	0.90	0.90	0.90	0.90	0.90						
AP	0.90	0.88	0.90	0.91	0.90	0.90						
R(wet)	0.90	0.89	0.90	0.90	0.90	0.92						
G(wet)	0.90	0.90	0.90	0.91	0.90	0.90						
B(wet)	0.90	0.90	0.90	0.90	0.91	0.90						
R(dry)	0.90	0.90	0.89	0.90	0.90	0.90						
G(dry)	0.90	0.90	0.89	0.90	0.92	0.90						
B(dry)	0.90	0.90	0.90	0.91	0.90	0.90						

Table S7. Comparison of predictive performance for mean predictions using random forest model and median predictions using quantile regression Forest model across different soil properties under 'All Data,' 'High Values,' and 'Low Values' conditions based on 10-fold cross-validation. The 'All Data' condition evaluates performance on the full training set, while 'High Values' and 'Low Values' assess prediction accuracy for the top 10% highest and bottom 10% lowest values, respectively. The 'Prediction method' column documents the models constructed for generating final national-scale predictions at a 90-meter resolution for various soil properties.

325

proportu	Statistic	All Data]	High Values	5	Ι	Prediction		
property	Validation	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME	method
	Mean	0.693	0.706	0.001	-2.923	0.786	-0.564	-7.196	1.023	0.830	Median
рн	Median	0.690	0.709	-0.012	-2.871	0.781	-0.557	-5.958	0.943	0.730	(QRF)
aand	Mean	0.670	12.161	0.056	-8.000	22.178	-16.260	-9.543	12.961	8.400	Mean
sand	Median	0.667	12.231	-0.734	-8.612	22.919	-16.560	-9.070	12.021	7.299	(RF)
a:14	Mean	0.615	9.825	0.023	-4.324	15.014	-10.967	-8.659	15.652	11.526	Median
SIIt	Median	0.614	9.840	0.003	-4.240	14.895	-10.789	-8.838	15.796	11.139	(QRF)
aları	Mean	0.629	6.749	0.019	-1.328	12.197	-8.221	-23.577	8.543	6.279	Median
ciay	Median	0.626	6.771	0.018	-1.281	12.071	-7.919	-23.416	8.515	6.088	(QRF)
חק	Mean	0.623	0.119	0.001	-2.230	0.188	-0.129	-0.561	0.208	0.133	Mean
ЪD	Median	0.619	0.120	-0.000	-2.351	0.192	-0.133	-0.619	0.212	0.140	(RF)
00	Mean	0.570	2.043	0.028	0.089	5.382	-2.647	-98.229	1.056	0.559	Mean
UC	Median	0.556	2.075	-0.225	-0.071	5.836	-3.455	-69.297	0.889	0.464	(RF)
anorral	Mean	0.494	13.010	0.066	-5.133	24.486	-19.554	-150.920	10.572	8.463	Mean
graver	Median	0.483	13.152	-1.542	-5.427	25.067	-19.771	-103.985	8.789	6.430	(RF)
A NI	Mean	0.535	96.580	1.489	-0.671	224.419	-155.231	-91.610	89.083	58.083	Mean
AIN	Median	0.528	97.276	-8.873	-0.882	238.166	-171.510	-80.097	83.362	51.067	(RF)
TN	Mean	0.437	0.153	0.003	-0.602	0.403	-0.249	-63.525	0.090	0.066	Mean

	Median	0.411	0.157	-0.024	-0.950	0.445	-0.310	-37.921	0.069	0.050	(RF)
CEC	Mean	0.342	8.516	0.168	-1.280	20.586	-15.277	-47.768	7.887	6.714	Mean
CEC	Median	0.322	8.644	-1.273	-1.706	22.427	-17.579	-31.976	6.486	5.280	(RF)
monosity	Mean	0.286	5.496	-0.028	-6.014	9.548	-8.380	-10.608	10.167	9.167	Mean
porosity	Median	0.283	5.507	0.064	-6.041	9.566	-8.436	-10.728	10.219	9.236	(RF)
TV	Mean	0.254	0.569	0.004	-6.439	1.133	-0.985	-7.496	-0.921	0.842	Mean
IK	Median	0.251	0.570	-0.022	-6.856	1.164	-1.007	-6.626	0.873	0.772	(RF)
тр	Mean	0.039	0.153	0.001	-0.073	0.471	-0.114	-45.798	0.047	0.040	Median
IP	Median	0.042	0.153	-0.012	-0.092	0.475	-0.136	-23.025	0.034	0.029	(QRF)
٨V	Mean	0.161	169.589	1.120	-0.250	484.127	-235.202	-74.502	91.844	77.809	Mean
AK	Median	0.130	172.666	-24.174	-0.413	514.801	-285.971	-46.213	72.628	61.121	(RF)
۸D	Mean	0.137	10.600	0.284	-1.000	29.102	-21.562	-217.302	6.999	6.334	Mean
AI	Median	0.075	10.976	-2.468	-1.470	32.340	-25.594	-90.100	4.521	4.074	(RF)
P (Wet)	Mean	0.275	33.108	0.032	-10.615	56.055	-50.741	-10.427	54.593	49.311	Median
K (Wel)	Median	0.271	33.212	0.081	-10.481	55.730	-50.198	-10.363	54.441	48.539	(QRF)
G (Wet)	Mean	0.258	32.333	0.076	-12.180	55.557	-51.001	-24.998	52.446	48.498	Mean
0 (wei)	Median	0.244	32.639	-0.777	-12.543	56.317	-51.137	-24.089	45.522	46.730	(RF)
R (Wet)	Mean	0.205	34.046	0.021	-9.174	57.428	-52.629	-75.942	54.758	50.755	Median
D (Wel)	Median	0.193	34.305	0.934	-8.686	56.034	-50.974	-74.629	54.168	49.383	(QRF)
\mathbf{R} (Dry)	Mean	0.256	34.204	0.041	-11.524	58.243	-51.861	-11.524	56.236	50.954	Median
R (DIy)	Median	0.249	34.331	0.095	-11.142	57.531	-51.256	-11.321	56.112	50.364	(QRF)
G (Dry)	Mean	0.269	31.238	0.067	-11.173	54.248	-50.843	-23.128	50.571	46.368	Mean
O (DIy)	Median	0.254	31.854	0.421	-11.534	55.658	-50.994	-22.451	46.358	43.589	(RF)
B (Dry)	Mean	0.213	33.224	0.020	-9.854	56.552	-52.223	-74.642	53.775	49.228	Median
D (Diy)	Median	0.204	33.612	0.635	-9.347	55.012	-50.128	-73.734	53.127	48.581	(QRF)