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Abstract. We introduce the new ESA Climate Change Initiative TROPOspheric Monitoring Instrument
(TROPOMI) global monthly clear-sky Level 3 (L3) dataset of tropospheric nitrogen dioxide (NO2) for May
2018 to December 2021. The dataset provides spatiotemporally averaged tropospheric NO2 columns, associ-
ated averaging kernels, and L3 uncertainties at spatial resolutions of 0.2, 0.5, and 1.0° on a monthly timescale
(https://doi.org/10.21944/CCI-NO2-TROPOMI-L3, KNMI, 2025). To improve our understanding of what frac-
tion of the Level 2 (L2) uncertainty cancels when averaging over space or time (i.e. the random component of
the L2 uncertainty) and what fraction persists despite the averaging (systematic component), we first determine
spatial and temporal error correlations for all sources of uncertainty in the L2 retrieval. Spatial error correlations
arise mainly from the stratosphere–troposphere correction and from coarse-gridded albedo climatologies used
in the L2 air mass factor calculation and have been quantified in previous studies. We find the temporal error
correlation in both the stratospheric uncertainty and the air mass factor uncertainty to be 30 %. Using these es-
timates, the L3 uncertainty budget has been established for every grid cell based on input L2 uncertainties and
new methods to estimate spatial and temporal representativeness uncertainties and to propagate measurement
uncertainties through space and time. The total relative uncertainty in the resulting L3 dataset is in the range
of 15 %–20 % in polluted areas, which is significantly lower than in individual L2 orbit retrievals, and brings
the tropospheric NO2 data to within the Global Climate Observing System (GCOS) “goal” and “breakthrough”
requirements. Validation of the tropospheric, stratospheric, and total columns confirms better correlation and
reduced dispersion in the differences between satellite and ground-based reference data for the L3 data with re-
spect to the underlying L2, albeit with a more pronounced negative bias in the tropospheric columns at pollution
hot spots, most probably related to stronger spatial smearing.
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1 Introduction

Long-term monitoring of nitrogen oxides (NOx = NO +
NO2) in the atmosphere is crucial for several reasons. Ni-
trogen oxides are harmful air pollutants, and long-term ex-
posure is causally linked to chronic respiratory diseases and
mortality in humans (Faustini et al., 2014; Fischer et al.,
2015). When nitrogen dioxide (NO2) is oxidised in the at-
mosphere, it forms nitric acid (HNO3), which readily dis-
solves in airborne droplets and subsequently comes down as
acid rain. Excessive deposition of HNO3 has been shown
to lead to adverse feedbacks on land and water ecosystems
(Tan et al., 2020), and changes in N-deposition influence
ecosystem carbon sinks, affecting the biosphere’s capacity
to capture carbon from the atmosphere in the long run (Liu
et al., 2022). Moreover, the monitoring of NOx concentra-
tions helps to identify major sources of CO2, because both
species are co-emitted upon combustion of fossil fuels by
vehicles, industrial activities, and power plants (e.g. Zhang
et al., 2023). Finally, NOx play a significant role in the for-
mation of ozone smog (Zhang et al., 2021) and fine partic-
ulate matter (Zhang et al., 2015), and both these secondary
pollutants further harm human health and the environment.
The importance of nitrogen oxides and their indirect im-
pact on methane, ozone, and aerosol is an important reason
why tropospheric NO2 columns along with other trace gases
have been selected as the so-called essential climate variable
(ECV) precursors for aerosols and ozone (Zemp et al., 2022).

To allow for policy development and air pollution and cli-
mate change assessments, inter-annual changes and trends
in recent decades need to be calculated. For this, long-
term, robust, sustainable, and scientifically sound climate
data records (CDRs) are needed to provide trustworthy in-
formation on how, where, and to what extent nitrogen oxide
concentrations are changing. The European Space Agency
(ESA) Climate Change Initiative (CCI) set out to develop
robust satellite data records of key components of the cli-
mate system, including nitrogen dioxide concentrations. At-
mospheric monitoring of NOx involves application of in situ
measurement techniques from ground-based or airborne plat-
forms, but these measurements are limited in their spatio-
temporal coverage. Satellite remote sensing with UV/Vis
sensors, by contrast, has provided global measurements of
tropospheric NO2 columns since the mid-1990s. The wide
spatial coverage and continuity of satellite measurements
make them fit for purpose for climate monitoring. Among
the key satellite instruments used to monitor tropospheric
NO2 columns are OMI (Ozone Monitoring Instrument) on
NASA’s Aura satellite and TROPOMI (TROPOspheric Mon-
itoring Instrument) on ESA’s Sentinel-5 Precursor, which
provide long-term, high-resolution datasets critical for un-
derstanding air pollution trends.

Level 2 (L2) retrieval algorithms to derive NO2 columns
from raw satellite measurements (Level 1 data) have received
a lot of attention (e.g. Van Geffen et al., 2022a). A frame-

work for the evaluation of quality assurance measures was
created in the Quality Assurance for Essential Climate Vari-
ables (QA4ECV) project for multiple climate variables in-
cluding NO2 columns for the L2 products of a group of sen-
sors (not including TROPOMI) (Nightingale et al., 2018),
providing users with evidence-based confidence in the prod-
ucts and enabling judgement on the fitness for purpose for
specific applications. In comparison, Level 3 (L3) data, spa-
tially and/or temporally averaged products on a consistent
grid derived from L2 data (e.g. Wei et al., 2022), have been
less considered by the scientific community. However, L3
data are relevant for model evaluation (Visser et al., 2019;
Eskes et al., 2024), data assimilation (Inness et al., 2019;
Sekiya et al., 2022), and climate (trend) studies (e.g. Zara
et al., 2021). The emphasis on L2 retrieval algorithms is un-
derstandable, as it reflects the need to ensure the foundational
accuracy of the L2 data, which is the starting point for cre-
ating high-quality L3 products. However, the quality of L3
products not only depends on reliable input data, but also re-
quires a good understanding of best methods for averaging
both spatially and temporally and assessing the propagation
of existing measurement uncertainties and the quantification
of additional sampling uncertainties.

Including rigorous uncertainty information in L3 CDRs is
important to support the application of the data (Merchant
et al., 2017). This is necessary to avoid misinterpretation of
artefacts arising from system limitations such as real geo-
physical changes or trends (e.g. Labzovskii et al., 2024),
for modellers to get confidence in discriminating model–
data discrepancies that unambiguously indicate model defi-
ciencies from those where observational errors are signif-
icant, and to contribute appropriate weighting to different
observations in data assimilation and reanalyses (Merchant
et al., 2017). An accurate quantification of L3 uncertain-
ties includes both the assessment of the magnitude of error
sources, as well as a propagation of these uncertainties to the
L3 data product, including a treatment of spatio-temporal er-
ror correlations between individual satellite observations and
of aspects of spatio-temporal representativity.

Measurement uncertainties are often assumed to be either
fully systematic or fully random in space and time when de-
termining gridded datasets (e.g. Wenig et al., 2008; Chan
et al., 2023). In reality, there will be spatial and temporal
correlations between multiple error sources, depending on
length scale and timescales. There are datasets where un-
certainties are determined using partial error correlations,
but until now the correlation coefficients used have been
determined using expert opinion, introducing subjectivity
(Miyazaki et al., 2012; Boersma et al., 2016, 2018). A more
quantitative treatment of spatial error correlations and repre-
sentativeness errors in case of incomplete coverage of a grid
cell has been presented in Rijsdijk et al. (2025). Their anal-
ysis reveals a grid-size-dependent partially systematic error
contribution from the air mass factor and a fully system-
atic error from the stratospheric column. A detailed analysis
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of the effect of systematic sampling due to cloud cover re-
sulted in a mathematically derived realistic spatial represen-
tation error. Rijsdijk et al.’s methods to reconstruct realistic
uncertainties in spatial averages will be discussed in more
detail in Sect. 3.2.2. In this paper we extend this spatial-
averaging approach presented in Rijsdijk et al. (2025) to
spatio-temporally averaged L3 products (gridded monthly
means). This brings us to the following research questions for
this study: (1) Can we improve our understanding of how un-
certainties in satellite-derived tropospheric NO2 columns are
correlated in space and in time? (2) Can we use this under-
standing of correlations in uncertainties to better characterise
how these uncertainties propagate into gridded, monthly
mean uncertainty estimates? (3) What is the monthly mean
uncertainty budget for TROPOMI NO2 L3 data, and how do
these L3 uncertainties vary in space and time? (4) To what
extent does the validation with independent reference mea-
surements help to assess the quality and fitness for purpose
of the TROPOMI NO2 L3 data?

We present the ESA CCI+ L3 TROPOMI atmospheric
NO2 dataset with a thorough assessment of the L3 uncer-
tainty, combining measurement uncertainties, sampling un-
certainties, and a proper assessment of local error correla-
tions for the uncertainty propagation. This includes, for the
first time, an empirical quantification of correlation coeffi-
cients for multiple error sources.

2 Instrument and dataset

2.1 TROPOMI instrument

The TROPOspheric Monitoring Instrument (TROPOMI)
(Veefkind et al., 2012) provides data on tropospheric NO2
(and many other trace gases) columns with daily global cov-
erage at spatial resolution of 7× 3.5 km2 and, since 6 Au-
gust 2019, of 5.5×3.5 km2 at nadir. TROPOMI is aboard the
European Space Agency (ESA) Sentinel-5 Precursor (S5P)
satellite, which was launched on 13 October 2017 and has
been providing nominal observations since May 2018. The
near-polar sun-synchronous orbit provides afternoon obser-
vations with an Equator local overpass time of 13:30 and a
nearly daily global coverage.

2.2 TROPOMI Level 2 tropospheric NO2 columns and
uncertainties

The starting point for the generation of L3 data is the L2
TROPOMI NO2 tropospheric vertical columns on an orbital
basis (Copernicus Sentinel-5P, 2021a). The aim of the ESA
CCI+ project is to generate long-term climate data records,
and therefore we use the TROPOMI PAL v2.3.1 L2 data,
which are the most consistent with the OMI QA4ECV v1.1
product (Boersma et al., 2018). These OMI and TROPOMI
data products are based on strongly consistent algorithms
that use the same OMI surface albedo climatology (the so-

called MINLER; Kleipool et al., 2008), which allows for
better merging of the datasets and allows using data from
2004 to 2022. Still, the methods described in this paper are
applicable on the operational dataset or any other version
of the L2 data as well. TROPOMI retrievals with qa_value
of > 0.75 were used, which corresponds to good-quality re-
trievals over (nearly) cloud-free scenes. Retrievals made in
the descending part of the orbit are removed because high-
latitude retrievals in the descending part of the orbit are not
being used in the stratospheric correction procedure, leading
to high-biased stratospheric NO2 columns and, on average,
negative tropospheric NO2 columns for the descending part
of the orbit (see Appendix A). A small bug with respect to
the qa_value over snow and ice present in version 2.3.1 was
corrected in this study (following the procedure set out in
Sect. 5.1 in van Geffen et al., 2024).

The NO2 retrieval procedure consists of three steps: the
spectral fitting, the stratospheric correction, and the conver-
sion of the tropospheric slant column density (SCD) into a
tropospheric vertical column density using the air mass fac-
tor. Each of these three steps introduces potential errors and
contributes to the overall uncertainty. The single tropospheric
column uncertainty (σi) is quantified as in Boersma et al.

(2004): σi =
√(
σNs

)2
+
(
σN strat

s

)2
+ (σM tr )2, where the tro-

pospheric column uncertainty sources are

σNs =
σ ′Ns

M tr ; σN strat
s
=

σ ′
N strat

s

M tr ; σM tr =
(Ns−N

strat
s ) · σ ′

M tr

(M tr)2 ,

with Ns the slant column density; N strat
s the stratospheric

slant column density; M tr the tropospheric air mass factor;
and σ ′Ns

, σ ′
N strat

s
, and σ ′

M tr their respective uncertainties.
The slant column density uncertainty σ ′Ns

is estimated
on a per-pixel basis during the spectral fitting and is ob-
tained from the diagonal of the covariance matrix of the
standard errors (Van Geffen et al., 2020) and has typical
values of ∼ 0.6× 1015 molecules cm−2 (Van Geffen et al.,
2020, 2022a). This value compares well with values obtained
with an alternative method to estimate uncertainties in the
NO2 slant column densities (by statistical analysis of the
distribution of SCDs corrected for viewing geometry over
regions with very little variability in stratospheric NO2, re-
ported in Boersma et al., 2004, Zara et al., 2018, and, most
recently, for TROPOMI, in Van Geffen et al., 2020).

TM5-MP is being used in the TROPOMI NO2 re-
trieval algorithm by providing estimates of stratospheric
NO2 columns. TM5-MP is a global chemistry-transport
model that simulates atmospheric trace gas distributions at
1°× 1° resolution in the troposphere and in the stratosphere
(Williams et al., 2017). The stratospheric slant column un-
certainty σ ′

N strat
s

is based on a global statistical analysis of re-
sults from the data assimilation procedure used to separate
the tropospheric and stratospheric columns. The data assim-
ilation procedure uses the observed slant columns and TM5-
MP 24 h forecast stratospheric NO2 fields (after modelled
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transport and chemistry). The difference between modelled
forecasts and the actual observations (O–F) over unpolluted
scenes is taken as an upper limit of the uncertainty in strato-
spheric NO2 columns and has a statistical global-mean value
of 0.2×1015 molecules cm−2 (Dirksen et al., 2011), which is
applied in the L2 algorithm (van Geffen et al., 2022b). Here,
we apply a more detailed latitude- and time-dependent L2
stratospheric uncertainty as derived by Rijsdijk et al. (2025),
where the O–F is analysed over latitudinal and day-of-year
bands, resulting in a look-up table. A recent comparison
of stratospheric NO2 columns obtained with data assimila-
tion in TM5-MP and the STREAM approach (Beirle et al.,
2016), an alternative method to separate the stratosphere and
troposphere columns, for GOME-2A showed consistency to
within 0.2×1015 molecules cm−2 (Richter et al., 2024). Sim-
ilar results were found in a comparison of stratospheric NO2
columns from the data assimilation method and STREAM
for OMI of the QA4ECV dataset (Boersma et al., 2018; Com-
pernolle et al., 2020) and are to be expected when applied to
TROPOMI.

The air mass factor (AMF) uncertainty σ ′
M tr consists of un-

certainty contributions from the cloud pressure, cloud frac-
tion, surface albedo, and a priori NO2 profile shape. The
theoretical error propagation framework in Boersma et al.
(2004) is used to estimate the overall AMF uncertainty. The
overall tropospheric AMF uncertainties are estimated to be
30 %–50 % (Boersma et al., 2018) for individual retrievals.

The overall uncertainty for an individual retrieval there-
fore depends on details in the retrieval and is pixel specific.
Over oceans and remote areas, with low tropospheric verti-
cal columns, the relative overall uncertainty is typically more
than 100 % and is dominated by uncertainty in the spectral
fit (σNs ) and the stratospheric slant column density (σN strat

s
)

(van Geffen et al., 2022b). For more polluted regions over
continental areas, the relative uncertainty reduces to 25 %–
50 % and is dominated by uncertainty in the tropospheric air
mass factor (σM tr ) (van Geffen et al., 2022b). The overall un-
certainty for individual TROPOMI tropospheric vertical col-
umn NO2 retrievals (N trop

v ) is sometimes approximated as
σi ≈ 0.5× 1015 molecules cm−2

+ [0.2 to 0.5]×N trop
v (van

Geffen et al., 2022b).

3 Methodology

3.1 L3 algorithm overview

Our starting point is individual L2 tropospheric verti-
cal column retrievals with a retrieved column value xi
(molecules cm−2) and the associated individual retrieval un-
certainty σi (molecules cm−2). To compute L3 spatial and
temporal gridded means, we developed a two-step procedure,
in which we

1. calculate spatially averaged (gridded) column values
(xo,t) – where t stands for an instantaneous column

value not averaged in time – along with their associated
L2 measurement uncertainties (σm) and spatial repre-
sentativeness uncertainty (σrs), combined into the spa-
tial average uncertainty (σo,t). Here we follow the spa-
tial averaging approach and uncertainty assessment de-
scribed in Rijsdijk et al. (2025).

2. provide temporal averaged estimates (x̄) of the spatially
averaged column values (xo,t) and their total uncer-
tainty (σ̄total), including associated temporal represen-
tativeness uncertainty (σ̄rt) and measurement uncertain-
ties (σ̄m).

Figure 1 provides a schematic picture of the above proce-
dure. After collecting the individual values of the retrieved
column (xi) and its uncertainty (σi), their spatially averaged
(instantaneous) counterparts (xo,t, σo,t) are calculated for a
L3 grid cell. Then, in Step 2, these spatial averages are ag-
gregated over time and averaged, leading to the desired L3
product. This two-step method allows us to assess and apply
different error correlation factors when propagating uncer-
tainties spatially and temporally.

3.2 Spatial averaging

3.2.1 Averaging of variables

Step 1 concerns the spatial averaging of valid retrieved val-
ues of the individual pixels (xi) with weights (wi). Following
Miyazaki et al. (2012), Boersma et al. (2016), Rijsdijk et al.
(2025) the weight wi of each measurement is taken equal to
the spatial overlap area between the footprint of observation
i and the L3 grid cell. This tiling approach results in the fol-
lowing estimate of the gridded L3 column:

xo,t =

∑N
i=1(wixi)∑N
i=1wi

, (1)

with N the number of valid L2 observations in the L3 cell.
The spatial average is determined on a (regular) grid

on a per-orbit basis. This is possible for any given grid;
we provide the dataset created here at spatial resolutions
0.2°× 0.2°, 0.5°× 0.5°, and 1°× 1°. The spatial average for
a grid cell is only determined if the combined valid individ-
ual retrievals xi cover at least 30 % of the grid cell, to avoid
unrealistic uncertainty estimates in small data samples, fol-
lowing Rijsdijk et al. (2025).

3.2.2 Uncertainty estimate

To assess the overall uncertainty (σo,t) in xo,t of these spatial
averages, we follow the procedure in Rijsdijk et al. (2025)
and combine the propagated measurement uncertainties (σm)
and the spatial representativeness uncertainty (σrs) in quadra-
ture:

σo,t =
√

(σm)2+ (σrs)2. (2)
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Figure 1. Schematic example of the procedure to calculate spatio-temporal (gridded) averages of retrieved columns and their associated
uncertainties. The irregular grey rectangles indicate an ensemble of individual L2 retrievals in a satellite orbit; the black rectangle shows a
regular grid to which the individual retrievals are averaged and gridded in Step 1. In Step 2, this procedure is repeated to obtain multiple
spatial averages along with their associated uncertainties, which are then averaged over a period to produce a temporal mean and its associated
L3 uncertainty.

This reflects that the uncertainty in the spatial average is
composed of propagated L2 uncertainties and may also con-
tain uncertainty from incomplete coverage of the grid cell.

Measurement uncertainty

The measurement uncertainty σm is the combined tropo-
spheric vertical column uncertainty from error contributions
(σm,c) in the L2 retrieval, including the uncertainty due to
the slant column density measurements (σNs ), the uncertainty
resulting from errors in the stratospheric column (σN strat

s
),

and the uncertainty from the air mass factor (σM tr ) (Boersma
et al., 2004).

σm =

√
(σNs )2+ (σN strat

s
)2+ (σM tr )2 (3)

Note that these are the contributions of each uncertainty
source to the tropospheric vertical column uncertainty, not
the source uncertainties themselves. Each of these (σNs ,
σN strat

s
, and σM tr ) is represented by Eq. (4) (Sekiya et al.,

2022; Rijsdijk et al., 2025), which considers that the random
component of the individual uncertainties σi tends to can-
cel out when averaging over many observations (first term
on the right-hand side), while a fraction φc of the individual
uncertainties σi persists after averaging because they come
from systematic, spatially correlated contributions to the un-
certainties (second term):

σm,c =

√√√√(1−φc)

∑N
i=1(w2

i σ
2
i,c)∑N

i=1w
2
i

+φc
(
∑N
i=1(wiσi,c))2∑N

i=1w
2
i

. (4)

The spatial error correlation factor φc in Eq. (4) quanti-
fies the portion of the error that is systematic, and here we

determine its value for each of the measurement error con-
tributions c (slant column density, stratospheric column, and
air mass factor) separately. We apply the spatial error corre-
lations as determined by Rijsdijk et al. (2025).

The slant column error is largely uncorrelated over space
as it is dominated by measurement noise (Van Geffen et al.,
2020; Rijsdijk et al., 2025). There will be a systematic error
component in the slant column density due to gaps in knowl-
edge, such as offsets in absorption cross sections, inaccurate
ring coefficients in the spectral fit, or the lack of a correction
for vibrational Raman scattering (Richter et al., 2011; Zara
et al., 2018; Rijsdijk et al., 2025). In Van Geffen et al. (2020)
the slant column retrieval noise estimated over a Pacific sec-
tor was found to match the DOAS uncertainty estimate to
within 15 % for clear-sky pixels, suggesting systematic re-
trieval errors are roughly a factor of 2 smaller than the ran-
dom errors. However, the effect of these systematic errors is
absorbed in the stratospheric column estimate (as discussed
below). Therefore, the uncertainty in slant column density is
assumed to be fully random (φNs = 0) (Rijsdijk et al., 2025).

In the retrieval method the stratospheric column is deter-
mined by assimilating slant column superobservations in the
chemical transport model TM5-MP (Williams et al., 2017).
The resolution of the TM5-MP model is 1°× 1°, and the hor-
izontal correlation length scale used in the assimilation is
about 500 km. This is coarser than the spatial average grid
sizes of 0.2 to 1.0° considered here. Therefore, it is assumed
that the error in the stratospheric column is fully correlated
in space with the L3 grid resolution (φN strat

s
= 1). A spatially

correlated error in the slant column would lead to an in-
creased bias in the O–F, increasing the L2 stratospheric col-
umn uncertainty. The spatial mean of the stratospheric col-
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umn uncertainty in Eq. (3) will thus include the contribution
from the systematic slant column uncertainty.

The AMF uncertainty is caused by a combination of com-
ponents that go into the calculation of the AMF. The a priori
NO2 profile is a large contribution to the AMF uncertainty
but is shown to become irrelevant when the averaging ker-
nel is used when comparing with three-dimensional model
output (Eskes et al., 2003). Other major components of the
AMF uncertainty are the uncertainties in surface albedo and
cloud parameters (cloud fraction and cloud pressure). All
three of these variables depend on the quality of the clima-
tological surface albedo dataset. Rijsdijk et al. (2025) review
the AMF uncertainty by comparing versions 2.3.1 and 2.4 of
the NO2 L2 datasets. The main difference between these two
versions is that they apply different surface albedo climatolo-
gies. We argue that the differences between albedo estimates
from these state-of-science climatologies are indicative of re-
alistic albedo uncertainties. The albedo values directly af-
fect the clear-sky AMF calculations but also drive the re-
trieved values for the cloud fraction and cloud pressure (see
e.g. Riess et al., 2021). Differences between albedo values
thus propagate to different values of cloud fraction and cloud
pressure, which impact the cloudy-sky AMF values. Albedo
differences thus impact the overall AMF calculation, and
spatio-temporal characteristics in the albedo differences are
expected to lead to spatio-temporal patterns in AMF differ-
ences, allowing us to analyse how the AMF uncertainty pat-
terns are correlated in time and space. The effects of chang-
ing the surface albedo climatology on the results of the tro-
pospheric NO2 retrieval are expressed as differences between
v2.3.1 and v2.4 tropospheric NO2 columns. The error in the
AMF is shown by Rijsdijk et al. (2025) to be partly correlated
depending on the size of the grid cells (φM tr = e−d/l , where
d is a distance between observations depending on the grid
cell size and l = 35 km is a typical average correlation length
over polluted regions). This spatial correlation is partly due
to the low resolution of surface albedo datasets (0.5°) but
also because surface modifying conditions are often spatially
extensive. For example, droughts impact the surface albedo
not just in one grid cell but typically over a larger area. Ta-
ble 1 provides typical values of the spatial error correlation
coefficients for TROPOMI spatial averages at different grid
resolutions.

Spatial representativeness uncertainty

The spatial representativeness uncertainty σrs
(molecules cm−2) accounts for incomplete sampling
(mainly due to cloud-covered pixels not being included
in the spatial averaging) of the cell by the observations
available to calculate xo,t (Rijsdijk et al., 2025). If the entire
area of the L3 cell is covered by valid observations, then the
representativeness uncertainty is 0. If only a small fraction
of the L3 cell is covered, the representativeness uncertainty
is equal to the standard deviation of the tropospheric vertical

Table 1. Spatial error correlation sources and their random and
systematic fractions for TROPOMI NO2 tropospheric vertical col-
umn spatial averages at different spatial resolutions. For the calcu-
lation of the AMF coefficients, φM tr = e−d/l has been used with
l = 35 km the typical correlation length over polluted regions (Rijs-
dijk et al., 2025) and d the typical grid cell dimension (in km).

Spatial error Random fraction Systematic
correlation (averages out) fraction
source (persists)

Slant column density (1−φNs )= 1.00 φNs = 0.00∗

Stratospheric correction (1−φN str
s

)= 0.00 φN str
s
= 1.00

AMF (0.2°× 0.2°) (1−φMtr )= 0.44 φMtr = 0.56
AMF (0.5°× 0.5°) (1−φMtr )= 0.75 φMtr = 0.25
AMF (1.0°× 1.0°) (1−φMtr )= 0.94 φMtr = 0.06

∗ Note: the systematic component of the slant column density uncertainty is
included in the stratospheric uncertainty.

columns within the cell: large for areas with strong spatial
variability in xi (such as over polluted regions) and smaller
for regions with similar values of xi (such as over clean,
background regions).

σrs = f σxi , (5)

where σxi is the standard deviation in retrievals within the
grid cell. The unitless fraction f is calculated as the represen-
tativeness of the retrieved observations for the fully covered
grid cell:

f =
1√

Neffαo,t+ 1

√
1−αo,t, (6)

where the degree of coverage αo,t is calculated as the fraction
of the total valid pixel area (A, in km2):

αo,t =

∑N
i=1wi

A
, (7)

andNeff is the number of effective observations, which is de-
pendent on the number of available observations, the sensor,
the trace gas, the L3 grid resolution, and whether a grid cell
is sensitive to systematic sampling (e.g. due to a cloud field
covering part of a grid cell) or not (Rijsdijk et al., 2025). The
lower the value for Neff, the more sensitive a region is to sys-
tematic sampling. Neff has been determined empirically by
Rijsdijk et al. (2025), and a summary of the methods used to
quantify Neff can be found in Appendix B.

3.3 Temporal averaging

3.3.1 Averaging of variables

The second step in the generation of the L3 dataset con-
sists of temporal averaging, a method newly introduced in
this study. We average the spatial-mean values (superobser-
vations) xo,t obtained in Step 1 over time (e.g. a period of
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1 month), again in a weighted fashion to account for dif-
ferent degrees of representativity (wo,t = 1− f ). f is high
for grid cells with a large representativeness uncertainty and
low for superobservations with almost no representativeness
uncertainty. This value depends on coverage – higher cover-
age results in a lower representativeness error – as well as
other factors such as sensitivity to systematic sampling. Tak-
ing a weighted average like this implies that superobserva-
tions with a low representativeness uncertainty obtain more
weight in the temporal average than superobservations with
a high representativeness uncertainty. This results in the fol-
lowing estimate of the spatially and temporally averaged L3
column x̄:

x̄ =

∑T
t=1(wo,txo,t)∑T
t=1wo,t

, (8)

with T the total number of valid superobservations in the pe-
riod over which the averaging is performed.

3.3.2 Uncertainty estimate

Next, the uncertainty associated with x̄ (i.e. the monthly
mean L3 uncertainty) is determined. We calculate a total
spatio-temporal averaged uncertainty which combines the
propagated measurement uncertainty (σ̄m, including the spa-
tial representativeness uncertainty) and a temporal represen-
tativeness uncertainty (σ̄rt) in quadrature:

σ̄total =
√

(σ̄m)2+ (σ̄rt)2. (9)

Propagated measurement uncertainty

The spatio-temporally averaged measurement uncertainty σ̄m
is the combined uncertainty of the measurement error contri-
butions σ̄m,c including the spatial representativeness uncer-
tainty and a priori profile uncertainty:

σ̄m =

√
(σ̄Ns )2+ (σ̄N strat

s
)2+ (σ̄M tr )2+ (σ̄rs)2+ (σ̄a priori)2.

(10)

The propagated slant column density uncertainty (σ̄Ns ),
stratospheric column uncertainty (σ̄N strat

s
), air mass factor un-

certainty (σ̄M tr ), and spatial representativeness uncertainty
(σ̄rs) are each determined using

σ̄m,c =

√√√√(1− τc)
∑T
t=1(wo,t

2σm,ct
2)

(
∑T
t=1wo,t)2

+ τc
(
∑T
t=1(wo,tσm,ct ))

2

(
∑T
t=1wo,t)2

,

(11)

where τc is the temporal correlation factor of the uncertainty
contributions c (not the same as the spatial correlation factor
applied in Eq. 4). The last term in Eq. (10) (σ̄a priori) repre-
sents the contribution from the uncertainty in the a priori pro-
file shapes and is approximated as 10 % of the tropospheric

AMF. 10 % of the AMF is deemed appropriate for the a pri-
ori profile uncertainty, as the spatial resolution of the spa-
tial means (0.2°× 0.2° to 1°× 1°) is low compared to the
TROPOMI pixel resolution. Earlier studies (gridding OMI to
0.5°) also used an estimate of 10 % (Boersma et al., 2018).
σ̄a priori is not included in the uncertainty calculation when us-
ing the averaging kernel in data applications, which removes
the dependence on the a priori profile (Eskes and Boersma,
2003).

The temporal correlation factor τ is determined for each of
the contributions to measurement uncertainty (slant column
density, stratospheric, and AMF) separately. We do so by
evaluating to what extent discrepancies in the stratospheric
NO2 column and in the AMF calculation vanish over time.

Firstly, the temporal error correlation factor for the AMF
uncertainty is determined. The a priori NO2 profile is a large
contribution to the uncertainty in the AMF, but it is shown
to become irrelevant when the averaging kernel is used when
comparing with three-dimensional model output (Eskes and
Boersma, 2003). Other large sources of uncertainty in the
AMF are the effective cloud cover, the effective cloud height,
and the surface albedo. All three of these variables depend on
a monthly climatological surface albedo dataset. This intro-
duces a temporal error correlation between the daily obser-
vations.

Assuming the AMF error is fully correlated in time would
result in an overestimation of the AMF uncertainty in Level
3 products, as in reality the AMF error is only partly system-
atic and the random part averages out with many observa-
tions. Here, we empirically evaluate the systematic character
of the AMF uncertainty on different temporal scales, by de-
termining the degree of temporal correlation between AMF
errors.

We estimate the temporal error correlation required to
determine the AMF uncertainty in spatio-temporal aver-
aged L3 data by comparing versions 2.3.1 and 2.4 of the
L2 retrieval, as was done for the spatial error correlation
(Sect. 3.2.2). These versions apply different climatological
surface albedo datasets, with v2.3.1 applying the albedo de-
rived from OMI and GOME-2 and v2.4 applying albedo de-
rived from TROPOMI spectra (Tilstra et al., 2024). As the
albedo is a key input for the cloud retrieval, this replacement
of climatological albedo dataset also generates cloud fraction
and cloud pressure retrieval differences. Because the change
of albedo climatology is the largest change between the two
L2 versions, the difference in tropospheric NO2 between the
versions should be indicative of uncertainty in tropospheric
NO2 resulting from the climatological surface albedo.

We determine the difference in tropospheric NO2 column
in 0.2°× 0.2° superobservations between v2.3.1 and v2.4
L2 data for each day in the period 1 January–31 March
and the period 1 June–31 August 2019. For each combina-
tion of 2 d within the same period, we determine the Pear-
son correlation coefficient in tropospheric NO2 for polluted
areas (tropospheric vertical column from both versions >
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1.8× 1015 molecules cm−2) (Fig. 2a):

r1t =

∑I
i=1(1Nt1i −1Nt1 )(1Nt2i −1Nt2 )√∑I

i=1(1Nt1i −1Nt1 )2
∑I
i=1(1Nt2i −1Nt2 )2

, (12)

where r1t is the Pearson correlation coefficient between tro-
pospheric NO2 differences due to albedo differences and
retrieval discrepancies on any 2 d in the time period (blue
points in Fig. 2a), 1t = t2− t1 the time difference, 1Nt1 =
Nv2.4
t1
−Nv2.3.1

t1
and1Nt2 =N

v2.4
t2
−Nv2.3.1

t2
the difference in

tropospheric NO2 between v2.3.1 and v2.4 for the first day
and second day respectively, and I the number of valid su-
perobservation grid cells for both days. For each “time dif-
ference” between daily superobservations, we determine the
mean correlation (r1t ; black points in Fig. 2a). Then we take
the mean of the r1t for the time differences 1–30 d. This re-
sults in τ = 0.29 for 1 January to 31 March and τ = 0.30
for 1 June to 31 August, suggesting that tropospheric ver-
tical column errors only partially persist in time. The tem-
poral error correlation in the AMF is set to be τM tr = 0.30
for both the NH winter and summer period. When analysing
longer time differences than a month, the correlation disap-
pears. The method was repeated for 1°× 1° superobserva-
tions, resulting in similar results, giving us confidence that
the temporal AMF error correlation coefficient is not grid-
size-dependent.

Next, we estimated temporal correlation factors for
the stratospheric uncertainty. In the retrieval of the NO2
columns, the observed slant column is split into its tropo-
spheric and stratospheric parts using data assimilation in
the TM5-MP model. We can assess uncertainty and bias
in this model by investigating the difference between the
forecasted column and the observed column (O–F) over un-
polluted regions; see e.g. Dirksen et al. (2011). We take
the values for O–F for the period 1 January to 31 March
2019. For each combination of 2 d within the same month,
we determine the Pearson correlation coefficient in strato-
sphere O–F for clean areas (tropospheric vertical column
< 0.6× 1015 molecules cm−2) (Fig. 2b). This is again done
with Eq. (12) but now with 1Nt1 =N

observation
t1

−N forecast
t1

and 1Nt2 =N
observation
t2

−N forecast
t2

the difference in strato-
spheric NO2 between observation and forecast for the first
day and second day respectively. For each “time difference”
between daily O–F maps, we determine the mean correlation
(r1t ). Then we take the mean of r1t for the time differences
1–30 d. This results in τ = 0.30 for the NH winter period
of 1 January to 31 March. The same method is carried out
for the NH summer period 1 June–31 August, which showed
a slightly lower correlation coefficient of τ = 0.21. We take
the higher value of τN strat

s
= 0.30 as the temporal uncertainty

correlation in the stratospheric uncertainty for both the NH
winter and summer period, as a conservative uncertainty es-
timate. The correlation decreases slightly for longer peri-
ods and only disappears altogether for periods longer than
3 months.

The uncertainty in the slant column density is assumed
to be fully uncorrelated in time (τNs = 0), following the
same arguments as in the spatial uncertainty correlation (see
Sect. 3.2.2).

The temporal correlation coefficient of the spatial repre-
sentativeness uncertainty is set at fully random (τrs = 0). The
representativity can be correlated through time due to the ef-
fect of persistent cloud cover, but this will be assessed sepa-
rately in the temporal representativeness uncertainty.

The monthly mean L3 NO2 columns are only representa-
tive when sufficient observations are available for calculating
the means. The L3 qa_value (qa_L3 in the final data product
– Table C1) is set to equal 1 when the data are representative
as a monthly mean and equal 0 when it is not. This devia-
tion is made using the count variable, which is the sum of the
fractional coverages from the spatial averages αo,t divided by
the number of days in the month. If this value is below 0.1
(meaning less than 10 % of the month is sampled), the L3
qa_value (qa_L3) is set at 0, and the L3 NO2 columns are
advised not to be used for further analyses, as these would
not be a good representation of the given month.

Temporal representativeness uncertainty

The temporal representativeness uncertainty (σ̄rt) can be in-
terpreted as the standard error of the superobservations (spa-
tial means) used to determine the monthly mean. We state
that the number of possible observations within a month is
finite, and a true monthly mean is obtained with at least one
observation (note that the TROPOMI orbits overlap at higher
latitudes, where multiple observations per day are possible)
each day. A finite population correction is applied to the
method of calculating the standard error to correct for this
(Bondy and Zlot, 1976; Isserlis, 1918; Rijsdijk et al., 2025),
resulting in the standard error decreasing to zero when obser-
vations are available for every day of the month. This results
in the following theoretical formula for the temporal repre-
sentativeness uncertainty:

σ̄rt =
σxo,t
√
n

√
N − n

N − 1
, (13)

where N is the length of the month in days and n is the
number of days with at least one valid superobservation. The
weighted standard deviation around the temporal mean σxo,t

is determined using

σxo,t =

√√√√∑T
t=1(wo,t(xo,t− x̄)2)

(T − 1)
∑T
t=1wo,t

, (14)

with T the total number of valid spatial averages in the period
over which the averaging is performed, and wo,t = 1− f .

We apply the method also used in Rijsdijk et al. (2025)
and Appendix B to assess whether Eq. (14) is suitable for as-
sessing the temporal representativeness uncertainty. We start
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Figure 2. Temporal correlation in (a) difference of tropospheric NO2 column for v2.3.1 and v2.4 for polluted areas (AMF uncertainty) and
(b) observation forecast for unpolluted areas (stratospheric column uncertainty) between each combination of 2 d within the same month for
the period 1 January–31 March 2019. Larger black points are the mean of correlations with the same time difference.

Table 2. Temporal error correlation sources and their random and systematic fractions for TROPOMI NO2 tropospheric vertical column
spatio-temporal averages.

Temporal error correlation source Random fraction (averages out) Systematic fraction (persists)

Slant column density (1− τNs )= 1.00 τNs = 0.00∗

Stratospheric correction (1− τN str
s

)= 0.70 τN str
s
= 0.30

AMF (1− τNMtr
)= 0.70 τNMtr

= 0.30

∗ Note: the systematic component of the slant column density uncertainty is included in the stratospheric uncertainty.

by taking a completely covered grid cell, which means that
at least one spatial mean/superobservation was produced for
this grid cell for every day of the month. The representative-
ness uncertainty can be quantified by comparing the mean
of this completely covered grid cell to the mean of several
samples (a subset of days) taken from that grid cell. We start
by sampling a single day, which we use to estimate the tem-
poral mean of the grid cell. Then we repeatedly add random
days of the month and estimate the mean using the avail-
able observations. We perform multiple iterations (200) of
this process on the same grid cell and find the relation be-
tween representativeness uncertainty ft and temporal cover-
age of the grid cell (Fig. 3a). This process is then repeated
for 100 grid cells in polluted areas (Fig. 3b). We only take
polluted grid cells into account (mean NO2 tropospheric ver-
tical column of ≥ 2×1015 molecules cm−2), as these are ex-
pected to have the highest temporal variability and thus are
more likely to be sensitive to a sampling bias. The mean of
the experiments (green) is almost identical to the theoretical
solution of Eq. (13) (blue), showing that the formula is a suit-
able method for quantifying the temporal representativeness
uncertainty for random sampling. Similar results are found
for June 2019.

As with the spatial representativeness (cloud masking one
part of the grid cell), there might be a sensitivity to systematic
sampling temporally. This could for example be the case if
large weather systems gave persistent cloud cover in a given
location for part of the month. The occurrence of system-
atic sampling was tested for the spatial means of January and

June 2019. We selected grid cells in the spatial mean that
had valid superobservations for ∼ 50 % of the given month.
On these grid cells we applied a Wald–Wolfowitz test to de-
termine whether the cloudiness was random or systematic
(Wald and Wolfowitz, 1943). The Wald–Wolfowitz test is a
non-parametric statistical test that checks a randomness hy-
pothesis for a two-valued data sequence, in our case cloudy
(no data) or non-cloudy (superobservation available, can be
partly cloudy). For both January and June about two-thirds
of the grid cells show systematic sampling due to continuous
cloud cover for part of the month.

This shows that systematic sampling of observations for
the temporal mean is relevant. Next, we will look into
whether the temporal variability in the observations makes it
sensitive to this systematic sampling. We repeat the method
of repeated sampling of a grid cell as outlined above but
now by sampling the grid cell systematically (start by tak-
ing the observation of 1 random day and then repeatedly add
adjacent days). Figure 3d shows that systematic sampling
produces more variability of grid cells around the theoreti-
cal solution (blue line, Eq. 13) than with random sampling
(Fig. 3b) but that the mean of the experiments (green line) is
close to the theoretical solution. Comparison with the spatial
representativeness curve in Fig. B1b shows that the experi-
mental curves in Fig. 3d are closer to the theoretical solution.
The fit from Eq. (6) in purple does not show a better fit to the
experimental mean than the theoretical solution does. This
shows that the temporal mean is not very sensitive to system-
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Figure 3. Results of repeatedly sampling grid cells to calculate σ̄rt. (a) Repeated random sampling of 31 d of a single grid cell with values
xo,t. Daily observations in the grid cell are randomly sampled 200 times. The thin grey lines represent the difference between the sampled
mean and the actual mean from individual random experiments. The green line is the mean of the samples and the blue line the theoretical
result from Eq. (13). (b) Results of randomly sampling 100 grid cells. The grey lines are the green line from (a). The green line (overlap-
ping the blue theoretical result) is the mean of the results of 100 grid cells. (c) Systematic sampling of a single grid cell. (d) Results of
systematically sampling 100 grid cells. Observations in all panels are from January 2019 and have a mean tropospheric vertical column of
≥ 2× 1015 molecules cm−2. Only grid cells with observation available every day are sampled.

atic sampling, and the uncertainty can be assessed with the
theoretical solution suggested in Eq. (13).

It should be noted that the sampling method can only be
applied to grid cells that provide coverage for all days of the
month. This is essentially only true for arid areas with al-
most no cloud cover. The question arises of how represen-
tative these regions are. We filter for relatively polluted re-
gions (≥ 2× 1015 molecules cm−2) and find more than 100
grid cells to which we can apply this method. These are found
mostly in cities in the Middle East and western India, where
January is in the dry season. We assume these polluted ar-
eas are representative of polluted areas in other parts of the
world, and the theoretical solution can be applied globally.

4 TROPOMI NO2 Level 3 dataset

4.1 Dataset

The here presented ESA CCI+ TROPOMI Level 3 dataset
is available for the period May 2018 to December 2021 at

a monthly resolution. The dataset is available on a global
regular grid at different spatial resolutions: 0.2°× 0.2°,
0.5°× 0.5°, and 1°× 1°. The datasets are organised into a
user-friendly and self-describing netCDF-4 format, follow-
ing CF metadata conventions. The dataset represents the NO2
columns at satellite overpass time (∼ 13:30 LT) under mostly
clear-sky conditions.

The dataset contains both the tropospheric and strato-
spheric vertical column density (see Appendix C for all vari-
ables). The dataset contains two estimates of the total un-
certainty for the tropospheric vertical column σ̄total: one in-
cluding the a priori uncertainty and one version excluding
the a priori uncertainty, which can be used when applying
the averaging kernel. A spatio-temporal average of the tropo-
spheric averaging kernel from the L2 dataset is also available
in the L3 dataset. For assessing the L3 data quality, the L3
qa_value, count variable, and average cloud radiance fraction
are also available.

This dataset can be used for, for example, temporal anal-
ysis, emission monitoring, data assimilation and model vali-
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dation, and atmospheric chemistry studies. It should be noted
that this dataset is a clear-sky average, and model compar-
isons should only be done on cloud-free sampled model
data, as previously recommended in Boersma et al. (2016).
The cloud-free sampling of data causes biases with the true
monthly mean in multiple ways. Firstly, photochemical re-
actions cause NO2 to break down faster in clear-sky con-
ditions (Miller et al., 1956), so the true monthly mean of
tropospheric columns (when including vertical columns in
overcast conditions) is higher by up to 25 % (Geddes et al.,
2012; Boersma et al., 2016). Secondly, incident cloudiness
over more or less polluted areas would cause uneven sam-
pling, causing a bias either way. Lastly, cloudiness could
be connected to atmospheric transport conditions that may
bring clean or polluted conditions. The uncertainty assess-
ment here represents the uncertainty of the L3 product to the
clear-sky average and does not include an uncertainty to the
true monthly mean.

4.2 Analysis of dataset

The results of the spatio-temporal average monthly mean and
uncertainties for NO2 for January and June 2019 are shown
in Fig. 4, with local values given in Table 3. Missing data
are mainly due to polar night at high latitudes and filtering of
low-quality L2 data, due to, for example, consistent cloud or
snow cover. All results presented in this section are from the
0.2°× 0.2° spatial resolution dataset.

In June the tropospheric NO2 columns are high in Africa
due to wildfires and biomass burning in the dry season. In
the urbanised areas in the Northern Hemisphere, tropospheric
NO2 columns have higher values during the winter season,
reflecting longer lifetimes (e.g. Shah et al., 2020) and higher
emissions due to heating, and thus we see higher values
over Amsterdam and Beijing in January than in June (Ta-
ble 3, Fig. 6). The opposite is true for urbanised areas in the
Southern Hemisphere, for example Rio de Janeiro (Table 3,
Fig. 6). The total uncertainty in winter when not applying
the averaging kernel attributes to 21 % and 17 % of the to-
tal tropospheric vertical column for Amsterdam and Beijing
respectively. These percentages are 19 % and 14 % respec-
tively when applying the averaging kernel. Due to the aver-
aging of random errors, the L3 uncertainty is lower than the
uncertainty in L2 orbits, despite the introduction of represen-
tativeness errors. The average relative uncertainty in valid L2
pixels in January 2019 in Amsterdam is 52 %, compared to
the 21 % in the L3 dataset. In Beijing the average relative L2
uncertainty is 28 %, compared to the 17 % in L3 in January
2019.

The separate uncertainty sources are shown in Fig. 5 for
January 2019. Over unpolluted areas the largest source of un-
certainty comes from the estimation of the stratospheric col-
umn concentration (Fig. 5b). In polluted regions the largest
error source is the AMF uncertainty (Fig. 5c). Because the
slant column density uncertainty is assumed random over

both space and time, the uncertainty averages out over a large
number of observations and is very small in the L3 dataset
(Fig. 5a), but it should be noted that the systematic compo-
nent of the slant column density uncertainty is included in the
stratospheric uncertainty estimate. The spatial and temporal
representativeness uncertainty is largest in Europe and East
Asia, where the standard deviation of the tropospheric verti-
cal column is largest but is a minor component in the total
uncertainty budget.

Time series of the tropospheric NO2 column for four pol-
luted locations are shown in Fig. 6. The available time se-
ries is too short to show long-term changes. The time series
in Beijing and Amsterdam show features linked to the pan-
demic lockdowns (2020–2021) (Bauwens et al., 2020) and
indicate an overall reduction of tropospheric NO2 columns
over the 5 years, although Amsterdam displays a large vari-
ability and the decrease may not be significant.

The Global Climate Observing System (GCOS) states re-
quirements for observational datasets of the ECVs, includ-
ing the precursors for aerosol and ozone variable NO2 tro-
pospheric vertical column (World Meteorological Organi-
zation (WMO) et al., 2022a). We examine the uncertain-
ties in the NO2 tropospheric vertical column against the
GCOS-required measurement uncertainty (Fig. 7), which
is formulated as a threshold, breakthrough, and goal value
(World Meteorological Organization (WMO) et al., 2022b).
The threshold requirement, the minimum requirement to
be met to ensure that data are useful, requires the rel-
ative uncertainty to be lower than 100 % and the abso-
lute uncertainty to be less than 5× 1015 molecules cm−2.
The breakthrough requirement represents a significant im-
provement and requires the relative uncertainty to be lower
than 40 % and the absolute uncertainty to be less than 2×
1015 molecules cm−2. Lastly, the goal is reached when the
relative uncertainty is lower than 20 % and the absolute un-
certainty is less than 1× 1015 molecules cm−2 (World Mete-
orological Organization (WMO) et al., 2022b). Due to the
averaging of uncorrelated uncertainties in creating the L3
dataset, the GCOS requirements are met more frequently
in L3 than in L2 (Fig. 7), suggesting L3 data are useful
for climate monitoring. In June 2019 over Beijing the ab-
solute uncertainty (as well as relative uncertainty) drops
from an average of 2.81× 1015 molecules cm−2 (27.9 %) in
L2, with most pixels reaching the threshold requirement, to
1.72× 1015 molecules cm−2 (15.5 %) in L3, well within the
breakthrough requirement (Fig. 7c). Over Amsterdam the ab-
solute uncertainty (as well as relative uncertainty) drops from
an average of 1.44× 1015 molecules cm−2 (32.9 %) in L2,
with most pixels reaching the breakthrough requirement, to
0.78× 1015 molecules cm−2 (16.9 %) in L3, within the goal
requirement (Fig. 7d).
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Figure 4. Example of results of the monthly (a) tropospheric NO2 column with its (b) total uncertainty (σ̄total) for January 2019 and the
same (c, d) for June 2019. Monthly means are calculated from individual L2 retrievals with good quality (qa_value= 0).

Table 3. Example values for monthly mean tropospheric NO2 vertical column and uncertainties (with percentage of mean tropospheric
vertical column) for a few selected locations for January and June 2019 (units: 1015 molecules cm−2). The values for Amsterdam, Beijing,
and Rio de Janeiro were taken from one grid cell in the city centre location (52.3° N, 4.9° E for Amsterdam; 39.9° N, 116.3° E for Beijing;
and 22.9° S, 43.1° W for Rio de Janeiro). The value for Africa biomass burning represents the location with the highest observed monthly
mean value in the sub-equatorial region on the continent of Africa (in a box between latitudes 16° S and 16° N and longitudes 17.5° W and
42° E). The uncertainty estimates are with the a priori uncertainty, which does not need to be included when using the averaging kernel.

Amsterdam Beijing Rio de Janeiro Africa biomass burning

x̄ Jan 5.45 32.28 2.87 7.20
Jun 4.58 11.04 4.54 14.63

σ̄total Jan 1.15 (21 %) 5.50 (17 %) 0.38 (13 %) 1.03 (14 %)
Jun 0.78 (17 %) 1.72 (16 %) 0.59 (13 %) 2.10 (14 %)

5 Validation

As independent validation, the ESA CCI+ TROPOMI Level
3 NO2 dataset was compared to ground-based remote sens-
ing measurements using the same reference data and method-
ologies used for the validation of the underlying Level-2
data reported in Verhoelst et al. (2021), in Van Geffen et al.
(2022a), and in the S5P ATM-MPC quarterly Routine Opera-
tions Consolidated Validation Reports (ROCVR, available at
https://mpc-vdaf.tropomi.eu/, last access: 30 August 2025).
However, the monthly gridded nature of the L3 data does im-
ply a need for some adaptations in the comparison methodol-
ogy. The specific aspects and validation results are reported
below, per (sub-)column. The L3 TROPOMI data were all
filtered using the L3 qa_value (qa_L3).

5.1 Stratospheric slant column

The L3 TROPOMI stratospheric NO2 columns were com-
pared to the consolidated LATMOS_v3 sunset SAOZ mea-

surements (Pommereau and Goutail, 1988) obtained at 10
sites covering mostly clean sites distributed globally from
the southern high latitudes up to the northern high lati-
tudes. These twilight zenith-sky measurements (Solomon
et al., 1987) have an estimated uncertainty of about
10 %–14 % (Yela et al., 2017; Bognar et al., 2019), and
they were adjusted to the average TROPOMI overpass
time of the monthly averages (represented in the file as
eff_frac_day) using a model-based photochemical ad-
justment (Hendrick et al., 2004). For optimal spatial co-
location, we compared the SAOZ measurements to the
TROPOMI 1.0 °× 1.0° L3 grid cell covering the centre of
the SAOZ observation. This procedure accounts for the large
horizontal smoothing and offset in the SAOZ measurement
sensitivity towards the setting sun (Lambert et al., 1997; Ver-
hoelst et al., 2015). An illustration of such a comparison, at
the Observatoire de Haute Provence in France, is shown in
Fig. 8. This comparison shows excellent agreement, within
the uncertainties of each product.
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Figure 5. All components of tropospheric vertical column density uncertainty using the discussed spatial and temporal correlations for
January 2019 (total uncertainty in Fig. 4b).

Figure 6. Time series of the monthly mean tropospheric vertical column NO2 with the total uncertainty (σ̄total) for the same locations as in
Table 3. The values in the time series represent a single L3 grid cell value, and the associated total uncertainty is given as the shaded area.

The network-wide results are summarised in Fig. 9. Over-
all, these stratospheric column comparisons yield results very
similar to those for the underlying L2 (Verhoelst et al., 2021),
with a virtually insignificant network-mean bias and a dis-
persion of typically around 0.2× 1015 molecules cm−2. The

somewhat larger bias and dispersion over Paris is probably
related to tropospheric contamination in the SAOZ measure-
ments.
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Figure 7. June 2019 (a) L2 and (b) L3 dataset as reviewed by the GCOS requirements for measurement uncertainty. Black regions do not
fulfil the GCOS requirements, red regions fulfil “threshold” requirements, blue regions fulfil “breakthrough” requirements, and green regions
fulfil “goal” requirements. The histograms show the L2 pixel uncertainties that fall into a single 0.2°× 0.2° L3 grid cell for (c) Beijing and
(d) Amsterdam and the grid cell L3 total uncertainty (vertical line).

Figure 8. Time series of co-located L3 TROPOMI and photochemically adjusted sunset SAOZ stratospheric NO2 column measurements at
the Observatoire de Haute Provence (France).

5.2 Tropospheric vertical column

The L3 TROPOMI tropospheric NO2 vertical columns were
compared to the MAX-DOAS tropospheric column data
(Hönninger and Platt, 2002) collected from various sources
and harmonised (in terms of file format) through the NID-
FORVAL project for the operational S5P L2 validation. To-
tal uncertainty estimates on these tropospheric vertical col-
umn density measurements are of the order of 7 %–17 % in

polluted conditions, including both random (around 3 % to
10 %, depending on the instrument) and systematic (11 %
to 14 %) contributions (e.g. Hendrick et al., 2014). MAX-
DOAS data obtained within 30 min of the underlying L2 S5P
data were compared to 0.2°× 0.2° L3 grid cells covering the
station location. To ensure good temporal representativeness,
only those sites at which at least a full year of comparisons
could be made were retained. This yielded eight sites, cov-
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Figure 9. Box-and-whisker plots summarising from pole to pole
the bias and spread of the difference between the L3 TROPOMI
and ground-based SAOZ data (2018–2022). The median difference
is represented by a vertical solid line inside the box that marks the
25 % and 75 % quantiles. The whiskers cover the 9 %–91 % range
of the differences. Values between brackets in the labels denote the
latitude of the station.

ering moderately to severely polluted conditions. The most
polluted case, Xianghe in China (e.g. Pinardi et al., 2020),
is analysed in Fig. 10, revealing a slightly better correlation
and smaller dispersion of the differences than observed in
the validation of the underlying L2 data. This is most likely
due to the reduced measurement and atmospheric noise in
the monthly averages. The mean and median difference are
however more negatively biased, which can be attributed the
poorer spatial resolution of the L3 dataset compared to the
constituent L2 data. This is especially notable in the win-
ter months, which due to pollution have high spatio-temporal
variability in the L2 orbits and is smeared out in the averag-
ing for the L3 data. There are also unresolved issues in win-
tertime MAX-DOAS retrievals done under very low viewing
zenith angles in situations with thin boundary layers and high
NO2 concentrations, which could contribute to the bias (Ci-
fuentes et al., 2025).

The network-wide results for the MAX-DOAS compar-
isons are visualised in Fig. 11. These confirm the relatively
small dispersion of the differences, typically about 12 %,
which is well within the combined prognostic uncertainty

budget (quadratic sum of 20 % uncertainty on the TROPOMI
L3 data and probably at least 10 % on the monthly aver-
aged MAX-DOAS data, depending on how one propagates
the systematic and random components of the MAX-DOAS
uncertainty). Also confirmed is the strong negative bias in
TROPOMI NO2, to be understood as a combination of the L2
negative bias and additional systematic differences related to
the spatial smearing in the L3 data. Unexpected is the more
pronounced negative bias at the relatively clean sites, which
is opposite to the behaviour observed for the underlying L2
data. This result is not confirmed by the total column com-
parisons described in Sect. 5.3 and may be a case of small-
number statistics or peculiarities at these individual sites.

5.3 Total column

The TROPOMI L3 total NO2 columns, calculated as the sum
of the tropospheric and stratospheric vertical columns pro-
vided in the data files, were compared to Pandora direct-
sun measurements (v1.8) from the Pandonia Global Net-
work (PGN, https://pandonia-global-network.org/, last ac-
cess: 30 August 2025). These measurements have a random
error uncertainty of about 0.27× 1015 molecules cm−2 and
a systematic error uncertainty of 2.7× 1015 molecules cm−2

(Herman et al., 2009). All Pandora measurements satisfy-
ing the recommended PGN quality filtering and obtained
within 30 min from the satellite effective fractional day
(eff_frac_day in the data files) were averaged, and only
the 0.2°× 0.2° L3 grid cell covering the instrument loca-
tion was used. To ensure good temporal representativeness,
only those sites at which at least a full year of comparisons
could be made were retained. This yielded eight sites, cov-
ering both unpolluted rural conditions and severe pollution,
e.g. in the megacity of Mexico City. Figure 12 demonstrates
the agreement at this most polluted site for both the L3 prod-
uct and the current operational L2 product, which is the v2.4
full mission reprocessed (RPRO) dataset for this period of
S5P measurements.

As for the tropospheric vertical column density compar-
isons, the correlation between TROPOMI L3 and Pandora
data is excellent (r ∼ 0.9) for these comparisons in a highly
polluted environment and even better than at L2. Again, as
for the tropospheric column comparisons, the NO2 under-
estimation already seen in L2 is more pronounced for the
L3 NO2 product with a median difference of about −39 %
(versus −17 % for L2) and a regression slope of 0.54 (ver-
sus 0.62 for L2). For a pollution hot spot such as Mexico
City, this is most likely due to the coarse L3 product resolu-
tion (0.2°), which tends to spatially smear out gradients com-
pared to the pixel-resolution L2 data (0.05°). On the other
hand, thanks to the temporal averaging, the dispersion of the
differences between L3 and PANDORA NO2 is significantly
reduced, from nearly 20 % down to about 10 %. The network-
wide results are summarised in Fig. 13. The tendency that
TROPOMI NO2 shows a more pronounced underestimation
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Figure 10. Time series of co-located TROPOMI and MAX-DOAS tropospheric NO2 vertical column density (VCD) measurements at Xi-
anghe (China). Light markers represent the co-located L2 data from the current operational processor (v2.4 RPRO, as used for ROCVR #24);
the solid lines represent the L3 data.

Figure 11. Similar to Fig. 9 but representing the agreement be-
tween the S5P-TROPOMI and MAX-DOAS tropospheric NO2 col-
umn measurements, limited to those sites for which a full year of
comparisons is available. Sites are ordered by mean tropospheric
NO2 vertical column density: cleaner sites at the bottom, more pol-
luted sites at the top.

for larger total NO2 column values is in line with the L2
validation results, which show virtually no underestimation
(or even a very slight overestimation) at the cleanest sites,
where the NO2 column is dominated by the stratospheric
contribution, and an underestimation up to 20 %–30 % at the
most polluted sites (Verhoelst et al., 2021, and updates in the
ROCVR). These total column results therefore do not con-
firm the more pronounced negative biases observed in the
MAX-DOAS comparisons at sites with only moderate pollu-
tion (when compared to more polluted sites).

6 Code and data availability

Data described in this article can be accessed at
https://doi.org/10.21944/CCI-NO2-TROPOMI-L3 (KNMI,
2025). The generated L3 dataset will be made available
on the ESA Climate Change Initiative Open Data por-
tal. The software to create the spatial average is avail-
able at https://doi.org/10.5281/zenodo.10726644 (Rijsdijk
and Eskes, 2024). Software to generate the temporal–
spatial mean resulting in the L3 dataset is avail-
able at https://doi.org/10.5281/zenodo.14505524 (Glisse-
naar, 2024). The TROPOMI L2 v2.3.1 NO2 dataset, which
is the input for the generated dataset, is not the operational
version and thus no longer publicly available. A sample of
the data can be shared upon request. TROPOMI NO2 L2
v2.4 is available on the Copernicus Data Space Ecosystem
(https://doi.org/10.5270/S5P-9bnp8q8, Copernicus Sentinel-
5P, 2021b). The reference data used for the ground-based
validation are available from the NDACC Data Host Facil-
ity at https://ndacc.larc.nasa.gov/ (NDACC, 2025) (SAOZ
and selected MAX-DOAS data) and from both the PGN
website (https://www.pandonia-global-network.org/, Pando-
nia Global Network (PGN), 2025) and ESA’s Validation
Data Center (ESA Validation Data Center (EVDC), 2025,
https://evdc.esa.int/) for the Pandora data.

7 Conclusions

We developed a comprehensive Level 3 (L3) dataset of
gridded and averaged tropospheric NO2 column retrievals
(v2.3.1) from the TROPOMI sensor, covering the period
from May 2018 to December 2021. The dataset is available
at multiple spatial resolutions (0.2°× 0.2°, 0.5°× 0.5°, and
1°× 1°) on a monthly timescale. Using a tiling (superobser-
vation) approach, we ensured that (1) valid NO2 retrievals
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Figure 12. Time series of co-located TROPOMI and PGN total NO2 column measurements at Vallejo (Mexico City). Light markers represent
the co-located L2 data from the current operational processor (v2.4 RPRO, as available on the ATM-MPC VDAF AVS); the solid lines
represent the L3 data.

Figure 13. Similar to Fig. 9 but representing the agreement be-
tween the S5P-TROPOMI and PGN total NO2 column measure-
ments, limited to those sites for which a full year of comparisons
is available. Sites are ordered by mean total NO2 vertical column
density: cleaner sites at the bottom, more polluted sites at the top.

are gridded according to pixel area, and (2) temporal av-
erages are calculated as weighted means, with weights re-
flecting the representativeness of superobservations for spe-
cific days. This L3 dataset is applicable for clear-sky or low-
cloud-fraction conditions at TROPOMI’s overpass time of
13:30 LT.

Realistic uncertainties were derived by propagating L2
retrieval uncertainties. To address spatial and temporal er-
ror correlations, we considered errors in the stratosphere–

troposphere separation and air mass factor calculations,
which are partly spatially correlated. Representativeness un-
certainty, stemming from incomplete coverage of grid cells
by valid L2 retrievals (e.g. due to cloud cover), was found
to be more significant in polluted regions. The combined L3
uncertainty accounts for both measurement uncertainties (in-
cluding spatial representativeness errors) and temporal repre-
sentativeness uncertainties. An analysis showed that 30 % of
retrieval uncertainties persist over a month due to error cor-
relations in the stratosphere–troposphere separation and air
mass factor calculations.

Over polluted areas, the L3 dataset showed reduced un-
certainties compared to averaged L2 retrievals, demonstrat-
ing the effectiveness of averaging large numbers of observa-
tions. For example, while monthly average L2 uncertainties
are 30 %–50 % over Beijing and Amsterdam, they drop to
20 % or less in the L3 dataset, meeting the GCOS “break-
through” and even “goal” requirements. Validation against
ground-based PANDORA measurements revealed a consis-
tent temporal correlation but with a low bias of 20 %, partly
attributed to more pronounced spatial smearing in the L3
product.

This monthly mean L3 TROPOMI tropospheric NO2
dataset offers a coherent and much-reduced (in size) data
record, making it suitable for atmospheric chemistry studies,
for evaluating atmospheric models, and for analysing spa-
tiotemporal NO2 trends. The methods presented here can be
replicated when creating L3 datasets for other atmospheric
gases and other Earth observation L3 datasets. Future work
will include applying the presented methods on NO2 re-
trievals from OMI and combine TROPOMI and OMI obser-
vations to create a decades-long consistent CDR.
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Appendix A: L2 observations in the descending node

During polar summer, the polar regions are marked by 24 h
daylight. In the Northern Hemisphere, this means that the
polar region on the “backside” of the Earth is experiencing
daylight from May to August, and observations are made in
the descending node of the satellite. These observations in
the descending node are included in the L2 NO2 product and
not quality-flagged in the qa_value before version 2.7.

However, we find that the observations in the descend-
ing node of the orbit show structurally different retrieval re-
sults for the tropospheric vertical NO2 column in the Arc-
tic region (north of 60° latitude) than the observations from
the ascending node in June (Fig. A1a). While retrievals in
the ascending part of the orbit show a median value of
0.2× 10 molecules cm−2, retrievals in the descending part
show a long tail of negative tropospheric NO2 values, and
the mode of the probability density curve is negative. This
difference between results from the ascending and descend-
ing part of the orbits is less obvious in the Antarctic region
in December (Fig. A1b).

Figure A1. NO2 vertical column observations (qa_value> 0.75) in ascending and descending mode for the troposphere (a) and stratosphere
(c) north of 60° latitude from orbits in June 2019 and for the troposphere (b) and stratosphere (d) south of −60° latitude from orbits in
December 2019.

A TROPOMI validation report (Lambert et al., 2023)
has shown that TROPOMI underestimates tropospheric NO2
columns compared to ground-based Pandora instruments at
the high-latitude locations of Ny-Ålesund and Eureka by
about 15 %. The discrepancy between tropospheric NO2 col-
umn observations from the descending node and ascending
node could play a role in this underestimation.

The discrepancy between retrievals done in the descend-
ing and ascending node is caused because the descending
node observations are not included in the data assimilation
in TM5-MP, and thus the stratospheric columns are more un-
certain and often overestimated (Fig. A1c). Based on these
results, we recommend to not use retrievals from the de-
scending part of the orbit. From TROPOMI L2 version 2.7
onwards, the qa_value is adjusted to include flags for the de-
scending orbital observations.
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Appendix B: The number of effective observations

The number of effective observations Neff characterises how
sensitive a region is to systematic sampling, which can occur
due to for example a cloud field covering part of a grid cell.
The lower the value for Neff, the more sensitive a region is
to systematic sampling. In a region where the uncertainty in
NO2 columns is dominated by noise, usually a relatively un-
polluted region, the Neff is high. In such a region, the draw
of one retrieval can be enough to characterise the spatial en-
semble on a whole. In an area with strong pollution gradi-
ents, usually a polluted area, multiple draws are needed for
proper characterisation. For example, a grid cell covering a
city effectively consists of two types of NO2 observations:
those over the polluted city and those over the unpolluted
nearby rural area, and such areas are thus sensitive to sys-
tematic sampling.

The value for Neff was estimated by Rijsdijk et al. (2025)
by repeatedly sampling a fully covered grid cell in a sys-
tematic way (starting with one random pixel and then adding
neighbouring pixels) and calculating the representativeness
(the absolute difference between the mean of observed pix-
els and the true mean of the fully covered grid cell when
including all pixels). The representativeness function f in
Eq. (6) was then fitted to the mean of these experiments,
providing the number of effective observations Neff for this
superobservation grid cell (Fig. B1a). For this polluted grid
cell, with resolution 0.2°× 0.2° and TROPOMI pixels of
5.5× 3.5 km2, the number of effective observations Neff is
somewhat smaller than 13.

Figure B1. Results of repeatedly sampling grid cells in a systematic way to calculate the representativeness function f . (a) One single grid
cell (polluted, xo,t ≥ 1.8× 1015 molecules cm−2) sampled 200 times. The grey lines represent 200 individual experiments sampling the same
superobservation grid cell. The green line is the mean of the individual experiments, and the purple curve is the representativeness function
in Eq. (6) fitted to the green line. The blue curve shows the theoretical representativeness function in the case of random sampling (result if
grid cell is not sensitive to systematic sampling). (b) Results of sampling 100 grid cells in polluted regions. The grey lines are a collection of
purple lines from (a); the purple curve is the mean of the grey curves. The blue line again shows the theoretical random solution.

This method was repeated for multiple superobservation
grid cells. The results showed that polluted regions (xo,t ≥

1.8 molecules cm−2) have a lower value for Neff than unpol-
luted regions (xo,t < 1.8 molecules cm−2), making it more
sensitive to systematic sampling (Rijsdijk et al., 2025). The
ratio N/Neff, where N is the number of pixels (valid or not)
in a superobservation, was determined for NO2 retrievals
from TROPOMI in Rijsdijk et al. (2025) to be linearly de-
pendent on the grid resolution. This linear relationship was
determined for both polluted and unpolluted superobserva-
tions by Rijsdijk et al. (2025). For a superobservation reso-
lution of 0.2°× 0.2°, this results in N/Neff = 1.376 for un-
polluted areas which are not sensitive to systematic sampling
andN/Neff = 3.933 for polluted areas which are more sensi-
tive to systematic sampling (Table B1). These ratios are used
to determine the number of effective observations Neff for
each grid cell in the superobservation. When theNeff is equal
to the number of pixelsN , and thus the ratioN/Neff equals 1,
systematic sampling has no effect. The ratios N/Neff would
need to be redetermined for another substance or sensor (with
a different pixel resolution) following the methods in Rijsdijk
et al. (2025).
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Table B1. The ratio N/Neff for TROPOMI NO2 in unpolluted and polluted (xo,t > 1.8×1015 molecules cm−2) regions for different spatial
resolutions of the superobservation grid. The ratio increases with superobservation area (°2).

N/Neff unpolluted areas N/Neff polluted areas

0.2°× 0.2° 1.376 3.933
0.5°× 0.5° 1.890 7.392
1.0°× 1.0° 3.724 19.746
2.0°× 2.5° 13.508 85.634

Appendix C: Contents of L3 dataset

Table C1. Overview of the variables, units, and types in the main L3 data output product file.

name/data symbol unit dataset name

air mass factor M trop 1 tropospheric_NO2_column_number_density_amf
M 1 total_NO2_column_number_density_amf

averaging kernel A 1 NO2_averaging_kernel
cloud radiance fraction wNO2 1 cloud_fraction
cloud pressure pc hPa cloud_pressure
grid cell coordinates δgeo ° latitude

ϑgeo ° longitude
grid cell corners δgeo ° latitude_bounds

ϑgeo ° longitude_bounds
land/water classification – 1 land_water_mask
number of pixels used – 1 no_observations
in averaging – 1 tropospheric_NO2_column_number_density_count
profile layers Nl 1 layer
quality assurance value – 1 qa_L3
slant column density Ns,NO2 molecules cm−2 NO2_slant_column_number_density

N
trop
s,NO2

molecules cm−2 NO2_slant_column_number_density_troposphere

σNs,NO2
molecules cm−2 NO2_slant_column_density_uncertainty

surface albedo As 1 surface_albedo
surface pressure ps hPa surface_pressure
time – days eff_date

– 1 eff_frac_day
t date time

TM5 pressure level ATM5
l hPa tm5_sigma_a

coefficients BTM5
l 1 tm5_sigma_b

vertical column density N
trop
v,NO2

molecules cm−2 tropospheric_NO2_column_number_density

N strat
v,NO2

molecules cm−2 stratospheric_NO2_column_number_density

vertical column uncertainty σ̄ molecules cm−2 tropospheric_NO2_column_number_density_temporal_std
σ̄total molecules cm−2 tropospheric_NO2_column_number_density_total_uncertainty
σ̄total,kernel molecules cm−2 tropospheric_NO2_column_number_density_total_uncertainty_kernel
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