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Abstract. Understanding and mastering the spatiotemporal characteristics of farmland are essential for accurate
farmland segmentation. The traditional deep learning paradigm that solely relies on labeled data has limitations
in representing the spatial relationships between farmland elements and the surrounding environment. It strug-
gles to effectively model the dynamic temporal evolution and spatial heterogeneity of farmland. Language, as
a structured knowledge carrier, can explicitly express the spatiotemporal characteristics of farmland, such as its
shape, distribution, and surrounding environmental information. Therefore, a language-driven learning paradigm
can effectively alleviate the challenges posed by the spatiotemporal heterogeneity of farmland. However, in the
field of remote sensing imagery of farmland, there is currently no comprehensive benchmark dataset to support
this research direction. To fill this gap, we introduced language-based descriptions of farmland and developed the
FarmSeg-VL dataset – the first fine-grained image–text dataset designed for spatiotemporal farmland segmenta-
tion. Firstly, this article proposed a semi-automatic annotation method that can accurately assign captions to each
image, ensuring a high data quality and semantic richness while improving the efficiency of dataset construction.
Secondly, FarmSeg-VL exhibits significant spatiotemporal characteristics. In terms of the temporal dimension,
it covers all four seasons. In terms of the spatial dimension, it covers eight typical agricultural regions across
China, with a total area of approximately 4300 km2. In addition, in terms of captions, FarmSeg-VL covers rich
spatiotemporal characteristics of farmland, including its inherent properties, its phenological characteristics, its
spatial distribution, its topographic and geomorphic features, and the distribution of surrounding environments.
Finally, we perform a performance analysis of the vision language model and a deep learning model that relies
only on labels trained on FarmSeg-VL. Models trained on the vision language model outperform deep learning
models that rely only on labels by 10 %–20 %, demonstrating its potential as a standard benchmark for farmland
segmentation. The FarmSeg-VL dataset will be publicly released at https://doi.org/10.5281/zenodo.15860191
(Tao et al., 2025).

1 Introduction

Farmland has been the foundation of agricultural food se-
curity, and accurately monitoring farmland has been crucial
for implementing policies such as farmland improvement,
enhanced supervision, and planning and control (Sishodia
et al., 2020). Currently, the intelligent interpretation of re-
mote sensing images for farmland based on deep learning
has become a primary method for farmland monitoring (Li
et al., 2023; Tu et al., 2024).

However, existing farmland remote sensing image seg-
mentation methods mainly follow a label-driven deep learn-
ing paradigm, which faces significant bottlenecks with regard
to both data and models. Specifically, in terms of datasets,
although existing benchmark datasets have contributed to
the advancement of farmland segmentation technology to
some extent, they rely solely on a label-driven deep learning
paradigm, which has two main limitations: first, a single label
can only drive the model to learn shallow visual features of
farmland, which fails to reveal the underlying driving mech-
anisms affecting the spatial distribution and temporal evolu-
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tion of farmland. Additionally, it is difficult to represent the
spatial–temporal heterogeneity in complex agricultural envi-
ronments. Specifically, the surface cover of farmland shows
seasonal differences in terms of complete coverage, partial
coverage, and no coverage with the growth cycle of crops,
while diverse terrain leads to significant geographical dif-
ferentiation in the spatial distribution of farmland and its
associations with surrounding features such as waterbodies,
buildings, and vegetation. However, existing datasets cannot
represent this kind of spatial–temporal heterogeneity, mak-
ing it difficult for models to establish the inherent relation-
ships between farmland and its surrounding environment.
In terms of models, although technologies such as convo-
lutional neural networks (CNNs), graph convolutional net-
works (GCNs), and Transformer have significantly enhanced
feature representation capabilities, the existing label-driven
paradigm inherently has clear theoretical flaws. First, the ex-
isting label-driven paradigm relies excessively on visual cues
and neglects the logical connections between farmland and
its surrounding environment in complex farmland scenarios.
Second, the label struggles to reflect the evolution of farm-
land across seasons and growth stages, severely limiting the
model’s generalization ability in spatiotemporally dynamic
scenarios. Therefore, there is an urgent need to break through
the theoretical framework of the traditional label-driven deep
learning paradigm and explore a new paradigm capable of
uncovering the deep semantic logic of farmland.

With the emergence of vision language models (VLMs)
and their expanding applications across various fields, stud-
ies (Devlin et al., 2019; Wu et al., 2025b, a) have shown that
language can reveal deeper semantic clues behind visual in-
formation. These VLMs typically follow a general construc-
tion process: first, feature representations are extracted from
images through a visual encoder, a process aimed at captur-
ing key visual representations in the images. For example,
in the LLaVA model (Liu et al., 2023), the image representa-
tions generated by the fixed visual encoder lay the foundation
for subsequent processing. Next, to establish a connection
between vision and language, the model needs to map the ex-
tracted visual features to the space of the language model, en-
abling visual representation to be translated into natural lan-
guage descriptions or to be understood. The LLaVA model
precisely utilizes this method, mapping image representa-
tions to the prompt space of large language models, helping
the model understand the relationship between visual repre-
sentation and linguistic expressions, thereby achieving effi-
cient downstream tasks. Furthermore, to enable the model to
handle complex tasks, integrating visual perception with lan-
guage understanding becomes a key step. LISA (Lai et al.,
2023) is a typical example; it not only combines visual per-
ception capabilities but also incorporates in-depth language
understanding abilities, allowing it to perform reasoning-
based tasks such as segmentation tasks. This multimodal in-
formation processing capability is one of the important char-
acteristics of VLMs, enabling them to consider visual context

while understanding and generating language. These break-
throughs make up for the shortcomings of relying solely on
label-guided models to handle complex spatiotemporally het-
erogeneous farmland scenes, making it possible to mine the
complex semantic information in farmland remote sensing
images and then model the deep inherent logical relationship
between farmland and its surroundings. Specifically, lan-
guage can guide models to capture farmland features across
multiple dimensions, including shapes and boundaries, phe-
nological characteristics that reflect seasonal changes and
crop growth states, spatial layout based on latitude and longi-
tude, and geographical features such as terrain and landscape
morphology. Additionally, language can describe the relative
positional relationships between farmland and surrounding
features such as waterbodies, buildings, and vegetation. By
integrating these rich semantic cues, VLMs can better under-
stand and interpret the complexity of farmland.

However, in remote sensing, many existing image–text
datasets struggle to provide detailed captions and precise an-
notations for specific land features like farmland. As a re-
sult, they often fall short of meeting the requirements for
high-accuracy farmland segmentation. For example, the first
large-scale remote sensing image–text pair dataset, RS5M
(Zhang et al., 2024), and the SkyScript dataset (Wang et al.,
2024), which contains millions of image–text combinations,
although large in scale, provide a relatively rough description
of farmland and fail to deeply describe the specific character-
istics of the farmland. In addition, although the manually an-
notated dataset RSICap (Hu et al., 2025) provides scene-level
semantic descriptions, it lacks a refined depiction of the char-
acteristics of the farmland itself, making it difficult to meet
the model’s need for deep semantic information extraction of
the farmland. In contrast to the methods mentioned above,
ChatEarthNet (Yuan et al., 2025) seeks to enhance the rich-
ness of semantic captions for land cover types by employ-
ing detailed prompt strategies and leveraging semantic seg-
mentation labels from ChatGPT and the WorldCover project.
However, due to the inherent randomness of automatically
generated captions, these captions tend to emphasize the spa-
tial location of farmland within the image while often lacking
detailed information about its inherent attributes. Although
these datasets have contributed significantly to advancing
image–text understanding in remote sensing, most focus on
general remote sensing tasks, with only a small portion being
dedicated to farmland captions. Moreover, these captions are
often neither comprehensive nor in-depth. Existing datasets
have not fully reflected the complexity of farmland and its
changing characteristics over time and space. This is particu-
larly evident in high-precision farmland segmentation tasks,
where there is a lack of deep analysis of farmland character-
istics and how they behave in different scenarios.

To address the above issues, this paper constructs the
FarmSeg-VL dataset, a dedicated image–text dataset focused
on farmland segmentation, which fully reflects the spatiotem-
poral characteristics of farmland. FarmSeg-VL covers eight

Earth Syst. Sci. Data, 17, 4835–4864, 2025 https://doi.org/10.5194/essd-17-4835-2025



C. Tao et al.: A large-scale image–text dataset benchmark for farmland segmentation 4837

Table 1. Detailed information on non-image–text dataset of farmland.

Type Dataset Category Spatial Image size Farmland Region
resolution proportion

Non-dedicated Evlab-SS 11 0.1–2 4500× 4500 8.77 /
datasets GID 15 4 56× 56,

112× 112,
224× 224

30.66 China

DGLC 7 0.5 2448× 2448 57.74 Thailand, Indonesia, India
LoveDA 7 0.3 1024× 1024 26.79 Nanjing, Changzhou, Wuhan (China)
BigEarthNet 43 10–60 120× 120 12.41 /

Dedicated GFSAD30 3 30 / / Europe, Middle East, Russia, and Asia
datasets VACD 2 0.5 512× 512 / Guangdong, China

WEIMIN 2 0.5–2 512× 512 / Hebei, China
FGFD 2 0.3 512× 512 / Heilongjiang, Hebei, Shanxi, Guizhou,

Hubei, Jiangxi, Xizang (China)

Symbol / indicates unavailable.

typical agricultural regions in China and includes data sam-
ples from four seasons, filling the gap of spatial and temporal
imbalance in existing datasets. With its extensive geographi-
cal coverage and seasonal variations, this dataset ensures ef-
fective support for the learning of various forms of farmland.

The contributions of this paper are as follows:

1. This study constructed the first farmland image–text
benchmark dataset, filling the gap in remote sensing
image–text datasets for the farmland-dedicated domain.
This dataset includes various types of farmland and cov-
ers a wide spatial and temporal range, providing a high-
value data foundation for the application research of vi-
sion language models in the field of farmland segmen-
tation.

2. We summarize 11 key elements for describing farm-
land’s inherent properties and its surrounding environ-
ment, offering a comprehensive framework for char-
acterizing farmland from multiple perspectives. Addi-
tionally, a text template for describing farmland images
was designed, providing an important reference for con-
structing a language dataset focused on farmland.

3. This study developed a semi-automated annotation
method based on the caption templates constructed in
this paper. We utilize the semi-automated annotation ap-
proach to generate mask and rich captions, significantly
reducing labor time while enhancing the authenticity
and reliability of the annotations.

4. Extensive experiments have demonstrated that the
model trained on the image–text farmland dataset pro-
posed in this paper improves significantly in terms of
farmland segmentation performance and exhibits strong
transferability, providing a performance baseline for vi-
sion language models in farmland segmentation.

2 Review of existing remote sensing datasets for
farmland segmentation

2.1 Non-image–text dataset

Traditional remote sensing datasets for farmland segmenta-
tion are mainly annotated with a single label, which can
be divided into two categories: dedicated dataset and non-
dedicated dataset. The detailed information is provided in Ta-
ble 1. Non-dedicated datasets, such as the scene-level dataset
BigEarthNet (Sumbul et al., 2019), are not very suitable for
pixel-level farmland segmentation. Pixel-level datasets, such
as WorldCover (ESA) (Zanaga et al., 2022), DynamicWorld
(DyWorld) (Brown et al., 2022), and LandCover (Karra et al.,
2021) , primarily focus on large-scale mapping and macro-
level analysis, making them less suitable for fine-grained
farmland segmentation. Moreover, Evlab-SS (Wang et al.,
2017) focuses on pixel-level classification, but the propor-
tion of farmland pixels is relatively low, and it remains lim-
ited in terms of data scale and coverage area. Although GID
(Tong et al., 2020), DeepGlobe-LandCover (Demir et al.,
2018), and LoveDA (Wang et al., 2022a) cover large farm-
land areas with relatively high pixel proportions, the farm-
land samples lack diversity. For example, the farmland forms
in DeepGlobe-LandCover and LoveDA are mostly regular
and contiguous, lacking diversity in farmland representation.
While these non-dedicated datasets provide large amounts of
data for farmland segmentation, their annotations are rela-
tively coarse. Specifically, in pixel-level farmland segmenta-
tion, they struggle to fully cover the complex shapes; distri-
bution patterns; and finer details, such as crop growth stages.

In contrast, dedicated datasets such as GFSAD30 (Phalke
and Özdoğan, 2018), WEIMIN (Hou et al., 2023), VACD (Li
et al., 2024), and FGFD (Li et al., 2025) are specifically de-
signed for farmland segmentation. These datasets offer high-
precision farmland annotation and cover a broader range of
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farmland forms, crop distributions, and other relevant infor-
mation. The GFSAD30 dataset has a spatial resolution of
30 m, making it suitable for large-scale farmland monitoring
but not for fine-grained farmland segmentation. By contrast,
WEIMIN and VACD offer higher resolutions; however, since
WEIMIN only covers Hebei and VACD only covers Guang-
dong in China, the diversity of farmland samples is limited.
The Fine-Grained Farmland Dataset (FGFD) includes farm-
land samples from multiple geographic regions. However, it
does not account for the phenological characteristics of farm-
land, limiting its ability to capture seasonal variations and
crop growth stages. Although these dedicated datasets offer
high annotation accuracy and support fine-grained regional
monitoring, their reliance solely on labels to represent farm-
land’s visual characteristics across different spatiotemporal
conditions overlooks its inherent complexity and diversity.
As a result, they struggle to capture the subtle differences
and dynamic changes in farmland driven by seasonal varia-
tions and environmental factors.

2.2 Image–text datasets

Existing remote sensing image–text paired datasets, such
as UCM-Captions (Qu et al., 2016), RSICD (Lu et al.,
2018), RS5M, NWPU-Captions (Cheng et al., 2022), RSI-
Cap, SkyScript, and ChatEarthNet, have been widely used in
remote sensing research (see Table 2, where CGM denotes
caption generation method). However, these datasets are pri-
marily designed for tasks such as image captioning, scene
classification, or image–text retrieval, with limited applica-
bility to farmland segmentation. This limitation stems from
their insufficient in-depth semantic representations of farm-
land morphological characteristics, spatial distribution pat-
terns, and contextual relationships with surrounding features.
Consequently, these datasets cannot meet the requirements of
the fine-grained semantic understanding that is essential for
high-precision farmland segmentation.

Specifically, most of these datasets focus on high-level
descriptions of images, such as scene-level or object-level
characteristics, rather than the detailed semantic annota-
tions needed for fine-grained tasks like farmland segmen-
tation. For example, in SkyScript, the image caption “land
use of farmland” provides only broad classification informa-
tion without offering specific details about farmland char-
acteristics, such as shape, boundaries, crop growth stages,
or surrounding environmental features. Similarly, the RS5M
dataset provides only brief titles for images, primarily in-
dicating the image source and land cover categories, with-
out offering detailed descriptions of farmland. Additionally,
while some datasets use automated methods to generate
large-scale image–text pairs, these automatically generated
datasets often suffer from inconsistent quality. The gener-
ated text frequently lacks detail and contains redundant in-
formation, reducing its effectiveness for fine-grained farm-
land analysis. For example, in ChatEarthNet, image captions

divide each image into four sections, namely top, bottom,
left, and right, focusing on the proportions of primary and
secondary land cover types in each section rather than pro-
viding a dedicated description of farmland. Manually anno-
tated datasets, such as UCM-Captions, RSICD, and NWPU-
Captions, provide five captions per farmland image. How-
ever, these descriptions are often repetitive and lack speci-
ficity. For example, in UCM-Captions, farmland is described
simply as “There is a piece of farmland”, while the remain-
ing four descriptions merely rephrase this sentence with-
out adding meaningful details. In RSICD, captions are lim-
ited to color and location, such as “green” or “between two
forests.” NWPU-Captions expands on this slightly by incor-
porating shape descriptions, like “rectangular”, but it still
lacks deeper insights into farmland characteristics. Although
RSICap includes descriptions related to image quality, its
farmland annotations remain focused on landscape features
and surrounding environments, overlooking inherent farm-
land attributes. This limited descriptive approach fails to cap-
ture farmland’s spatiotemporal complexity, making it hard to
achieve precise farmland semantic segmentation.

Although these image–text datasets have achieved certain
results in large-scale pre-training tasks, their application in
the semantic segmentation of farmland remote sensing im-
ages is greatly limited due to the lack of pixel-level annota-
tion for semantic segmentation and in-depth description of
specific tasks such as farmland segmentation. Therefore, to
better support farmland segmentation, the dataset needs to
be enhanced by including more fine-grained semantic anno-
tations and comprehensively covering the complex features
of farmland.

3 FarmSeg-VL: a large-scale image–text dataset
benchmark for farmland segmentation

3.1 Construction of FarmSeg-VL

The construction process of FarmSeg-VL is shown in Fig. 1,
which is mainly divided into three parts: remote sensing im-
age acquisition and processing, caption construction, and
semi-automatic annotation. In part 1, we collected high-
resolution images (with a resolution of 0.5–2 m) from vari-
ous typical agricultural regions in China across four seasons
to ensure that the dataset covers farmland with diverse spa-
tiotemporal features. In part 2, we synthesized the spatiotem-
poral characteristics of farmland and summarized 11 key fac-
tors related to its inherent properties and the distribution of
surrounding environments. These factors were then used to
generate detailed captions, covering aspects such as farmland
shape; terrain; sowing situation; and the distribution of sur-
rounding waterbodies, vegetation, and buildings. In part 3, a
semi-automated manual annotation method was employed to
generate corresponding binary masks and a segment of cap-
tion for each remote sensing image sample, thus completing
the dataset construction.
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Table 2. Detailed information on the image–text dataset.

Dataset Example CGM Number Farmland-related descriptions

UCM-
Captions

Manual annotation
2100 images, with
5 captions per image

1. There is a piece of farmland.
2. There is a piece of farmland.
3. It is a piece of farmland.
4. It is a piece of farmland.
5. Here is a piece of farmland.

RSICD Manual annotation
10 921 images, each with
5 captions

1. The cream-colored and aqua farmland is be-
tween two forests.

2. The green and white farmland is between two
forests.

3. The cream-colored and aqua farmland is be-
tween two forests.

4. This farmland with light-green parts and bald
ones mixes up with those deep-green woods.

5. Some pieces of green farmlands are together.

RS5M
Filtering publicly
available image–text
paired datasets

Five million images with
captions

A satellite image of a farm with a green field.

NWPU-
Captions

Manual annotation
31 500 images, 5 captions
per image

1. Some rectangular farmlands of different col-
ors are neatly laid out on the ground.

2. Many neatly arranged dark-green, light-green,
and tan mixed rectangular farmlands of differ-
ent sizes.

3. There are some green and uncovered rectan-
gular farmlands.

4. There are rectangular farmlands of varying
sizes.

5. There are some green rectangular farmlands
distributed neatly.

RSICap Manual annotation 2585 image–text pairs
This is a low-resolution panchromatic satellite im-
age showing a village and farmland. At the bottom
of the image, there is a village with dense buildings,
and above the village is a large area of farmland, di-
vided into sections by some dirt roads. There is also
a body of water in the middle of the farmland. In
the image, you can also see an airplane, which was
probably captured by the satellite when it was flying
over the farmland.

The FarmSeg-VL dataset, as shown in Fig. 2, consists of
three key components: image, mask, and text. Specifically,
FarmSeg-VL includes image data from eight major agricul-
tural regions across four seasons, and the image features in-
clude diversity under different imaging conditions. The cap-
tion focuses on five attributes of farmland remote sensing

images, with a total of 11 key features: inherent properties
(such as shape and boundary pattern), phenological charac-
teristics (such as season and sowing situation), spatial dis-
tribution (such as distribution and geographic location infor-
mation), topographic and geomorphic features (such as ter-
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Table 2. Continued.

Dataset Example CGM Number Farmland-related descriptions

SkyScript
Linking remote sensing
images with semantics
in OpenStreetMap
through geographic
coordinates

2.6 million image–text
pairs, each image
corresponding to a title
describing a single object
and a title describing
multiple objects

Single-object text: land use of farmland, crop of cot-
ton.
Multi-object text: land use of farmland with crop of
cotton.

ChatEarth
Net

Automatically generate
GPT through effective
prompts

ChatGPT3.5 generates
163 488 image–text pairs,
ChatGPT-4v generates
10 000 image–text pairs
containing captions

The image primarily consists of crop fields, which
are most dominant across all sections. In the top left,
there is a significant expanse of crop fields, with
a small area of grass and developed land. Moving
to the top right, crop fields continue to dominate,
followed by a smaller developed area and grassy
patches. In the bottom left, the landscape is mostly
covered by crop fields, followed by a few trees and
a small amount of grass. The bottom right also ex-
hibits a large area of crop fields, accompanied by a
small developed area and a small portion of grass.
In the middle section, crop fields are again the main
feature, with a small number of trees and a tiny
developed area. Overall, the image depicts a land-
scape predominantly characterized by crop culti-
vation, with a minor presence of developed areas,
trees, and grass.

rain and landscape), and distribution of surrounding environ-
ments (such as buildings, waterbodies, and vegetation).

3.1.1 (1) RS image acquisition and processing

China’s vast territory, diverse landforms, and complex cli-
mate result in significant regional variations in agricultural
conditions, leading to highly heterogeneous texture features
and distribution patterns of farmland in remote sensing im-
agery. As a result, farmland exhibits significant spatiotem-
poral dynamics and fragmented distribution characteristics,
presenting diverse spatial patterns due to these regional dif-
ferences. For example, the land in the Northeast China Plain
is flat and fertile, and the farmland has the characteristics of
a concentrated distribution and regular shape, while the Yun-
gui Plateau in China has complex terrain and diverse climate,
and the farmland has the characteristics of a dispersed distri-
bution and fragmented shape. The farmland appearance and
characteristics of these agricultural areas are unique, which
poses different challenges and opportunities for farmland
segmentation. This study selected representative agricultural
regions based on the spatial distribution and morphological
characteristics of farmland. Specifically, based on the spatial
aggregation and morphological regularity of farmland, the
Northeast China Plain and the Huang-Huai-Hai Plain were
selected as typical regions characterized by concentrated and
regular-shaped farmland. For areas with a sloped farmland

distribution, the northern arid and semi-arid region and the
Loess Plateau were chosen as study areas. At the same time,
in view of the particularity of farmland morphology, such
as narrow and long, striped, and sporadic and fragmented,
the South China areas, Sichuan basin, Yungui Plateau, and
Yangtze River Middle and Lower Reaches Plain were se-
lected as research areas. The study covers 13 provincial-
level administrative regions, including Heilongjiang, Jilin,
Ningxia, Hebei, Henan, Shandong, Shaanxi, Anhui, Hunan,
Jiangsu, Guangdong, Sichuan, and Yunnan. These regions
provide broad spatial coverage, highlight distinct regional
characteristics, and are highly representative and typical of
China’s diverse agricultural landscapes.

The data sample diversity is shown in Fig. 3. Specifically,
we utilized Bigemap software to acquire high-resolution
Google satellite imagery covering China, including the eight
major agricultural regions previously mentioned. The spatial
resolution of images ranges from 0.5 to 2 m. Additionally, the
software enables us to obtain the shooting time of the image.
The total coverage area covers approximately 4300 km2, en-
suring that the dataset covers a broad geographic region and
reflects the diverse characteristics of farmland. The images
underwent a series of detailed pre-processing steps, includ-
ing calibration and cropping. During image calibration, we
corrected geometric distortions caused by the shooting an-
gle and Earth’s curvature, ensuring spatial consistency across
all images. In the cropping process, irrelevant areas were re-
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Figure 1. Dataset construction.

Figure 2. Attribute annotation and spatiotemporal distribution of FarmSeg-VL.
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Figure 3. Demonstration of the diversity of data samples. (a) Farmland samples from different agricultural regions. (b) Farmland samples
with different shapes. (c) Farmland samples with varying distribution patterns.

moved, focusing solely on extracting farmland regions. Ad-
ditionally, to enhance the dataset’s quality, we manually fil-
tered out images affected by cloud or fog cover, stitching arti-
facts, or overall poor quality, ensuring that only high-quality
samples remained for analysis. In order to achieve an opti-
mal balance between retaining the detailed features of high-
resolution images and improving the efficiency of model
training, this study adopted a standardized pre-processing
process: all images that passed the quality screening were
uniformly normalized, and a standardized cropping strategy
of 512 pixels× 512 pixels was applied. The size selection
was based on the following two considerations. First, to pre-

serve spatial resolution and detail, the 512× 512 cropping
unit can effectively balance the complete expression of lo-
cal ground features (such as farmland boundaries and vege-
tation textures) and the efficient allocation of computing re-
sources. Second, to preserve the integrity of spectral informa-
tion, the cropped images strictly retain the three visible-light
bands – red, green, and blue – to ensure the effective trans-
mission of spectral features in the model. This normaliza-
tion processing scheme significantly improves the efficiency
of batch data processing during model training by unifying
the input data dimensions while avoiding the feature-learning
bias caused by image size differences. After completing these
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pre-processing steps, a total of 22 605 image samples were
selected. These samples span various seasons, regions, and
cropping statuses and feature diverse farmland distributions
and shapes, ensuring the comprehensiveness and diversity of
the dataset. This provides a rich and varied training dataset
for the subsequent farmland segmentation.

3.1.2 (2) Caption construction

For the caption construction of each farmland sample, this
study summarizes 11 key elements for describing farmland:
shape, boundary morphology, shooting time, sowing condi-
tions, the macro-level distribution of farmland, geographic
location information, topographical features, landscape, the
distribution of buildings, waterbodies, and vegetation. The
spatiotemporal characteristics of farmland result from the in-
teraction of multiple factors (Wang et al., 2022b). Tempo-
rally, the variations in crop growth stages lead to distinct vi-
sual texture differences in farmland across different seasons
(Zhu et al., 2022). Spatially, farmland exhibits significant
spatial differentiation, with different regions being affected
by factors such as topography, terrain, and water–heat condi-
tions, resulting in noticeable variations in farmland morphol-
ogy and layout (Pan and Zhang, 2022). Therefore, this study
considers the issue at multiple spatial scales. At the macro-
regional scale, typical farmland images were collected from
various agricultural regions across China. These regions are
not only located at different latitudes and longitudes but also
have different terrains and topography. For instance, farm-
land in the Northeast China Plain is flat and typically fol-
lows a concentrated distribution pattern with regular shapes,
which is reflected in descriptions such as “the farmland pri-
marily exhibits a concentrated contiguous distribution” and
“the shape of the farmland is characterized as blocky.” In
contrast, the terrain of South China is predominantly hilly
and mountainous, leading to a more dispersed farmland dis-
tribution and irregular shapes, which is described in the text
as “with the farmland primarily in a dispersed distribution”
and “the terrain is undulating.” Similarly, farmland in regions
like the Loess Plateau and the arid and semi-arid northern ar-
eas often displays terraced or sloping patterns. At the same
time, the spatial coupling relationships between farmland and
surrounding features, such as waterbodies and buildings, are
key factors influencing the distribution and accuracy of farm-
land identification (Duan et al., 2022; Zheng et al., 2022).
The relationship between the farmland and surrounding en-
vironmental features is expressed, for example, as “the wa-
terbodies surrounding the farmland mainly consist of scat-
tered blocky ponds”, and “the vegetation around the farm-
land mainly consists of scattered trees and scattered forests.”
Similarly, the segmentation of farmland relies on boundary
and texture information; the shape of the farmland and the
boundary morphology are also crucial for accurate identifi-
cation of farmland (Xie et al., 2023).

In summary, as shown in Fig. 4, this study categorizes
farmland-related attributes into five major aspects: inherent
properties, phenological characteristics, spatial distribution,
topographic and geomorphic features, and distribution of sur-
rounding environments. The inherent properties include the
shape of the farmland and the boundary patterns. Phenolog-
ical characteristics encompass season and the sowing situa-
tion of the farmland. The spatial distribution of farmland not
only reflects the geographic location information but also in-
cludes the macro-level distribution of farmland in the image,
such as a concentrated contiguous distribution or a dispersed
distribution. Farmland shape is a very intuitive and impor-
tant feature in visual interpretation, closely related to other
factors such as terrain; topography; and landscape features,
including blocky, striped, or broken. Farmland boundary pat-
tern refers to the spatial shape characteristics of the farmland
boundary, primarily manifested in whether its contour lines
are relatively straight or exhibit a curved form.

3.1.3 (3) Semi-automated annotation

Currently, there are two main approaches for constructing
remote sensing image–text datasets: one involves automat-
ically generating textual annotations using large language
models, while the other relies on manual visual annotation by
humans. However, both methods face significant challenges
in meeting the high-precision requirements of farmland seg-
mentation. Relying solely on automatic annotations gener-
ated by large language models has clear limitations. This ap-
proach often struggles to capture the nuanced and accurate
correspondence between images and text. The granularity of
captions is often insufficient, resulting in suboptimal accu-
racy and completeness in the annotation process. While man-
ual annotation can ensure high-quality data, it has significant
drawbacks. This approach requires domain experts to invest
substantial time and effort, draining valuable resources and
leading to extremely low efficiency. To address these chal-
lenges, this study proposes and develops a semi-automatic
farmland image–text annotation framework. It is important to
highlight that this semi-automatic annotation framework dif-
fers from previous methods. In addition to enabling text an-
notation, it also generates high-quality masks, offering more
effective data support for farmland segmentation.

The semi-automated annotation framework is illustrated in
Fig. 5. Specifically, based on keywords related to farmland
descriptions, this study first developed a set of farmland cap-
tion templates, providing a standardized reference for anno-
tating image samples. To enable semi-automatic text annota-
tion, this study integrated the constructed farmland caption
templates and corresponding keywords into the open-source
annotation software labelme. In this way, when annotating
the remote sensing images of farmland, semi-automatic text
annotation can be completed by visually observing the vi-
sual features of the remote sensing images and combining
them with manually selected summarized keywords. In par-
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Figure 4. Farmland description keywords.

ticular, the shooting month and longitude and latitude data
of the farmland remote sensing images are automatically ex-
tracted from the original data. In addition, due to the limita-
tion of cropping size, some images may not contain any land
object categories other than farmland. Therefore, when an-
notating the surrounding environmental attributes using the
semi-automated framework, this study requires that the pres-
ence of relevant land cover types be verified first to ensure the
accuracy of the captions. Finally, in order to quickly and ac-
curately obtain high-quality farmland masks, this paper con-
nects the Segment Anything Model (SAM) to labelme and
performs semi-automatic mask annotation on the image to
obtain the image label. Through semi-automatic annotation,
humans only need to correct and verify part of the results,
which significantly reduces the labor and time costs com-
pared to traditional fully manual annotation methods. At the
same time, the semi-automated process combines the con-
sistency of algorithms with the precision of manual verifi-
cation, effectively minimizing subjective errors that can oc-
cur in manual annotation and thereby enhancing the accuracy
and reliability of the labels.

3.2 The spatiotemporal-characteristic analysis of
FarmSeg-VL based on multidimensional statistics

FarmSeg-VL, as the first large-scale farmland image–text
dataset covering multiple regions and seasons in China, is
valuable for reflecting the dynamic characteristics of geo-
graphical zoning differences, crop growth cycle variations,
and tillage practices. This section uses multidimensional sta-
tistical methods to analyze the ability of FarmSeg-VL to col-
laboratively represent spatial breadth and temporal continu-
ity, providing a theoretical basis for evaluating its applicabil-
ity in cross-regional and cross-seasonal farmland segmenta-
tion.

Figure 6 reveals the spatiotemporal characteristics of
FarmSeg-VL from both a spatial and temporal perspective.
In terms of the spatial dimension, the sample distribution of
agricultural areas in Fig. 6a shows that FarmSeg-VL fully
covers eight agricultural areas, ranging from the Northeast
Plain to the Southwest Mountains. Notably, the sample count
in the Yangtze River Middle and Lower Reaches Plain is sig-
nificantly more than in other regions, accurately reflecting
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Figure 5. Farmland semi-automated annotation framework.

the geographical characteristics of the area, which is marked
by a high degree of farmland fragmentation and notable ter-
rain complexity. In terms of the temporal dimension, the sea-
sonal distribution in Fig. 6b shows that samples in the north-
ern agricultural regions are concentrated in summer and fall,
while the southern agricultural regions exhibit a more bal-
anced distribution throughout the year. This pattern is closely
aligned with the differences in crop growth cycles driven
by latitude gradients in China. In addition, Fig. 6c and d il-
lustrate the distribution patterns and shape characteristics of
farmland across eight agricultural regions, highlighting the
variations between them. Among these, the agricultural areas
in the Yangtze River Middle and Lower Reaches Plain ex-
hibit the greatest diversity, featuring four distinct distribution
patterns and six different shape characteristics of farmland.
In the Northeast China Plain and the Huang-Huai-Hai Plain,
farmland is primarily distributed in concentrated areas, with
a predominantly blocky form. In other agricultural regions,
there is a clear correlation between the distribution patterns

and the shape characteristics of farmland. The diversity and
richness of farmland samples across different agricultural re-
gions fully reflect the spatiotemporal variability captured by
FarmSeg-VL, underscoring its advantages in farmland seg-
mentation.

To further reveal the spatiotemporal characteristics of
FarmSeg-VL, we extracted keywords from its caption and
generated a word cloud of farmland-related attributes. As
shown in Fig. 7, the spatiotemporal characteristics of
FarmSeg-VL are further illustrated through the keyword
cloud. High-frequency spatial attributes (e.g., latitude and
longitude) show strong semantic associations with tempo-
ral attributes (e.g., January), indicating that the captions in
the FarmSeg-VL dataset effectively link temporal and spa-
tial concepts. The spatial differentiation of morphological
descriptors such as concentrated contiguous and dispersed
aligns closely with the statistical results shown in Fig. 6c
and d, indicating that text annotations can effectively reflect
and convey the geographical patterns of farmland morphol-
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Figure 6. Diversity of data samples. (a) Sample distribution ratio across different agricultural regions. (b) Sample distribution ratio for
different seasons in each agricultural region. (c) Sample distribution ratio based on different farmland distribution patterns in each agricultural
region. (d) Sample distribution ratio for different farmland shapes in each agricultural region. A represents the Northeast China Plain,
B represents the northern arid and semi-arid region, C represents the Huang-Huai-Hai Plain, D represents the Loess Plateau, E represents the
Yangtze River Middle and Lower Reaches Plain, F represents the South China areas, G represents the Sichuan basin, and H represents the
Yungui Plateau.

Figure 7. Word cloud of farmland captions.
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ogy. Notably, the prominent presence of non-farmland at-
tributes such as ponds and forests among the keywords sug-
gests that FarmSeg-VL not only reflects the characteristics of
farmland itself but also emphasizes the logical connections
between farmland and its surrounding environment. In sum-
mary, the composite captions in FarmSeg-VL at both tempo-
ral and spatial levels not only reflect the fundamental char-
acteristics of farmland but also reveal the external driving
factors behind its spatiotemporal evolution.

3.3 Why is FarmSeg-VL more suitable as a dataset
benchmark for farmland segmentation?

Comprehensive spatiotemporal coverage with rich seasonal
and regional diversity. The FarmSeg-VL offers extensive
coverage across both temporal and spatial dimensions, span-
ning all four seasons – spring, summer, fall, and winter –
while also including eight typical agricultural regions of
China. The dataset reflects the seasonal differences in agri-
cultural landscapes, as well as the unique geographic features
of each region, such as variations in farmland characteristics
and surrounding environments. These factors enhance the di-
versity of the dataset.

Rich semantic captions capturing comprehensive farm-
land attributes. Unlike traditional datasets with simple im-
age annotations, FarmSeg-VL incorporates detailed language
captions summarizing the spatiotemporal features of farm-
land images. Specifically, it covers 11 key descriptive points,
including farmland-inherent properties, phenological char-
acteristics, spatial distribution, topographic and geomorphic
features, and the distribution of surroundings. The rich se-
mantic captions significantly enhance the model’s accuracy
in farmland segmentation.

Comprehensive seasonal–regional coverage enhances
model robustness. Seasonal and climatic variations signifi-
cantly influence farmland morphology and distribution. Un-
like traditional datasets, which typically focus on a sin-
gle season and limit model adaptability, FarmSeg-VL spans
all four seasons, enabling models to better capture sea-
sonal dynamics and varying crop growth conditions. Ad-
ditionally, FarmSeg-VL covers diverse agricultural regions
across China, reflecting distinct differences in farmland char-
acteristics due to climate and geographic variation. The
dataset’s extensive seasonal and regional coverage enhances
the model’s robustness, ensuring accurate and efficient farm-
land segmentation under diverse seasonal and climatic con-
ditions.

4 Experiments

This chapter outlines the experimental setup in Sect. 4.1.
Section 4.2 evaluates the effectiveness of FarmSeg-VL for
farmland segmentation by comparing a model fine-tuned on
FarmSeg-VL with a vision language model (VLM) trained
on a general image–text dataset. This comparison aims to

verify whether a dedicated farmland image–text dataset can
enhance model performance in farmland segmentation. In
Sect. 4.3, we assess segmentation performance across dif-
ferent agricultural regions, comparing VLMs trained on
FarmSeg-VL with the deep learning models that rely solely
on labels, including U-Net, DeepLabV3, FCN, and Seg-
Former. We also analyze the generalization capability of
models trained on FarmSeg-VL in diverse agricultural land-
scapes and their adaptability to spatiotemporal heterogene-
ity. Section 4.4 investigates the transferability of VLMs
trained on FarmSeg-VL through comparative experiments
with traditional models on public datasets, evaluating their
cross-dataset generalization and cross-domain potential. Fi-
nally, Sect. 4.5 compares FarmSeg-VL with existing farm-
land datasets in the context of farmland segmentation appli-
cations.

4.1 Experimental setup

Dataset partitioning. To avoid the influence of sample simi-
larity between the training, testing, and validation sets on the
reliable evaluation of the model’s generalization ability and
domain transferability, this paper selects samples from differ-
ent agricultural regions for each set. This approach helps re-
duce spatial homogeneity and ensures a more robust assess-
ment of the model’s performance. The dataset is divided into
training, validation, and test sets in a 7 : 2 : 1 ratio. Specifi-
cally, the training set comprises 15 821 samples, the valida-
tion set contains 4512 samples, and the test set includes 2272
samples. The distribution of test set samples across differ-
ent agricultural regions is as follows: 363 samples from the
Northeast China Plain, 531 samples from the Huang-Huai-
Hai Plain, 146 samples from the northern arid and semi-arid
region, 16 samples from the Loess Plateau, 587 samples from
the Yangtze River Middle and Lower Reaches Plain, 152
samples from South China, 156 samples from the Sichuan
basin, and 171 samples from the Yungui Plateau.

Evaluation metrics. To assess model performance, this
study uses four widely adopted metrics in farmland segmen-
tation: mean accuracy (mACC), mean intersection over union
(mIoU), mean dice coefficient (mDice), and recall. Specifi-
cally, mACC represents the average pixel classification ac-
curacy across all categories, while mIoU quantifies the mean
ratio of intersection over union, a standard metric in semantic
segmentation. mDice measures the similarity between pre-
dicted and ground-truth segmentation results, and recall eval-
uates the proportion of correctly identified positive samples,
reflecting the model’s ability to capture relevant farmland re-
gions.
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Table 3. Comparison of fine-tuning results of the FarmSeg-VL dataset.

Method No fine tuning(%) Fine tuning(%)

mIoU mACC mDice Recall mIoU mACC mDice Recall

LISA 46.50 58.42 58.39 58.76 87.71 93.47 93.45 93.46
PixelLM / / / / 83.65 91.13 91.09 91.16
LaSagnA 32.31 52.00 47.16 56.51 86.95 93.03 93.02 93.00

Symbol / indicates testing cannot be conducted, resulting in a null value.

4.2 Fine tuning general VLMs with FarmSeg-VL:
bridging domain gaps and enhancing semantic
comprehension for farmland segmentation

In order to verify the advantages of the model trained on
FarmSeg-VL in farmland segmentation compared to models
trained on general image–text datasets, this study systemat-
ically evaluates the impact of FarmSeg-VL-based fine tun-
ing on farmland segmentation accuracy across three main-
stream vision language segmentation models: LISA (Lai
et al., 2023), PixelLM (Ren et al., 2024), and LaSagnA (Wei
et al., 2024). Among them, LISA is a model that integrates
a large language model (LLM) with segmentation mask gen-
eration capabilities, enabling reasoning-driven segmentation
based on complex textual prompts. LaSagnA extends LISA’s
architecture by adopting a unified sequence format to han-
dle more complex queries while enhancing perceptual ability
through the incorporation of semantic segmentation. This de-
sign demonstrates superior performance in processing intri-
cate prompts and improving reasoning capability. PixelLM,
in contrast, is a multimodal model specialized for pixel-level
reasoning. It addresses the challenge of generating pixel-wise
masks for multiple objects by introducing a lightweight pixel
decoder and a segmentation code book, which improves both
efficiency and granularity in segmentation tasks.

The experimental results are shown in Table 3. It can be
clearly seen that, in farmland segmentation, after fine-tuning
the model using FarmSeg-VL, the performance of the model
is significantly improved, with an improvement of nearly
30 % to 40 %. Specifically, across all methods, the fine-tuned
models consistently achieve higher mIoU scores compared
to their non-fine-tuned counterparts, highlighting the effec-
tiveness of FarmSeg-VL in improving segmentation accu-
racy. This result demonstrates that fine tuning significantly
enhances the model’s ability to capture and accurately seg-
ment relevant features. Notably, the PixelLM model does
not produce results in its non-fine-tuned state as it has not
been exposed to farmland-related semantic information dur-
ing pre-training and is therefore incapable of generating ef-
fective predictions without fine tuning. However, after being
trained on FarmSeg-VL, PixelLM becomes capable of ac-
curately predicting farmland, with performance approaching
that of the other two VLMs. This further underscores the im-
portance of fine tuning with a domain-dedicated dataset to

enhance model performance for specialized tasks. To more
intuitively analyze the experimental results, this study visual-
ized the segmentation outcomes. As shown in Fig. 8, models
that have not undergone fine tuning tend to misclassify large
areas of buildings and forests as farmland. This suggests that
non-fine-tuned models struggle to accurately capture inher-
ent properties of farmland, leading to high uncertainty and
significant errors in segmentation results, as well as a lack of
stability and consistency.

In summary, FarmSeg-VL offers more precise domain-
dedicated knowledge for farmland segmentation, allowing
models to better capture fine-grained features of farmland.
Specifically, FarmSeg-VL contains high-quality farmland
annotations that cover multiple semantic dimensions, such as
farmland shape, distribution, and sowing situation. This com-
prehensive information significantly improves the model’s
ability to understand and segment farmland features with
greater accuracy. Compared to general datasets, FarmSeg-
VL effectively reduces cross-domain discrepancies, allowing
the model to focus on farmland features, thereby further en-
hancing the accuracy of farmland segmentation.

4.3 Comparing model performance trained on
FarmSeg-VL in different agricultural regions

To explore the application effect of models trained on
FarmSeg-VL in different agricultural regions, this section di-
vides the test set into various agricultural regions, includ-
ing the Northeast China Plain, the Huang-Huai-Hai Plain,
the northern arid and semi-arid region, the Loess Plateau,
the Yangtze River Middle and Lower Reaches Plain, South
China, the Sichuan basin, and the Yungui Plateau. These re-
gions will be tested using both the vision language models
(PixelLM, LaSagnA, LISA) and the deep learning models
that rely solely on labels (U-Net, DeepLabV3, FCN, Seg-
Former). Notably, these models that rely solely on labels do
not incorporate any language modality; they are trained and
tested exclusively using original farmland images and ground
truth.

Figures C1 to C8 in the Appendix display the testing accu-
racy of the model in different agricultural regions. From the
overall results, both the deep learning models that rely solely
on labels and the VLMs demonstrated strong testing accu-
racy in the agricultural regions of the Northeast China Plain
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Figure 8. Visualization of partial experimental results fine-tuned based on the FarmSeg-VL dataset. (a) Original image. (b) Ground truth.
(c) Test results without fine tuning. (d) Test results after fine tuning.

and the Huang-Huai-Hai Plain. However, in the remaining
six agricultural regions, the performance differences between
the two model types became more pronounced. The primary
reason for these differences lies in the varying complexity of
the spatial structure of farmland across different agricultural
regions. In the Northeast China Plain and Huang-Huai-Hai
Plain, the terrain is relatively flat, and the farmland is dis-
tributed in a more regular and contiguous manner. As a re-
sult, both models exhibit strong segmentation performance
in these relatively simple scenarios. In other agricultural re-
gions, particularly in the South China areas, the farmland
generally exhibits scattered and fragmented characteristics.
Additionally, it shares a high degree of textural similarity
with surrounding non-farmland features, such as forests and
waterbodies, which makes it difficult for the model to seg-
ment farmland. By incorporating language, VLMs can effec-
tively comprehend the spatial distribution of farmland and its

surrounding environment, thereby alleviating the segmenta-
tion challenges caused by spatial differentiation and demon-
strating advantages in these different agricultural regions.

To visually illustrate the performance differences among
various models in farmland segmentation tasks, Figs. C9
to C16 present the segmentation results for each agricultural
region. From this, it can be observed that, in agricultural re-
gions such as the Northeast China Plain and the Huang-Huai-
Hai Plain, although the overall accuracy is high, the deep
learning models that rely solely on labels still exhibit cer-
tain limitations. For example, this type of model is prone
to misjudgment when encountering terrain features that re-
semble farmland, such as ponds and grasslands, and often
exhibits issues such as boundary blurring and discontinuity
in the segmentation of farmland. In the South China areas,
the highly fragmented nature of farmland, with its scattered
or narrow distribution, furthers acerbates the segmentation
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Table 4. Farmland segmentation results of different methods based on FGFD. Bold numerical values indicate the best values among the
evaluation metrics.

Evaluation The deep learning models that rely solely on labels Vision language Model

Metrics (%) U-Net Deeplabv3 FCN SegFormer PixelLM LaSagnA LISA

mACC 72.38 74.76 76.52 76.40 78.59 80.70 83.33
mIoU 57.48 60.11 62.43 62.34 64.68 66.83 70.58
mDice 72.71 74.94 76.74 76.66 78.55 80.00 82.65
Recall 72.38 74.76 76.52 76.40 78.98 80.84 83.87

Table 5. Farmland segmentation results of different methods based on LoveDA. Bold numerical values indicate the best values among the
evaluation metrics.

Evaluation The deep learning models that rely solely on labels Vision language Model

Metrics (%) U-Net Deeplabv3 FCN SegFormer PixelLM LaSagnA LISA

mACC 70.83 77.05 73.65 73.78 78.79 80.45 81.76
mIoU 47.77 63.85 61.41 60.57 60.75 64.03 65.74
mDice 64.65 77.47 75.22 74.73 74.78 77.54 78.82
Recall 70.83 77.05 73.65 73.78 77.73 78.87 80.75

challenge. The deep learning models that rely solely on la-
bels struggle to effectively identify such atypical farmland,
leading to a significant decrease in segmentation accuracy.
In contrast, VLMs have demonstrated notable advantages
in the aforementioned agricultural regions. By incorporating
farmland-related key words – such as concentrated buildings
and narrow strips – VLMs enhance their comprehension of
both the inherent properties of farmland and the contextual
information of its surrounding environment. This enriched
understanding contributes to improved completeness and ac-
curacy in farmland segmentation. In addition, this advantage
is not limited to the aforementioned agricultural regions but
is also consistently seen in the segmentation results in the
other five regions. This further validates the generalization
capability and robustness of the VLMs in diverse agricultural
landscapes.

In summary, compared to the deep learning models that
rely solely on labels, VLMs that incorporate captions demon-
strate significant advantages in farmland segmentation across
all agricultural regions. Language information effectively
compensates for the limitations of the deep learning mod-
els that rely solely on labels in complex scenarios, enhancing
the model’s understanding of farmland morphology and the
relationship between farmland and surrounding land cover,
thereby significantly improving farmland segmentation ac-
curacy.

4.4 Cross-domain performance evaluation of models
trained on FarmSeg-VL

In order to evaluate the performance of models trained on
the FarmSeg-VL dataset in cross-domain tasks, this pa-

per conducted relevant experiments. Specifically, this sec-
tion presents transfer tests using VLMs (PixelLM, LaSagnA,
LISA) and the deep learning models that rely solely on labels
(U-Net, DeepLabV3, FCN, SegFormer) trained on FarmSeg-
VL across multiple public datasets. The test datasets include
DeepGlobe Land Cover (DGLC), LoveDA, and the Fine-
Grained Farmland Dataset (FGFD). Specifically, the DGLC
dataset covers regions in Thailand, Indonesia, and India,
while the LoveDA includes areas in Nanjing, Changzhou,
and Wuhan in China. The FGFD encompasses regions such
as Heilongjiang, Hebei, Shaanxi, Guizhou, Hubei, Jiangxi,
and Tibet in China. The specific details are provided in
Table 1. Specifically, to maintain consistency with the
FarmSeg-VL test set and to ensure that the data are more suit-
able for the model, we performed data pre-processing on the
DGLC and LoveDA. This pre-processing primarily involved
cropping the images to a size of 512× 512 and merging non-
farmland pixel labels, among other steps.

Tables 4–6 present the experimental results based on the
FGFD, LoveDA, and DGLC, respectively. Overall, both
the deep learning models that rely solely on labels and
the VLMs exhibit strong cross-domain transferability. This
can be attributed to the FarmSeg-VL dataset’s broad ge-
ographic coverage and diverse seasonal variations, which
provide a solid foundation for cross-domain feature learn-
ing. Notably, VLMs demonstrate significantly superior cross-
domain transfer performance across all three datasets com-
pared to traditionally labeled data-dependent deep learning
models. This advantage is primarily attributed to the fine-
grained captions provided by FarmSeg-VL, which inject
transferable semantic prior knowledge into the VLMs. For
instance, when caption prompts such as “strip-shaped farm-
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Table 6. Farmland segmentation results of different methods based on the DGLC. Bold numerical values indicate the best values among the
evaluation metrics.

Evaluation The deep learning models that rely solely on labels Vision language Model

Metrics(%) U-Net Deeplabv3 FCN SegFormer PixelLM LaSagnA LISA

mACC 64.60 71.73 69.10 70.32 66.13 71.69 72.23
mIoU 48.73 55.68 50.17 52.15 49.38 55.78 56.36
mDice 64.71 71.41 66.81 68.55 66.11 71.59 72.06
Recall 64.60 71.73 69.10 70.32 69.14 72.22 72.44

lands in spring” are provided, the models autonomously cor-
relate farmland shape characteristics across different regions
under spring conditions. This integration of semantic priors
enables VLMs to overcome the representational limitations
inherent in single-modality visual features, thereby main-
taining enhanced discriminative capabilities in cross-domain
scenarios.

Through the cross-domain experiments, this study has
drawn two key conclusions: firstly, models trained on
FarmSeg-VL exhibit significant cross-domain transferability,
fully demonstrating the improvement in model generaliza-
tion performance by FarmSeg-VL. Secondly, the introduc-
tion of captions breaks through the limitations of the deep
learning models that rely solely on labels, enabling the model
to decouple spatiotemporal heterogeneity interference and
effectively improve segmentation accuracy in complex farm-
ing scenes.

4.5 Enhanced model transferability: comparative
analysis of FarmSeg-VL and conventional farmland
datasets

To verify that the model trained on FarmSeg-VL outper-
forms models trained on existing farmland datasets in terms
of both segmentation accuracy and generalization, we con-
ducted extensive comparative experiments in this section.
First, to ensure the reliability of the experimental results,
this study uses the latest dedicated dataset, the FGFD, as
a benchmark for comparison. Since most existing farmland
datasets follow the traditional “image+ label” format (i.e., a
paradigm that solely relies on labeled data), four commonly
used deep learning models that rely solely on labels – U-Net,
Deeplabv3, FCN, and SegFormer – are selected to be trained
on the FGFD dataset. For the proposed FarmSeg-VL dataset,
three VLMs are selected for comparative experiments. Addi-
tionally, to ensure fairness, all trained models are uniformly
tested on the LoveDA dataset.

The experimental results, shown in Table 7, reveal that
models trained on the FarmSeg-VL dataset using VLMs out-
perform those trained on the FGFD dataset with the deep
learning models that rely solely on labels when tested on the
LoveDA dataset. Specifically, the mIoU improved by 10 %
to 40 %, and the mACC increased by 10 % to 30 %. This

gap indicates that models trained on the FarmSeg-VL dataset
with added language modality have significant transferabil-
ity in farmland segmentation compared to models trained on
the traditional dataset of the FGFD. Moreover, FarmSeg-VL
reflects multiple aspects of farmland characteristics through
captions, such as phenological characteristics, spatial dis-
tribution, topographic and geomorphic features, and distri-
bution of surrounding environments, allowing the model to
learn rich and comprehensive information about farmland.
With these detailed captions of farmland, models trained on
FarmSeg-VL not only improve the accuracy of farmland seg-
mentation but also enhance the model’s ability to handle
complex scenes. In summary, FarmSeg-VL is a large-scale,
high-quality image–text dataset of farmland; it has demon-
strated great potential in cross-scenario farmland segmenta-
tion and provides a strong data foundation for future research
in farmland segmentation.

5 Data availability

The FarmSeg-VL dataset is accessible on the Zenodo data
repository at https://doi.org/10.5281/zenodo.15860191 (Tao
et al., 2025).The FarmSeg-VL dataset consists of image data,
labels, and corresponding farmland text descriptions in JSON
files.

6 Conclusion

This study constructs FarmSeg-VL, a high-quality image–
text dataset specifically designed for farmland segmenta-
tion, with key features including high-precision images and
masks, extensive spatiotemporal coverage, and refined cap-
tions of farmland characteristics. In the dataset construction
process, Google imagery with a resolution of 0.5–2 m was
selected as the image data source. Through in-depth analy-
sis of numerous farmland samples, five key attributes were
summarized: inherent properties, phenological characteris-
tics, spatial distribution, topographic and geomorphic fea-
tures, and distribution of surrounding environments. These
were further refined into 11 specific descriptive dimensions,
covering shape; boundary patterns; season; sowing situation;
geographic location; distribution; terrain; landscape features;
and the distribution of waterbodies, buildings, and trees in
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Table 7. Performance of different datasets and methods based on the LoveDA dataset. Bold numerical values indicate the best values among
the evaluation metrics.

Evaluation FGFD FarmSeg-VL

Metrics(%) U-Net Deeplabv3 FCN SegFormer PixelLM LaSagnA LISA

mACC 63.80 57.93 59.19 67.48 78.79 80.45 81.76
mIoU 38.15 29.78 36.62 50.08 60.75 64.03 65.74
mDice 55.17 45.33 53.61 66.29 74.78 77.54 78.82
Recall 63.80 57.93 59.19 67.48 77.73 78.87 80.75

the surrounding environment. Based on the above keywords,
a farmland description template was designed, and a semi-
automated annotation method was used to generate binary
mask labels and their corresponding captions for each im-
age. Ultimately, a dedicated dataset consisting of 22 605
image–text pairs was constructed. To verify the advantages of
FarmSeg-VL in enhancing farmland segmentation accuracy
compared to general image–text datasets, this study first con-
ducted fine-tuning experiments on three leading vision lan-
guage segmentation models: LISA, PixelLM, and LaSagnA.
The experimental results demonstrate that the model fine-
tuned with FarmSeg-VL significantly outperforms the model
trained with general image–text datasets in segmentation
performance. Additionally, this study compared the VLMs
trained on FarmSeg-VL to a traditional deep learning model
that relies solely on labels. The results show a 10 % to
20 % improvement in segmentation accuracy across different
agricultural regions and datasets, highlighting that language
guidance effectively mitigates the impact of spatiotemporal
heterogeneity on farmland segmentation. Finally, the study
compared the performance of the traditional deep learning
model that rely solely on labels trained on the FGFD dataset
with the models trained using three VLMs on the FarmSeg-
VL dataset. The evaluation of the LoveDA dataset showed an
improvement in test accuracy by approximately 15 %. Exper-
imental results show that the model trained on FarmSeg-VL
improves significantly in terms of accuracy and robustness
in farmland segmentation. As the first large-scale image–text
dataset for farmland segmentation, FarmSeg-VL holds sig-
nificant academic value and application potential. It is ex-
pected to advance research on the semantic understanding of
farmland in remote sensing imagery, promote the develop-
ment of more efficient and generalized segmentation models,
and better serve the diverse needs of agricultural monitoring.

Appendix A: More details of farmland texture
description in image–text dataset

As shown in Fig. A1, mainstream remote sensing image–text
datasets, such as UCM-Captions, NWPU-Captions, RSICD,
RSICap, and ChatEarthNet, generally adopt scene-level or
object-level descriptions. These datasets often lack detailed
characterization of farmland morphology, temporal features,

and environmental context, making them insufficient for
farmland segmentation tasks that require high-level seman-
tic and structurally rich textual information.

For example, UCM-Captions provides only simple and
repetitive descriptions like “There is a piece of farmland”
without any specific texture or spatial information. NWPU-
Captions offers slight improvements by adding color and
shape descriptions, such as “Many dark-green circular fields
are mixed with yellow rectangular fields” but still does not in-
clude background context or agricultural semantics. RSICD
focuses only on aggregated forms or land cover components,
with descriptions like “The little farm is made up of grass
and crops”, lacking both temporal cues and environmen-
tal context. RSICap provides relatively richer descriptions,
for example, “In the image, there are many buildings and
some farmlands located near a river”, which reflects spatial
relationships between farmland and buildings or waterbod-
ies. However, these descriptions are mostly static and fail
to capture the dynamic properties of farmland over time.
ChatEarthNet, designed primarily for land cover classifica-
tion, presents slightly more complex descriptions such as
“This image shows a balance between crop and grass ar-
eas” but still lacks detailed information about farmland mor-
phology, terrain, crop types, or surrounding environmental
elements. In contrast, the proposed FarmSeg-VL dataset is
specifically designed for the farmland segmentation task,
placing greater emphasis on fine-grained semantic infor-
mation closely tied to the spatiotemporal characteristics of
farmland. For each remote sensing image, the accompany-
ing textual description includes the image capture time; ge-
ographic coordinates; and detailed references to landform;
shape; boundary characteristics; topography; and surround-
ing features such as waterbodies, vegetation, and buildings.
Additionally, the descriptions incorporate attributes such as
cropping patterns and spatial layouts, providing comprehen-
sive semantic support for accurate and context-aware farm-
land segmentation.
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Figure A1. Details of farmland texture description in general remote sensing image–text dataset.

Appendix B: Examples of five types of text features
for farmland shapes

To provide readers with a more intuitive understanding of the
farmland morphology in the FarmSeg-VL dataset, we present
five additional examples of farmland shapes in Fig. B1.

Figure B1. Example of farmland shape.
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Appendix C: Farmland segmentation results of
different methods in different agricultural areas

Figure C1. Farmland segmentation results of different methods in the Northeast China Plain.

Figure C2. Farmland segmentation results of different methods in the Huang-Huai-Hai Plain.
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Figure C3. Farmland segmentation results of different methods in the northern arid and semi-arid region.

Figure C4. Farmland segmentation results of different methods on the Loess Plateau.
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Figure C5. Farmland segmentation results of different methods in Yangtze River Middle and Lower Reaches Plain.

Figure C6. Farmland segmentation results of different methods in the South China areas.
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Figure C7. Farmland segmentation results of different methods in the Sichuan basin.

Figure C8. Farmland segmentation results of different methods on the Yungui Plateau.
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Figure C9. Farmland segmentation results of different methods in the Northeast China Plain. (a) Original image. (b) Ground truth. (c) U-Net.
(d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.

Figure C10. Farmland segmentation results of different methods in the Huang-Huai-Hai Plain. (a) Original image. (b) Ground truth. (c) U-
Net. (d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.

Figure C11. Farmland segmentation results of different methods in Northern Arid and Semi-arid Region. (a) Original image. (b) Ground
truth. (c) U-Net. (d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. and (i) LISA.
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Figure C12. Farmland segmentation results of different methods on the Loess Plateau. (a) Original image. (b) Ground truth. (c) U-Net.
(d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.

Figure C13. Farmland segmentation results of different methods in the Yangtze River Middle and Lower Reaches Plain. (a) Original image.
(b) Ground truth. (c) U-Net. (d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.

Figure C14. Farmland segmentation results of different methods in the South China areas. (a) Original image. (b) Ground truth. (c) U-Net.
(d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.
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Figure C15. Farmland segmentation results of different methods in the Sichuan basin. (a) Original image. (b) Ground truth. (c) U-Net.
(d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.

Figure C16. Farmland segmentation results of different methods on the Yungui Plateau. (a) Original image. (b) Ground truth. (c) U-Net.
(d) Deeplabv3. (e) FCN. (f) SegFormer. (g) PixelLM. (h) LaSagnA. (i) LISA.
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Appendix D: Quantitative evaluation of
semi-automated annotation efficiency

In order to quantify the annotation efficiency of the semi-
automatic annotation framework proposed in this article,
comparative experiments were conducted in this section.
Specifically, we randomly selected four annotators and an-
notated the masks and texts of 13 farmland remote sensing
images using traditional manual-drawing methods and semi-
automated annotation methods. Finally, we compared the
completion time of the annotations. As shown in Fig. D1, af-
ter using the semi-automated annotation method, the average
annotation time was significantly reduced, saving approxi-
mately 2 min per image, and overall efficiency improved by
1.5 times. This result indicates that the annotation tool devel-
oped in this article has significantly improved efficiency and
usability.

Figure D1. Comparison of farmland annotation efficiency.
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Appendix E: Cross-regional applicability assessment
of FarmSeg-VL

To verify the generalization performance of the model
trained using FarmSeg-VL on datasets from other countries
that have significant differences in terms of climate or crop-
ping patterns compared to FarmSeg-VL, this paper selects a
portion of the region in Nordrhein-Westfalen, Germany, as
the benchmark for testing. Test experiments were conducted
using the LISA model. Specifically, we selected a subset
of data from Nordrhein-Westfalen, Germany, and performed
several pre-processing steps, including image downloading,
vector boundary processing, and image and label cropping,
to adapt it for our farmland segmentation model. The image
and label overlay results of the test area are shown in Fig. 1.

Table E1. Farmland segmentation results of different methods
based on Fiboa. Bold numerical values indicate the best values
among the evaluation metrics.

Evaluation LISA

Metrics(%) FGFD LoveDA DGLC Fiboa

mACC 83.33 81.76 72.23 88.05
mIoU 70.58 65.74 56.36 78.20
mDice 82.65 78.82 72.06 87.73
Recall 83.87 80.75 72.44 87.38

Figure E1. Example of Fiboa data.

The experimental results are shown in Table E1, where we
compare the cross-domain performance of the LISA model
trained on the FarmSeg-VL dataset with that of other models
evaluated based on public datasets in Sect. 4.4. Specifically,
the FGFD and LoveDA datasets are from China, while the
DGLC dataset covers regions in Thailand, Indonesia, and In-
dia. As shown in the table, the LISA model performs well
in cross-domain testing, which can be attributed to the ex-
tensive geographical coverage and rich seasonal variations
of the FarmSeg-VL dataset, providing a solid foundation for
cross-domain feature learning. Notably, the LISA model out-
performs other models based on the Fiboa dataset. This is due
to the concentrated, contiguous, and well-defined character-
istics of farmland in the Fiboa region, which facilitate the ex-
traction of discriminative features, leading to optimal results
in this region. Furthermore, the climatic and cropping system
differences between the Fiboa dataset and FarmSeg-VL fur-
ther validate the applicability and strong generalization capa-
bility of the FarmSeg-VL dataset in adapting to the diverse
agricultural contexts of different countries. This highlights
its potential in global, heterogeneous farmland scenarios.
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Appendix F: Model robustness verification

To evaluate the robustness of the model under different data
partitioning conditions, we conducted additional experiments
using the LISA model based on the FarmSeg-VL dataset.
Specifically, we first merged the original training, validation,
and test sets and then randomly split the combined dataset
into three new training, validation, and test sets following a
7 : 2 : 1 ratio. This random splitting procedure was repeated
three times to minimize the impact of stochastic variation,
and the model was trained and evaluated independently for
each split.

Table F1. Farmland segmentation results based on different tests.

Evaluation Test 1 Test 2 Test 3 Test 4
metrics (%)

mACC 87.71 87.27 87.33 87.54
mIoU 93.47 93.22 93.26 93.37
mDice 93.45 93.20 93.23 93.36
Recall 93.46 93.20 93.24 93.34

Table F1 shows the results of four different random par-
titions of the test set. Test 1 to test 4 show the results of
four different test sets. As shown in the Table F1, the vari-
ation in test results across the different test sets is minimal,
demonstrating the robustness of the FarmSeg-VL dataset and
the model. This outcome indicates that the balanced distri-
bution and diverse geographical features of the dataset play
a crucial role in enhancing the model’s stability and gener-
alization capability. Specifically, the FarmSeg-VL dataset is
characterized by high-quality image and textual annotations,
with a broad distribution that spans different seasons and ge-
ographical conditions. This effectively reduces the discrep-
ancies between the datasets, thereby improving the model’s
robustness in relation to variations in data partitions.
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