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Abstract. This paper presents a newly developed Sea Surface Salinity (SSS) product for the Southern Ocean
(SO), derived from SMOS (Soil Moisture and Ocean Salinity) measurements by the Barcelona Expert Center
(BEC). The primary challenges in retrieving SSS from L-band brightness temperature (TB) measurements in the
Southern Ocean include degraded sensitivity in cold waters, radiometric signal contamination near sea ice edges
and low variability in SSS across the region. To address these challenges, significant improvements were made
to the retrieval algorithms. The BEC SO SSS product v1.0 delivers 9 d SSS maps on a 25 km EASE-SL grid,
generated daily. The time series spans from 1 February 2011, to 31 March 2023, with spatial coverage below
30° S (https://doi.org/10.20350/digitalCSIC/15493, González-Gambau et al., 2023).

The product shows high accuracy farther than 150 km from sea ice edges, with nearly zero bias and a standard
deviation of 0.22 (compared to marine mammal data) and 0.25 (compared to TSG data from research vessels).
Larger errors are observed within 150 km from the ice edges, due to residual sea-ice contamination and sampling-
related errors in these dynamic areas. The product effectively captures seasonal and interannual variability, in
line with the SOSE regional model. Although differences between satellite-derived and in situ salinity are more
pronounced in these regions, the satellite product successfully reproduces the dynamics near ice edges.

This product will significantly contribute to the understanding of processes influenced by upper-ocean salinity,
including sea ice dynamics, particularly, the reduction of Antarctic sea ice extent and the opening of offshore
polynyas.

Published by Copernicus Publications.
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1 Introduction

Although the Southern Ocean (SO) represents less than one-
third of the global ocean, it is responsible for absorbing 43 %
of the total oceanic anthropogenic CO2 and 75 % of the
ocean’s heat (Frölicher et al., 2015). Additionally, the heat
stored in the SO is the primary direct and indirect (by its in-
fluence on winds and air temperature) driver of the Antarctic
ice sheet melting (Holland et al., 2020). Therefore, changes
in the SO can have global consequences, both in terms of
global warming and atmospheric carbon storage and sea level
rise.

Observations in the SO have revealed rapid changes in re-
cent years, including ocean warming and freshening (Swart
et al., 2018), a reduction in sea ice extent (Purich and Dod-
dridge, 2023; Eayrs et al., 2021), the reappearance of the
Weddell Polynya (an ice-free area within the sea ice zone
in the Weddell Sea) (Campbell et al., 2019) and increased
melting of the Antarctic ice sheet (The IMBIE team, 2018).
These changes have significant and profound impacts on the
Earth’s climate. However, the driving factors behind these
changes remain unclear, as collecting measurements from
this remote and harsh region is challenging, and modeling
the complex interactions between the ocean, ice, and atmo-
sphere is equally difficult.

Salinity and freshwater fluxes play a crucial role in these
processes. Surface freshwater input from sea ice melting con-
trols ocean circulation near the sea ice edge (Abernathey
et al., 2016). In this region, atmospheric heat and carbon are
absorbed by the ocean and sequestered at mid depths (500
to 1000 m) for decades. Near the Antarctic coast, the forma-
tion of sea ice during winter releases salt into the ocean. This
process increases the density of seawater, causing it to sink
into the abyss, to depths exceeding 3000 m. This mechanism
enables the storage of heat and carbon in the deep ocean for
centuries. Finally, salinity influences the circulation at high
latitudes due to its greater impact (at these latitudes) on ocean
density compared to temperature (Roquet et al., 2022). As a
result, variations in salinity near Antarctica can have a signif-
icant impact on ocean circulation and stratification (Klocker
et al., 2023), and on heat transport toward the Antarctic ice
sheet, influencing sea level rise (Silvano et al., 2018).

Satellite-observed Sea Surface Salinity (SSS) is a use-
ful tool for understanding the drivers of these changes. In
Garcia-Eidell et al. (2019), four global satellite SSS prod-
ucts were compared to assess the consistency of SSS distri-
butions in the SO. The study revealed discrepancies between
the products available at that time, particularly in terms of in-
terannual and seasonal SSS variations. These discrepancies
arose from the significant challenges involved in retrieving
satellite SSS in polar regions. These include the contamina-
tion of the radiometric signal near sea ice transitions and the
low brightness temperature (TB) sensitivity to SSS changes
in cold waters (decreasing from 0.5 to 0.3 as sea surface
temperature declines from 15 to 5 °C; Yueh et al., 2001).

The BEC team developed a specific product for the Arctic
(Martínez et al., 2022). However, there is a significant differ-
ence between the Arctic and Southern Oceans. In the South-
ern Ocean, the SSS variability is notably lower than in the
Arctic. This highlights the need to maximize the signal-to-
noise ratio, particularly through enhanced Level 1 algorithms
to improve TB quality. Additionally, signal contamination
near sea ice is a key aspect to be specifically addressed in
the SO by correcting SSS biases based on the distance from
the sea ice edges.

Given these challenges, there is a clear need for the de-
velopment of regional satellite SSS products specifically de-
signed for the SO. In this context, BEC L3 SO SSS prod-
uct v1.0 has recently been developed for the SO (González-
Gambau et al., 2023) and is presented in this paper. The
key modifications to the conventional salinity retrieval al-
gorithms used in generating this tailored SSS product focus
on two main aspects: (i) reducing the contamination of the
SSS signal near sea ice transitions, and (ii) minimizing ra-
diometric errors to improve SSS accuracy, given the region’s
low SSS variability. This newly developed SSS product is a
crucial tool for advancing our understanding of the South-
ern Ocean climate system and its ongoing changes. Specifi-
cally, it will provide a solid foundation for addressing critical
questions, such as the role of freshwater fluxes in shaping SO
circulation and provide additional information on the various
drivers behind the recent decline in Antarctic sea ice.

The article is structured as follows: Sect. 2 describes the
data and algorithms used for the development of the regional
SSS product. Section 3 presents the datasets and the metrics
that have been used in the quality assessment, and discusses
the quality of the satellite SSS product. Section 5 summarizes
the main conclusions of this study. Section 4 contains the
instructions to access the data.

2 BEC L3 SO SSS product v1.0 development

This section describes the datasets and the key algorithms
used in the development of the BEC SO SSS product from
observations of the SMOS (Soil Moisture and Ocean Salin-
ity) mission.

2.1 Datasets

2.1.1 SMOS Level 0 data

The TBs are derived from the ESA SMOS Level 0 (L0) data.
L0 contains the raw satellite data, both telemetry and obser-
vation data. This data has been downloaded from the SMOS
mission Data Processing Ground Segment (DPGS) at BEC.
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2.1.2 Auxiliary data for SSS retrieval

– Data for geophysical corrections: This data includes
the geophysical parameters required to compute radia-
tive and roughness corrections (Zine et al., 2008) and,
in some cases, to filter out invalid data points. The data
is provided by ECMWF (European Centre for Medium-
Range Weather Forecasts) for each SMOS overpass
(Sabater and De Rosnay, 2010) (https://smos-diss.eo.
esa.int/oads/access/collection/AUX_Dynamic_Open,
last access: 15 November 2022). The dataset includes
sea ice cover, rain rate, 10 m wind speed, 10 m neutral
equivalent wind (both zonal and meridional compo-
nents), significant wave height of wind waves, 2 m air
temperature, surface pressure, and vertically integrated
total water vapor. Although the dataset also contains sea
surface temperature (SST), a more detailed and specific
analysis is performed for this variable (see below).

– Sea Surface Temperature (SST). We evaluated the qual-
ity of several SST products to find the one with the best
performance in the SO region: AMSR2 (Wentz et al.,
2021), CMC (Brasnett, 2008), OSTIA (Good et al.,
2020), CCI (Merchant et al., 2019) and MUR (Chin
et al., 2017). The assessment was based on three key
aspects: (i) comparison with ARGO floats, (ii) spectral
analysis to assess the effective spatial resolution (de-
tails provided in Sect. 3.2 of Olmedo et al., 2021a),
and (iii) singularity spectrum analysis to assess the
structural coherence and dynamical quality of the prod-
ucts (González-Haro et al., 2024). Among the analyzed
products, the GHRSST Level 4 MUR Global Founda-
tion SST Analysis (v4.1) (NASA/JPL, 2015) demon-
strates the best performance in the SO (according to the
chosen criteria). This product is derived from nighttime
observations collected by multiple sensors (microwave
and infrared radiometers) and iQuam in situ observa-
tions. This SST product has been re-gridded from its
native resolution (0.01°) to its effective spatial resolu-
tion, determined by spectral analysis (0.1° grid).

– Annual salinity climatology. We use the value pro-
vided in the average decadal product by the World
Ocean Atlas 2013 (WOA2013) at 0.25°× 0.25° (Lev-
itus et al., 2014) as the multiyear salinity reference (see
Sect. 2.2.3). A nearest-neighbor interpolation is applied
to compute the climatology at the product grid (EASE-
SL 25 km).

2.1.3 Data for SSS filtering and correction

– Sea Ice Concentration (SIC). We use the EUMET-
SAT OSI SAF (Ocean and Sea Ice Satellite Ap-
plication Facility) global sea ice concentration in-
terim climate data record (v3.0, 2022), OSI-430-
a, https://doi.org/10.15770/EUM_SAF_OSI_0014 (OSI

SAF, 2022), available at https://osi-saf.eumetsat.int/
products/osi-430-a, last access: 5 December 2022). This
dataset is employed for three purposes: (i) enhancing
the quality of brightness temperatures near ice edges
(as discussed in Sect. 2.2.2), (ii) excluding SSS re-
trievals in ice-covered regions by filtering out retrievals
where sea ice is present (further details can be found in
Sect. 2.2.3), and (iii) characterizing and correcting sys-
tematic biases on SSS depending on the distance from
sea ice.

– Argo floats. We use in situ salinity data from Argo
floats (Argo, 2025) for correcting temporal biases in
SSS maps (see Sect. 2.2.4). These measurements can be
downloaded from ftp://ftp.ifremer.fr/ifremer/argo (last
access: 10 January 2023). In computing this correction,
only the uppermost Argo salinities at a depth between 5
and 10 m are considered. More details about the filtering
criteria can be found in (Olmedo et al., 2021a).

2.2 Algorithm developments

2.2.1 BEC SMOS data processing chain

This section outlines the main steps of BEC SMOS data pro-
cessing chain and highlights the key differences in the algo-
rithms used to generate earlier BEC SSS products, includ-
ing the Arctic SSS v3.1 (Martínez et al., 2022), the Global
SSS v2.0 (Olmedo et al., 2021a) and the Baltic SSS v1.0
(González-Gambau et al., 2022).

The BEC SMOS data processing chain is able to ingest
both ESA Level 0 (L0, raw data) and ESA Level 1B data
(L1B, Fourier coefficients of the brightness temperatures) to
derive the brightness temperatures at the antenna reference
frame for each snapshot. In the case of SO, we generate
the SMOS TB from the L0 data because some critical al-
gorithms steps and corrections, not considered in the ESA
operational TBs (v724) (Oliva et al., 2020), are needed to
enhance TB accuracy in the SO region. The data process-
ing chain for the generation of the BEC SO SSS product is
shown in Fig. 1. For the generation of TB we use the MI-
RAS Testing Software (MTS) (Corbella et al., 2008). We ap-
ply the so-called ALL-LICEF calibration approach (Corbella
et al., 2016), since it improves the consistency between the
zero-baseline measurements and the remaining visibilities.
The combined use of the ALL-LICEF calibration and the
Gkj correction for residual calibration errors (Corbella et al.,
2015) has been demonstrated to significantly reduce contam-
ination, especially in areas near land-sea and ice-sea bound-
aries (González-Gambau et al., 2017, 2022). The brightness
temperatures are reconstructed from the normalized visibili-
ties (Corbella et al., 2019). To minimize radiometric errors,
we apply the nodal sampling technique to the brightness tem-
peratures (González-Gambau et al., 2016). A key modifica-
tion has been incorporated into this algorithm to further en-
hance the quality of the SMOS observations in the SO, as
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detailed in Sect. 2.2.2. This is one of the key differences
compared to Arctic SSS v3.1 and Global SSS v2.0, which
use ESA L1B files (v620, from the previous reprocessing).
Hence, neither the ALL-LICEF and Gkj correction nor the
nodal sampling were applied. In the case of Baltic SSS v1.0,
processing started from L0 and only the ALL-LICEF and
Gkj correction were applied.

These TBs are then geolocalized and transformed from
TOA (Top of the Atmosphere) to BOA (Bottom of the At-
mosphere), as detailed in González-Gambau et al. (2017).

The difference between the SMOS-measured and the mod-
eled First Stokes parameter is minimized to retrieve SSS.
The modeled TBs are obtained by using the geophysical
model function presented in Zine et al. (2008). The geophys-
ical model that relates the modeled TB to SSS relies, unlike
the official processor, on the Meissner and Wentz dielectric
constant model (Meissner and Wentz, 2012), by accounting
for the radiometric errors as developed for the Baltic Sea
(González-Gambau et al., 2022). This is another important
difference compared to Arctic SSS v3.1, which uses directly
the Meissner and Wentz dielectric constant model (Meiss-
ner and Wentz, 2012) and compared to the Global SSS v2.0
product, which uses the Klein and Swift dielectric constant
model (Klein and Swift, 1977).

To model the roughness component, the semiempirical
roughness model derived by Guimbard et al. (2012) has been
used. The contributions of other main sources, such as the
reflected emission of the atmosphere, the reflection on the
sea surface of the galactic emission, and the Sun glint, have
also been corrected for. More details about these corrections
can be found in Olmedo et al. (2021a). A SSS value is re-
trieved for each TB measurement, unlike the conventional
Bayesian approach, which retrieves a single SSS by con-
sidering all multi-angular TBs along the same dwell line.
These raw SSS data are then filtered and combined to gener-
ate SSS maps. The Debiased non-Bayesian (DNB) method-
ology is used to reduce systematic SSS biases (Olmedo et al.,
2017). The underlying hypothesis is that these systematic bi-
ases are the same for all the raw SSS values acquired under
fixed acquisition conditions. Thus, measurements collected
under the same conditions can be aggregated to compute the
typical SSS value (hereafter referred to as SMOS-based cli-
matologies) that can be used to correct systematic SSS bi-
ases, providing the debiased non-Bayesian SMOS anoma-
lies. The way the raw SSS are classified to compute the
SMOS-based climatologies for fixed acquisition conditions
has been specifically tailored for each BEC SSS product. In
the Global SSS v2.0, acquisition conditions were defined by
longitude-latitude coordinates, orbit direction, and antenna
position. For the Arctic SSS v3.1, systematic bias correction
was applied to TB instead of SSS. However, we observed that
residual errors were lower when the debiasing was applied to
SSS. In the Baltic SSS v1.0, the debiasing was also applied
to SSS, but with an additional variable in the classification
of SSS: the SST. For the Southern Ocean, the modification

is driven by the need to reduce systematic biases close to ice
margins. The changes introduced at the SSS level for the SO
are detailed in Sect. 2.2.3.

2.2.2 Reduction of TB radiometric errors: Application of
Nodal Sampling with a dynamic sea-ice mask

To capture the low SSS variability in the SO, it is essen-
tial to minimize TB radiometric errors as much as possi-
ble. In this regard, we have modified the Nodal Sampling
(NS) methodology to enhance its performance near sea ice
edges. Initially developed to mitigate contamination from
Radio-Frequency Interferences (RFI) and sharp TB changes
(González-Gambau et al., 2015), NS not only reduces RFI
tails and ripples, but also effectively decreases general ra-
diometric noise by approximately 50 % (González-Gambau
et al., 2016).

The NS algorithm operates in three steps. First, the TB
image is oversampled to better identify the nodal points –
those where contamination is minimized. Next, the algorithm
searches the subpixels of the oversampled image where the
Laplacian is minimal, providing an initial estimate of the
nodal points. Finally, the search is iteratively refined by iden-
tifying subpixels in the oversampled image that minimize
the Laplacian of the TB in the original grid. Detailed tech-
nical information about the NS methodology can be found in
González-Gambau et al. (2015, 2016).

In González-Gambau et al. (2018), we identified resid-
ual contamination near the coast, which was caused by the
method used to select the nodal points. The refinement of
the initial estimate of the nodal points involved searching for
those that minimize the Laplacian of the TB image in the
original grid as defined in Eq. (8) of González-Gambau et al.
(2015). For clarity in explaining the algorithm’s modifica-
tion, we reproduce the equation below.

t i(m,n)=
[
ti(m+ 1,n)+ ti(m− 1,n)+ ti(m,n+ 1)

+ ti(m,n− 1)+ ti(m+ 1,n− 1)
+ ti(m− 1,n+ 1)

]/
6 (1)

To compute the Laplacian at a given point, the average TB
is computed considering its six neighboring pixels. However,
when land and ocean pixels are mixed, an artificial increase
in the ocean TB occurs. To address this, we introduced a
land-sea-sky mask when calculating the minimum Laplacian
of the TB in the original grid. This modification was crucial
to retrieve SSS in semi-enclosed seas (Olmedo et al., 2021b;
Grégoire et al., 2023).

Similar to the residual contamination near the coast, an is-
sue arises near ice edges when working in the SO. To mitigate
this undesired effect, we introduce in the NS algorithm for
the first time a daily sea-ice mask in addition to the land-sea-
sky mask. For the construction of the mask, we use a land-sea
mask and the SIC values detailed in Sect. 2.1. We interpolate
the coast and SIC values to the longitude-latitude coordinates
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Figure 1. Block diagram of the BEC SO SSS processor.

corresponding to each point in the antenna. The mask is equal
to 0 for ocean pixels, from 0 to 100 for sea ice pixels with
their corresponding SIC value, 100 for land pixels and 200
for sky pixels. Once the land-sea-ice-sky mask is built, the
change in the NS algorithm is introduced in Eq. (1). In the
proposed modification, instead of using the 6 closest neigh-
bors for computing the Laplacian, only neighboring pixels
with a difference between its mask value and the mask value
of the central pixel lower than 10 are considered, meaning
that in case of sea-ice pixels, we only consider pixels with the
same SIC value ±10 %. This threshold was selected based
on the uncertainty of the SIC product reported in Kreiner
et al. (2022). This updated version of the NS algorithm re-
duces contamination in ocean brightness temperatures near
ice margins, as illustrated in Fig. 2. The effect of adding the
sea-ice mask is clearly visible. Notably, the differences are
concentrated around the sea-ice edge, with lower TB values
over the ocean and higher TB values over the ice in the image
where the land-sea-ice-sky mask is applied, as expected due
to the reduced contamination.

We also analyze the impact of including the dynamic sea-
ice mask in the retrieved SSS maps by comparing them to
in situ measurements. A significant reduction of the artificial
freshening close to ice edges can be observed when applying
the daily land-sea-ice-sky mask (see transects of Fig. 3). It

must be noticed that the SSS values presented throughout the
paper refer to Practical Salinity, expressed on the Practical
Salinity Scale of 1978 (PSS-78), which is a unitless quantity.
Differences between green (NS with land-sea-ice-sky mask)
and black (NS with land-sea-sky mask) dots are very small
200 km away from the ice edge, as expected.

2.2.3 Reduction of SSS systematic errors: Computation
of SMOS climatologies depending on sea-ice
distance

In the original formulation of the debiased non-Bayesian
(referred hereafter as standard DNB, Olmedo et al.,
2017, 2021a), raw SSS values are grouped based on across-
track distance to the center of the swath (x, 50 km bins),
incidence angle (θ , 5◦ bins), geolocation (longitude ϕ and
latitude λ coordinates) and overpass direction (d , ascend-
ing and descending), as these factors influence SSS system-
atic biases. It is considered that systematic errors for all the
raw SSS, sraw

n , acquired under fixed conditions in the 5-tuple
γ = (ϕ,λ,d,x,θ ) are the same. Then, an estimator of the
typical SSS value in the set of measurements {sraw

n (γ )} can
be defined. This typical SSS value is the SMOS-based clima-
tology, which can be used for correcting all the retrievals in
the ensemble {sraw

n (γ )}.
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Figure 2. (a) TB image considering the land-sea-sky mask. (b) Land-sea-ice-sky mask. (c) TB considering the land-sea-ice-sky mask.
(d) Difference between including the sea-ice in the mask and not including it.

During the development of SSS products over semi-
enclosed seas, we found that biases also depended on SST
(González-Gambau et al., 2022). Consequently, SST was in-
corporated as an additional variable (Ts) in the classification
of SSS values, being a 6-tuple γ = (ϕ,λ,d,x,θ,Ts) (referred
to as the DNB-SST method).

To determine the best strategy for computing the SMOS-
based climatology in the SO, we compare the SSS maps
generated with the two methods: the standard DNB and the
DNB-SST. Twelve years of SMOS SSS retrievals (2011–
2022) are used. The SMOS-based climatologies are com-
puted in a rectangular grid of 0.25°. For each grid cell, the
raw SSS values of the eight neighboring cells under the same
acquisition conditions γ are also included in the distribution
to increase the sample size. To minimize the impact of out-
liers on the statistics, only raw SSS values within the inter-
val between the 5th and 95th quantiles of the distribution
are used. For each acquisition condition, the SMOS-based
climatology is computed as the mean value of the distribu-
tion in the interval [m0−σ0,m0+σ0], wherem0 corresponds
to the mean value and σ0 to the standard deviation in the
interval [IQ5, IQ95]. This filtering has been selected as a
balance between minimizing noise and artifacts while pre-
serving the geophysical signal (García-Espriu et al., 2025).
A SMOS-based climatology is discarded if the distribution
contains less than 100 measurements or if its standard devi-
ation (σ0) exceeds 35. If a given SMOS-based climatology
is discarded, all the corresponding {sraw

n (γ )} are also filtered

out, so no SSS will be produced for acquisitions at that ge-
ographical location and position in the antenna. It must be
noticed that a final value of SSS for that geographical lo-
cation can be obtained thanks to the contributions of other
points in the antenna. Additionally, any raw SSS values that
deviate too much from the reference (outside the interval
[m0− σ0,m0+ σ0]) are also discarded.

SSS maps generated using the standard DNB and DNB-
SST methods (see Sect. 2.2.4) are compared to Astrolabe in
situ data (described in Sect. 3.1.1). The comparison is con-
ducted for 5° latitude bins and across different months to as-
sess the impact of seasonal ice dynamics. The statistical dif-
ferences between SMOS SSS and in situ measurements are
summarized in Table 1. No overall improvement is observed
when using the DNB-SST method compared to the standard
DNB approach (see the first two rows per each month). In
fact, performance degrades between October and December.

To address this, a new version of the DNB, referred to as
DNB-ice, is developed specifically for the SO. This version
incorporates the distance from sea ice as a variable in the
SSS classification acknowledging that sea-ice contamination
varies with proximity to the ice edge. In DNB-ice, the fixed
conditions are defined as a 6-tuple γ = (ϕ,λ,d,x,θ, Ice), re-
placing the previous use of SST, which was employed in ear-
lier algorithms for regional products (e.g., the Baltic Sea) ,
by the distance from sea ice edge. The SIC values defined in
Sect. 2.1 are employed to calculate the distance from sea ice,
with five bins considered: the first 100 km, [100–200 km],
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Figure 3. Salinity from marine mammals (blue), NS SSS (black) and NS SSS when the ice-sea mask is applied (green) for two different
transects. Distance from the sea ice is shown with red diamonds.

[200–300 km], [300–400 km], and beyond 400 km. An exam-
ple of the distance from sea-ice is shown in Fig. 4. The mean
and standard deviation of the SSS distributions are shown in
Fig. 5 for the first bin (the first 100 km from sea-ice edge) on
the top panel and for the fifth bin (beyond the first 400 km)
on the bottom panel. As expected, higher biases and standard
deviations are obtained for the first 100 km from the sea ice
edge. Salinity maps generated with DNB-ice are also com-
pared to Astrolabe in situ data. Statistics are presented in the
third row of each month in Table 1. Overall, both the mean
and the standard deviation of the difference between satel-
lite and in situ salinities are reduced near the ice edge when
distance-to-sea-ice bins are used, compared to the standard
DNB and DNB-SST methods. Consequently, the DNB-ice
approach is used for generating the BEC SO SSS product.

2.2.4 Generation of the BEC SO SSS product

Generation of debiased SSS salinities

Debiased absolute salinity values are obtained by adding the
multiyear SSS reference to the debiased non-Bayesian SSS

Figure 4. Distance from sea ice [km] of a given date (1 Jan-
uary 2021). Five bins of distance from the sea ice (white contours)
are considered in the computation of the SMOS-climatologies.
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Table 1. Monthly statistics of the difference between SMOS SSS and Astrolabe in situ measurements, grouped by latitude bins and catego-
rized by the three different versions of the DNB.

Mean Difference SD Difference N matchups

Month Dataset −52 −57 −62 −67 −52 −57 −62 −67 −52 −57 −62 −67

January DNB-SST −0.08 −0.04 0.23 0.02 0.19 0.12 0.40 0.92 127 119 131 18
DNB −0.05 −0.04 0.2 0.02 0.19 0.10 0.38 0.84 127 119 131 17
DNB-ice −0.08 −0.05 0.14 0.56 0.18 0.16 0.3 0.82 127 119 131 17

February DNB-SST −0.06 0.04 0.22 −0.36 0.15 0.14 0.28 0.79 87 92 95 13
DNB −0.03 0.04 0.12 −0.27 0.14 0.1 0.21 0.72 87 92 95 13
DNB-ice −0.06 0.05 0.07 0.27 0.16 0.12 0.22 0.81 87 92 95 13

March DNB-SST −0.02 −0.06 0.14 −1.28 0.17 0.12 0.25 0.84 119 106 105 7
DNB −0.01 −0.08 0 −1.06 0.15 0.11 0.19 0.8 119 106 105 7
DNB-ice −0.01 −0.02 0.01 −0.77 0.17 0.11 0.18 0.78 119 106 105 7

October DNB-SST −0.25 0.02 −0.78 – 0.17 0.18 0.56 – 36 30 5 0
DNB −0.25 −0.04 −1.81 – 0.2 0.27 1.54 – 36 30 5 0
DNB-ice −0.23 −0.11 −1.81 – 0.18 0.26 1.39 – 36 30 5 0

November DNB-SST 0.02 −0.07 −0.6 – 0.15 0.12 0.62 – 29 32 13 0
DNB 0 −0.05 −0.69 – 0.17 0.13 0.99 – 29 32 13 0
DNB-ice 0 −0.12 −0.39 – 0.15 0.1 0.61 – 29 32 13 0

December DNB-SST 0.02 0.05 0 – 0.11 0.15 0.32 – 28 30 24 0
DNB 0 0.06 0.17 – 0.12 0.15 0.58 – 28 30 24 0
DNB-ice 0.02 0.06 0.05 – 0.11 0.14 0.21 – 28 30 24 0

Figure 5. Statistics of SSS distributions for ascending overpasses, at the center of the swath (x = 0) and incidence angle θ = 42.5°. Pan-
els (a)–(c) For the first 100 km (bin 1), (d)–(f) for distances beyond 400 km (bin 5). (a, d) SMOS-based climatology, (b, e) standard deviation
of SSS distribution and (c, f) number of measurements.
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anomalies. The annual WOA13 SSS climatology is used for
this reference. We estimate the uncertainty for each individ-
ual SSS by propagating the radiometric errors on the TB to
the SSS: ε = 0.5(σH+ σV)/1T ′, where the σH and σV are
the radiometric sensitivities for H and V polarizations, re-
spectively and the term 1T ′ is a numerical estimate of the
derivative of the TB with respect to SSS (see more details in
Olmedo et al., 2021a).

Each Level 3 map is produced by calculating a weighted
average of the debiased and filtered SSS values for a given
grid point across all overpasses during the 9 d period, with
weights inversely proportional to the squared uncertainty.

Mitigation of temporal biases

Since the SMOS-based climatologies integrate data over a
multi-year period, these do not change along time (Olmedo
et al., 2017). Therefore, a strategy for correcting the temporal
biases need to be introduced at this point of the processing.

Initially, we attempted to correct the maps using the tem-
poral correction applied to BEC global SSS maps (Olmedo
et al., 2017, 2021a) by assuming that the global SSS average
is constant over time. In this way, we avoid the use of in situ
measurements as a reference, maintaining as much as possi-
ble the surface dynamics that are measured by the satellite in
the first centimeters of the upper ocean layer (Olmedo et al.,
2022). To apply this temporal correction, we used global
maps generated with the same methods employed for the
BEC SO SSS product. However, after applying this temporal
correction, seasonal discrepancies with respect to Argo mea-
surements were observed. Consequently, the final approach
consists of computing the temporal correction as the mean
difference between the 9 d satellite SSS map and the collo-
cated Argo salinity over the same period. Specifically, a sin-
gle value is subtracted from each 9 d SSS map. This temporal
correction was also applied in the development of the BEC
Arctic SSS former v2.0 product (Olmedo et al., 2018). Since
Argo floats are used in calculating the temporal correction,
they are excluded from the validation process.

Filtering of SSS maps

To enhance the quality of the SSS maps, an additional fil-
tering criterion is applied in the final processing step. All
the SSS values greater than 40 and/or with uncertainties ex-
ceeding 10 are filtered out. This criterion is based on the 2D
histograms for each season relating SSS values to their as-
sociated uncertainties and to the distance from sea ice (see
Fig. 6). Higher uncertainty values are found in periods of sea
ice melting (October–March). Notably, the filtered data are
primarily concentrated in the first bin closest to the ice edge,
i.e., within the first 50 km.

BEC SO SSS product v1.0

The BEC SO SSS product v1.0 provides 9 d SSS maps at a
25 km EASE-SL grid (Brodzik et al., 2012), generated daily
(González-Gambau et al., 2023). The time series covers the
period from 1 February 2011, to 31 March 2023. The product
spans latitudes south of 30° S and is distributed in netCDF
files, which include both the SSS values and their associated
uncertainties.

Two examples of BEC SO SSS maps are shown in Fig. 7.
The left panel displays the SSS values, while the right panel
shows the corresponding uncertainties. The maps at the top
correspond to 15 February 2020, representing the period of
minimum sea ice extent in the year, while the maps at the bot-
tom correspond to 15 September 2020, representing the pe-
riod of maximum sea ice extent in the year. Additionally, the
reopening of the Weddell Polynya during the winter of 2017
is illustrated in Fig. 8, marking its return since the 1970s.

3 Quality assessment of the BEC SO SSS product

3.1 Datasets for inter-comparison and validation

The quality assessment of the BEC SO SSS product results
from the comparison against the reference in situ datasets and
ocean models presented in this section.

3.1.1 In situ salinity measurements

– Thermosalinograph (TSG) data by the Università degli
Studi di Napoli Parthenope: Data collected in the At-
lantic (Aulicino et al., 2018a, b) and Pacific sec-
tors (https://doi.org/10.5281/zenodo.16755709, Auli-
cino et al., 2025) by Italian and South African ice-
breakers. Data are collected along the routes from South
Africa to Antarctica and from New Zealand to Antarc-
tica. Ships tracks cross the Antarctic Circumpolar Cur-
rent (ACC) and its fronts during the austral summer, in
the framework of the yearly Antarctic expedition of the
Southern National Antarctic Program and of the Ital-
ian Programme for research in Antarctica (Programma
Nazionale di Ricerche in Antartide-PNRA). The depth
of these measurements is approximately 5 m. These
datasets are particularly valuable for analyzing the qual-
ity of the satellite SSS product, both at mid-latitudes and
in proximity to sea ice.

– TSG data by the Astrolabe vessel: TSG salinity mea-
surements provided by the observing ships network
in the West Pacific Ocean (Morrow and Kestenare,
2014). This dataset is provided by the Survostral project
and is available at https://www.legos.omp.eu/survostral/
data-products/tsg-sss-sst/ (last access: 5 September
2024). These transects routinely cross the ACC from
Tasmania to the Antarctic Continent. Measurements
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Figure 6. Top row: 2D histograms of SSS with respect to its uncertainty for each season. Bottom row: 2D histograms of distance from sea
ice with respect to uncertainty for each season.

Figure 7. (a, b) 15 February 2020, 9 d BEC SO SSS map (a) and its uncertainty (b). (c, d) 15 September 2020, 9 d BEC SO SSS map (c)
and its uncertainty (d).
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Figure 8. (a–c) SIC percentage, (d–f) BEC SO SSS maps for the following dates: 15 October, 15 November and 15 December 2017. Note
that the polynya is not seen in the SSS maps until there is no sea ice (SIC= 0) because of the filtering we apply in the raw SSS.

from 2014, 2015, 2020, and 2022 are used. When avail-
able, only adjusted values and with good quality (qual-
ity_flag= 1) are considered. The depth of these mea-
surements in between 5–10 m. This dataset is valuable
for assessing seasonal and latitudinal biases, which in
this region are strongly influenced by sea-ice contami-
nation.

– Marine mammals: The marine mammal dataset
(MEOP-CTD database, 2024-02 release, (Roquet et al.,
2024) with an accuracy of ±0.05 (Treasure et al.,
2017) has been used. This dataset was collected and
made available by the International MEOP Consortium
(http://www.meop.net, last access: 3 March 2025)
and the national programs that contribute to it. Mea-
surements used in the validation correspond to the
shallowest profile (in the first 10 m, with the most usual
depths lower than 4 m) and only those measurements of
good quality (quality control equal to 1). This dataset
includes extensive data during winter, a period typically
not covered by ships.

– Barcelona World Races (BWR) 2011 and 2015 (Umbert
et al., 2023) and 2020 Vendée Globe (UTM-CSIC, 2023;
Umbert et al., 2022): South of 40° S, these routes run
almost parallel to the ACC going through the South-

ern ACC Front, the Polar Front, and the Sub-Antarctic
Front in some places. These measurements provide sur-
face information at 60 cm depth, which is not available
from other in situ sensors. Details on the filtering ap-
plied to these datasets can be found in Salat et al. (2013),
Umbert et al. (2022), and Hernani et al. (2025). These
datasets enable the quality assessment of the product in
the Sub-Antarctic zone (Hernani et al., 2025).

– Global Ocean-Gridded objective analy-
sis fields of salinity (Product ID: IN-
SITU_GLO_PHY_TS_OA_MY_013_052) are
generated using profiles from CORA 5.2 (IN-
SITU_GLO_TS_REP_OBSERVATIONS_013_001_b)
(Szekely et al., 2019, 2024). Monthly maps of the
global ocean at 0.5° resolution, focusing on the shal-
lowest level (1 m), are used to compare interannual and
seasonal salinity variability.

3.1.2 Ocean models

– The GLORYS12V1 product is a global ocean eddy-
resolving model provided by CMEMS. The global
ocean output files are in a regular grid of 1/12° and
includes 50 vertical levels. This product is available at
https://data.marine.copernicus.eu/product/GLOBAL_
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MULTIYEAR_PHY_001_030/files?subdataset=
cmems_mod_glo_phy_my_0.083deg_P1M-m_202311
(last access: 10 February 2025; Mercator Océan In-
ternational, 2023). We use the monthly mean salinity
fields provided at 0.5 m depth, which are re-gridded to
the satellite SSS grid.

– The Biogeochemical Southern Ocean State Estimate (B-
SOSE) is a numerical ocean model based on the MIT-
gcm, with 52 vertical layers that are more closely spaced
near the surface, and a horizontal grid of 1/6° that
is also eddy-permitting (Verdy and Mazloff, 2017). B-
SOSE assimilates observations from Lagrangian floats,
remotely sensed sea surface height, sea surface tem-
perature, and sea ice concentrations using a 4D-Var
technique that does not break conservation of physi-
cally conservative quantities (Mazloff et al., 2010). We
use the Iteration 135 (available at https://sose.ucsd.edu/
SO6/ITER135/, last access: 14 March 2025) and the
salinity value of the uppermost layer. The model data
is provided as a 5 d average every 5 d. The common pe-
riod between the model and satellite data is from 2013
to 2018. The model data is re-gridded to the satellite
SSS product grid and the temporal collocation has been
done for the same central day.

3.2 Validation methods and quality metrics

3.2.1 Collocation strategy

When in situ measurements are available at different depth
levels, the shallowest measurement is used for validation.
The locations of in situ data are assigned to the nearest satel-
lite grid cell. For in situ measurements acquired with high
temporal frequency (such as the TSG data), all the measure-
ments which fall in the same satellite grid cell are averaged.
In terms of temporal collocation, all the in situ available in
the 9 days used to generate the satellite SSS product are con-
sidered in the validation of the corresponding satellite SSS
map.

3.2.2 Quality metrics

The validation metrics are based on the statistics of the differ-
ence between the satellite SSS and in situ salinity (1SSS=
SSSsat−SSSinsitu) at the various matchups. The following
metrics are computed:

– Global statistics of1SSS for each in situ dataset, calcu-
lated annually.

– Maps showing the spatial distribution of 1SSS statis-
tics, including the temporal mean of 1SSS, the tem-
poral standard deviation of 1SSS, and the number of
matchups for each grid cell. All1SSS values at the col-
located points are aggregated into a 1°× 1° grid.

– 2D histograms of 1SSS statistics as a function of dis-
tance from the ice edge (x-axis) and distance from the
coast (y-axis), binned in 50 km intervals. This metric is
particularly useful for identifying residual land-sea and
ice-sea contamination.

For the evaluation of satellite SSS dynamics, we compute:

– Time series of monthly average SSS in the Subpolar and
Sub-Antarctic regions. The Subpolar region spans from
the coastline to the maximum sea ice extent in the an-
alyzed period. The Sub-Antarctic region is defined be-
tween the 34.1 isohaline and the line of maximum sea
ice extent (see defined regions in Fig. 9). We compare
the time series of satellite-derived monthly average SSS
with those from CORA, GLORYS, and SOSE. For this
comparison, all the datasets are filtered based on the
satellite coverage.

– Seasonal and interannual variability of satellite SSS
product and regional model: First, the model output is
regridded to the satellite grid and filtered based on satel-
lite coverage. Then, the interannual variability is com-
puted as the annual average SSS with respect to the av-
erage of the period when the model is available (2013–
2018). The seasonal variability is computed as the sea-
sonal average SSS (DJF, MAM, JJA, SON) with respect
to the complete period.

3.3 Validation results

3.3.1 Performance in the sub-Antarctic region

We use the in situ data from the Barcelona World Races and
Vendée Globe Race for analyzing the performances in the
sub-Antarctic region. The analysis is performed for each of
the three years separately. Statistics of the differences be-
tween satellite SSS and in situ measurements are collected
in Table 2. We observe a strong correlation between the two
datasets, as evidenced by the high correlation coefficient. A
map of the difference between satellite SSS and in situ mea-
surements is shown in Fig. 10.

In Fig. 11, the salinity values of satellite and in situ and the
difference between both are shown as a function of the lon-
gitude. A good correspondence between both datasets is ob-
served. The highest biases are found for the year 2011. This
also happens when comparing satellite data to the WOA cli-
matology (not shown). Larger differences are observed when
changes in salinity values occur more rapidly. These differ-
ences are not only attributable to satellite measurement errors
but also to the different spatial and temporal scales resolved
by the satellite and in situ sensors (an integrated area over 9 d
versus punctual and instantaneous measurements).
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Figure 9. (a) Subpolar region. (b) SubAntarctic region.

Figure 10. Mean difference between satellite SSS and in situ measurements from Barcelona World and Vendee Globe races for 2011, 2015
and 2020 (from a to c).

3.3.2 Performance near coasts and ice edges

The performance of the BEC SO SSS product close to coasts
and ice edges is primarily assessed using measurements ac-
quired by marine mammals and TSG data along the Atlantic
and Pacific sectors of the Southern Ocean provided by the
Università degli Studi di Napoli Parthenope. It is important
to note that the two in situ datasets exhibit several sampling
differences. First, their spatial coverage differs significantly.
TSG data are mostly regularly distributed along the merid-
ional transects followed by the research vessels across vari-
ous sectors of the SO. Although concentrated on very tailored
longitudes, they provide a relatively circumpolar representa-
tion of in situ conditions and occasionally extend into more
southerly latitudes (e.g., beyond 65° S in the Ross Sea) ex-
ceeding the spatial extent of the marine mammals dataset. In
contrast, the marine mammals dataset is largely confined to
a single sector of the SO, with sampling mainly concentrated
near the sea ice edge. Second, there is a marked difference in
the temporal distribution of the two datasets. Observations
from marine mammals are predominantly acquired during

the winter months, whereas TSG data are primarily collected
during the summer.

The spatial maps of the temporal mean and the temporal
standard deviation of the 1SSS and the number of matchups
are shown in Figs. 12 and 14 for the comparison to marine
mammals and TSG, respectively. As expected, larger differ-
ences are concentrated very close to coasts and sea ice edges,
particularly in the marine mammals dataset.

To better analyze the performance close to coasts and sea
ice, we compute the 2D histograms of the mean and the stan-
dard deviation of the 1SSS as a function of the distance
from ice edges and to coasts. Results are shown in Figs. 13
and 15 for the comparison to marine mammals and TSG,
respectively. The statistics reveal almost negligible biases
with standard deviations of ∼ 0.2 for marine mammals and
∼ 0.25 for TSG measurements. Differences in statistics may
stem from the previously mentioned sampling differences.
In both cases, the largest errors occur within the first 100–
150 km from the sea ice edge and/or the coastline, as shown
in Fig. 16.
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Table 2. Statistics of the differences between satellite and in situ measurements for each year.

Dataset Time Bias SD R Slope Y -Intercep N matchups

BWR 2011 0.3 0.33 0.83 0.78 7.88 1187
BWR 2015 0.05 0.27 0.78 0.7 10.4 1601
VG 2020 0.1 0.31 0.81 0.83 5.89 1337

Figure 11. BEC SO SSS, in situ salinity and the difference between
both as a function of the longitude from Barcelona World Races and
Vendee Globe Race for the years 2011, 2015 and 2020 (from top to
bottom).

3.3.3 Seasonal and interannual variability

In this section, we analyze the average satellite SSS over
two regions: the Subpolar region and the Sub-Antarctic
region (Fig. 9. We compare the monthly time series of
satellite-derived average SSS with those from the CORA
dataset and GLORYS and SOSE models. From this anal-
ysis (see Fig. 17 and Table 3), we observe that in the
Sub-Antarctic region, all datasets show good agreement,
although a mean bias of −0.16 is found between the
SOSE model and the other three sources. This is consis-
tent with the differences of −0.2 found with respect to Argo
at 7 m depth (https://sose.ucsd.edu/RESEARCH/BSOSE6/
ITER135/SALT_Argo_BSOSE.html, last access: 20 March
2025). The temporal variability observed across the differ-
ent salinity values is very similar between BEC SO, CORA
and GLORYS, with correlations of ∼ 0.7. However, the
SOSE model shows a much lower correlation with the BEC
SO product in the Sub-Antarctic region. When analyzing
the Subpolar region, the differences between satellite SSS
and CORA are larger during periods of higher stratification,
likely due to greater differences between satellite-based sur-
face measurements, which capture only the top few centime-
ters, and in situ measurements that represent deeper layers.
Additionally, we observe biases between both models and
satellite SSS and CORA. Despite these biases, the temporal
variability in satellite SSS is more closely aligned with the
SOSE model than with the GLORYS model. This is primar-
ily because GLORYS uses a 3D variational data assimilation
which breaks physical conservation, whereas SOSE utilizes
a 4D variational data assimilation. As a result, the physical
consistency of the dynamics and thermodynamics in SOSE
is maintained by the assimilation scheme, often leading to
more accurate representation of the flow (Abernathey et al.,
2016; Narayanan et al., 2024).

We also analyze the interannual and seasonal variability of
the BEC SO SSS product and compare it to the one shown
by the regional SOSE model. Overall, the interannual vari-
ability shown by the satellite product (first and third rows
in Fig. 18) is consistent with the variability shown by the
SOSE model (second and fourth rows), although larger SSS
interannual variability is shown by the model. Satellite and
model show a freshening in the initial years and a salinifica-
tion since 2016, which is associated with the sea ice decline
in Antarctica (Purich and Doddridge, 2023; Silvano et al.,
2025). The patterns remain consistent even near the ice edge,
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Figure 12. Spatial statistics (in a 1° grid) of the difference between satellite SSS product and marine mammals measurements. (a) Mean
1SSS, (b) standard deviation of 1SSS, (c) number of matchups.

Figure 13. 2D histograms of the difference between satellite SSS product and marine mammals measurements as a function of the distance
from the ice edge and distance to coast. (a) Mean 1SSS, (b) standard deviation of 1SSS, (c) number of matchups.

Table 3. Statistics of the comparison of the time-series shown in Fig. 17 in the common period 2013–2018.

Antarctic region Subpolar region

Datasets Mean SD R Mean SD R

CORA – BEC SO SSS −0.01 0.02 0.69 −0.06 0.05 0.83
GLORYS – BEC SO SSS −0.01 0.02 0.73 −0.16 0.15 0.59
SOSE – BEC SO SSS −0.16 0.04 0.24 −0.28 0.09 0.75

demonstrating that, despite larger errors in the satellite prod-
uct close to the ice, the satellite-derived SSS is capable of
capturing the SSS variability in close proximity to the ice
edge.

Similar conclusions can be drawn from the analysis of sea-
sonal variability shown by the satellite SSS and by the SOSE
model (Fig. 19). Seasonal variability is consistent with the
expected processes occurring near Antarctica: lower salinity
between November and March (austral spring and summer)
when sea ice melts, and progressively higher salinity between
April and October (austral autumn and winter) due to the sur-
face brine rejection when sea ice forms.

4 Data availability

The DOI of the BEC SO SSS product is:
https://doi.org/10.20350/digitalCSIC/15493 (González-
Gambau et al., 2023). Access to the data is provided
by the Barcelona Expert Center, through its FTP ser-
vice (https://bec.icm.csic.es/data-access-ftp/, BEC, 2025),
in the directory /becftp/OCEAN/SSS/SMOS/Souther-
nOcean/v1.0/L3/9day. The product is also available in the
ESA Open Science Catalog (https://opensciencedata.esa.
int/products/sofresh-sea-surface-salinity/collection, ESA,
2025). The Argo profilers dataset from which the temporal
correction is derived are available through the SEANOE
webpage (https://doi.org/10.17882/42182, Argo, 2025) or all
the options to the access to data provided there.
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Figure 14. Spatial statistics (in a 1° grid) of the difference between satellite SSS product and TSG measurements from ships of opportunity.
(a) Mean 1SSS, (b) standard deviation of 1SSS, (c) number of matchups.

Figure 15. 2D histograms of the difference between satellite SSS product and TSG measurements as a function of the distance from the ice
edge and distance to coast. (a) Mean 1SSS, (b) standard deviation of 1SSS, (c) number of matchups.

5 Conclusions

In this paper, we present the dedicated BEC SSS product over
the Southern Ocean. The primary algorithms used to retrieve
SSS are specifically designed to minimize sea-ice contam-
ination. Notably, for the first time, we employ a dynamic
sea-ice mask when applying nodal sampling, which signif-
icantly reduces TB radiometric errors near the ice edges.
Additionally, we apply the debiased non-Bayesian retrieval
scheme to characterize and mitigate spatial biases in SSS,
taking into account both the acquisition conditions and, for
the first time, the distance from ice edges to minimize sea-ice
contamination. These algorithm improvements have also di-
rectly contributed to the latest release of Arctic L3 SSS maps
(v4), which were recently developed and distributed by BEC
(García-Espriu et al., 2024) and have a significant impact on
the enhancement of the SSS retrievals from satellite L-band
measurements more broadly.

The use of various in situ datasets has enabled both global
and seasonal analyses, as well as assessments based on dis-
tance from ice edges. The BEC SO SSS product demon-
strates very high performance beyond 100–150 km from the
sea ice edges, with nearly zero bias and a standard deviation
of the difference of 0.22 when compared to marine mam-
mal data and 0.25 when compared to TSG data from research

vessels. Within the first 100–150 km from the sea ice edges,
some in situ measurements indicate good consistency with
satellite data in capturing freshwater near the ice. However,
satellite measurements sometimes report higher salinity val-
ues compared to in situ observations. Some of these differ-
ences can be attributed to variations in the spatial and tempo-
ral scales captured by the different instruments. In more dy-
namic regions, such as those close to the ice edges or coasts,
sampling-related errors are expected to be more pronounced.
Therefore, part of the high variability observed within the
first 100–150 km from the coast and ice margin reflects geo-
physical signals, and is also captured by the regional SOSE
model. However, some of this variability could be attributed
to residual contamination in the satellite-derived SSS prod-
uct. Further research is required to understand which part of
the variability is still residual contamination and then, to fur-
ther enhance the quality near the boundaries, enabling more
accurate capture of critical processes occurring in close prox-
imity to ice margins.

This new satellite SSS product provides a reliable descrip-
tion of the ACC and captures seasonal and interannual vari-
abilities aligned with those observed in the SOSE regional
model. This product has been used in the study by Silvano
et al. (2025). Using these satellite observations, a marked in-
crease of SSS across the circumpolar SO has been observed

Earth Syst. Sci. Data, 17, 5089–5111, 2025 https://doi.org/10.5194/essd-17-5089-2025
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Figure 16. (a) Mean 1SSS, (b) standard deviation of the 1SSS for marine mammals and TSG for each bin of the distance from sea ice
and/or coast.

Figure 17. (a) Temporal series of the monthly average salinity in the Subpolar region. (b) Temporal series of the monthly average salinity
in the subAntarctic region.

since 2015. This is a reflection of a weakened upper-ocean
stratification, coinciding with the notably Antarctic sea ice
retreat. Besides, the weakened upper-ocean stratification re-
flected by the satellite salinity product, also contributed to the
reappearance of the Maud Rise polynya in the Weddell Sea,
during the winters of 2016–2017 (Campbell et al., 2019). Fu-
ture work will focus on further evaluating the quality of SSS
in the polynyas.

Current models of the Southern Ocean poorly repre-
sent several climate-critical processes, such as sea ice melt-
ing/freezing, upper-ocean mixing, bottom water production

at high latitudes, and the formation of coastal and open-ocean
polynyas. All these processes are controlled by upper-ocean
salinity (e.g. Silvano et al., 2023; Narayanan et al., 2024;
Goosse and Zunz, 2014). Incorporating these new satellite
SSS observations into data-assimilating models (e.g., the
SOSE and GLORYS models) will thus boost their ability to
reproduce the observed changes, helping us to understand
what key dynamics must be better represented by climate
models in order to credibly project the future of the Southern
Ocean.
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Figure 18. Interannual variability of: satellite SSS product for the period 2013–2015 (first row), SOSE salinity for the period 2013–2015
(second row), satellite SSS product for the period 2016–2018 (third row) and SOSE salinity for the period 2016–2018 (fourth row).
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Figure 19. Seasonal variability of satellite SSS product (left column) and SOSE salinity (right column) for the period 2013–2018.
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