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Abstract. Cooking emissions are a significant source of PM2.5, posing considerable public health risks due
to their high toxicity and proximity to densely populated areas. Despite their importance, there is currently a
lack of an accurate, long-term, high-resolution national cooking emission inventory in China, primarily due to
the challenges of obtaining high-quality activity-level data over extended periods at fine spatial scales. Here,
we address these limitations by leveraging advanced machine learning techniques to predict activity levels and
further estimate emissions.

Specifically, we develop an ensemble model of machine learning algorithms – random forest (RF), eXtreme
gradient boosting (XGBoost), multilayer perceptron neural network (MLP), and deep neural networks (DNNs)
– to accurately predict cooking activity levels across Chinese counties based on statistical indicators related to
population, economy, and the catering industry. The ensemble machine learning model demonstrates exceptional
generalization and transferability (R2

= 0.892–0.989), outperforming traditional statistical models and individ-
ual machine learning models. Unlike previous inventories that rely on simplistic proxy data such as population
for calculation and downscaling, our inventory precisely calculates county-level cooking emissions, providing
more accurate emission estimates and spatial distributions. Furthermore, we incorporate critical but previously
missing toxic pollutants, such as ultrafine particles (UFPs) and polycyclic aromatic hydrocarbons (PAHs), into
the national cooking emission inventory. Therefore, we develop China’s first county-level cooking emission
inventory, spanning 1990 to 2021, with high spatial resolution and wide pollutant coverage.

According to our inventory, in 2021, China’s total cooking emissions of organics in the full volatility range,
PM2.5, UFPs, and PAHs are 997, 408 kt, 6.50× 1025 particles, and 15.8 kt, respectively. From 1990 to 2021,
emissions of these pollutants increased by over 65 %, and their spatiotemporal trends were affected to varying
degrees by external factors, such as population migration, economic development, pollution control policies,
and the pandemic in different periods. We further analyze the contribution patterns of key driving factors, such
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as urbanization rate, population, and pollution control, to emission changes. Notably, driver analysis reveals
that existing control measures are insufficient to curb the rapid growth of emissions, necessitating enhanced
controls. Regarding control strategies, our county-level inventory finds that 62.3 % of China’s organic emis-
sions are concentrated in 30 % of the counties, which are densely populated and occupy only 14.4 % of the
national land area. Therefore, prioritizing control of these areas will be an efficient and targeted strategy. Our
research provides crucial data and insights for understanding the impact of cooking emissions on air pollution
and health, aiding in policy development. Our long-term, high-resolution emission datasets are publicly available
at https://doi.org/10.6084/m9.figshare.26085487 (Li et al., 2025).

1 Introduction

Cooking activities, through the heating and processing of oil
and food ingredients, emit large quantities of pollutants, pos-
ing significant harm to air quality and human health. Cook-
ing emissions are one of the major sources of organic aerosol
(OA, the organic component of PM2.5) in urban areas (Lee et
al., 2015; Logue et al., 2014; Zhao and Zhao, 2018). Source
apportionment results indicate that cooking organic aerosols
account for 5 %–37 % of the total OA concentration in vari-
ous urban atmospheres (Abdullahi et al., 2013; Huang et al.,
2021; Mohr et al., 2012). Moreover, cooking emissions con-
tain multiple hazardous components, such as ultrafine par-
ticles (UFPs) and polycyclic aromatic hydrocarbons (PAHs),
which are linked to health problems including cardiovascular
disease, oxidative stress, and lung cancer (Kim et al., 2024;
Lin et al., 2022b; Naseri et al., 2024; Xu et al., 2020). Ex-
periments have proved that both gaseous organics and PM2.5
emitted from cooking exhibit much more negative biologi-
cal effects like cytotoxicity compared to ambient PM2.5 (Guo
et al., 2023). Consequently, cooking emissions can increase
PM2.5 concentrations and toxicity, thereby exacerbating air
pollution and associated disease burdens (Chafe et al., 2014;
Wang et al., 2017; Zhang et al., 2024a). Given that cooking
activities predominantly occur in densely populated areas,
they pose a substantial public health risk. Therefore, long-
term high-spatial-resolution emission inventories are critical
for assessing the impacts of cooking emissions on human
health, as they support exposure analysis studies across dif-
ferent locations and periods.

Chinese cooking emissions exhibit unique characteristics
that require special consideration in emission inventory de-
velopment (Zhao and Zhao, 2018). The widespread use of
high-temperature oils, various seasonings, and special tech-
niques like stir-frying generates pollutants with complex
chemical compositions (Chen et al., 2018; Zhao and Zhao,
2018). Furthermore, cooking styles vary greatly across dif-
ferent regions in China, which have historically developed
into multiple distinct cuisine systems (Li et al., 2023; Lin et
al., 2022b). To accurately capture these emission patterns and
quantify their impact, the emission estimate needs to incor-
porate cuisine-specific multi-pollutant emission factors while
explicitly accounting for regional variations through spatial

resolution representation (Lin et al., 2022b; Zhao and Zhao,
2018).

Internationally, some efforts have been made to de-
velop cooking emission inventories. High-resolution emis-
sion datasets have been established for small-scale regions,
such as greater Athens in Greece and the Red River Delta in
Vietnam, through field surveys and measurements (Fameli
et al., 2022; Huy et al., 2021). However, at larger scales
(e.g., national or global), cooking sources are often omitted
from anthropogenic emission inventories or only roughly es-
timated using uniform emission factors and simplistic statis-
tics like food supply or meat consumption (Huang et al.,
2023; Saha et al., 2024). These methods and data are diffi-
cult to apply to China because, as mentioned above, cooking
inventories in China require localized emission factors and
estimation methods that explicitly consider regional differ-
ences.

Domestic inventories also exhibit the characteristic of be-
ing “precise at small scales but coarse at large scales”, mak-
ing it difficult to balance accuracy and breadth (Cheng et
al., 2022; Jin et al., 2021; Liang et al., 2022; Wang et al.,
2018a). These limitations are mainly due to the difficulty of
obtaining high-quality data, particularly activity-level data,
over large spatiotemporal scales and at fine spatial resolu-
tions. Some studies have collected key data for emission cal-
culations by cuisine-specific emission factor testing, door-
to-door surveys of restaurants, and online fume monitoring
systems, thereby establishing high-resolution inventories of
single years in cities or districts such as Beijing, Shanghai,
and Shunde (Lin et al., 2022b; Wang et al., 2018b, a; Yuan
et al., 2023). These studies have provided valuable localized
basic data for China’s cooking emission inventories. How-
ever, obtaining accurate cooking activity data (e.g., restaurant
numbers) remains challenging at larger temporal and spatial
scales. Traditionally, China’s national cooking emission in-
ventories either use simplistic statistical data (such as popu-
lation and catering consumption expenditure) as proxies for
activity levels or linearly extrapolate the activity levels of one
city to other areas based on these simple statistics (Cheng et
al., 2022; Jin et al., 2021; Liang et al., 2022; Wang et al.,
2018a). These simplifications and linear assumptions result
in high uncertainties and low spatial resolution. Recent stud-
ies have more accurately estimated national cooking emis-
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sions based on data from digital maps or catering service
platforms (Li et al., 2023; Zhang et al., 2024b). However,
these inventories are limited to recent years, as they rely on
newly developed data platforms.

Apart from lacking accuracy and breadth, another limita-
tion of existing cooking emission inventories is their lim-
ited pollutant coverage. Previous studies on cooking emis-
sions primarily focused on PM2.5 (whose organic com-
ponent is primary organic aerosol, POA) and volatile or-
ganic compounds (VOCs) (Jin et al., 2021; Wang et al.,
2018a, b). However, recent advancements in the frame-
work of organic compounds in the full volatility range (in-
cluding VOCs, intermediate-volatility organic compounds
(IVOCs), semi-volatile organic compounds (SVOCs), and or-
ganic compounds with even lower volatility (xLVOCs)) have
revealed the previously overlooked significant contributions
of I/SVOCs to secondary organic aerosols (SOAs) (Chang
et al., 2022; Li et al., 2024b; Zhang et al., 2021). Although
our latest study has supplemented the inventory with organ-
ics in the full volatility range (Li et al., 2023), the emissions
for certain highly toxic pollutants of particular concern emit-
ted from cooking – notably ultrafine particles (UFPs) and
polycyclic aromatic hydrocarbons (PAHs) – remain lacking
(Chen and Zhao, 2024; Jørgensen et al., 2013; Lachowicz et
al., 2023; Lin et al., 2022a). This gap limits our comprehen-
sive assessment of the environmental and health risks associ-
ated with cooking emissions.

In recent years, machine learning has been widely applied
in atmospheric pollution research due to its powerful capa-
bility to process large-scale spatiotemporal datasets and cap-
ture complex nonlinear relationships within them (Liu et al.,
2023; Prodhan et al., 2022a; Zhang and Zhao, 2024; Zheng et
al., 2021). Models such as random forest (RF), eXtreme gra-
dient boosting (XGBoost), and deep neural networks (DNNs)
have demonstrated strong performance in predicting pollu-
tant concentration time series and identifying spatial distri-
butions (Chen et al., 2024; Prodhan et al., 2022b; Ren et al.,
2022; Wu et al., 2024; Xu et al., 2023). Ensemble machine
learning models further achieve better and more stable re-
sults by combining predictions from individual base models
(Liu et al., 2023; Ren et al., 2022). They can help supplement
sparse datasets, serving as an effective alternative for obtain-
ing key data that would otherwise be computationally expen-
sive or inaccessible to collect (Ren et al., 2022; Shi et al.,
2024; Xiao et al., 2018). When integrating machine learning
with the SHapley Additive exPlanations (SHAP) additivity
algorithm, the key factors for the predictive target and their
influence patterns can be identified (Hou et al., 2022; Yang et
al., 2023a). Most importantly, these approaches hold signifi-
cant potential to address key challenges in cooking emission
inventory development. Where conventional activity data at
large spatiotemporal scales are unavailable, ensemble ma-
chine learning models can predict long-term, high-resolution
activity levels by capturing complex relationships between
cooking activities and fundamental socioeconomic indica-

tors. Coupled with SHAP analysis, they can provide insights
into how socioeconomic factors influence emission trends.
However, such efforts have not yet been made.

In summary, limited by the difficulty of obtaining high-
quality activity data, there is currently a lack of an accurate,
long-term, high-resolution national cooking emission, and
existing inventories remain deficient in their coverage of im-
portant toxic pollutants such as PAHs and UFPs. This hinders
studies on PM2.5 modeling, source apportionment, and health
risk analysis. In this study, we use machine learning models
to overcome the limitations of data acquisition and driving
force analysis, while also expanding the range of pollutants
covered in the emission inventory. Specifically, we employ an
ensemble of four preferred machine learning algorithms to
estimate long-term, high-spatial-resolution cooking activity
data. This ensemble model integrates the strengths of the four
base models – RF, XGBoost, multilayer perceptron neural
network (MLP), and DNN – enabling it to accurately predict
cooking activity levels across various Chinese counties based
on statistical indicators related to population, the economy,
and the catering industry. We validate the model’s generaliz-
ability and transferability using unseen testing datasets. By
further combining advanced emission factors and pollution
control data, we estimate the emissions of various pollutants
(including organics in the full volatility range, PM2.5, UFPs,
and PAHs) from commercial, residential, and canteen cook-
ing at the county level from 1990 to 2021. Finally, we apply
the one-factor-at-a-time method to analyze the key drivers
of national cooking emissions, while using the SHAP algo-
rithm to identify the key influential factors for county-level
emissions. This provides essential data and new insights for
studies of the impact of cooking emissions on air pollution
and human health and helps to formulate targeted emission
control policies.

We expect to achieve breakthroughs in spatiotemporal
resolution, pollutant coverage, and emission estimation ac-
curacy. This study represents the first long-term (nearly
31 years) high-resolution (county-level) inventory, whereas
existing national inventories were mostly limited to single
years or recent years at provincial resolution. Also, our study
covers key pollutant categories from cooking emissions, in-
cluding organics in the full volatility range, PAHs, and UFPs,
that were not included in other national inventories. In terms
of estimation accuracy, we adopt cuisine-specific emission
factors, consider dynamically changing purification facility
installation proportions (PFIPs) driven by provincial policies,
and use precise county-level activity data to calculate emis-
sions more accurately and better reflect regional differences.
Finally, this study will provide important data and new per-
spectives for researching the impacts of cooking emissions
on air pollution and human health, facilitating the develop-
ment of targeted emission control policies.
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2 Data and method

The calculation method for emissions of the three sectors of
cooking (commercial cooking, residential cooking, and can-
teen cooking) is based on Li et al. (2023), as shown in Eq. (1):

E = A×[EF× y+EF′(1− y)], (1)

where A represents the activity level, EF and EF′ are the con-
trolled and uncontrolled EFs for a certain pollutant, and y is
the PFIP.

Figure 1 illustrates the workflow of activity-level model-
ing, emission estimation, and driver analysis in this study.
We first gather historical annual statistical data related to
population, the economy, and the catering industry as pre-
dictive variables, and collect existing high-resolution cook-
ing activity levels as response variables. All data are stan-
dardized to the resolution of county level, ensuring that the
sample set used for modeling is rich, diverse, and of high
spatial resolution. Then, we integrate four machine learning
algorithms – RF, XGBoost, MLP, and DNN – which are se-
lected for their superior predictive performance and comple-
mentary strengths, to develop predictive models for cooking
activity levels across three sectors: commercial, residential,
and canteen cooking. The reliability of the model is validated
on unseen testing datasets. The activity levels predicted by
the model, combined with emission factors and the PFIPs,
can yield historical county-level cooking emissions. Finally,
we apply the one-factor-at-a-time method to analyze the key
drivers of national cooking emissions, whereas the SHAP al-
gorithm is used to evaluate the relative importance of features
for county-level emissions.

2.1 Data acquisition and processing

To obtain long-term, high-resolution national emissions, it is
important to acquire nationwide activity-level data that span
extended periods and maintain fine spatial resolution (such
as county level or at least municipal level). However, this is
a highly challenging task, especially before the year 2000,
when a significant amount of data was missing. Fortunately,
we can leverage the powerful data imputation and predictive
capabilities of machine learning to overcome this challenge.
Specifically, the activity levels for commercial, residential,
and canteen cooking are the annual total fume volume, an-
nual total household edible oil consumption, and the annual
total number of meals served in canteens, respectively. We
develop predictive models based on machine learning al-
gorithms that only use easily accessible statistical data to
estimate these county-level activity levels (as discussed in
Sect. 2.2).

We collected 14 statistical indicators related to popula-
tion, the economy, and the catering industry from 1990 to
2021 for modeling and predicting. The types, sources and
initial resolution of all statistical data can be accessed in Ta-
ble S1. Population-related variables include population, the

number of employees in enterprises, and the number of stu-
dents in primary school and middle school. Economy-related
variables encompass urbanization rate, total gross domestic
product (GDP), GDP of primary, secondary, and tertiary in-
dustries, and per capita disposable income. Variables related
to the catering industry include household per capita oil con-
sumption, household per capita meat consumption, the num-
ber of chain restaurants, and the number of employees in the
catering and accommodation industry. These data, mostly at
the county-level resolution, primarily originate from statisti-
cal yearbooks (National Bureau of Statistics of China, 2022a,
c, b). These long-term datasets are preprocessed to meet the
requirements of machine learning by imputing missing val-
ues using inverse distance weighting, K-nearest neighbor
methods, and higher-order statistical data (Murti et al., 2019;
Sree Dhevi, 2014). Given the changes in China’s county ad-
ministrative divisions over the past 31 years (Yu et al., 2018),
we trace the renaming, merging, and splitting events of coun-
ties according to official government reports, mapping the
data for each year to the county administrative system of
2020 (a total of 2848 counties) to ensure continuity across
years. Detailed descriptions of the spatial mapping and data
processing procedures are provided in Text S1 in the Supple-
ment. Additionally, we standardize the initial resolution of
some variables, which may be at the provincial, municipal,
or grid level (1 km× 1 km), to the county level by allocating
based on population or GDP, taking provincial averages, or
using cumulative summation. We also normalized all predic-
tor variables to a range of 0 to 1 to ensure a consistent scale.

Next, we conduct feature selection on 14 predictor vari-
ables to reduce dimensionality and minimize multicollinear-
ity (Zhu et al., 2023). Variables were first ranked by RF
model importance scores, with those scoring < 5 % consid-
ered for potential removal because of low importance (Aldu-
ailij et al., 2022; Ye et al., 2022). Each candidate variable was
then temporarily excluded, and only those whose removal re-
sulted in an R2 decline of < 1 % were permanently discarded
– ensuring no critical features were lost (Altmann et al.,
2010; Zhu et al., 2023). Also, we performed multicollinear-
ity checks using the variance inflation factor (VIF), gradually
removing features with higher VIF values until all remaining
features were mutually independent (all VIF values of inde-
pendent variables were below 10) (Daoud, 2017; Hu et al.,
2017). By removing irrelevant or redundant features in this
way, we can reduce the influence of noise, decrease the risk
of overfitting, enhance the model’s predictive performance
and generalizability, and provide clearer and more meaning-
ful model explanations (Zhu et al., 2023).

For machine learning modeling, the dataset needs to be
partitioned into the training dataset and the testing dataset.
During the data partitioning, we implement strict data leak-
age management to ensure that information from the test-
ing dataset is not used during training, thus guaranteeing an
accurate model evaluation (Nayak and Ojha, 2020; Zhu et
al., 2023). The response variables available for modeling and
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Figure 1. Schematics of the model developed in this study including model development, emission calculation, and key factor analysis.

testing, namely high-resolution cooking activity levels, are
limited to the years 2015 to 2021 (Li et al., 2023). This gives
us data samples for 7 years, with 2848 counties each year.
Given the significant similarity in data for the same county
across different years, we bundle data samples from differ-
ent years for the same county during the data partitioning. As
shown in the second column of Fig. 1, we use data from 70 %
of the counties from 2017 to 2019 (totaling 5982 samples)
for training to establish the underlying relationships between
input factors and the prediction target. Additionally, we use
data from the remaining 30 % of the counties in the years
2015, 2016, 2020, and 2021 (totaling 3416 samples) as the
testing dataset to validate the model. Under this partitioning
strategy, data from the same county only appear in either the
training dataset or the testing dataset, ensuring that the model
can effectively generalize and be tested on unseen datasets,
thereby demonstrating the model’s transferability across dif-
ferent times and locations (Nayak and Ojha, 2020; Zhu et
al., 2023). Notably, the modeling data only cover the pe-
riod from 2015 to 2021, as earlier data are unavailable. This
may introduce some bias when backcasting activity levels for
earlier periods. We further validate the backcasted activity
levels and evaluate their uncertainties. Modeling and valida-
tion of the machine learning model are described in detail in
Sect. 2.2.

After obtaining activity levels through the machine learn-
ing model, we further collect data for Eq. (1) to calculate
cooking emissions. As for the EF, we consider various types
of pollutants of concern emitted from cooking activities, in-
cluding organics in the full volatility range (VOCs, SVOCs,
IVOCs, and xLVOCs), PM2.5, UFP, and PAHs (encompass-
ing gaseous PAHs, particulate PAHs, and benzo[a]pyrene
toxic equivalent quantity (BaPeq)). The organic EFs in the
full volatility range are sourced from Li et al. (2023). The EFs
for PM2.5 are calculated as POA / 81.5 % (Li et al., 2023),
where POA represents the particulate fraction of organics in
the full volatility range. The EFs for UFPs are derived from
the literature (Chen et al., 2017, 2018; Géhin et al., 2008;
Kim et al., 2024; Zhang et al., 2010). The EFs of gaseous and

particulate PAHs are mainly sourced from simultaneous gas–
particle testing in multiple studies (Chen et al., 2007; Feng et
al., 2021; Li et al., 2003, 2018; Lin et al., 2022a; Saito et
al., 2014; Ye et al., 2013). We consider 16 priority PAHs and
5 non-priority PAHs commonly found in cooking emissions.
Their BaPeq values are calculated based on the recommended
toxic equivalency factors (TEFs) suggested in the literature to
estimate the carcinogenic toxicity of PAH emissions (Larsen
and Larsen, 1998; Malcolm et al., 1994; Nisbet and LaGoy,
1992). The molecular information and recommended TEF
values for all PAH species considered in this study are listed
in Table S2. The specific values and sources of EFs for vari-
ous pollutants are listed in Table S3.

As for PFIPs, we have established a grading standard for
provincial catering emission control stringency and corre-
sponding PFIPs based on field surveys (Li et al., 2023). By
collecting provincial-level catering pollution control policies
and considering their implementation timelines and transi-
tion periods, we can obtain dynamically changing PFIPs
driven by provincial-level control policies. In this study, we
also applied this method to estimate PFIPs for 1990–2021
(see Tables S4–S5 for the PFIP results over the years).

2.2 Establishment and optimization of ensemble
machine learning model

Ensemble methods of machine learning have recently been
increasingly applied in the large-scale spatiotemporal esti-
mation of atmospheric pollution (Yang et al., 2023b; Zhu et
al., 2022). These methods enhance prediction accuracy and
robustness by combining the forecast results from multiple
base models and reducing the risk of overfitting. In this study,
we establish an ensemble prediction model for cooking activ-
ity levels by integrating four machine learning algorithms –
RF, XGBoost, MLP, and DNN. These four models are se-
lected because they exhibit superior performance in predict-
ing activity levels (as discussed in Sect. 3.1), and each of
them possesses unique strengths, as discussed below.
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RF and XGBoost are both ensemble learning algorithms
based on decision trees. RF improves accuracy and gener-
alization by combining multiple independent decision trees,
making it suitable for handling high-dimensional data (Liu et
al., 2023; Segal, 2004). Its advantage lies in the effective re-
duction of overfitting through random feature selection (Wu
et al., 2024). XGBoost, as an efficient gradient-boosting de-
cision tree method, also reduces overfitting by introducing
regularization and has a high execution speed, making it suit-
able for processing large-scale datasets (Chen and Guestrin,
2016). While these tree-based algorithms provide stable pre-
dictions and good interpretability, they may have limited ex-
trapolation capabilities (Wang et al., 2023). To address this,
we introduce MLP and DNN, two deep learning algorithms,
to enhance the model’s applicability. MLP, a fundamental
deep learning model with a multilayer structure, can capture
complex nonlinear trends in data and can infer patterns be-
yond the training data range, with lower computational re-
quirements compared to other deep learning models (Pinkus,
1999). DNN, on the other hand, captures advanced abstract
features in complex data through deeper network structures,
offering powerful feature learning and generalization capa-
bilities (Zhang et al., 2016). However, both MLP and DNN
may face the challenge of overfitting (Pinkus, 1999; Zhang et
al., 2016), which can be mitigated by integrating them with
RF and XGBoost.

To combine the advantages of these four models, we use
ridge regression as the integrator to build an ensemble ma-
chine learning model (McDonald, 2009). Ridge regression is
chosen for its ability to balance model complexity and gener-
alization through regularization, which helps prevent overfit-
ting (Ebrahimi et al., 2024; McDonald, 2009). Furthermore,
as validated in Text S2 and Table S6, ridge regression demon-
strates a favorable balance between performance and compu-
tational efficiency when compared to other fusion strategies.
Specifically, the predictions from the base models serve as
new features to input into the ridge regression model, which
then determines how to effectively combine these predictions
(Carneiro et al., 2022). This approach allows us to leverage
the strengths of each model: the interpretability and stability
of RF and XGBoost and the ability of MLP and DNN to cap-
ture complex nonlinear patterns. By integrating these mod-
els, we aim to achieve a more robust and accurate prediction
model that can handle diverse data scenarios (Carneiro et al.,
2022).

Due to variations in influencing factors and mechanisms
within different cooking emission sectors, we develop an en-
semble model for commercial, residential, and canteen cook-
ing, respectively. For each sector’s training dataset, models
are trained using 10-fold cross-validation to ensure that their
predictive capabilities are not influenced by specific data sub-
sets (Santos et al., 2018). Moreover, a grid search is con-
ducted on the hyperparameters of each base machine learn-
ing model and the ridge regression model to identify the opti-
mal hyperparameter combination that maximizes overall pre-

dictive performance (Belete and Huchaiah, 2022; Lou et al.,
2024).

2.3 Model validation and comparison

After completing the modeling, we apply the models to the
unseen testing datasets and evaluate their predictive perfor-
mance using various statistical metrics. The validation met-
rics include the coefficient of determination (R2), root mean
square error (RMSE), and mean absolute error (MAE). Their
calculation formulas are as follows.

R2
= 1−

∑n
i=1(Obsi −Predi)2∑n

i=1(Obsi −MeanObs)2 (2)

RMSE=

√∑n
i=1(Obsi −Predi)2

n
(3)

MAE=
1
n

∑n

i=1
|Predi −Obsi | (4)

Obsi represents the actual values (i.e., the activity levels ob-
tained from accurate calculations), Predi refers to the model-
predicted activity levels, MeanObs is the average of all Obsi ,
and n is the number of samples in the testing datasets.

To demonstrate the superiority of our ensemble model, we
also compare its predictive performance with the abovemen-
tioned four individual machine learning models and five ad-
vanced traditional statistical models, including multiple lin-
ear regression, non-negative least-squares regression, gener-
alized linear models with exponential link, Poisson regres-
sion, and power function regression (Frome, 1983; Jans-
son, 1985; Myers and Montgomery, 1997; Slawski and Hein,
2013; Uyanık and Güler, 2013).

2.4 National driver analysis and county-level feature
importance analysis of cooking emissions

Based on the model-predicted cooking activity levels, the
EFs applicable at all times, and PFIPs that can be extrap-
olated to any time, we can theoretically estimate the cook-
ing emissions in various scenarios (such as different popula-
tion conditions, economic circumstances, and pollution con-
trol intensities). In this study, we first obtain the emissions
of three cooking sectors in each county from 1990 to 2021.
Further, we can conduct sensitivity analysis of emissions by
adjusting various influencing factors (input features of the
ensemble model and PFIPs). Since EFs are static data that do
not change across different years, we do not consider their
impact. We first pay attention to the national total emissions
using the one-factor-at-a-time method (Zhang et al., 2018) to
illustrate the sensitivity of each factor to emission variations.
We divide the years from 1990 to 2021 into several periods.
For a given period, we sequentially adjust the value of a sin-
gle factor from the initial value at the beginning of the period
to the final value at the end of the period. The difference be-
tween the emissions before and after the adjustment is con-
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sidered to be the contribution of that factor to the change in
emissions during that period. This enables us to quantify the
contributions of each factor to emissions in different periods.

Notably, due to interaction effects among variables, dif-
ferent adjustment sequences may yield distinct driver de-
composition results. To enhance the robustness, we mitigate
sequence-dependent bias by incorporating the averaged re-
sults from multiple adjustment sequences. Specifically, we
first identify the top five variables with the largest individ-
ual impacts on emission changes in each period. We then
exhaustively examine all possible permutations (120 in to-
tal) of these five variables and apply the adjustments ac-
cordingly. For variables ranked sixth and below, adjustments
are made in descending order of their individual impacts,
without considering further permutations, as these variables
contribute minimally to emission changes (< 2 % annually),
and exhaustive permutations would be computationally pro-
hibitive. Finally, we calculate the average contribution of
each factor across all considered sequences. While this im-
proved approach cannot completely decouple the indepen-
dent contributions of all variables, it significantly reduces
order-dependent biases and enhances the reliability of the
driver decomposition.

The dominant factors associated with emission changes
for counties at different development stages are also worth
elucidating, which are crucial for understanding the current
and future trends in cooking emissions and for the targeted
development of control strategies. We employ the SHAP al-
gorithm (Lundberg and Lee, 2017) to quantify the impact of
each factor on cooking emissions in different counties. These
factors include features related to population, the economy,
and the catering industry that are input to the activity level
prediction model, as well as the EF and the PFIP. The SHAP
algorithm is based on cooperative game theory (Jiménez-
Luna et al., 2020; Lundberg and Lee, 2017). By including
or excluding a variable from all possible subsets of the re-
maining variables, the model is retrained to calculate the
difference in predicted values in two scenarios, referred to
as SHAP values. The magnitude of SHAP values quanti-
fies the specific contribution of each feature to the model’s
predictions. A positive value indicates that the feature raises
the predicted result relative to the baseline, while a negative
value signifies a reduction in the predicted result (Hou et al.,
2022; Zhu et al., 2023).

3 Results

3.1 Performance comparison of the models

We first train five traditional statistical models, four individ-
ual machine learning models, and our ensemble model using
the training dataset. The performance of each model on the
training dataset is shown in Table S7. Then, all models are
applied to an unseen testing dataset (detailed dataset parti-
tioning is described in Sect. 2.1) to assess their performance

in predicting the activity levels of three cooking sectors. The
predictive performance of all models for activity levels of
three cooking sectors on the testing dataset is shown in Ta-
ble 1 and Figs. S1–S3 in the Supplement. To enhance clarity,
we scale the units for the three activity levels: the activity
levels for commercial, residential, and canteen cooking are
respectively represented as annual total fume volume (unit:
109 m3 fume), annual total household edible oil consump-
tion (unit: kt oil), and annual total number of meals served
in canteens (106 meals). We also present the predictive per-
formance of the best statistical models, the best individual
machine learning models, and the ensemble machine learn-
ing model for the three cooking sectors in Fig. 2a.

According to Table 1, validation metrics indicate that ma-
chine learning models greatly outperform the best tradi-
tional statistical models, with the ensemble machine learning
model even surpassing the best individual machine learning
models. Among statistical models, multiple linear regression
has moderate performance, but it is prone to predicting neg-
ative values, which do not correspond to real-world cook-
ing activity. Among the other four non-negative predictive
models, power function regression performs best for predict-
ing commercial cooking and residential cooking, while non-
negative least-squares regression performs best for predicting
canteen cooking. Generalized linear models with exponential
links and Poisson regression perform poorly in most cases.

Machine learning models tend to have better predictive ca-
pabilities than the traditional statistical models. Among the
five machine learning models, we find that ensemble machine
learning models consistently perform the best, with R2 val-
ues of 0.892, 0.989, and 0.973 for commercial cooking, resi-
dential cooking, and canteen cooking activity levels, respec-
tively. RMSE and MAE metrics of the ensemble models are
also relatively low. The superiority of validation metrics im-
plies that the ensemble model can effectively depict the rela-
tionship between indicators related to statistic indicators and
cooking activity levels. Moreover, the overall performance
of individual machine learning models is also satisfactory.
Specifically, for commercial cooking and canteen cooking,
which are influenced by complex factors, the performance of
the two deep learning models is superior, as they are more
adept at capturing complex nonlinear relationships. On the
other hand, for residential cooking, whose influencing factors
are relatively simple and clear, the performance of RF is bet-
ter than that of deep learning models, possibly because it can
effectively prevent overfitting. Finally, the ensemble models
can exploit complementary advantages, reduce the uncertain-
ties of single models, and achieve performance maximiza-
tion.

We also review the predictive performance of all mod-
els for the Chinese total activity levels of the three cook-
ing sectors for each year from 2015 to 2021, as shown in
Fig. 2b. Although the training dataset was randomly sampled
from counties only from 2017 to 2019, the machine learning
models (represented by the solid line) demonstrate a robust
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Table 1. The values of validation metrics of all models for activity levels of three cooking sectors in the testing dataset.

Model Commercial cooking Residential cooking Canteen cooking

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE
(109 m3) (109 m3) (kt) (kt) (106 meals) (106 meals)

Multiple linear regression 0.718 25.618 16.199 0.936 1.078 0.625 0.955 5.697 3.202
Non-negative least-squares regression 0.617 29.857 18.910 0.898 1.368 0.953 0.955 5.750 3.172
Generalized linear models with exponential link 0.625 29.548 17.777 0.348 3.455 2.649 0.496 19.157 14.666
Poisson regression 0.454 35.673 19.737 0.056 4.156 2.947 0.278 22.940 16.294
Power function regression 0.772 23.055 10.599 0.965 0.804 0.406 0.950 6.044 3.085

RF 0.835 19.589 10.173 0.979 0.618 0.155 0.958 5.545 3.109
XGBoost 0.807 21.224 11.582 0.971 0.726 0.277 0.958 5.561 3.037
MLP 0.856 18.316 9.867 0.972 0.714 0.185 0.970 4.675 1.750
DNN 0.866 17.644 8.355 0.970 0.738 0.231 0.969 4.764 2.360

Ensemble machine learning model 0.892 15.834 7.968 0.989 0.455 0.109 0.973 4.447 1.832

ability for generalization and extrapolation. They accurately
capture the Chinese total activity level trends of the model-
ing years (2017–2019) and extend to historical years (2015–
2016) and future years (2020–2021), whereas traditional sta-
tistical models (represented by the dashed lines) often fail to
accurately reproduce the changes in total activity levels.

While the model demonstrates good performance for near-
term extrapolation, greater uncertainty may exist when back-
casting to earlier periods, which include more underdevel-
oped counties. To evaluate this, we conduct sensitivity anal-
yses by training on the top 70 % GDP-ranked counties and
testing on the bottom 30 %. For commercial catering (the
most complex case, as shown in Fig. S4), the ensemble mod-
els’ test-set R2 remained robust (R2

= 0.719), outperform-
ing the best statistical models (R2

= 0.523). For real-world
backcasting of historical data, the 2015–2021 training data
already include some less-developed regions that can rep-
resent early-stage conditions, mitigating extreme extrapola-
tion risks. Additionally, we further validate the historical
trends of predicted activity data based on the limited avail-
able historical data (Fig. S5). From 1990 to 2021, the growth
rate of commercial cooking activity levels was intermedi-
ate between population growth and tertiary GDP. The tem-
poral evolution resembles that of the chain restaurant num-
ber (slow early growth followed by acceleration), though the
chain restaurant number is more stable as it excludes small
independent restaurants. We also incorporate chain restau-
rant revenue data (available since 2004), which corrobo-
rate the fluctuations in our predictions including the post-
2015 rapid growth driven by food delivery platforms and the
2020 pandemic-driven decline (Maimaiti et al., 2018; Zhao
et al., 2021). Therefore, while temporal extrapolation may
introduce biases (uncertainties are quantified in Sect. 3.3),
our multi-pronged validation demonstrates the reasonable-
ness and optimality of our backcasted estimates.

3.2 Long-term county-level cooking emissions

After verifying the reliability and superiority of the ensemble
model, we utilize it to predict precise county-level activity
data at a broad spatial and temporal scale and further obtain
county-level cooking emissions in China from 1990 to 2021.
Each county’s annual emissions inventory for organics (here-
after representing the organic compounds in the full volatile
range), PM2.5, UFPs, and PAHs is available at the repos-
itory (https://doi.org/10.6084/m9.figshare.26085487) (Li et
al., 2025). Considering that organics have significant impacts
on atmospheric pollution, particularly OA pollution, and that
various pollutants share the same activity levels, leading to
similar spatial and temporal distributions, we primarily fo-
cus on organic compounds in the following discussion.

Figure 3 provides high-resolution spatial distribution maps
of cooking organic emissions in China from 1990 to 2021,
while Fig. S6 provides the sector-specific spatial distribu-
tions of cooking organic emissions for a representative year
(2021). We also provide a map of the Chinese provinces
(Fig. S7) for reference to the location of the emissions
mentioned below. In 1990, cooking organic emissions were
mainly distributed in densely populated areas such as the
North China Plain (including Beijing, Tianjin, Hebei, Henan,
and Shandong), the middle–lower Yangtze Plain (including
Hubei, Hunan, Anhui, Jiangxi, Jiangsu, and Zhejiang), and
Sichuan Basin (including Sichuan and Chongqing). Also,
emission hotspots were often observed in the core urban ar-
eas of provincial capitals. Over time, the national total or-
ganic emissions have generally increased, and high-emission
areas have expanded. By 2021, many counties in eastern
China, especially along the southeast coast, exhibited ex-
tensive high emissions. The North China Plain region, the
Yangtze River Delta, the Pearl River Delta, and the Sichuan–
Chongqin region became the four key emission zones, con-
tributing 20.2 %, 19.9 %, 8.63 %, and 7.98 %, respectively, of
the nation’s total cooking organic emissions.
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Figure 2. Comparison of statistical models, individual machine learning models, and ensemble machine learning models: (a) scatter plots
comparing the actual and predicted values of the best statistical model, best individual machine learning model, and ensemble machine
learning model for the activity levels in three cooking source sectors in China, with each point representing the activity level in a county
from the testing dataset. (b) Predicted and actual values of Chinese total activity levels of the three cooking sectors for each year from 2015
to 2021. The black line represents the actual values. Lines of other colors represent model predictions, where the solid lines are for machine
learning model predictions, and dashed lines are for predictions from traditional statistical models.
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Figure 3. The spatial distribution of nationwide county-level cooking organic emission intensity from 1990 to 2021.

In summary, cooking emissions are concentrated in
densely populated and economically developed areas. For
example, in 2021, there was a strong correlation between
county population size and cooking emissions, with an R2

of 0.873 for the emissions and population of 2848 coun-
ties. Notably, the top 30 % of counties by population (as
shown in Fig. S8a) accounted for 62.3 % of the total na-
tional cooking organic emissions. These counties cover only
14.5 % of China’s total land area but support 59.9 % of the
country’s population. This finding indicates that, when for-
mulating control strategies, these densely populated counties
should be prioritized to enhance pollution control efficiency
and effectively reduce the health risks associated with cook-

ing emissions. From 1990 to 2021, the proportion of total na-
tional emissions contributed by the top 30 % of counties by
population increased from 49.6 % to 62.3 %, suggesting that
cooking emissions in densely populated counties have grown
faster than in other areas, necessitating stricter pollution con-
trol measures. Additionally, cooking emissions are also cor-
related with local GDP, although this correlation is weaker
than with population, with an R2 of 0.563 for emissions and
GDP across all counties in 2021. The top 30 % of counties
by GDP (as shown in Fig. S8b) accounted for 55.9 % of the
total national cooking organic emissions. We further analyze
the spatiotemporal trends of emission distribution and their
underlying socioeconomic drivers in Sect. 4.1.
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Fortunately, in these densely populated and economically
developed areas (Fig. S8), where emissions are typically
high, our county-level emissions inventory achieves a very
high spatial resolution. Compared to traditional provincial
inventories, our fine-grained inventory is more capable of ac-
curately studying the impact of cooking emissions on air pol-
lution and human health. Specifically, our inventory may up-
date the understanding of PM2.5 sources. Combining the full-
volatility organic emissions inventory (excluding the cooking
source) developed by Zheng et al. (2023), we find that cook-
ing emissions are significant sources of I/SVOC emissions
in densely populated counties. In 2019, for counties within
the top 30 % of population density (as shown in Fig. S8c),
cooking emissions can account for an average of 20.1 % of
IVOCs and 38.5 % of SVOCs emitted from all anthropogenic
sources, and the maximum contribution of cooking emissions
to total IVOC and SVOC emissions in these counties even
reached 52.9 % and 88.4 %, respectively. Given the high for-
mation potential for SOA of I/SVOCs emitted from cooking
(Yu et al., 2022), the contribution of cooking organic emis-
sions to PM2.5 and their hazards for human health could be
substantial. However, if considering only national or provin-
cial emissions, the contributions of cooking emissions to the
total IVOC emissions and total SVOC emissions are both less
than 16 %, potentially leading to an underestimation of the
importance of the cooking source.

3.3 Trends of national total cooking emissions

Figure 4 illustrates the long-term trend of national cook-
ing emissions of organic compounds in the full volatility
range from 1990 to 2021. The total cooking organic emis-
sions in China exhibit an overall increasing trend, rising
from 517 (272–828, 95 % confidence level) kt yr−1 in 1990
to 997 (530–1590) kt in 2021. The uncertainty ranges are de-
termined through Monte Carlo simulations referencing previ-
ous studies (Chang et al., 2022; Li, 2017), incorporating cu-
mulative biases introduced by extrapolating historical emis-
sions using limited training data (see Text S3 for details). No-
tably, there were slight decreases in total organic emissions
after 2001 and after 2013, attributed to the implementation
of crucial control policies. In 2001, the issuance of the Emis-
sion Standards of Catering Oil Fume (GB 18483-2001) (State
Environmental Protection Administration of China, 2001)
marked the first significant attention of the Chinese govern-
ment to cooking emission control. It imposes requirements
on the concentration of oily fumes emitted by restaurants and
the removal efficiency of the purification facilities, which has
contributed to the reduction of emissions (State Environmen-
tal Protection Administration of China, 2001). Furthermore,
the release of the Action Plan for the Prevention and Con-
trol of Air Pollutants in 2013 pushed provinces to compre-
hensively strengthen air pollution control (CPGPRC, 2013),
leading to a corresponding enhancement of the catering in-
dustry’s regulation in many regions. Additionally, the down-

turn observed in the 2020 emission was brought about by the
lockdown measures implemented due to the COVID-19 pan-
demic.

As for source apportionment, the cooking organic emis-
sions mainly come from commercial cooking and residen-
tial cooking. Commercial cooking emissions show an over-
all upward trend, with some slight fluctuations due to high
sensitivity to external factors such as pollution control poli-
cies and epidemic lockdowns. Commercial cooking emis-
sions increased from 241 kt in 1990 to 622 kt in 2021, and its
share has correspondingly increased from 46.7 % to 62.3 %.
Residential cooking emissions show an overall slow upward
trend, with its share ranging between 28.3 % and 37.2 %. In
contrast, canteen cooking emissions show an overall stable or
slightly declining trend. This is possible because they mainly
come from staff and student canteens, where the number of
staff and students and their meal frequencies are relatively
stable. However, with pollution control measures becoming
stricter, this has led to a reduction in total canteen cooking
emissions.

Furthermore, we also present emissions of PM2.5, UFPs,
and PAHs (including gaseous PAHs, particulate PAHs, and
BaPeq) from the three cooking sectors in China from 1990
to 2021, as shown in Fig. S9. The trends and source ap-
portionment of PM2.5 emissions are similar to those of or-
ganic emissions. The total PM2.5 emissions increased from
215 kt in 1990 to 408 kt in 2021, representing a growth of
90.7 %. Commercial cooking is the most significant emis-
sion source, accounting for 39.3 %–57.7 %, followed by res-
idential cooking (34. 8%–44.3 %). The total UFP emissions
increased from 3.93× 1025 particles in 1990 to 6.50× 1025

particles in 2021, with an increase of 66.0 %. Commercial
emissions have consistently been the largest source, main-
taining a share of over 71 %.

The total PAH emissions increased from 6.76 kt in 1990 to
15.8 kt in 2021, representing a growth of 134 %. The BaPeq
emissions rose from 0.359 kt in 1990 to 0.853 kt in 2021,
with an increase of 137 %. Additionally, the emissions of the
16 priority PAHs increased from 6.20 kt in 1990 to 14.5 kt
in 2021. After supplementing the emissions inventory of
the 16 priority PAHs in China (excluding cooking sources)
by Wang et al. (2021), we find that cooking emissions ac-
counted for 11.0 % of the total anthropogenic emissions of
priority PAHs in China in 2017, and the share may be even
larger in urban areas. Among these priority PAHs, naphtha-
lene has the highest emissions share (46.8 %), followed by
acenaphthylene (11.7 %) and phenanthrene (10.5 %). As for
toxicity, dibenz[a,h]anthracene has the highest BaPeq emis-
sions share (42.8 %), followed by benzo[a]pyrene (36.1 %).
Notably, high-molecular-weight PAHs (containing five- to
seven-ringed PAHs) accounted for only 8.2 % of the emis-
sions but contributed 85.3 % of the BaPeq emissions due to
their high toxicity. Over the 31 years, gaseous and particu-
late PAHs accounted for an average of 78.6 % and 21.4 % of
the total PAH emissions, respectively. Commercial cooking
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Figure 4. Organic emissions in the four volatility ranges from the three cooking sectors from 1990 to 2021 in China. The blue, red, and
green bars represent the organic emissions from commercial cooking, residential cooking, and canteen cooking. Within each color group, the
four different shades represent organic compounds of different volatility ranges. The error bars represent the uncertainty range at the 95 %
confidence level.

remained the primary emission source, contributing 74.6 %–
83.2 % of the national PAH emissions.

3.4 Comparison with other studies

We compare our cooking emission inventory with other
China national cooking emission inventories (Cheng et al.,
2022; Jin et al., 2021; Liang et al., 2022; Wang et al., 2018a;
Zhang et al., 2024b). Most previous inventories only include
pollutants such as VOCs and PM2.5 (or organic carbon (OC),
a component of PM2.5) and provide emissions for only a sin-
gle year. We first compare the national total emissions for
the corresponding years and pollutants with theirs, and the
results are presented in Table S8. Many previous invento-
ries underestimated emissions due to the omission of emis-
sion sources (e.g., residential cooking) or the use of simple
proxy data (e.g., population, meat consumption) (Cheng et
al., 2022; Jin et al., 2021; Liang et al., 2022; Wang et al.,
2018a), so their total emissions are much lower than ours.
The latest studies (Zhang et al., 2024b), which used data from
a service platform of Chinese catering enterprises, yielded
national total VOC emissions relatively close to those of
our inventory, supporting the accuracy of our emission cal-
culations. In contrast, our inventory covers a longer time
range (1990–2021), comprehensive cooking sources (includ-
ing commercial, household, and canteen cooking), and a
wider range of pollutants (not limited to VOCs and PM2.5,
but also including PAHs, UFP, etc.), which was difficult to
achieve in previous studies.

Furthermore, our inventory demonstrates superior accu-
racy in spatial distribution. Unlike previous studies, this
study precisely calculates emissions at the county level rather
than first estimating provincial-level inventories and then
downscaling them to the county level (or further to the grid
level) using proxy data such as population. We compare our

inventory with the aforementioned latest inventory based on
data from the catering service platform (Zhang et al., 2024b),
which calculated the provincial emission inventory and then
allocated it to the county levels based on population. We se-
lect the county-level emissions in Guangdong in 2020 as a
case study for comparison, as Guangdong is a province with
high cooking emissions, a large population, and a developed
economy. In terms of total emissions, the Guangdong provin-
cial emissions from this study and Zhang’s inventory are
63.2 and 58.6 kt, respectively (Zhang et al., 2024b), show-
ing close agreement. Figure 5 illustrates the emission inten-
sity across all counties in Guangdong from the two invento-
ries. The key difference between the two is that the emis-
sions in our study are more concentrated in economically
developed regions such as the Pearl River Delta, while the
emission intensity in non-coastal areas is lower. This dis-
crepancy arises because allocating provincial inventories to
the county level based on population distribution may not
fully reflect real-world conditions. In fact, some residential
areas may have high population density, but dining activities
are often more concentrated in commercial districts (Lin et
al., 2022b). As discussed in Sect. 3.2, although the correla-
tion between population and emissions is high at the county
level (R2

= 0.873), it is not a perfect match. In contrast, our
methodology employs an effective machine learning model
trained on advanced point-source cooking emission invento-
ries (Li et al., 2023), with predictive variables related to pop-
ulation, the economy, and the catering industry. This method
effectively captures the spatial distribution of comprehensive
cooking activities, including information on the catering in-
dustry, residential cooking, and other factors considered in
the previous advanced inventory (Li et al., 2023), thereby en-
abling an accurate representation of the spatial distribution
of county-level cooking emissions.
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Figure 5. A comparison of (a) county-level emissions in this study, (b) county-level emissions allocated from provincial emissions based on
population in Guangdong in 2020, and (c) the difference between the two emissions inventories.

4 Discussion

4.1 Spatiotemporal trends of county-level cooking
emissions

To explore the spatiotemporal variation trends of cooking
emissions in China, we obtain the changes in county-level
organic emissions every 5 or 6 years through differencing,
as illustrated in Fig. 6, where red indicates an increase in
emissions during a particular period and blue represents a
decrease. Our modeling explicitly incorporates key socioeco-
nomic and policy variables such as population, urbanization
rate, and PFIP and captures their relationships with county-
level cooking emissions. Therefore, the spatiotemporal vari-
ation trends of emissions can be well explained by these un-
derlying socioeconomic and policy drivers.

Before 2000, the observed changes in emissions could pri-
marily be explained by population and economic factors,
since China had few policies for cooking emission control
(Zhao, 2004). From 1990 to 1995, emissions across most
counties generally increased because of economic develop-
ment, but emissions in a few counties decreased, probably
due to population migration. The most significant emission
growth was concentrated in Beijing, Shanghai, and the Pearl
River Delta region – areas undergoing rapid economic de-
velopment and urban expansion at the time (Démurger et
al., 2002; Gaubatz, 2004). Conversely, emission reductions
were typically observed in adjacent areas, suggesting pop-
ulation redistribution toward these emerging economic cen-
ters (Fan, 2005). The migration-driven spatial redistribution
of emissions became more pronounced between 1995–2000
(Fan, 2005). For example, Guangdong’s emissions became
concentrated in the Pearl River Delta, while Zhejiang and
Fujian’s emissions clustered in the Yangtze River Delta and
coastal regions. Emissions from eastern Sichuan have also
shifted towards Chengdu (the provincial capital of Sichuan)
and Chongqing. The migration was probably because these
areas became focal points of economic reform during this pe-
riod, attracting a large population influx (Fang et al., 2009),
such as Chongqing being designated a directly controlled
municipality in 1997 (Hong, 2004).

From 2000 to 2005, emissions declined in most parts of
the country due to the implementation of China’s first nation-
wide pollution control policy targeting cooking emissions in
2001 (see Sect. 3.3 for details) (State Environmental Pro-
tection Administration of China, 2001). However, Guang-
dong, Zhejiang, and Beijing maintained emission growth
during this period, attributable to their exceptional economic
expansion and continued population inflow (Kong, 2022;
Zhu, 2012). From 2005 to 2010, cooking emissions in most
counties in eastern China increased rapidly, likely because
the emissions increase driven by rapid economic develop-
ment outweighed the reductions from pollution control mea-
sures (Fleisher et al., 2010). In contrast, emissions in the
slower-developing western regions decreased during this pe-
riod (Fleisher et al., 2010).

During 2010–2021, emissions increased significantly na-
tionwide except in provinces with stringent control policies
(Beijing Environmental Protection Bureau, 2018; Feng et
al., 2019; Liaoning Provincial Government, 2017; Shanxi
Provincial Government, 2017). Coastal regions experienced
the most notable emission increases, reflecting their faster
economic growth and urbanization rates compared to inland
regions (Shi, 2020). This rapid development also led to in-
creased demand for cooking activities and a thriving cater-
ing industry due to population growth. Notably, Sichuan also
exhibits significant emission increases, likely attributable to
its special local cuisine that has attracted tourists nationwide
and fostered a thriving catering industry (Li, 2017; Tian and
Shen, 2024).

Additionally, we specifically examine the impact of the
COVID-19 pandemic on cooking emissions from 2019 to
2021. In 2020, lockdown measures were implemented across
China to control the spread of the pandemic (Chang et al.,
2023). As shown in Fig. 6g, cooking emissions in many re-
gions decreased in 2020. For example, Beijing, the Yangtze
River Delta, and the Pearl River Delta saw significant reduc-
tions in cooking emissions, likely because these areas orig-
inally had thriving catering industries that were heavily re-
stricted by lockdown policies in 2020 (Lan et al., 2018; Li
et al., 2021; Yuan et al., 2024), leading to a substantial de-
crease in commercial cooking emissions. Conversely, emis-
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Figure 6. Changes in organic emission intensity in each county during different periods.

sions increased in many other regions, likely because lock-
down policies forced people to stay at home, shifting cook-
ing and dining from centralized locations like canteens and
restaurants to more dispersed cooking and dining at home
(Yang et al., 2021), thereby increasing overall cooking emis-
sions. In 2021, as lockdown policies were gradually relaxed
and the catering industry began to recover, overall cooking
emissions rebounded nationwide (Li et al., 2021).

The observations above indicate that our emission calcu-
lation methodology can effectively capture the influences of
pivotal external factors affecting emissions. In the 1990s,
changes in emissions across counties were primarily influ-
enced by economic growth rates and population migration.
After 2000, variations in emissions were likely influenced by
the promotion of pollution control measures and the devel-
opment of the catering industry. Overall, cooking emissions
have increased in the vast majority of the country over the
last three decades (1990–2021) as shown in Fig. 6i, with par-
ticularly significant increases in the eastern region. Only a

few counties have seen a reduction in emissions, typically
coinciding with population changes.

4.2 National emission drivers and key influencing
factors for county-level emissions

Based on sensitivity simulation, we find significant differ-
ences in the driving factors of China’s cooking organic emis-
sions during different periods. The decomposition of emis-
sion change drivers for each period is shown in Fig. 7. From
1990 to 2000, emission levels grew slowly, mainly driven
by the increasing population and urbanization rate, which
contributed 50.3 % and 23.4 % to the emission growth, re-
spectively. From 2001 to 2005, while population growth and
urbanization also promoted an increase in emissions, the
implementation of emission standards in 2001 significantly
strengthened pollution control measures (State Environmen-
tal Protection Administration of China, 2001), leading to a
considerable reduction (−21 %) in cooking emissions. From
2005 to 2015, while pollution emission standards continued
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to be enforced, the lack of new regulatory policies targeting
cooking sources limited further pollution control effective-
ness, resulting in an average annual reduction of only about
1 % (Gao, 2020). Meanwhile, the rise in tertiary GDP and
urbanization rates, marking rapid economic development,
prompted a rapid increase in cooking emissions. Between
2005 and 2015, the rise in tertiary GDP and urbanization
rates contributed 33.1 % and 29.5 % to the growth in emis-
sions, respectively.

Since 2015, the increase in the number of chain restau-
rants has been the main driver for cooking emissions, pos-
sibly attributed to the prosperity of the catering industry
brought about by online food delivery services (Maimaiti et
al., 2018; Zhao et al., 2021). From 2015 to 2017, the num-
ber of users of online food delivery surged from 114 million
to 343 million, and this figure continues to climb (Maimaiti
et al., 2018). The tertiary GDP, urbanization rate, and pop-
ulation also contribute to the growth of cooking emissions.
Meanwhile, stricter pollution control measures led to a more
pronounced reduction in emissions (achieving an 8.4 % de-
crease from 2015 to 2019). However, this effect remained
relatively limited compared to the rapid growth in total emis-
sions (+30.0 % during the same period). This suggests that
existing regulations were insufficient to address the growing
emissions from the catering industry, highlighting the need
for updated and more stringent policies specifically aimed
at controlling cooking emissions. Overall, the primary driv-
ing factors of cooking organic emissions in the early (1990–
2001), middle (2001–2015), and recent (2015–2021) periods
are population growth, the rise in tertiary GDP and urbaniza-
tion rates, and the increase in the number of chain restaurants.

We also explore the impact of the pandemic on the to-
tal national cooking emissions. From 2019 to 2020, factors
such as the number of chain restaurants, population, and ter-
tiary GDP were negatively affected by the pandemic, lead-
ing to a decrease in cooking emissions. However, some fac-
tors, including the urbanization rate and household cook-
ing oil consumption, contributed to an increase in emissions.
Despite the pandemic, China’s urbanization rate rose from
60.6 % in 2019 to 63.9 % in 2020. This could be attributed
to the Chinese government’s efforts towards achieving the
goal of a moderately prosperous society in all respects be-
fore 2021 (Li, 2023), which involved continued urban devel-
opment and infrastructure improvements. Additionally, the
increase in household cooking oil consumption likely drove
up emissions because lockdowns led to more people cook-
ing at home rather than dining out (Yang et al., 2021). In
2021, as the economy recovered and the catering industry
rebuilt, many factors (including the number of chain restau-
rants, population, and tertiary GDP) began to again lead the
way toward increased cooking emissions (Li et al., 2021).

Additionally, we employ counterfactual analysis to quan-
titatively assess the emission reduction effects of control pol-
icy interventions. Specifically, we examine the two core poli-
cies introduced in Sect. 3.3: Policy-2001 and Policy-2013

(CPGPRC, 2013; State Environmental Protection Adminis-
tration of China, 2001). While we collected provincial poli-
cies to determine province-specific PFIPs, these provincial
regulations were largely driven by these two national poli-
cies, with variations in provincial response timing and en-
forcement stringency. Therefore, we sequentially exclude
these two policies in our model, simulating counterfactual
scenarios where provinces did not further strengthen pol-
lution control measures after the policies were not imple-
mented. The results are shown in Fig. S10. Without Policy-
2013, 2021 emissions would have been 13.1 % higher. With-
out both policies, the increase would reach 49.4 %, highlight-
ing the significant long-term impact of Policy-2001 in curb-
ing emissions. The more modest effect of Policy-2013 may
stem from its focus on comprehensive air pollution control,
with catering sources being only a minor component. More-
over, the 2013 policy and subsequent provincial policies pri-
marily emphasized increasing the installation rates of cater-
ing fume purification devices without stringent requirements
for ensuring the removal efficiency of installed equipment
(CPGPRC, 2013). Due to equipment aging and inadequate
supervision (Li et al., 2023), the average removal efficiency
remained low, resulting in no significant emission reductions
despite higher installation rates.

Furthermore, we also pay attention to the key influential
factors of cooking emissions of various counties at differ-
ent development stages, applying the SHAP algorithm for
the quantitative analysis. Figure S11 presents an overview
of the SHAP values for each factor influencing emissions of
the three cooking emission sectors, with the y axis sorted
from high to low based on the impact of each factor on emis-
sions. The influencing factors of commercial cooking emis-
sions are the most complex. Urbanization rate (UR), popu-
lation (POP), and EFs are the top three factors that have the
greatest impact on commercial cooking emissions of coun-
ties, with increasing values leading to emissions growth. Ad-
ditionally, PFIP, the tertiary GDP (GDP3), per capita house-
hold edible oil consumption (HOC), the number of chain
restaurants (NCR), and per capita disposable income (DI) all
affect commercial cooking emissions to some extent. Addi-
tionally, residential cooking emissions are mainly influenced
by population and per capita household edible oil consump-
tion. Canteen cooking emissions are mainly affected by pop-
ulation, PFIP, and the population of employees in enterprises
(PEE).

We further analyze the marginal effects of each influenc-
ing factor on the cooking organic emissions – that is, how
emission values (indicated by SHAP values) vary with the
values of individual influencing factors. Taking commercial
cooking emissions as an example, a plot of the partial de-
pendence of SHAP values on the main influencing factors is
shown in Fig. 8. For the urbanization rate, the relationship
between SHAP values and the urbanization rate forms an S-
shaped curve. This means that the sensitivity of commercial
cooking emissions to the urbanization rate is relatively high
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Figure 7. The contribution of various driving factors to the changes in national cooking organic emissions across different periods.

Figure 8. Plot of the partial dependence of SHAP values on the main influencing factors of commercial cooking organic emissions in Chinese
counties.

when the urbanization rate is at the medium level (45 %–
75 %). Additionally, the SHAP values are approximately lin-
early correlated with the local population and EFs, while
the emissions are negatively correlated with the PFIP value.
The relationship between the tertiary GDP and the number
of chain restaurants and SHAP values approximates a loga-
rithmic growth curve, where growth is rapid at lower feature
values and slows down as the feature values increase. The re-
lationship between HOC and commercial cooking emissions
is very intricate. When the HOC value is low, its increase sig-
nifies an improvement in people’s living standards starting
from a low level, which in turn leads to a corresponding in-
crease in commercial cooking emissions. As the HOC value
reaches a certain level, further increases indicate an increase
in the frequency of residential cooking that competes with
commercial cooking, resulting in a decrease in commercial
cooking emissions. Finally, an overall increase in per capita
disposable income will lead to an increase in commercial
cooking emissions, as this can be explained by people hav-

ing more funds for dining out. The relationship between res-
idential cooking emissions and its main influencing factors
(population and HOC), as well as the relationship between
canteen cooking emissions and its main influencing factors
(POP and PFIP), is very similar to the relationship between
commercial cooking emissions and these variables.

5 Data availability

The county-level cooking emission inventory in
China from 1990 to 2021 is publicly available at
https://doi.org/10.6084/m9.figshare.26085487 (Li et
al., 2025). This dataset provides comprehensive emis-
sions data at the county level, covering all 2848 counties in
mainland China based on the 2020 administrative divisions,
and includes annual emissions for every year from 1990
to 2021. The emissions are categorized by subsectors,
including commercial cooking, residential cooking, and
canteen cooking, and by pollutants, including organics
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across the full volatility range (VOCs, SVOCs, IVOCs, and
xLVOCs), PM2.5, UFPs, and PAHs. The types of emission
pollutants related to PAHs include gaseous PAHs, particulate
PAHs, and BaPeq. Also, the main text and the Supple-
ment (Tables S2–S5) provide detailed listings of emission
factors, PFIPs, PAH TEF, and other parameters used for
calculating emissions. Additionally, the input data for the
machine learning models, such as population, economic,
and catering-related statistical indicators, are sourced from
the Chinese County Statistical Yearbook, China Urban
Statistical Yearbook, and China Market Statistics Yearbook,
with a full description provided in Table S1 (National Bureau
of Statistics of China, 2022a, c, b).

6 Conclusions and implications

In this study, leveraging machine learning to overcome the
challenges of obtaining activity data, we establish China’s
first county-level cooking emission inventory, with a tempo-
ral scale extending back to 1990. Unlike previous invento-
ries that relied on proxy data such as population for calcu-
lation and downscaling, our inventory employs a powerful
ensemble machine learning model to capture the complex re-
lationships between county-level cooking activities and fac-
tors involving population, economics, and the catering indus-
try. This method enables direct calculation of emissions at
the county level, resulting in spatial distributions that bet-
ter reflect real-world conditions. Moreover, our method can
sensitively identify the impact of external factors, such as
the COVID-19 pandemic and the rise of food delivery ser-
vices, on cooking emissions. Based on this accurate, high-
resolution, and long-term inventory, we have updated the sci-
entific understanding of the spatiotemporal trends and driv-
ing forces of cooking emissions.

Given that cooking is a significant source of PM2.5 (Yuan
et al., 2023), our long-term, high-spatial-resolution cook-
ing emission inventory provides essential data for accu-
rately simulating PM2.5 concentrations and conducting pre-
cise source apportionments at large spatiotemporal scale.
Furthermore, for the first time, we incorporate UFPs and
PAHs into the national cooking emission inventory, filling
a gap in studies on the health impact of cooking emissions.
Previous studies on the health impacts of cooking emissions
primarily focused on indoor environments (Chen et al., 2018;
Zhang et al., 2023; Zhao and Zhao, 2018). However, pol-
lutants emitted into the outdoor atmosphere from cooking
may also have significant health risks due to the proximity of
cooking emission sources to the human living environment.
Our accurate, high-resolution cooking inventory, combined
with the inclusion of highly toxic pollutants, provides criti-
cal but previously missing data for assessing exposure risks
to cooking-related pollutants in outdoor environments. This
enables a comprehensive understanding of the health impacts
of cooking emissions by integrating both indoor and outdoor
exposure assessments.

Our identification of the spatiotemporal patterns and driv-
ing factors of national cooking emissions also provides valu-
able insights for targeted policy formulation. With the sig-
nificant reduction in emissions from sectors such as indus-
try and energy, the critical impact of cooking emissions is
becoming increasingly prominent and may become a major
source in the future (Zhao and Zhao, 2018). However, our re-
sults indicate that existing control measures are insufficient
to curb the rapid growth of cooking emissions, necessitat-
ing the development of updated and more effective control
strategies. Given that cooking is a fundamental human need,
reducing emissions by restricting cooking activities or alter-
ing dietary habits is not feasible. A more viable approach is
to enhance end-of-pipe treatment. However, cooking emis-
sion sources are numerous and widespread, making compre-
hensive control efforts highly labor-intensive. Fortunately,
our high-resolution inventory reveals a strong spatial cou-
pling between high emission intensity and population den-
sity. Specifically, 30 % of counties – covering only 14.5 %
of the national land area – contribute over 60 % of cooking-
related organic emissions while housing 60 % of the popula-
tion. These areas face substantial population exposure risks,
and prioritizing stricter controls there could effectively mit-
igate health impacts. Additionally, the limited effectiveness
of recent pollution control policies may stem from their sole
focus on the installation rate of purification facilities while
neglecting actual purification efficiency. Therefore, future ef-
forts should establish stricter regulations or standards for pu-
rification efficiency and strengthen enforcement. Residential
emissions have consistently accounted for ∼ 30 % of total
cooking emissions, yet targeted policies and specialized pu-
rification facilities remain scarce. Potential solutions include
developing compact purifiers for household kitchens and im-
plementing exhaust purification systems for residential chim-
neys. Finally, our fine-scale emission inventory can serve as
a key input for air quality modeling and control strategy op-
timization models, enabling further exploration of differenti-
ated mitigation strategies that consider costs, health benefits,
and local resource capacity.

Additionally, the methodology adopted in this study also
offers a reference for the long-term and accurate estimation
of emissions from other sources and other regions. We in-
novatively use counties as the basic unit to estimate emis-
sions, which not only provides the machine learning model
with rich and wide-span county samples at different devel-
opment stages, enhancing the model’s performance, but also
ensures a high spatial resolution. The data used for ma-
chine learning modeling are also readily available, signif-
icantly reducing the difficulty of activity-level acquisition.
Similar to cooking emissions, emissions from domestic com-
bustion, for example, can be estimated using statistical indi-
cators such as temperature, per capita disposable income, ur-
banization rate, and energy consumption. In other regions,
this methodology also shows potential in estimating high-
resolution emissions through machine learning models and
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localized datasets. This contributes to more comprehensive
and accurate research on air pollution.

We also acknowledge some limitations of our study. For
county-level emissions, while SHAP provides interpretable
insights into feature importance, it cannot infer causality to
identify the underlying driving factors. Future work could
employ causal inference techniques such as counterfactual
prediction and difference-in-differences analysis (Dong et
al., 2022; Li et al., 2024a) to more accurately assess the ac-
tual impacts of policy interventions and socioeconomic fac-
tors on emission trends, thereby providing more robust evi-
dence to support localized emission reduction policies.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-5113-2025-supplement.
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