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Abstract. Accurately quantifying the impact of soil water availability on evapotranspiration (ET) is crucial
for improving ET retrieval accuracy. However, most global satellite-derived ET datasets do not explicitly in-
corporate soil moisture constraints, leading to significant uncertainties, particularly in water-limited regions. In
this study, we propose an enhanced soil moisture constraint scheme that effectively captures soil moisture’s
influence on vegetation transpiration and soil evaporation using a quantile-based approach. Unlike previous
methods, this scheme relies solely on soil moisture data, reducing uncertainties associated with heterogeneous
soil hydraulic properties. We integrated this approach into the process-based land surface ET/heat fluxes algo-
rithm (P-LSH, or P-LSHv1), developing an improved version, P-LSHv2. Using observations from 106 global
flux towers, we calibrated biome- and climate-specific parameters and quantified moisture constraints across
diverse climates and land cover types. P-LSHv2 achieves notable improvements in ET estimation, with a re-
duced Root Mean Square Error (RMSE) of 0.67 mm d−1 and an increased Pearson correlation coefficient (R)
of 0.81, indicating strong agreement with flux tower observations. As a result of these improvements, P-LSHv2
outperforming its predecessor, P-LSHv1, particularly in arid regions. Comparative analyses show that P-LSHv2
surpasses the Penman-Monteith-Leuning model and the Global Land Evaporation Amsterdam Model in cap-
turing soil moisture anomalies’ effects on ET, enhancing global ET accuracy. Employing the P-LSHv2 algo-
rithm, we have produced a long-term global daily ET dataset spanning 1982–2023, providing a valuable re-
source for research on terrestrial water and energy cycles and climate change. The dataset is freely available at
https://doi.org/10.11888/Terre.tpdc.301969 (Feng and Zhang, 2025).
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1 Introduction

Evapotranspiration (ET) is considered the second largest
component of the terrestrial water cycle after precipitation
and also plays a critical role in atmospheric-terrestrial carbon
and energy exchanges (Jung et al., 2010; Wang and Dickin-
son, 2012; Zhang et al., 2016). Therefore, accurate estima-
tion of global ET is essential for improving our understand-
ing of the surface energy budget, global water cycle, and cli-
mate change (Fisher et al., 2017; Oki and Kanae, 2006).

Among various ET estimation methods, remote sensing re-
trieval provides an effective means to estimate large-scale ET
for its spatially continuous and temporally frequent measure-
ments of surface biophysical variables (Fisher et al., 2008;
Longo et al., 2019). Several remote sensing-based global ET
datasets have been generated across different temporal spans,
spatial scales and resolutions (Jung et al., 2011; Martens
et al., 2017; Mu et al., 2011; Zhang et al., 2010, 2019).
Microwave-based measurements of hydrology states inside
the canopy or soil generally contribute to high temporal res-
olution (i.e., daily) of ET estimation but typically have coarse
spatial resolution (Martens et al., 2017; Wang et al., 2019),
which is unsuitable for evaluating crop water requirements
over complex agricultural landscapes. Conversely, the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) rep-
resents a comprehensive (500 m, 8 d) multi-decadal global
operational satellite ET record (Mu et al., 2011; Zhang et
al., 2019), which has been used to evaluate more recent in-
terannual variability and trends (Hall et al., 2023; Román
et al., 2024). However, MODIS data do not cover the pre-
2000 period and are of insufficient length to represent long-
term interannual variability and trends, and attribution anal-
ysis of ET. Therefore, before MODIS-era, how to extend
high-quality ET series in the case of Advanced Very High-
Resolution Radiometer (AVHRR), and how to balance fine
spatial and high temporal resolutions, are essential for ex-
tending the coverage of ET datasets.

An additional challenge lies in the reliability and ro-
bustness of ET datasets, particularly in complex global
ecosystems and diverse climates. Although some global ET
datasets have been developed, stark discrepancies are iden-
tified among various datasets in terms of magnitude and
changing trends (Badgley et al., 2015; Li et al., 2022; Pan
et al., 2020; Zhu et al., 2022). For instance, an investi-
gation from the Global Soil Moisture Project-2 (GSWP-
2) found that the global average annual ET from 15 mod-
els varied widely, ranging from 272 to 441 mm yr−1, with
the maximum value 1.5 times the minimum (Dirmeyer et
al., 2006). Similarly, Jiménez et al. (2011) showed consid-
erable disagreement among ET estimates from 12 global
products, particularly in tropical rainforests. McCabe et
al. (2016) highlighted that four widely-used remote sens-
ing ET models exhibit significant variability across specific
biomes and climate zones, with no model consistently out-
performing the others. The Water Cycle Multi-Mission Ob-

servation Strategy-Evapotranspiration Project (WACMOS-
ET) demonstrated low correlation and disagreement between
various products in arid regions (Michel et al., 2016), and
the MODIS product tends to underestimate tropical and sub-
tropical ET fluxes, with obvious disagreement among var-
ious products in water-limited situations (Miralles et al.,
2016). Chen et al. (2014) further found that the annual av-
erage ET across eight products in China ranged from 535 to
852 mm yr−1, with higher uncertainties in tropical and hu-
mid regions. In summary, despite the numerous remote sens-
ing ET models and datasets currently available, each has its
own merits and disadvantages, and no consensus on which
method is the best has been reached.

In ET estimation, soil moisture plays an essential role in
water transport within vegetation. Due to the water poten-
tial gradient between leaf and air, water is transported from
soil to vegetation roots, and leaves, and then dissipated into
the atmosphere through stomata. In addition to this physi-
cal gradient, plant transpiration is fundamentally driven by
biological needs such as nutrient transport, turgor mainte-
nance, and leaf cooling. These physiological processes are
tightly regulated and exert feedback control on stomatal con-
ductance, thereby influencing transpiration dynamics. Impor-
tantly, root tips are capable of sensing subtle gradients in wa-
ter potential (as low as 0.5 MPa mm−1), exhibiting behav-
iors such as hydrotropism to actively seek water in heteroge-
neous soil profiles (Dexter, 1986; Gregory, 2006). Such sen-
sory responses provide a physiological basis for root forag-
ing behavior, which is particularly important for sustaining
transpiration under drought conditions. Therefore, soil wa-
ter content not only serves as the direct water pool for veg-
etation but also provides the essential hydraulic foundation
that supports plant physiological functions. It ultimately reg-
ulates both the capacity and the demand side of transpira-
tion through its dual role in water supply and physiological
control. In previous remote sensing ET algorithms, the va-
por pressure deficit (VPD) was generally adopted to reflect
the associated moisture constraint on canopy conductance
(Mu et al., 2011; Zhang et al., 2009, 2010, 2019). However,
several studies have shown that water availability is the pri-
mary limiting factor for ET in arid areas (Yang et al., 2019;
Zhang et al., 2015), namely the so-called water-limited re-
gions, where soil moisture constraints on canopy conduc-
tance increase with climate dryness and drought severity
(Han et al., 2020; Novick et al., 2016). In arid and semi-
arid regions, even under high atmospheric demand (i.e., high
VPD), the actual ET is often constrained by soil water avail-
ability and root uptake capacity. As the root–soil interface
becomes hydraulically disconnected under drought, transpi-
ration may decline despite strong evaporative demand. Al-
though vapor pressure deficit and soil moisture are generally
connected through land-atmosphere interactions (Liu et al.,
2020a; Zhou et al., 2019), their anomalies may be temporally
lagged (Zhang et al., 2022b), indicating a partial decoupling.
Therefore, relying solely on VPD can misrepresent transpi-
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ration dynamics, especially under conditions of prolonged
soil dryness or climate extremes. Incorporating explicit soil
moisture constraints is essential for improving ET estima-
tion at finer temporal scales (Fu et al., 2022a), and this need
is expected to intensify under global warming scenarios (Liu
et al., 2020b), where soil–atmosphere coupling may become
even more unstable.

One of the main challenges of incorporating soil moisture
constraints into remote sensing ET algorithms is the devel-
opment of a robust and globally applicable moisture con-
straint scheme for quantifying water availability. Although
soil moisture constraints have been applied to estimate ET
at local (Xu et al., 2018; Zhu et al., 2014), regional, and
global scales (Brust et al., 2021; Purdy et al., 2018), long-
term available datasets are limited by the lack of universal
constraint schemes and soil moisture datasets. Furthermore,
existing soil moisture constraint schemes generally rely on
soil hydraulic properties as thresholds (Martens et al., 2017;
Zheng et al., 2022). However, global soil data present sig-
nificant uncertainties, which substantially affect ET estima-
tion (Dennis and Berbery, 2021). On the one hand, gridded
datasets derived from field investigation are prone to great
uncertainties, particularly in high-altitude and other harsh re-
gions (Dai et al., 2019). On the other hand, the pedotrans-
fer functions for generating gridded soil properties still lack
proper extrapolation methods from local to global scales (Ma
et al., 2021; Van Looy et al., 2017).

In response to these challenges, we integrated a new soil
moisture constraint scheme into the previously developed
Process-based Land Surface evapotranspiration/Heat fluxes
algorithm (P-LSH, or P-LSHv1) (Zhang et al., 2010, 2015),
creating the second version (P-LSHv2). The objectives of
this study are to (1) develop a globally universal soil mois-
ture constraint scheme, calibrate key parameters, and quan-
tify moisture levels across diverse vegetation types and cli-
mate zones, (2) upgrade ET algorithm by incorporating soil
moisture constraints and evaluate its robustness from sites to
basins, and (3) generate a long-term, reliable global daily ET
dataset spanning from 1982 to 2023.

2 Methodology

2.1 Baseline description of the P-LSH algorithm

The P-LSH algorithm separately estimates three components
of the ground surface evapotranspiration: vegetation transpi-
ration (λECanopy: W m−2), soil evaporation (λESoil: W m−2),
and open water evaporation (λEWater: W m−2). These com-
ponents are calculated based on the pixel’s land cover type. In
vegetation pixels, the ET is partitioned into vegetation tran-
spiration and soil evaporation by partitioning available en-
ergy according to the fractional vegetation cover. In barren
and open water pixels, ET consists solely of soil evaporation
and open water evaporation, respectively.

The Penman-Monteith equation is used to calculate vege-
tation transpiration:

λECanopy =
1Ac+ ρCpVPDgac

1+ γ (1+ gac/gc)
, (1)

where λ (J kg−1) is the latent heat of vaporization, 1
(Pa K−1) is the slope of the saturated water vapor pressure
curve as a function of temperature; Ac (W m−2) is the avail-
able energy allocated to the canopy; ρ (kg m−3) is air density;
Cp (J kg−1 K−1) is the specific heat capacity of air; VPD (Pa)
is vapor pressure deficit; gac (m s−1) is the aerodynamic con-
ductance of the canopy; γ (–) is the psychrometric constant;
gc (m s−1) is the canopy conductance calculated using the
Jarvis-Stewart-type model:

gc = g0(NDVI)×m(Tday)×m(VPD)×m(CCO2 ), (2)

g0 (NDVI)= 1/
[
b1+ b2× exp(−b3×NDVI)

]
− 1/ (b1+ b2) , (3)

where g0 (m s−1) is the maximum value of gc based on
NDVI; m(Tday), m(VPD), and m(CCO2 ) are stress factors
associated with daylight temperature Tday (°C), VPD (Pa),
and CO2 concentration (ppm), respectively; b1, b2, and b3
are biome-and-climate-specific parameters derived from flux
towers measurements. In addition, Topt (°) and β (°) in
m(Tday) calculation represent optimal air temperature for
photosynthesis and empirical parameters, respectively, which
are taken as the biome-and-climate-specific parameters in
this study. More details of stress factors are available at
Zhang et al. (2010) and Feng et al. (2022).

The soil evaporation is reduced from its potential value
using the moisture constraint:

λESoil = f λEPOT, (4)

f = RH( VPD
k

), (5)

λEPOT =
1As+ ρCpVPDgas

1+ γ × gas/gtotc
, (6)

where f (–) is the moisture constraint estimated by the com-
plementary relationship hypothesis here; RH (–) is the rela-
tive humidity; k (Pa) is a parameter to fit the complementary
relationship and reflect the sensitivity of VPD, we regard it
as a parameter for different land cover types and climates.
The λEPOT (W m−2) is the potential soil evaporation; As
(W m−2) is the available energy component allocated to the
soil; gas (m s−1) is the aerodynamic conductance of the soil
surface and is defined as the sum of the conductance associ-
ated with convective heat transfer (gch: m s−1) and the con-
ductance to radiative heat transfer (grh: m s−1). The gch term
is expressed in its resistance form rc, a biome-and-climate-
specific parameter, while the grh term is calculated by day-
light temperature. The gtotc (m s−1) is the corrected value of
total aerodynamic conductance gtot (m s−1) and the correc-
tion is based on actual air temperature and pressure. In this
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study, the gtot term is also expressed in the form of total aero-
dynamic resistance rtot, which is regarded as a parameter de-
termined by land cover types and climates.

The open water evaporation is calculated using a modified
Penman equation that considers the effects of surface wind
speed on aerodynamic conductance:

λEWater =
1A+ ρCpVPDgaw

1+ γ
, (7)

where A (W m−2) is the available energy for open water; gaw
(m s−1) is the aerodynamic conductance of the open water
estimated by wind speed:

gaw =
1+ 0.536U2

4.72
[
ln(zm/z0)

]2 , (8)

where U2 (m s−1) is the wind speed at 2 m height converted
from measurement height zm (m) using vertical wind speed
function; z0 (m) is the aerodynamic roughness of the water
surface and set to 0.00137. Further details of the P-LSH al-
gorithm are available in Zhang et al. (2010) and Feng et al.
(2022).

2.2 Improvements on the P-LSH algorithm

In this study, a series of improvements are implemented to
evolve P-LSHv1 into the P-LSHv2 algorithm, incorporating
soil moisture constraints on both vegetation transpiration and
soil evaporation, as well as a Bayesian and Sobol’ uncertainty
analysis framework. These improvements allow for a more
explicit quantification of water supply limitations on ET and
offer a structured approach to parameter uncertainty across
diverse land covers and climates.

2.2.1 Soil moisture constraint scheme for vegetation
transpiration

Previous studies (Liu et al., 2020b) have revealed that atmo-
spheric moisture and soil moisture are generally decoupled in
arid areas, which introduces significant uncertainty in quan-
tifying soil water supply on ET. In this study, vegetation tran-
spiration response to soil moisture is represented by the typ-
ical Jarvis-Stewart model (Jarvis, 1976; Stewart, 1988), in
which a revised soil moisture constraint scheme is applied to
constrain canopy conductance:

gc = g0(NDVI)×m(Tday)×m(VPD)

×m(CCO2 )×m(SM), (9)

m(SM)=
{ SM−SMmin

SMc−SMmin
SM≤ SMc

1 SM> SMc
, (10)

SMc = F (SM,n), (11)

where m(SM) is the soil moisture stress factor, calculated by
actual surface soil moisture (SM: m3 m−3), its critical value

Figure 1. Example illustration of (a) SMc estimation and (b) soil
moisture stress function estimation.

SMc (m3 m−3), and its minimum value SMmin (m3 m−3) over
a given period. Such a linear equation ensures the record of
soil moisture dynamic characteristics as well as the simple
normalization structure.

Different from other studies, the SMc is calculated using
the SM sequence, the quantile (n), and the quantile function
(F ) in this study, shown in Eq. (11). The SMmin and SMc
derived from quantiles and actual sequence are used as the
threshold, which circumvents the use of soil hydraulic pa-
rameters that exhibit significant uncertainty. The parameter
n represents the proportion of the period during which ET
is subject to moisture constraints. Specifically, 100 indicates
that ET is constantly constrained by soil moisture, while 0
indicates that ET is never constrained by soil moisture. Con-
sidering the potential impacts of different vegetation types
and climates on constraints, we regard n as a biome-and-
climate-specific parameter, which is first calibrated by the
tower measurements, and subsequently applied to global ET
estimation. That means, the quantile n takes the same value
for specific land cover types and climates, but when mapped
to various SM sequences in global grid estimation, the corre-
sponding SMc may vary. In addition to quantiles, this scheme
also relies on cumulative distribution function of the SM se-
quence. The actual SM sequences used in this scheme are
sufficient enough so that several heavy rainfall will not lead
to significant changes in distribution function unless the lo-
cal climate changes significantly. Even so, the variations in
SMc resulting from changes in the distribution function un-
der climate change also reflect how our scheme responds to
moisture constraints in a changing climate. This scheme ef-
fectively quantifies the moisture constraint level of the land
cover types and climates, while also mitigating the uncer-
tainty associated with soil hydraulic parameterization. The
soil moisture stress function is illustrated in Fig. 1.

2.2.2 Soil moisture constraint scheme for soil
evaporation

For soil evaporation, the original algorithm uses atmospheric
humidity as a proxy for soil moisture constraint, which intro-
duces enormous uncertainty in estimating soil evaporation.
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In this study, a direct soil moisture constraint scheme follow-
ing Feng et al. (2023) is implemented to replace the moisture
constraint in Eq. (4) for soil evaporation:

f =
SM−SMmin

SMmax−SMmin
, (12)

where SMmax (m3 m−3) and SMmin (m3 m−3) terms are the
respective maximum and minimum SM sequences during a
given period. Equation (12) is a specific version of Eq. (10)
where the quantile n reaches its maximum of 100 and SMc
reaches SMmax. Here f is a normalized soil moisture index
(or saturation fraction), assuming that the recording period of
soil moisture observations can entirely cover the full range
of soil moisture change at a given tower or pixel, which is
suitably beneficial for long-term decades of ET estimation.

2.3 Parameters uncertainty analysis framework for the
P-LSHv2 algorithm

With the structural upgrades to the ET algorithm, it is nec-
essary to perform a parameter uncertainty analysis and op-
timization in the P-LSHv2 algorithm. The Bayesian and
Sobol’ uncertainty analysis framework is employed to quan-
tify parameter characteristics.

Sobol’ sensitivity analysis is based on variance decompo-
sition, which can quantify both the single impacts of parame-
ters on the model outputs and the interaction impacts among
multiple parameters. The variance of model output is based
on variance decomposition:

D (Y )=
∑d

i=1
Di +

∑d

i<j
Dij + . . .+D12...d , (13)

where D(Y ) is the variance of model output Y ; d is the total
number of parameters; Di represents the partial variance for
the first-order sensitivity of the ith parameter to the model
output; Dij denotes the partial variance for the second-order
sensitivity corresponding to the interaction between the ith
and j th parameters; D12...d indicates the partial variance for
the dth-order sensitivity involving all parameter interactions.

The first-order index and the total-order index can reflect
the impacts of single parameters and multiple parameters’
interaction on the model output:

Si =
Di

D
, (14)

STi = 1−
D∼i

D
, (15)

where Si is the first-order index and represents the sensitivity
from the effect of parameter Xi ; STi is the total-order index
and represents the sensitivity from the effect of parameter
Xi and its interactions with the remaining parameters; D∼i
is the amount of variance attributed to all other parameters
after removing Xi .

After identifying sensitive parameters of the P-LSHv2 al-
gorithm, it is necessary to quantify the uncertainty of the sen-
sitive parameters. In recent years, the Bayesian theory has

been widely used in parameter uncertainty analysis. Based
on subjective prior knowledge and samples, the prior distri-
bution of parameters can be updated to the posterior distri-
bution, which significantly reduces the uncertainty of prior
ranges:

π (X|x)∝ f (x|X)π (X) , (16)

where x is the measurement sample; X is a group of pa-
rameter set; π (X) denotes the prior distribution, which is
assumed to follow a uniform distribution within specified
bounds; f (x|X) is the likelihood function.

Among various Bayesian-based methods, the Differential
Evolution Markov Chain (DE-MC) method stands out due to
its effective combination of the Differential Evolution algo-
rithm and the Markov Chain Monte Carlo method. The DE-
MC algorithm performs well in terms of convergence speed
and computational efficiency. In the DE-MC algorithm, can-
didate proposals are initially generated using two random
chains, and their difference is scaled and added to the cur-
rent chain:

Xp =Xi + γ (XR1−XR2)+ ε, (17)

where Xp is the proposed parameter set; Xi is the current
parameter set;XR1 andXR2 are two random chains excluding
Xi ; γ is the scaling factor; ε is a term that reflects probability
acceptance rules.

2.4 Parameters setting and multi-scale evaluation of the
P-LSHv2 algorithm

Compared to P-LSHv1, the P-LSHv2 algorithm has been up-
graded both in ET algorithm structure and biome-specific
parameters. Considering the various responses of vegeta-
tion physiological processes, particularly with respect to soil
moisture constraints under different climates, the P-LSHv2
algorithm takes distinct parameters for dry and wet zones
within each land cover type. While the algorithm structure
remains consistent, specific parameters are adjusted based on
diverse zones.

To evaluate the P-LSHv2 algorithm and demonstrate its
advances relative to the P-LSHv1 algorithm, a multi-scale
evaluation procedure is developed. First, we quantify pa-
rameter uncertainty and calibrate optimal values based on
global 106 flux towers containing daily ET measurements
(Sect. 4.1). The performance of P-LSHv2 algorithm is then
evaluated through both direct validation and leave-one-out
cross-validation methods at 106 flux towers (Sect. 4.2). Sec-
ond, we evaluate the P-LSHv2 algorithm at basins across
the conterminous United States (CONUS) and other global
regions, using the reconstructed values from the water bal-
ance method as the benchmark. The evaluation of basin
scales is conducted on monthly, annual, and multiyear lev-
els (Sect. 4.3). Finally, we generate global ET datasets using
the P-LSHv2 algorithm and then compare them with those
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from P-LSHv1 algorithm, analyzing their diversity in spatial
patterns and temporal trends (Sect. 4.4).

3 Data and materials

3.1 Eddy Covariance Flux Towers

In this study, climatic and flux measurements from eddy co-
variance towers that represent nine different land cover types,
as well as their associated dry or wet climate zones, are used
to calibrate and verify algorithm performance. These land
cover types include evergreen needleleaf forest (ENF), ev-
ergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), mixed forest (MF), open shrublands (OSH), woody
savannas (WSA), savannas (SAV), grasslands (GRA), and
croplands (CRO). The majority of towers come from the
FLUXNET2015 datasets (Pastorello et al., 2020), with addi-
tional towers from the AmeriFlux network (https://ameriflux.
lbl.gov/, last access: 15 September 2025) and the European
Eddy Fluxes Database Cluster (European Flux) (http://www.
europe-fluxdata.eu/, last access: 15 September 2025). To en-
sure robustness, we applied the following selection criteria:
(a) each land cover type and climate zone should contain
at least two towers, and two-year or longer measurements
are available for each tower; (b) the land cover type from
tower footprints should be consistent with the dominant type
from coarse resolution remote sensing data; (c) the towers
should have both global integrity of biome and climate zone
and regional representation. As a result, 106 flux towers are
selected for the ET algorithm development and evaluation
(Fig. 2). More details involving flux towers are available in
Table A1 of Appendix A.

The tower measurements including air temperature, VPD,
wind speed, net radiation, air pressure, surface soil moisture,
and latent flux are used to drive and evaluate ET algorithm.
The 30 min measurements from AmeriFlux and European
Flux are aggregated into daily averages when at least 80 %
of the measurements are available.

3.2 Climatic and remote sensing forcing data

The global datasets used for ET generation include the satel-
lite remote sensing inputs, daily surface meteorology, and cli-
mate zone database. The satellite inputs consist of NDVI, net
radiation, and land cover, while daily surface meteorology
and soil moisture data come from reanalysis datasets.

The arid index (AI) data come from the Global Aridity In-
dex and Potential Evapotranspiration Database – Version 3
(Zomer et al., 2022). Based on the AI and the distribution of
flux towers, the globe is divided into dry (AI< 0.65) and wet
zones (AI≥ 0.65). This separation acknowledges that soil
moisture constraints and parameters differ substantially be-
tween dry and wet zones, even within the same biome.

The NDVI sequence is merged from three independent
products of the AVHRR GIMMS NDVI (Tucker et al., 2005),

University of Arizona Vegetation Index and Phenology Lab
(VIP) NDVI (Didan, 2010), and MODIS NDVI (Didan,
2015) using the equidistant cumulative distribution function
(EDCDF) matching method (Zhang et al., 2015). The ad-
justed GIMMS and VIP sequences are fused with the con-
tinuously updated MODIS sequence to produce a consistent
long-term 1/12° NDVI series. The temporal linear interpola-
tion is applied to generate daily NDVI sequence from the
original adjacent semi-monthly values, providing a simple
but effective method to produce daily series of vegetation ob-
servations (Zhang et al., 2010).

The daily satellite-based net radiation term is derived from
the NASA World Climate Research Programme/Global En-
ergy and Water Cycle Experiment (WCRP/GEWEX) Surface
Radiation Budget (SRB) Release-3.0 datasets and the Clouds
and the Earth’s Radiant Energy System (CERES) SYN1deg
radiative fluxes. Since they are two independent datasets and
neither dataset spans the entire period since 1982, the same
merging method used for NDVI is applied to fuse SRB with
the latest CERES. The 1° coarse resolution radiation inputs
are further resampled to 1/12° resolution using the widely-
used bilinear interpolation method.

For land cover types, the MODIS Land Cover Dynamics
product at 0.05° resolution (Sulla-Menashe et al., 2019) is
selected. To match the spatial resolution of other inputs, the
land cover type is resampled to 1/12° resolution based on the
dominant type within each pixel.

The daily meteorological data, including air tempera-
ture, vapor pressure, and wind speed, are obtained from
the NCEP/DOE AMIP-II Reanalysis (NCEP2) (Kanamitsu
et al., 2002). Despite its coarse spatial resolution of
1.9°× 1.875°, NCEP2 is chosen for its long-term consis-
tency and generally high quality against ground observations
(Zhang et al., 2015). The coarse-resolution meteorology is
further resampled to 1/12° resolution using bilinear inter-
polation. In addition, monthly CO2 concentration records
come from The Global Monitoring Laboratory of the Na-
tional Oceanic and Atmospheric Administration (ftp://aftp.
cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last ac-
cess: 15 September 2025).

The surface soil moisture data are derived from Global
Land Data Assimilation System (GLDAS) Noah Land Sur-
face Model (Rodell et al., 2004) for its long-term temporal
consistency and global spatial coverage. To cover the entire
period from 1982 to 2023, we use two versions: version 2.0
for data prior to 2000 and version 2.1 for data from 2000
onwards. For version 2.1, 3-hourly soil moisture data are av-
eraged to produce daily values.

3.3 Other remote sensing evapotranspiration and
associated datasets

To evaluate and compare our ET estimates with other prod-
ucts, two mainstream remote sensing ET datasets with high
reputations are selected. The first is the Global Land Evap-
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Figure 2. Locations of 106 flux towers used for ET algorithm development and validation. The symbols represent land cover types and
colored backgrounds represent climate zones.

oration Amsterdam Model (GLEAM) Version 3.3a (Martens
et al., 2017), which is a microwave-based dataset with a 0.25°
daily resolution, covering a long time span since 1980. The
second is the Penman-Monteith-Leuning (PML) Version 2
(Zhang et al., 2019), a diagnostic biophysical model that cou-
ples transpiration with gross primary productivity and offers
a 500 m resolution and an 8 d interval since 2002.

Our new ET estimates are also validated against the re-
constructed ET estimates using the terrestrial water balance
method at the basin level. One dataset generated by Wan
et al. (2015) provides monthly ET benchmarks of 592 sub-
basins across the conterminous United States (CONUS). The
ET item is regarded as the residual of precipitation, runoff,
and downscaled water storage changes. These subbasins,
which range from 292 to 303 700 km2, cover 73 % of the
CONUS, making the dataset well-suited for evaluating re-
mote sensing ET products. For our evaluation, we use the
monthly sequence from 2003 to 2008 to evaluate ET estima-
tions from P-LSHv2, P-LSHv1, GLEAM, and PML, as well
as other remote sensing ET datasets presented in our previ-
ous study (Chao et al., 2021). Another dataset (Pan et al.,
2012) provides monthly water budget estimates for 32 major
global basins by merging numerous global datasets. Here we
use its ET estimates, in which the imbalance error has been
resolved by the constrained Kalman filter technique. The 32
basins cover all continents except Antarctica and represent a
wide range of climates and land covers, spanning from 1984
to 2006.

4 Results

4.1 Uncertainty analysis and optimization of parameters

We used ET measurements from 106 global flux towers to
conduct an uncertainty analysis and optimize the parame-
ters of the P-LSHv2 algorithm. Details about these towers
are provided in Appendix A. The 106 flux towers cover 9

main land cover types, which represent 97.1 % of the global
land area, excluding permanent ice, snow, barren lands, and
open water bodies. Each land cover type is further divided
into dry and wet zones, where key parameters are identified
and calibrated separately. Since the dry zone constitutes only
1.7 % of the EBF type, no further classification was made for
EBF and there are 17 scenarios in total.

A Sobol’ sensitivity analysis revealed significant varia-
tions in parameter sensitivity across multiple scenarios, as
shown in Fig. 3. In general, parameters b1 and b3, which gov-
ern canopy conductance, demonstrate the highest sensitivity
in the P-LSHv2 algorithm. The first-order indices for b1 and
b3 are 26 % and 18 %, respectively, while their total-order in-
dices are 55 % and 40 %. Next in sensitivity are β and Topt,
both of which are associated with temperature stress factors
in canopy conductance estimation, with total-order indices of
18 % and 15 %, respectively. Other parameters such as rtot,
k, n, b2, and rc, which are involved in soil evaporation and
canopy conductance, exhibit relatively low sensitivity, with
total-order indices of 8 %, 5 %, 5 %, 2 %, and 1 % respec-
tively. Parameters related to temperature and VPD thresholds
(Tclose_min, Tclose_max, VPDopen, and VPDclose) are insensi-
tive, with first-order and total-order indices close to 0. To
summarize, among 13 parameters in the P-LSHv2 algorithm,
b1 and b3 are the most sensitive, while β and Topt have mod-
erate sensitivity. The rtot, k, n, b2, and rc exhibit weak sen-
sitivity, and Tclose_min, Tclose_max, VPDopen, and VPDclose are
found to be insensitive. Consequently, in subsequent parame-
ter uncertainty analysis, these four insensitive parameters are
removed, and the remaining nine sensitive parameters are re-
tained for optimization.

The Differential Evolution Markov Chain (DE-MC)
method is used for parameter calibration, with the root mean
square error (RMSE) as the objective function, as well as the
Nash-Sutcliffe efficiency coefficient (NSE) and coefficient
of determination (R2) to quantify mismatches. 10 Markov
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Figure 3. The (a) first-order sensitivity index and (b) total-order sensitivity index of the parameters across diverse land cover types and
climate zones. The average values of diverse zones are shown in (c).

chains were set to perform 20 000 iterations for parallel
crossover operations, with a burn-in period of 5000 itera-
tions. Each parameter can converge stably across all 17 sce-
narios. The posterior distributions of parameters, with 95 %
high probability intervals, are shown in Fig. 4. Compared
with the wider prior intervals, most parameters show signifi-
cant updating and reduction in uncertainty.

In general, all parameters exhibited considerable variabil-
ity across scenarios, reflecting the diverse responses of differ-
ent vegetation and soil to the ET process in diverse climates.
Among all biome-and-climate-specific parameters, the pa-
rameter n, which quantifies the soil moisture constraint on
vegetation transpiration, warrants further discussion. In all
land cover types except EBF and CRO, n is noticeably higher
in dry zones compared to wet zones, indicating stronger soil
moisture constraints in dry regions. In almost all wet zones,
except for OSH and SAV, n is close to 0, suggesting negli-
gible soil moisture constraints. Even wet OSH and wet SAV
represent weak constraint levels, with n of 23.1 and 19.8, re-
spectively. The n values vary widely in dry zones, with the
highest 92.9 of OSH, suggesting that only 7.1 % of the sam-
ples are not stressed by soil moisture. The lowest n in dry
zones is 0 of CRO, suggesting that the cropland ecosystem

is still not affected by soil moisture even in dry zones. This
is because cropland ecosystem is generally subject to regu-
lar irrigation schedules, which ensure sufficient water supply
for crop growth and ET dissipation, while the identification
of climate zones only considers precipitation and potential
ET without accounting for irrigation. Further discussion on
uncertainties related to cropland moisture constraint is avail-
able in Sect. 4.5. Compared to shrublands and grasslands, the
soil moisture constraint of forest towers is generally low. This
may partially be attributed to the deep root system of forests,
which extends beyond the monitoring coverage of the sur-
face layer. Even so, the surface soil moisture still captures a
certain level of moisture constraints on forest ET, with n val-
ues of 24.9, 7.8, and 16.0 for dry ENF, dry DBF, and dry MF,
respectively.

In each specific scenario, the parametern is treated as a
constant. Therefore, by combining global patterns of land
cover types and climate zones, the spatial patterns of n are
plotted in Fig. 5, revealing distinct gradients dominated by
surface land cover and climate. The regions where n value
exceeds 80, 50, and 20 account for 10.2 %, 36.0 %, and
44.8 % of the global vegetation area, respectively. The re-
gions with strong constraints are primarily located in the
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Figure 4. Boxplots showing the 95 % highest posterior density intervals of parameters across diverse land cover types and climate zones.
The red lines indicate the medians, gray dots represent outliers, and black dashed lines mark the bounds of the uniform prior distributions.

Figure 5. Global map of the parameter n on vegetation areas cov-
ering 9 land cover types.

Patagonian Plateau of South America, the western United
States, central and southern Africa, central Asia, Oceania,
and parts of the pan-Arctic where dry shrublands and grass-
lands are typically dominant. In contrast, regions with weak
or no moisture constraints are concentrated in forests, crop-
lands, and most other wet areas.

The g0∼NDVI curves, determined by parameters b1, b2,
and b3, are plotted in Fig. 6. Despite sharing a similar
sigmoid-type structure, these curves exhibit distinct biologi-
cal and climatic differences, reflecting variations in leaf traits
and physiology. In ENF, DBF, SAV, and GRA, the curves
for dry and wet zones are largely consistent, indicating that
vegetation stomata respond similarly to NDVI, regardless of
climate. However, in some specific NDVI intervals, the cor-
responding g0 in dry zones is notably higher than that in wet

zones for MF, OSH, WSA, and CRO types. One explanation
is that this is caused by the actual response mechanism of
vegetation stomata under different climates, indicating that
even in the same ecosystem, different climates have an es-
sential impact on the maximum stomatal conductance. More
importantly, some vegetation in dry zones is subject to strong
moisture constraints from VPD and soil moisture simulta-
neously. In these cases, the linear structure of constraints in
our scheme may reinforce the moisture constraint, which is
then compensated for in the potential stomatal conductance
response curve.

4.2 Performance related to flux towers

We estimated daily ET at 106 global flux towers using the
optimized P-LSHv2 algorithm, driven by tower-based mea-
surements of radiation, meteorology, soil moisture, and re-
mote sensing-based NDVI. The estimated ET was then com-
pared against flux tower measurements for evaluation. Due
to the limited samples of flux towers in each scenario, the
samples were not divided into calibration and validation
groups. Instead, all samples were used for parameter cali-
bration (i.e. calibration mode) to evaluate the algorithm per-
formance. The ET estimates of P-LSHv2 and P-LSHv1 were
evaluated at each flux tower, as illustrated in Fig. 7. Over-
all, the P-LSHv2 algorithm is significantly upgraded. The
average RMSE across 106 flux towers drops from 0.79 to
0.67 mm d−1, a decrease of 15.2 %. Similarly, the average
NSE increases from 0.43 to 0.58, while the average R2 sees
an increase from 0.62 to 0.67. Among various land cover
types, DBF, MF, OSH, WSA, and SAV experienced the most
pronounced improvements, with RMSE reduction exceeding
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Figure 6. The sigmoid-type response curve between g0 and NDVI.
The colors represent climate zones and n is the parameter to control
soil moisture constraints.

0.15 mm d−1, NSE rise level exceeding 0.15, and R2 rise
level ranging from 0.03 to 0.17.

The differences between the two algorithms are more dis-
tinct when comparing ET estimations in wet and dry zones.
On one hand, the ET estimation in dry zones is generally
worse than that in wet zones, the average RMSE of the P-
LSHv1 algorithm is 0.89 and 0.70 mm d−1 (dry zone versus
wet zone), and the average RMSE of the P-LSHv2 algorithm
is 0.75 and 0.60 mm d−1 (dry zone versus wet zone). This
demonstrates that the physical ET process in dry zones is
generally more challenging to simulate than in wet zones.
On the other hand, the rising level of the P-LSHv2 estima-
tion in dry zones is higher than that in wet zones. Among
all 106 towers, the dry towers show an RMSE decrease of
0.14 mm d−1, an NSE increase of 0.19, and an R2 increase
of 0.07, compared to RMSE reductions of 0.10 mm d−1, NSE
improvements of 0.12, andR2 gains of 0.04 in wet zones. We
selected several typical dry towers to compare daily ET esti-
mations between two algorithms, as shown in Fig. 8. At these
towers, particularly US-Me6, US-Whs, and US-SRM, the ET
estimations significantly improved during water-limited peri-
ods, with low values effectively constrained. The three tow-
ers represent ENF, OSH, and WSA, respectively, with high n
values (24.9, 92.9, and 58.8) and heavy moisture constraints,
which further demonstrates the reliability of moisture con-
straint scheme in P-LSHv2 algorithm. These findings sug-
gest that although the new algorithm has been upgraded in
both zones, the soil moisture constraint plays a more essen-
tial role in ET simulation in dry zones than in wet zones.

Due to limited samples, all tower measurements for each
scenario, covering the entire period of available records, were

used for parameter calibration in the preceding parameter
characteristic analysis and algorithm evaluation. To further
illustrate the robustness of the P-LSHv2 algorithm and its
parameter optimization scheme, we designed another con-
trolled trial using the leave-one-out cross-validation method.
In this trial, daily ET measurements from all flux towers
within each scenario were randomly split into two groups
– one for model calibration and the other serving as the ref-
erence truth value for validation using the optimized param-
eters. This process was repeated twice to ensure that both
groups were used both for calibration and validation. The
pink and dark symbols in Fig. 9 almost overlap, representing
calibration and cross-validation modes respectively, indicat-
ing that the performance of the P-LSHv2 algorithm in cross-
validation mode is nearly identical to that in the calibration
mode. When rounded to two decimal places, no differences
are observed compared to the calibration mode. The largest
difference is observed in wet WSA types, where the RMSE
difference is only 0.014 mm d−1. These results confirm that
the P-LSHv2 algorithm outperforms the P-LSHv1 algorithm
in both the calibration and cross-validation modes, demon-
strating its stability and robustness in the calibration mode
across all climatic and land cover types.

4.3 Multiscale comparison of the P-LSHv2 results with
the other remote sensing products at the basin scale

The P-LSHv2 algorithm is further evaluated with other
global remote sensing ET datasets. Since these datasets are
raster-based and derived from remote sensing and reanaly-
sis, their evaluation against flux towers typically encounters
issues related to spatial scale inconsistency and upscaling ac-
curacy. Therefore, the reconstructed values from the water
balance method (ETrecon) at the basin scale are selected as
the benchmark to assess the performance of various datasets
at monthly, annual, and multiyear levels.

4.3.1 Comparison of ET remote sensing products
across the CONUS

We evaluated gridded ET estimation of 592 basins across
CONUS from the P-LSHv2 algorithm, using the recon-
structed values from the water balance method as the bench-
mark. The results were also compared with the P-LSHv1 al-
gorithm and two mainstream products: GLEAM and PML.

At the monthly level, the ET estimation from P-LSHv2
agrees well with ETrecon, accounting for 71 % of the varia-
tion, with an RMSE of 21.4 mm month−1 and an NSE of 0.71
(Fig. 10). Compared to P-LSHv1, the RMSE value drops by
7.3 %. Moreover, the performance of P-LSHv2 is compara-
ble to that of GLEAM and PML, with acceptable agreement
considering the large number of basins and the relatively fine
temporal resolution.

Furthermore, we aggregated various monthly ET estima-
tions on an annual basis. On the annual level, the ET estima-
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Figure 7. Comparison of ET estimates from the P-LSHv2 algorithm (black circles) and the P-LSHv1 algorithm (gray circles) at 106 flux
towers. Each circle represents a flux tower. The right panels summarize statistical metrics across all sites, as well as separately for dry and
wet conditions. RMSE: root mean square error; NSE: Nash-Sutcliffe efficiency; R2: coefficient of determination.

tion from P-LSHv2 upgrades significantly from its predeces-
sor, with an RMSE dropping from 114.4 to 104.4 mm yr−1,
a decrease of 8.7 % (Fig. 10). Particularly in arid areas (i.e.,
the basin average AI< 0.65), the P-LSHv2 results effectively
correct the overestimation seen in P-LSHv1, reducing the
deviation from −44.1 to 27.2 mm yr−1. In the driest basins
(AI< 0.3), the deviation is reduced even further, from−64.2
to 13.8 mm yr−1. These improvements highlight the efficacy
of the soil moisture constraints in P-LSHv2, especially in
modelling water availability in arid regions. From the per-
spective of RMSE, NSE, and R2, the ET estimation from
P-LSHv2 is also better than that from GLEAM and PML
(Fig. 10), with an RMSE of 104.4 mm yr−1, an NSE of 0.77
and an R2 of 0.80.

As for the multiyear average scale, the P-LSHv2 results
have an RMSE value of 80.4 mm yr−1, a decrease of 13.2 %
compared to its predecessor. In regions with high ET density
(around 400 mm yr−1), both P-LSHv2 and GLEAM, which
account for soil moisture constraints, deliver accurate ET
estimates, while PML and P-LSHv1 tend to overestimate,
which is an understandable result of their failure to account
for soil moisture constraints. In mid-to-high ET intervals
(500 to 1000 mm yr−1), GLEAM shows higher uncertainty
than P-LSHv2, as reflected in its lower NSE and R2 values,
indicating the significant impact of different soil moisture
constraint schemes on ET estimation.

The P-LSHv2 ET estimation also captures spatial gra-
dients across CONUS, with a general relative deviation
of −5.7 %, significantly lower than the 8.8 % deviation of
P-LSHv1. About 95.5 %, 78.0 %, and 35.7 % of the area
(weighted by size) have relative deviations within ±30 %,

±15 %, and ±5 %, respectively. Only about 5 % of the area
experiences underestimation or overestimation beyond 30 %.
Considerable underestimations are scattered across the Col-
orado basin, California basin, and parts of the northeast
and northwest, while overestimations are concentrated in the
West Gulf and North Central basins (Fig. 11). These devia-
tions are likely influenced by reservoir control and interbasin
water transfers, which are not accounted for in the model
(Wan et al., 2015). Additionally, uncertainties in input data
such as precipitation (Daly et al., 2008) and water storage
(Landerer and Swenson, 2012) contribute to discrepancies
in ET reconstruction. Despite these localized deviations, the
general close spatial patterns and minimal differences indi-
cate the high reliability and robustness of P-LSHv2 across
CONUS.

4.3.2 Comparison of ET remote sensing products
across global large basins

Apart from CONUS, we also investigated the differences be-
tween various remote sensing ET datasets across 32 large
basins around the world. Given that the ETrecon of these
basins spans 1984 to 2006, the shorter PML dataset, which
starts from 2002, is excluded.

On the monthly level, GLEAM, P-LSHv1, and P-LSHv2
all accurately capture seasonal ET variations across these
basins (Fig. 12), with RMSE values below 15 mm month−1

and R2 values exceeding 0.89. Among them, P-LSHv2
achieves the lowest RMSE (9.8 mm month−1), improving ac-
curacy by 22.8 % over P-LSHv1 and aligning more closely
with ETrecon than GLEAM.
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Figure 8. Time series of daily measured and modelled latent heat flux (LE: W m−2) using the P-LSHv2 and P-LSHv1 algorithms for typical
dry towers.

Figure 9. Taylor diagram evaluating the P-LSHv2 and P-LSHv1 algorithms across all scenarios. Different symbols represent different land
cover types. The blue, pink, and dark brown represent the ET estimation statistics from the P-LSHv1 algorithm, the P-LSHv2 algorithm in
calibration mode, and the P-LSHv2 algorithm in cross-validation mode, respectively.
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Figure 10. Comparison of monthly, yearly, and multiyear average ET derived from four remote sensing datasets (ETRS) and ETrecon on 592
basins of CONUS. Colors are used to represent density, with red representing high density and blue representing low density.

At the annual scale, P-LSHv2 demonstrates a 34.6 %
improvement in accuracy over P-LSHv1 and shows better
agreement with ETrecon than GLEAM. Both GLEAM and P-
LSHv1 tend to overestimate ET in these 32 basins (Fig. 12),
with respective relative deviations of −23.4 % and −20.0 %,
whereas P-LSHv2 reduces the deviation to −10.9 %, indi-
cating that soil moisture constraint incorporated in our algo-
rithm plays an essential role in correcting the overestimation.
Compared to the other two datasets, P-LSHv2 particularly
agrees well in the low-value intervals below 300 mm yr−1

and the high-value intervals above 800 mm yr−1.
The patterns of multiyear (from 1984 to 2006) average ET

estimations of each dataset are similar to those of the an-
nual basis, and P-LSHv2 has lower RMSE, higher NSE, and
higher R2 than the other datasets (Fig. 12). These compar-
isons confirm that P-LSHv2 performs well in capturing ET
patterns across various climate zones and ecosystems around
the world.

The spatial patterns of deviations from different datasets
vary significantly across 32 basins (Fig. 13). GLEAM and
P-LSHv1 show relative deviations exceeding 20 % in 19
and 20 basins, respectively, while P-LSHv2 has deviations
above 20 % in only 10 basins. In basins such as the Ama-
zon, Parana, Mississippi, Niger, Danube, Indus, and Murray-
Darling, the deviations of the three datasets all fall within
±20 %, demonstrating their strong capability in representing
ET budgets at large basin scales. However, some overesti-
mation persists across datasets, notably in the Yukon, Nile,
Ural, Indigirka, Amur, and Yangtze basins. This overestima-
tion may be attributed to uncertainties in the water balance
model. Since the benchmark data extend to the pre-GRACE
era, Pan et al. (2012) drove the Variable Infiltration Capacity
hydrological model to simulate water storage changes, in-
troducing potential errors despite employing Kalman filter
techniques to correct for balance errors. Despite some uncer-
tainties, P-LSHv2 has better agreement with ETrecon in most
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Figure 11. Spatial patterns of multiyear average ET from ETrecon
and P-LSHv2 and their difference (RE) on 592 basins of CONUS.

basins and shows better accuracy than other remote sensing
datasets.

4.4 Global ET patterns

We calculated the global daily terrestrial ET at a spa-
tial resolution of 1/12° from 1982 to 2023 using the im-
proved P-LSHv2 algorithm, excluding permanent snow and
ice. The global multiyear average ET reveals distinct re-
gional variations and latitudinal gradients (Fig. 14). The area-
weighted global terrestrial multiyear average ET of P-LSHv2
is 524.8 mm yr−1, lower than the 562.2 mm yr−1 estimated
by P-LSHv1. In dry and wet zones, the area-weighted mul-
tiyear averages of P-LSHv2 are 358.8 and 761.4 mm yr−1,
respectively, both lower than the corresponding estimates of
383.8 and 816.4 mm yr−1 from P-LSHv1. The spatial pat-
terns between the two datasets are generally similar, with
deviations between P-LSHv2 and P-LSHv1 falling within
±100 mm yr−1 for 56.6 % of area-weighted regions. In con-
trast, 29.5 % of the area shows a negative deviation be-
low −100 mm yr−1 and 14.0 % of the area shows a posi-
tive deviation above 100 mm yr−1. The overestimations of P-
LSHv1 are particularly concentrated in regions such as the

Andes Mountains and Patagonia Plateau of South America,
southern North America, and central and southern Africa.
These areas are typically composed of OSH, WSA, and SAV
biomes, where P-LSHv2 accounts for substantial soil mois-
ture constraints. The higher estimates of P-LSHv2 are lo-
cated in open water bodies (Great Lakes and the Caspian
Sea), bare soils (Sahara Desert, Arabian Peninsula, and cen-
tral Asia), and some grasslands in wet-dry boundary regions
of the Southern hemisphere.

In terms of temporal trends, the P-LSHv2 dataset follows
a similar trajectory to its predecessor, both exhibiting signif-
icant upward trends (Fig. 15). However, the linear upward
trend of P-LSHv2 from 1982 to 2015 is 0.69 mm yr−2 (p <
0.001), slightly lower than that of P-LSHv1, with a trend of
0.87 mm yr−2 (p < 0.001). The trend of P-LSHv2 is com-
parable to PML (0.68 mm yr−2), and higher than GLEAM
(0.38 mm yr−2). P-LSHv2 ET increased by 0.46 mm yr−2

(p < 0.001) from 1982 to 2023, although the rate of increase
appears to have slowed in recent years.

5 Discussion

Although the P-LSHv2 dataset has good accuracy at multiple
temporal and spatial levels around the world, there are still
some limitations and uncertainties of the algorithm that are
worth discussing.

Soil structural heterogeneity plays a crucial role in regu-
lating root development and water availability, which further
constrain ET. Looser soils facilitate root penetration, while
denser soils can retain water at higher matric potentials, thus
extending water availability during dry periods. These phys-
ical characteristics influence not only the spatial distribution
of roots but also the efficiency of root water uptake and over-
all transpiration dynamics. Incorporating soil hydraulic prop-
erties (e.g., soil water retention curves and hydraulic con-
ductivity) would ideally allow more accurate constraint of
soil moisture availability in evapotranspiration estimation.
However, global soil hydraulic datasets remain highly un-
certain due to limited in situ observations, spatial variability,
and differences in pedotransfer function assumptions. To ad-
dress this challenge, we adopted a simplified quantile-based
method to parameterize the soil moisture constraint function
in our P-LSHv2 algorithm. Specifically, the parameter n was
determined based on land cover and climate types, which
serve as proxies for large-scale heterogeneity in both soil
properties and vegetation root strategies.

In addition, the soil moisture data used in this study are
derived from the GLDAS Noah land surface model rather
than satellite remote sensing products. This choice is due
to the challenges in obtaining over 40 years of continuous
global remote sensing data. The GLDAS Noah model ef-
fectively captures seasonal variations and anomalies in soil
moisture (Chen and Yuan, 2020; Spennemann et al., 2020)
and performs well in ET moisture constraints (Feng et al.,
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Figure 12. Comparison of monthly, yearly, and multiyear average ET derived from three remote sensing datasets (ETRS) and ETrecon on 32
global large basins.

2023). We used data from versions 2.0 and 2.1, covering the
period from 1982 to 2023, without applying data fusion, as
they originate from the same model and data source. In the
P-LSHv2 algorithm, we used surface soil moisture as a mois-
ture constraint surrogate for the entire soil layer. On the one
hand, the current satellite remote sensing retrievals struggle
to capture soil moisture characteristics of deep layers, and
uncertainties associated with deep soil moisture from reanal-
ysis or land surface models are generally greater than those
from surface layers. On the other hand, the root zone depth
of most tree species tends to be relatively shallow (Flo et al.,
2022; Tumber-Dávila et al., 2022), and correlations between
soil moisture thresholds at varying depths have been reported
(Fu et al., 2022b). Regardless, further model refinement and
testing of the P-LSHv2 algorithm could be conducted when
high-quality root zone soil moisture datasets become avail-
able.

Although GLDAS data were used for soil moisture in-
puts, the other meteorological forcing variables – including

air temperature, vapor pressure, and wind speed – were ob-
tained from the NCEP2 reanalysis dataset. This choice en-
sures consistency with the original version of our algorithm
(Zhang et al., 2015), enabling a fair comparison of model
improvements independent of changes in input data. How-
ever, we acknowledge that reanalysis datasets have substan-
tially improved in both spatial resolution and methodological
sophistication in recent years, and NCEP2 may not capture
fine-scale meteorological variability as accurately as newer
products. On one hand, the relatively coarse resolution of
NCEP2 may lead to an underestimation of spatial hetero-
geneity after interpolation to finer grids. Although the spatial
variability of air temperature, vapor pressure, and wind speed
is generally lower than that of precipitation or radiation, the
coarse resolution could still smooth out meaningful local
variations, introducing moderate uncertainty. On the other
hand, biases inherent in NCEP2 – such as systematic overes-
timation or underestimation of specific variables – may prop-
agate through the model and affect the magnitude and spatial
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Figure 13. Spatial patterns of relative deviations of multiyear aver-
age ET from three remote sensing datasets on 32 global large basins.

pattern of ET simulations. Given these limitations, adopting
higher-resolution and more recent reanalysis products repre-
sents a valuable direction for future studies, as it could im-
prove the representation of local-scale meteorological vari-
ability and reduce uncertainties associated with coarse in-
put data.Apart from the forcing data used for ET estimation,
there are still certain uncertainties in other ET observations
or reconstructions used for algorithm calibration and verifi-
cation. For instance, the heat flux measurements from eddy
covariance towers may suffer from energy imbalance due to
the complex circumstances of wind, footprint, and sampling
variability (Wilson et al., 2002). However, it has been shown
that there is little difference between daily latent heat flux
without the energy closure correction and after the correc-
tion (He et al., 2022), and the uncorrected latent heat flux is

also widely used in the evaluation of ET models (Mu et al.,
2011; Zhang et al., 2010). As for the benchmark data from
592 basins across CONUS and 32 global large basins, both
introduced water storage change data from land surface mod-
els to either downscale or extend temporal coverage, which
leads to some uncertainty in small basins or extended years.
In the future, further enhancing the reliability of flux tower
observations and water balance reconstructions will promote
the development of ET algorithms and models.

Besides, the interaction between soil moisture and ET has
not been explicitly considered in this study. We have used ex-
isting soil moisture data as an input to estimate ET, without
simulating the feedback loop between them. This is primar-
ily due to the focus of this study on assessing the impact of
soil moisture on ET estimations. However, it is recognized
that SM and ET interact dynamically, and this is a limita-
tion of the current approach. Future work could incorporate
the interaction between soil moisture and ET to improve the
model’s representation of soil water dynamics.

Interestingly, our analysis revealed that dry zones gen-
erally experience higher soil moisture constraints than wet
zones across most land cover types, with cropland being a
notable exception. Contrary to other scenarios where transpi-
ration in dry zones is severely limited by soil moisture, flux
tower data indicated that the parameter n of cropland ecosys-
tem was 0 for both dry and wet zones, suggesting that neither
was water-limited. Further investigation into five dry crop-
land towers showed that three of them (US-Ne2, US-Twt, and
IT-CA2) were subject to irrigation exceeding 50 mm yr−1,
a factor not accounted for in our climate zone classifica-
tion. According to the global irrigation dataset from Zhang
et al. (2022a), climate zones, and land cover type data used
in this study, approximately 56.5 % of global dry cropland
is sufficiently irrigated, primarily located in eastern China,
India, and central North America. Understanding how to ac-
curately quantify the unique characteristics of irrigated ar-
eas within the soil moisture constraint framework presents a
compelling avenue for future ET simulation research.

Moreover, the current climate zone classification based
on the aridity index (AI) may misrepresent energy-limited
ecosystems, such as partitioning energy-limited cold land ar-
eas, including northern taiga and tundra, into the dry cli-
mate category. This is because AI is calculated as the ra-
tio of precipitation to potential evapotranspiration (P /PET),
which may lead to low AI values even when surface soils
remain moist during summer growing season. As a result,
these high-latitude regions may exhibit apparent soil mois-
ture constraints and model underestimation of ET, despite
being primarily limited by energy rather than water. While
AI offers a globally consistent framework, future work could
benefit from incorporating growing season length, energy in-
puts, and phenology to better represent cold-region ecohy-
drology in large-scale ET modeling.
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Figure 14. Global map of multiyear average ET from P-LSHv2 (1982–2023) and P-LSHv1 (1982–2015), as well as their differences and
latitudinal profiles.

Figure 15. Annual global ET estimates derived from P-LSHv1 and
P-LSHv2.

6 Data availability

All input data used in this study are freely avail-
able (see Sect. 3). The P-LSHv2 ET dataset is freely
available at the National Tibetan Plateau Data Cen-
ter (https://doi.org/10.11888/Terre.tpdc.301969, Feng and
Zhang, 2025). Daily, monthly, and yearly datasets are pro-

vided. The dataset is published under the Creative Commons
Attribution 4.0 International (CC BY 4.0) license.

7 Conclusion

In this study, we incorporated a new global soil moisture con-
straint scheme into ET estimation and developed a new ver-
sion of remote sensing ET algorithm (P-LSHv2). The biome-
and climate-specific parameters and soil moisture constraint
levels were calibrated using 106 flux towers around the
world. The calibration and cross-validation modes at the flux
towers showed that the new algorithm is robust, and the im-
provement in the towers’ ET simulation for dry zones is
higher than that for wet zones. The investigation of flux tow-
ers also quantified the moisture constraint levels across di-
verse land cover types and climate zones, revealing that con-
straints in dry zones generally surpass those in wet zones,
particularly for dry OSH, GRA, and SAV biomes. To eval-
uate the P-LSHv2 algorithm, we employed two ET bench-
marks reconstructed using water balance methods, assess-
ing performance across multiple temporal scales at the basin
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level. The P-LSHv2 estimation effectively captures the im-
pact of soil moisture anomalies on ET, outperforming P-
LSHv1, GLEAM, and PML datasets. Consequently, the P-
LSHv2 algorithm provides a more realistic representation of
ET processes, and the overall quality of the dataset has been
improved, especially in areas where available water is lim-
ited. Based on the P-LSHv2 algorithm, a reliable and con-
tinuous long-term global ET dataset spanning from 1982 to
2023 has been generated, which contributes to the global as-
sessment of ET climatology and a better understanding of
terrestrial water and energy cycle dynamics under climate
change conditions.

Appendix A

Table A1. Details of 106 flux towers used for calibration and validation of ET algorithm.

Site code Site name Latitude Longitude IGBP Years Network Arid Index Climate Zone

CA-Man Manitoba – Northern
Old Black Spruce
(former BOREAS
Northern Study Area)

55.880 −98.481 ENF 1994–2008 FLUXNET 0.72 wet

CA-NS2 UCI-1930 burn site 55.906 −98.525 ENF 2001–2005 FLUXNET 0.72 wet

CA-NS3 UCI-1964 burn site 55.912 −98.382 ENF 2001–2005 FLUXNET 0.72 wet

CN-Qia Qianyanzhou 26.741 115.058 ENF 2003–2005 FLUXNET 1.21 wet

DE-Lkb Lackenberg 49.100 13.305 ENF 2009–2013 FLUXNET 1.69 wet

DE-Obe Oberbärenburg 50.787 13.721 ENF 2008–2014 FLUXNET 1.03 wet

DE-Tha Tharandt 50.962 13.565 ENF 1996–2014 FLUXNET 0.86 wet

FI-Hyy Hyytiala 61.847 24.295 ENF 1996–2014 FLUXNET 1.04 wet

FI-Sod Sodankylä 67.362 26.638 ENF 2001–2014 FLUXNET 0.96 wet

FR-LBr Le Bray 44.717 −0.769 ENF 1996–2008 FLUXNET 0.87 wet

NL-Loo Loobos 52.167 5.744 ENF 1996–2014 FLUXNET 1.09 wet

RU-Fyo Fyodorovskoye 56.462 32.922 ENF 1998–2014 FLUXNET 0.95 wet

US-Blo Blodgett Forest 38.895 −120.633 ENF 1997–2007 FLUXNET 0.84 wet

US-Me2 Metolius mature
ponderosa pine

44.452 −121.557 ENF 2002–2014 FLUXNET 0.65 wet

AU-ASM Alice Springs −22.283 133.249 ENF 2010–2014 FLUXNET 0.12 dry

CA-SF1 Saskatchewan –
Western Boreal, forest
burned in 1977

54.485 −105.818 ENF 2003–2006 FLUXNET 0.61 dry
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Table A1. Continued.

Site code Site name Latitude Longitude IGBP Years Network Arid Index Climate Zone

CA-SF2 Saskatchewan –
Western Boreal, forest
burned in 1989

54.254 −105.878 ENF 2001–2005 FLUXNET 0.59 dry

IT-Lav Lavarone 45.956 11.281 ENF 2003–2014 FLUXNET 0.64 dry

US-GBT GLEES Brooklyn
Tower

41.366 −106.240 ENF 1999–2006 FLUXNET 0.44 dry

US-GLE GLEES 41.367 −106.240 ENF 2004–2014 FLUXNET 0.44 dry

US-Me6 Metolius Young Pine
Burn

44.323 −121.608 ENF 2010–2014 FLUXNET 0.50 dry

US-NR1 Niwot Ridge Forest
(LTER NWT1)

40.033 −105.546 ENF 1998–2014 FLUXNET 0.43 dry

AU-Cum Cumberland Plains −33.613 150.723 EBF 2012–2014 FLUXNET –∗ –

AU-Tum Tumbarumba −35.657 148.152 EBF 2001–2014 FLUXNET – –

AU-Whr Whroo −36.673 145.029 EBF 2011–2014 FLUXNET – –

BR-Sa3 Santarem-Km83-
Logged
Forest

−3.018 −54.971 EBF 2000–2004 FLUXNET – –

CN-Din Dinghushan 23.173 112.536 EBF 2003–2005 FLUXNET – –

GF-Guy Guyaflux (French
Guiana)

5.279 −52.925 EBF 2004–2014 FLUXNET – –

MY-PSO Pasoh Forest Reserve
(PSO)

2.973 102.306 EBF 2003–2009 FLUXNET – –

DE-Hai Hainich 51.079 10.453 DBF 2000–2012 FLUXNET 0.93 wet

FR-Fon Fontainebleau-Barbeau 48.476 2.780 DBF 2005–2014 FLUXNET 0.68 wet

US-Ha1 Harvard Forest EMS
Tower (HFR1)

42.538 −72.172 DBF 1991–2012 FLUXNET 1.09 wet

US-UMB Univ. of Mich.
Biological Station

45.560 −84.714 DBF 2000–2014 FLUXNET 0.82 wet

US-UMd UMBS Disturbance 45.563 −84.698 DBF 2007–2014 FLUXNET 0.82 wet

PA-SPn Sardinilla Plantation 9.318 −79.635 DBF 2007–2009 FLUXNET 1.60 wet

JP-MBF Moshiri Birch Forest
Site

44.387 142.319 DBF 2003–2005 FLUXNET 1.53 wet

IT-CA1 Castel d’Asso 1 42.380 12.027 DBF 2011–2014 FLUXNET 0.24 dry

IT-CA3 Castel d’Asso 3 42.380 12.022 DBF 2011–2014 FLUXNET 0.24 dry

ZM-Mon Mongu −15.438 23.253 DBF 2000–2009 FLUXNET 0.39 dry

CA-Oas Saskatchewan –
Western Boreal,
Mature Aspen

53.629 −106.198 DBF 1996–2010 FLUXNET 0.55 dry

CN-Cha Changbaishan 42.403 128.096 MF 2003–2005 FLUXNET 0.77 wet

US-Syv Sylvania Wilderness
Area

46.242 −89.348 MF 2001–2014 FLUXNET 0.95 wet
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Table A1. Continued.

Site code Site name Latitude Longitude IGBP Years Network Arid Index Climate Zone

CA-Gro Ontario – Groundhog
River, Boreal
Mixedwood Forest

48.217 −82.156 MF 2003–2014 FLUXNET 0.95 wet

BE-Bra Brasschaat 51.308 4.520 MF 1996–2014 FLUXNET 0.95 wet

BE-Vie Vielsalm 50.305 5.998 MF 1996–2014 FLUXNET 1.40 wet

DE-Meh Mehrstedt 51.275 10.655 MF 2003–2006 European Flux 0.86 wet

AR-SLu San Luis −33.465 −66.460 MF 2009–2011 FLUXNET 0.21 dry

CZ-Lnz Lanzhot 48.682 16.946 MF 2015–2020 European Flux 0.63 dry

FR-FBn Font-Blanche 43.241 5.679 MF 2008–2018 European Flux 0.46 dry

IT-Non Nonantola 44.690 11.091 MF 2001–2018 European Flux 0.60 dry

CA-NS6 UCI-1989 burn site 55.917 −98.964 OSH 2001–2005 FLUXNET 0.70 wet

CA-NS7 UCI-1998 burn site 56.636 −99.948 OSH 2002–2005 FLUXNET 0.69 wet

US-Wi6 Pine barrens #1 (PB1) 46.625 −91.298 OSH 2002–2003 FLUXNET 0.85 wet

US-Wi7 Red pine clearcut
(RPCC)

46.649 −91.069 OSH 2005–2005 FLUXNET 0.85 wet

AU-TTE Ti Tree East −22.287 133.640 OSH 2012–2014 FLUXNET 0.09 dry

CA-SF3 Saskatchewan –
Western Boreal, forest
burned in 1998

54.092 −106.005 OSH 2001–2006 FLUXNET 0.58 dry

US-Whs Walnut Gulch Lucky
Hills Shrub

31.744 −110.052 OSH 2007–2014 FLUXNET 0.15 dry

BR-Npw Northern Pantanal
Wetland

−16.498 −56.412 WSA 2013–2017 AmeriFlux 0.87 wet

RU-Zot Zotino 60.801 89.351 WSA 2002–2004 European Flux 0.85 wet

AU-Ade Adelaide River −13.077 131.118 WSA 2007–2009 FLUXNET 0.62 dry

AU-Gin Gingin −31.376 115.714 WSA 2011–2014 FLUXNET 0.32 dry

AU-RDF Red Dirt Melon Farm,
Northern Territory

−14.564 132.478 WSA 2011–2013 FLUXNET 0.39 dry

US-SRM Santa Rita Mesquite 31.821 −110.866 WSA 2004–2014 FLUXNET 0.19 dry

US-Ton Tonzi Ranch 38.432 −120.966 WSA 2001–2014 FLUXNET 0.33 dry

CG-Tch Tchizalamou −4.289 11.656 SAV 2006–2009 FLUXNET 1.09 wet

US-LL1 Longleaf Pine – Baker
(Mesic site)

31.279 −84.533 SAV 2009–2020 AmeriFlux 0.83 wet

US-LL2 Longleaf Pine –
Dubignion
(Intermediate site)

31.201 −84.445 SAV 2009–2017 AmeriFlux 0.83 wet

US-LL3 Longleaf Pine – Red
Dirt (Xeric site)

31.269 −84.479 SAV 2009–2017 AmeriFlux 0.83 wet

AU-Cpr Calperum −34.002 140.589 SAV 2010–2014 FLUXNET 0.12 dry

AU-DaS Daly River Cleared −14.159 131.388 SAV 2008–2014 FLUXNET 0.48 dry
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Table A1. Continued.

Site code Site name Latitude Longitude IGBP Years Network Arid Index Climate Zone

AU-Dry Dry River −15.259 132.371 SAV 2008–2014 FLUXNET 0.34 dry

SD-Dem Demokeya 13.283 30.478 SAV 2005–2009 FLUXNET 0.10 dry

SN-Dhr Dahra 15.403 −15.432 SAV 2010–2013 FLUXNET 0.14 dry

ZA-Kru Skukuza −25.020 31.497 SAV 2000–2013 FLUXNET 0.37 dry

AT-Neu Neustift 47.117 11.318 GRA 2002–2012 FLUXNET 1.31 wet

CH-Cha Chamau 47.210 8.410 GRA 2005–2014 FLUXNET 1.38 wet

CH-Fru Früebüel 47.116 8.538 GRA 2005–2014 FLUXNET 1.63 wet

CH-Oe1 Oensingen grassland 47.286 7.732 GRA 2002–2008 FLUXNET 1.37 wet

DE-RuR Rollesbroich 50.622 6.304 GRA 2011–2014 FLUXNET 1.38 wet

IT-Tor Torgnon 45.844 7.578 GRA 2008–2014 FLUXNET 1.24 wet

NL-Hor Horstermeer 52.240 5.071 GRA 2004–2011 FLUXNET 1.09 wet

AU-DaP Daly River Savanna −14.063 131.318 GRA 2007–2013 FLUXNET 0.50 dry

AU-Rig Riggs Creek −36.650 145.576 GRA 2011–2014 FLUXNET 0.37 dry

AU-Stp Sturt Plains −17.151 133.350 GRA 2008–2014 FLUXNET 0.23 dry

CN-Cng Changling 44.593 123.509 GRA 2007–2010 FLUXNET 0.32 dry

CN-Dan Dangxiong 30.498 91.066 GRA 2004–2005 FLUXNET 0.33 dry

CN-Du2 Duolun_grassland
(D01)

42.047 116.284 GRA 2006–2008 FLUXNET 0.33 dry

CN-Sw2 Siziwang Grazed
(SZWG)

41.790 111.897 GRA 2010–2012 FLUXNET 0.15 dry

IT-MBo Monte Bondone 46.015 11.046 GRA 2003–2013 FLUXNET 0.55 dry

RU-Ha1 Hakasia steppe 54.725 90.002 GRA 2002–2004 FLUXNET 0.56 dry

US-AR1 ARM USDA UNL
OSU Woodward
Switchgrass 1

36.427 −99.420 GRA 2009–2012 FLUXNET 0.30 dry

US-AR2 ARM USDA UNL
OSU Woodward
Switchgrass 2

36.636 −99.598 GRA 2009–2012 FLUXNET 0.30 dry

US-ARb ARM Southern Great
Plains burn site –
Lamont

35.550 −98.040 GRA 2005–2006 FLUXNET 0.44 dry

US-ARc ARM Southern Great
Plains control site –
Lamont

35.547 −98.040 GRA 2005–2006 FLUXNET 0.44 dry

US-SRG Santa Rita Grassland 31.789 −110.828 GRA 2008–2014 FLUXNET 0.22 dry

US-Wkg Walnut Gulch Kendall
Grasslands

31.737 −109.942 GRA 2004–2014 FLUXNET 0.17 dry

DE-Seh Selhausen 50.871 6.450 CRO 2007–2010 FLUXNET 0.81 wet

FR-Gri Grignon 48.844 1.952 CRO 2004–2014 FLUXNET 0.69 wet
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Table A1. Continued.

Site code Site name Latitude Longitude IGBP Years Network Arid Index Climate Zone

US-CRT Curtice Walter-Berger
cropland

41.629 −83.347 CRO 2011–2013 FLUXNET 0.74 wet

US-Ro1 Rosemount – G21 44.714 −93.090 CRO 2004–2016 AmeriFlux 0.71 wet

US-Mo1 LTAR CMRB Field 1
(CMRB ASP)

39.230 −92.117 CRO 2015–2020 AmeriFlux 0.75 wet

US-ARM ARM Southern Great
Plains site- Lamont

36.606 −97.489 CRO 2003–2012 FLUXNET 0.49 dry

DE-Geb Gebesee 51.100 10.914 CRO 2001–2014 FLUXNET 0.60 dry

US-Ne2 Mead – irrigated
maize-soybean rotation
site

41.165 −96.470 CRO 2001–2013 FLUXNET 0.58 dry

IT-CA2 Castel d’Asso 2 42.377 12.026 CRO 2011–2014 FLUXNET 0.24 dry

US-Twt Twitchell Island 38.109 −121.653 CRO 2009–2014 FLUXNET 0.22 dry

∗ The EBF is no longer categorized into various climate zones, as less than 2 % of the global EBF falls within dry zones.
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