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Abstract. We introduce the development of CLIMADAT-GRIid, the first publicly available daily air tempera-
ture and precipitation gridded climate dataset for Greece at a high resolution of 1 km x 1 km, covering the period
1981-2019. The dataset is derived from quality-controlled and homogenized daily measurements from an exten-
sive network of meteorological stations: 122 for temperature and 312 for precipitation. Several approaches are
evaluated for generating daily gridded datasets, including fixed random Kriging, generalized additive models,
k-nearest neighbors, and support vector machines. Based on the evaluation analysis against withheld observa-
tional data, fixed random Kriging is selected as the method for the CLIMADAT-GRid construction. To address
the lack of a dense temperature observational network, high-resolution simulations from the Weather Research
and Forecasting (WRF) model are blended with observational data to produce the gridded temperature datasets.
CLIMADAT-GRIid is benchmarked against the CHELSA-WS5ES, a global climate product with a similar res-
olution, for the overlapping period 1981-2016. While both datasets show comparable results for temperature,
CLIMADAT-GRid demonstrates superior spatial performance and closer agreement with observational data for
both the mean and the extreme values. Regarding precipitation, CLIMADAT-GRid consistency indicates higher
values than CHELSA-WS5ES, especially during the rainy season, but exhibits better agreement with observa-
tions. In terms of the number of wet days, both datasets overestimate spatial means relative to observations,
with CLIMADAT-GRid showing a more pronounced orographic pattern than CHELSA-WS5ES. Both datasets
show similar results for the number of days with precipitation amounts equal to or higher than 10 mm, with
CLIMADAT-GRIid indicating better overall agreement with the observations. The CLIMADAT-GRid dataset is
publicly available at https://doi.org/10.5281/zenodo.14637536 and can be cited as Varotsos et al. (2025).
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1 Introduction

High-resolution gridded climate datasets, both spatially and
temporally, are a valuable resource for research and informa-
tion in climate studies as well as in other areas such as hy-
drology, agriculture, energy, and health (Herrera et al., 2012).
In addition, high-resolution gridded datasets are used to eval-
uate, bias adjust, and statistically downscale both regional
and global climate models and seasonal forecasts (Lorenz et
al., 2021; Nilsen et al., 2022; Varotsos et al., 2023a; Kar-
ali et al., 2023). Depending on the data sources and deriva-
tion techniques, gridded climate datasets can be divided into
two main categories: (i) reanalysis datasets and (ii) gridded
observational datasets. Reanalysis datasets provide a numeri-
cal description of the recent climate by combining dynamical
models that assimilate observations, while gridded observa-
tional datasets are based on the statistical transformation of
point meteorological station data into grid using geostatisti-
cal modeling.

As for the second category, which is the focus of this
study, the remarkable advances in computing power and soft-
ware have led to the development and creation of gridded
observational datasets at global, regional/national, and sub-
national levels. These datasets include E-OBS (Cornes et
al., 2018), which is the state-of-the-art daily gridded ob-
servational dataset for the entire European domain with a
resolution of 0.1°, while on the regional/national and sub-
national scale a number of datasets have recently emerged
in Europe. These include Iberia0l (Herrera et al., 2019)
for the Iberian Peninsula (daily gridded dataset for temper-
atures and precipitation at 0.1° grid); SPREAD (Serrano-
Notivoli et al., 2017) and STEAD (Serrano-Notivoli et al.,
2019) for Spain (daily datasets for precipitation and tem-
peratures at 5 km x 5km, respectively); SICLIMA (Serrano-
Notivoli et al., 2024) for Aragon, Spain (daily dataset for
precipitation and temperatures at 500 m x 500 m); PTHRES
(Fonseca and Santos, 2018) for Portugal (daily dataset for
temperatures at 1 km x 1km); HYRAS (Krihenmann et al.,
2018) for Germany (hourly dataset for a number of vari-
ables at 1 km x 1 km); HadUK-Grid (Hollis et al., 2019) for
the United Kingdom (daily dataset for a number of vari-
ables at 1 km x 1 km); seNorge2 (Lussana et al., 2018a, b)
for Norway (daily dataset for precipitation and tempera-
tures at 1km x 1km, respectively); SLOCLIM (§krk et al.,
2021) for Slovenia (daily dataset for precipitation and tem-
peratures at 1km x 1km); MeteoSerbialkm (Sekuli¢ et al.,
2021) for Serbia (daily dataset for a number of variables at
1km x 1km); and GAA.HRES (Varotsos et al., 2023a) for
Attica, Greece (daily dataset for precipitation and temper-
atures at 1 km x 1 km). It is important for users to recog-
nize that these gridded observational products are geosta-
tistically generated, rather than direct observations. Conse-
quently, they are subject to several limitations, and the accu-
racy of these datasets largely depends on the quality and spa-
tial density of the underlying meteorological station network.
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In particular, interpolation methods tend to perform poorly
in regions with sparse station coverage or complex topogra-
phy (Hofstra et al., 2010; Begueria et al., 2016; Herrera et
al., 2019). While most of these datasets are built upon dense
networks of ground-based observations, in areas with limited
station density or insufficient representation of elevation gra-
dients, enhancement is often required through the integration
of satellite data, reanalysis products, and atmospheric mod-
els to improve spatial coverage and reliability (Doblas-Reyes
et al., 2023; Varotsos et al., 2023a). It should be noted that
Serrano-Notivoli and Tejedor (2021), analyzing the perfor-
mance of 48 gridded products, proposed a general workflow
to transform observations into grid estimates, which includes
four steps: (i) quality control, (ii) data series reconstruction,
(ii) gridding, and (iv) assessment of the uncertainty.

Various gridding techniques for creating daily gridded
datasets have been discussed in the existing literature. For
instance, in the earlier versions of E-OBS (prior to v16, Hay-
lock et al., 2008) and IberiaOl (Herrera et al., 2019), daily
gridded datasets for temperatures (daily maximum, mini-
mum, and mean) and precipitation were constructed using
a trivariate thin-plate spline (using elevation as a covariate;
Hutchinson et al., 2009) to construct monthly background
field values (mean for temperatures and sums for precipi-
tation), while the daily anomalies or proportions for tem-
peratures and precipitation, respectively, were interpolated
using ordinary Kriging. To obtain the final daily gridded
datasets, the aforementioned fields were superimposed by
addition and multiplication for temperatures and precipita-
tion, respectively. In the latter versions of E-OBS the daily
gridded datasets for temperatures and precipitation were con-
structed using generalized additive models (GAMs; Wood,
2017) to estimate the long-range spatial trend in the data,
while Gaussian random field simulation was used to interpo-
late the GAM residuals. Other approaches include multiple
linear regression, Delaunay triangulation, and optimal inter-
polation (Nordic gridded temperature and precipitation data,
NDCG; Tveito et al., 2000, 2005; Lussana et al., 2018a, b).
Furthermore, while machine learning (ML) has been success-
fully used to statistically downscale ERAS (Qin et al., 2022;
Hu et al., 2023) and climate change projections (Hernanz et
al., 2024, and references therein), few studies, to our knowl-
edge, have explored or evaluated the use of machine learning
algorithms for generating observational gridded datasets. In
particular, MeteoSerbialkm is a 1 km horizontal daily grid-
ded dataset for temperatures, mean sea level pressure, and
total precipitation for the years 20002019, which was pro-
duced using the Random Forest Spatial Interpolation (RFSI)
method, a spatial interpolation method based on the random
forest ML algorithm (Sekuli¢ et al., 2021). Moreover, Bon-
soms and Ninyerola (2024) evaluated five ML techniques
for the spatial interpolation of annual precipitation and min-
imum and maximum temperatures in the Pyrenees. The ac-
curacy and performance of k-nearest neighbors, supported
vector machines, neural networks, stochastic gradient boost-
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ing, and random forest were compared with those of multiple
linear regressions and generalized additive models. Accord-
ing to the authors, regardless of the elevation range, the ge-
ographical sector under analysis, or the predictor variables
used, the ML algorithms outperformed multiple linear re-
gressions and generalized additive models. Nevertheless, the
authors did not proceed with the construction of a gridded
dataset based on ML techniques. This is most likely due to
the nature of ML techniques, which were designed for fea-
ture space qualities that cover almost all types of data and
are therefore not commonly employed for spatial modeling
(Nwaila et al., 2024).

In this study, we introduce CLIMADAT-GRid: a high-
resolution (1 km x 1km) daily gridded dataset for air tem-
peratures (daily maximum, minimum, and mean) and pre-
cipitation for Greece, covering the period 1981-2019 (Varot-
sos et al., 2025). To the best of our knowledge, this is the
first publicly available dataset for Greece that offers daily
gridded temperatures and precipitation in Greece at such a
fine spatial resolution. Previous studies known to the authors
have primarily focused on monthly values of these variables
for the 1971-2000 period (Mamara et al., 2017; Gofa et al.,
2019).

2 Data

In this section, the datasets utilized in the analysis are pre-
sented. Section 2.1 summarizes the daily observational data,
including maximum (TX), minimum (TN), and average (TG)
temperatures, as well as daily precipitation (PR). Section 2.2
outlines the procedures applied for quality control, gap fill-
ing, and homogenization of the datasets. Section 2.3 de-
scribes the Weather Research and Forecasting (WRF) model
simulation, whose output is blended with the available tem-
perature observational data using gridding techniques, as de-
tailed in Sect. 3. This approach was preferred over relying
solely on observational data due to the sparse spatial cov-
erage of in situ measurements, especially at higher altitudes
(above 1000 m) as presented in Sect. 2.1.

2.1 Daily observational data for maximum (TX),
minimum (TN), and mean (TG) temperatures and
daily precipitation (PR)

This study utilizes daily air temperature observations from
two main sources. The first is the National Observatory of
Athens Automatic Network (NOAAN; Lagouvardos et al.,
2017), which provides records from 48 stations for the pe-
riod 2010-2019, and the second source is Hellenic National
Meteorological Service (HNMS), which provides tempera-
ture records from 73 stations spanning 1981-2019. In ad-
dition, we incorporate daily observations from the histori-
cal weather station of the National Observatory of Athens
in Thissio (NOA; Founda et al., 2022) for the same period.
In total, daily data from 122 meteorological stations across
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Greece were collected (Fig. 1a), with station altitude rang-
ing from 1 to 960 m above sea level (a.s.l.). Temperature data
were aggregated over a 24 h period from 00:00 to 24:00 UTC.

In addition to the data from the stations mentioned above,
we also collected daily precipitation data for 190 stations
provided by the General Secretariat for Natural Environment
and Water of the Ministry of Environment and Energy for
the period 1981-2019. In total, daily precipitation data from
312 stations are obtained (Fig. 1b), with altitudes from sea
level to 1130 ma.s.l. Only stations with less than 10 % miss-
ing data annually were considered. According to the data
providers, daily precipitation data were collected over a 24 h
period from 08:00 to 08:00 UTC for the HNMS, NOA, and
the stations provided by the General Secretariat for Natu-
ral Environment and Water of the Ministry of Environment
and Energy. Regarding the NOAAN stations, daily precipi-
tation data were collected over a 24 h period from 00:00 to
24:00 UTC.

2.2 Quality control, gap filling, and homogenization

An initial quality control for all variables was conducted us-
ing the R package climatol (version 4.1.1; Guijarro, 2023),
which automatically identifies and discards all extreme
anomalies and removes prolonged sequences of identical val-
ues from data. As for daily precipitation, which has a signif-
icantly skewed frequency distribution, the deletion of high
isolated data is not permitted because heavy rain can occur
between two days with little or no precipitation. In addition,
zero values of daily precipitation are automatically excluded
so that days with no precipitation are not included in the anal-
ysis of sequences with identical data.

For temperatures, the gap filling and homogenization
were carried out following the methodology of Varotsos et
al. (2023b). This method reconstructs missing daily temper-
atures values (TX, TG, and TN) over an extended period of
time, using climatol R package, station data, and the ERAS-
Land reanalysis dataset (Mufioz-Sabater et al., 2021). Since
this method is capable of reconstructing temperatures both
forward and backward in time, it was selected to provide
consistent and homogenized data for the period 1981-2019
across all 122 available stations. For further details on the
methodology, the reader is referred to the work of Varotsos
et al. (2023b).

For precipitation, gap filling and homogenization were
carried out in two phases. In the first phase, stations covering
the period 1981-2019 (including HNMS stations, the Min-
istry of Environment and Energy network, and the historical
Thissio NOA station) were post-processed using the climatol
package, with data from the nearest station serving as the ref-
erence. In the second phase, the homogenized data series for
the period 2010-2019 were used to fill gaps and homogenize
the daily precipitation data of the NOAAN network. Follow-
ing these procedures, the total number of precipitation data
series is 264 for 1981-2010 and 312 for 2010-2019.
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Figure 1. Locations of meteorological stations used for (a) temperatures and (b) precipitation measurements, including both the stations used
in the interpolation and the withheld stations used for evaluation. The background shows elevation data from the Global Multi-resolution

Terrain Elevation Data 2010 (GMTED2010).

2.3  WREF simulations

For the atmospheric simulations, the Advanced Weather Re-
search and Forecasting Model (WRF-ARW) version 4.1.3
(Skamarock et al., 2019) was employed. WRF-ARW is a
limited-area atmospheric model based on a fully compress-
ible, non-hydrostatic dynamic core. Vertically, it utilizes
terrain-following, mass-based hybrid sigma—pressure coor-
dinates based on dry hydrostatic pressure, with support for
vertical grid stretching. Horizontally, the model applies an
Arakawa C-grid staggering.

WREF is widely used in both operational forecasting (Sofia
et al., 2024; Patlakas et al., 2023) and scientific research
(Pantillon et al., 2024; Patlakas et al., 2024; Politi et al., 2021;
Stathopoulos et al., 2023; Otero-Casal et al., 2019). These
studies include comprehensive evaluations of the model’s
performance not only over the present study area but also
in regions with similar topographic and climatic characteris-
tics, demonstrating its reliability in representing climatolog-
ical fields. In this analysis, the WRF model was configured
with three two-way nested grids to adequately capture both
regional- and local-scale processes. The coarser one has a
resolution of 9 km, covering a large area that includes parts
of North Africa and Central Europe. The inner grids are fo-
cused on the Eastern Mediterranean and Greece, with spatial
resolutions of 3 and 1km, respectively (Fig. 2). Vertically,
the model consists of 48 layers.

The main physics options and parameterizations used are
summarized in Table 1.

For the initial and the boundary conditions, the ERA-5
(Hersbach et al., 2020) hourly data have been incorporated.
This is the latest global atmospheric reanalysis product pro-
duced by the European Centre for Medium-Range Weather
Forecasts (ECMWF), covering the period from 1940 to the
present with continuous real time updates and a spatial reso-
lution of 0.25°. Terrain elevation data are obtained from the
ASTER Global Digital Elevation Map (GDEM) from United
States Geological Survey (USGS; Slater et al., 2011) with a
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Figure 2. WRF-ARW model domains.

resolution of 30 m and land use information from the Coordi-
nation of Information on the Environment (CORINE; CLMS,
2018) at a 250 m resolution.

Following the approach of Varotsos et al. (2023a), the year
selected for the WRF simulation was chosen based on its
mean monthly annual cycle, the lowest deviations from its
long-term mean for the period 1981-2019. The analysis re-
vealed that the year 1999 had the lowest temperature and pre-
cipitation deviations, from the long-term mean. It should be
noted here that the selection of the year of the WRF simu-
lation is not of primary importance in this study, since it is
used as a physically based spatial interpolator, as described
in Sect. 3.2. Therefore, the key requirement is that the WRF
model provides a continuous and physically consistent repre-
sentation of the temperature field across the region’s complex
terrain, a capability supported by the aforementioned studies.

3 Methodology

The methodology applied in this study to produce the daily
gridded observational precipitation dataset for Greece for the
years 1981-2019 aligns with that used in the early versions of
E-OBS (Haylock et al., 2008) and IBERIAO1 (Herrera et al.,
2019). For temperature variables we adopted and extended
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Table 1. WRF model physical schemes and properties.
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Microphysics Thompson scheme (Thompson et al., 2004)

Cumulus parameterization Kain—Fritsch scheme (Kain, 2004)
Longwave radiation physics =~ RRTMG scheme (Iacono et al., 2008)

Shortwave radiation physics ~RRTMG scheme

Planet boundary layer Yonsei University (YSU) PBL scheme (Hong et al., 2006)
Surface layer option Monin—Obukhov similarity scheme
Land-surface physics Thermal diffusion scheme

the methodology described by Varotsos et al. (2023a), where
the available observed data were blended with WRF output
through gridding techniques. While Varotsos et al. (2023a)
focused on the Attica region, we expanded their methodology
to cover the entire Greek territory.

3.1 Spatiotemporal modeling for precipitation

The steps to obtain the daily grids for precipitation are as
follows:

— Interpolation of monthly totals (12 values x 39 years)
was carried out using altitude as a covariate to account
for altitude dependencies (station altitude for modeling
and the Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010), 30 arcsec version, altitude for in-
terpolation).

The following approaches were examined to calculate
the monthly precipitation fields:

i. A “fixed rank Kriging approach” (FRK) is a geo-
statistical interpolation technique that approximates
a spatial field using a low-rank representation of
the underlying spatial process. It models the spa-
tial covariance structure through a set of basis func-
tions, allowing efficient estimation even with large
datasets (Nychka et al., 2015a). In this study, FRK
is implemented using the LatticeKrig package (Ny-
chka et al., 2019) in R (R Core Team, 2024), where
the model parameters, including variance compo-
nents and spatial range parameters, are estimated
using maximum likelihood estimation.

ii. Generalized additive models (GAMs) are a semi-
parametric extension of generalized linear models
that assume the underlying relationships are ad-
ditive and smooth. Their primary strength lies in
their ability to capture highly non-linear and non-
monotonic relationships between the response vari-
able and explanatory variables (Wood, 2017). In
this study, monthly precipitation sums are mod-
eled as smooth functions of longitude, latitude, and
elevation using thin plate regression splines, with
smoothing parameters estimated using restricted
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maximum likelihood (mgcv R package; Wood and
Wood, 2015).

iii. Two ML algorithms, namely k-nearest neighbors
(KNN) and support vector machine (based on an
exponential radial basis function, SVM), are used.
KNN estimates the value of an unknown data point
by identifying its k-closest neighbors in the spa-
tial dataset, where k is a user-defined hyperparam-
eter (Nwaila et al., 2024). The predicted value is
computed as a weighted average of these neigh-
bors’ values, with the weights typically based on
the distance to the target point (i.e., closer neigh-
bors have greater influence). In this study, k ranges
from 2 to 30 in increments of 1. SVM is a ML
algorithm, effective in capturing non-linear spa-
tial trends, which seeks a function that predicts
the value of an unknown data point while balanc-
ing accuracy and model complexity (Bonsoms and
Ninyerola, 2024). The complexity is regulated by
the cost parameter C (tested values: 0.1, 1, 5, 10),
while the smoothness of the kernel is governed by
sigma (tested values: 0.01, 0.025, 0.05, 0.075, 0.1).
For both algorithms, optimal hyperparameters (k
for KNN and C and sigma for SVM) are selected
using 10-fold cross-validation combined with grid
search, using the caret package in R (Kuhn, 2008; R
Core Team, 2024). The choice of these two ML al-
gorithms was based on the literature (e.g., Bonsoms
and Ninyerola, 2024), as well as on preliminary
tests that included other algorithms, such as random
forests, gradient boosting machines, and neural net-
works. However, the latter algorithms were ex-
cluded as they produced unrealistic cross-hatched
patterns in the precipitation background fields.

— Interpolation of the daily anomalies (quotient from the

monthly total values, 365 values per year x 39 years)
of the observational data was carried out. The final step
of precipitation interpolation was implemented using an
exponential covariance with the covariance parameters
estimated through maximum likelihood. For more in-
formation, the reader is referred to the fields R package
spatialProcess function (Nychka et al., 2015b). To ob-
tain the final daily gridded dataset for precipitation, the
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two interpolated precipitation products obtained are su-
perimposed by multiplication.

3.2 Spatiotemporal modeling for temperatures

As outlined earlier in Sect. 3, the methodology of Varotsos et
al. (2023a) was applied to generate the daily gridded temper-
ature datasets with the key steps as implemented in this work
briefly summarized below.

The approach is implemented in four steps. The first two
steps involve the WRF perturbation to align with observed
long-term climate temporal characteristics while preserving
its spatial variability. This is achieved by adding the inter-
polated monthly biases, calculated as the difference between
the mean monthly annual cycles over the period 1981-2019
and the monthly means calculated over the year 1999 at the
closest WRF grid point to each station location, to the mean
monthly values at each grid point. The third step involves
the construction of the gridded dataset following the first
two steps mentioned for the precipitation dataset by adding
the interpolated mean monthly values, derived by the differ-
ent methods (FRK, GAM, KNN, SVM) with the interpo-
lated daily anomalies calculated as the difference between
the daily observation and the monthly mean. The last step
involves the transfer of perturbed WREF output to the daily
gridded dataset of the previous step using the unbiasing bias
adjustment method (Déqué, 2007).

The methodology presented in this study regarding the
gridding of temperature data is flexible and allows for the
integration of other regional datasets (e.g., the Copernicus
regional reanalysis for Europe, CERRA) in multiple ways,
depending on the objective. For example, if the aim is to
develop a gridded dataset at a resolution similar to that of
CERRA (5.5km x 5.5km), the WRF output could be re-
placed entirely with CERRA data. Alternatively, a com-
bined approach could be employed, whereby CERRA is used
in conjunction with WRF output to produce a statistically
downscaled CERRA dataset, which can then be bias-adjusted
using observational data. More specifically, in the first step
of the methodology, observational data could be substituted
with CERRA values at the nearest grid points to the sta-
tion locations. These values would be used to perturb the
WREF output, followed by application of the final step of
the methodology to a 1 km regridded version of the CERRA
dataset. The resulting high-resolution dataset could then be
bias-adjusted by adding the interpolated mean monthly dif-
ferences between the station observations and the corre-
sponding values from the 1 km CERRA dataset.

3.3 Evaluation analysis against withheld station data

An evaluation of the different approaches for constructing the
daily grids was conducted for the test period (2010-2019).
The aim of this evaluation was to identify the most effective
method for generating daily datasets for all variables over
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the period 1981-2019. To achieve this, approximately 10 %
of the stations were excluded from the dataset, and the in-
terpolated values were compared with the observed values
at those locations. For both temperatures and precipitation
station data, the withheld stations were selected using the
minimax distance design (Johnson et al., 1990; Cornes et al.,
2018), which minimizes the maximum distance from each
withheld station to any of the other stations (Fig. 1a and b).

The accuracy of the various approaches is assessed using
bias (BIAS), root mean square error (RMSE), mean abso-
lute error (MAE), and Kling—Gupta efficiency (KGE) mea-
sures. The KGE metric is a measure of goodness of fit that
has been routinely used to evaluate climate datasets (Beck
et al., 2019; Bhuiyan et al., 2019; Avila-Diaz et al., 2021).
KGE can obtain values ranging from negative infinity to +1,
with values of +1.0 and —1.0 to indicate perfect positive and
negative linear correlation between the reference and the as-
sessed time series, respectively, while a value of 0 implies
no correlation. In this study, gridding techniques are more
accurate when KGE values are close to 1. When calculating
the KGE, three key factors are considered: (i) the Pearson
product-moment correlation coefficient (R), (ii) the ratio of
the mean of the reconstructed values to the mean of the ob-
served values (beta), and (iii) the variability ratio based on
the standard deviations of the reconstructed values to the ob-
served values (alpha).

3.4 Comparison against CHELSA-W5E5

The final produced daily gridded datasets for temperatures
and precipitation were compared against the correspond-
ing variables from CHELSA-WS5ES vl (hereafter CHELSA;
Karger et al., 2023). CHELSA is a global land dataset pro-
viding daily air temperature, precipitation, and downwelling
shortwave solar radiation at a 1 km resolution for the period
1979-2016. It is produced by spatially downscaling the 0.5°
WS5ES dataset onto a grid based on the GMTED2010 dig-
ital elevation model, which is also used in this study. No-
tably, both the CLIMADAT-GRid and CHELSA are con-
structed using the same digital elevation model, thus sharing
the same grid while the shared elevation model ensures con-
sistency in elevation values across corresponding grid points
in the two datasets. Moreover, Papa and Koutroulis (2025)
found that CHELSA is one of the two more reliable gridded
datasets for describing the precipitation dynamics in Greece.
The comparison was performed by examining average an-
nual and seasonal means for all temperature variables (sums
for precipitation), as well as selected indices from the Expert
Team on Climate Change Detection and Indices (ETCCDI;
Zhang et al., 2011). These are the number of days with daily
TX >25°C (SU) and TX > 35°C (SU35) for TX, the num-
ber of days with daily TN > 20 °C (TR) for TN, and the num-
ber of days with PR > 1 mm (RR1), as well as the number of
days with PR > 10 mm (RR10) for PR. These indices were
selected considering the primary climatic characteristics of
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the studied area, which exhibits Mediterranean-type climate
conditions with moderate winters and warm to hot summers.

4 Results

4.1 Evaluation against withheld station data for the test
period (2010-2019)

4.1.1 Precipitation results

The values of BIAS, RMSE, MAE, and KGE are presented
in Table 2 for the precipitation grids produced using the
different approaches described in Sect. 3.1. These results
are evaluated against withheld observations on both an an-
nual and seasonal scale over the test period. From Table 2,
it is evident that on the annual scale, all four approaches
exhibit strong and relatively consistent performance across
all evaluation metrics. BIAS values are minimal, indicating
that none of the models significantly overestimate or un-
derestimate precipitation. FRK shows the smallest annual
BIAS (—0.01 mm), closely followed by GAM (—0.02 mm)
and SVM (—0.05 mm), while KNN shows a negative BIAS
of —0.08 mm. Regarding RMSE and MAE, it is shown that
the different approaches yield similar values across both
statistical measures with annual RMSE (MAE mm) being
lower than 1.45 (0.65mm), while KGE values are higher
than 0.85 for all approaches, with SVM and FRK reach-
ing the highest values 0.93 and 0.92, respectively. At the
seasonal scale, greater variability is shown. During winter
(DJF, December—January—February), SVM and GAM tend
to significantly underestimate precipitation, with SVM show-
ing the most negative BIAS (—0.16 mm) and a KGE of
0.91, while GAM also underperforms with a lower KGE of
0.81 and relatively high MAE (1.01 mm). In contrast, KNN
tends to overestimate during this period (BIAS =0.12 mm)
but still maintains a moderate KGE of 0.84. FRK, once
again, shows stability with low BIAS (—0.02 mm), compet-
itive RMSE (1.51 mm), and a strong KGE of 0.88. During
spring (MAM, March—April-May) and summer (JJA, June—
July—August), all approaches show better agreement with ob-
servations. FRK continues to perform robustly with the low-
est RMSE (MAE) values (0.94 mm (0.50 mm) for MAM and
0.65 mm (0.29 mm) for JJA) and high KGE values (0.90 and
0.82, respectively). The rest of the approaches perform rea-
sonably, though GAM’s MAE remains higher in MAM, and
SVM and KNN show slight deviations in JJA. In autumn
(SON, September—October—November), all approaches tend
to overestimate precipitation, with KNN showing the highest
BIAS (0.16 mm). SVM shows the lowest BIAS (0.02 mm)
and maintains a KGE of 0.94, the highest among the meth-
ods for this season. Nevertheless, FRK demonstrates consis-
tent performance with a balanced BIAS (0.05 mm), relatively
low RMSE and MAE of 1.27 and 0.66 mm, respectively, and
a strong KGE of 0.93. Overall, the results indicate FRK as
the most stable and reliable method, delivering consistently
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low BIAS and error across both annual and seasonal scales
while maintaining high KGE values throughout the year.

In Fig. 3 the average annual daily distributions for pre-
cipitation are shown for the 10-year test period. The results
indicate that the methods can capture the annual total precip-
itation, with the maximum relative absolute biases of 8 % or
less across all methods.

When all available stations are used for the interpolation
for the period 2010-2019 (Fig. 4), the results indicate that
the west to east gradient of precipitation in Greece, which ex-
hibits the largest and lowest amounts of yearly precipitation
(Gofa et al., 2019), is captured by all approaches. However,
as it is evident from Fig. 4 that FRK maintains strong pre-
dictive skill when applied to the full set of available stations,
with only a modest increase in error, reflecting its ability to
handle spatial heterogeneity and non-stationarity common in
precipitation fields. GAM error metrics increase somewhat
on the full dataset, however, retaining a reasonable predic-
tive skill, indicating its capacity to capture important spatial
patterns. For KNN, an opposite sign BIAS is evident when
compared to the results of Table 2, indicating that the method
is strongly dependent on the proximity to known data. As a
result, the method exhibits poorer extrapolation ability than
FRK and GAM. In contrast, SVM shows a significant decline
in performance when applied to the full station network, as it
lacks explicit modeling of spatial structures despite its capa-
bility to capture complex nonlinear relationships (Heinke et
al., 2023), resulting in higher errors and biases across diverse
climatic and geographic regions. This behavior is highlighted
in the mountainous area in Crete where total annual precipi-
tation is much lower than the other methods.

Overall, this comparison highlights that FRK is better
suited for robust precipitation interpolation across regions
with complex topography.

4.1.2 Temperature results

This section is dedicated to the evaluation of the effectiveness
of the proposed approaches in reproducing observed temper-
atures, specifically addressing the third phase of the temper-
ature methodology described in Sect. 3.2.

From Table 3 and Figs. 5-7, it is evident that all methods
perform well in capturing the temporal temperature charac-
teristics for TX, TG, and TN. Table 3 presents the values
of the metrics as calculated from daily values, which offer
insight into the different methods’ systematic errors at the
finer temporal scale. For TX, KNN and SVM exhibit the
best overall performance across RMSE, MAE, and KGE,
with seasonal RMSE values consistently below 0.67 °C and
high KGE values (> 0.93). KNN performs particularly well
in colder seasons (DJF and SON), while SVM shows bet-
ter results in warmer periods (MAM and JJA). FRK ranks
third, showing competitive RMSE and MAE values, though
it consistently underestimates TX with a negative bias across
all seasons, most notably in SON (—0.47 °C). GAM, while
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Table 2. Precipitation annual and seasonal BIAS, RMSE, MAE, and KGE statistics based on daily values between the 30 reference stations
and the interpolated ones as derived from the different interpolation approaches.

FRK | GAM | KNN | SVM
PR BIAS RMSE MAE KGE \ BIAS RMSE MAE KGE \ BIAS RMSE MAE KGE \ BIAS RMSE MAE KGE
Annual —0.01 1.13 0.60 092 | —0.02 1.45 0.63 0.87 | —0.08 1.18 0.62 0.87 | —0.05 1.09 0.59 0.93
DJF —0.02 1.51 095 0.88 | —0.06 1.46 1.01 0.81 0.12 1.56 097 0.84 | —0.16 1.43 0.91 0.91
MAM 0.03 0.94 0.50 0.90 | —0.03 1.47 093 0.88 | —0.11 0.99 0.54 0.86 | —0.04 0.92 0.51  0.92
JJA —0.09 0.65 0.29 0.82 | —0.16 1.47 0.3 0.70 | —0.06 0.63 029 0.86 | —0.08 0.67 0.31 0.82
SON 0.05 1.27 0.66  0.93 0.07 1.43 0.71  0.87 0.16 1.34 0.69 0.85 0.02 1.22 0.66  0.94
OBS FRK
(a) (b)
2019 806 2019 786 (-2.5%)
2018 653 2018 660 (1%)
2017 600 2017 609 (1.6%)
% 2016 571 £ 2016 572 (0.1%)
2 2015 — 720 £ 2015 726 (0.7%)
2014 757 2014 775 (2.4%)
2013 657 2013 671 (2.1%)
2012 746 2012 708 (-5.1%)
2011 605 2011 602 (-0.5%)
2010 720 2010 683 (-5.2%)
20 25 20 25
(c) (d)
2019 812 (0.8%) 2019 829 (2.8%)
2018 669 (2.5%) 2018 685 (4.9%)
2017 593 (-1.2%) 2017 628 (4.8%)
g 2016 574 (0.5%) £ 2016 602 (5.4%)
L 2015 705 (-2.1%) 2 2015 772 (7.2%)
2014 754 (-0.5%) 2014 812 (7.2%)
2013 687 (4.4%) 2013 699 (6.4%)
2012 699 (-6.2%) 2012 744(-0.1%)
2011 587 (-2.9%) 2011 626 (3.5%)
2010 688 (-4.5%) 2010 727 (1%)
(] 5 10 15 20 25 0 5 10 15 20 25
PR PR
SVM
(e)
2019 776 (-3.7%)
2018 647 (-1%)
2017 588 (-1.9%)
% 2016 554 (-2.9%)
L 2015 721 (0%)
2014 765  (1%)
2013 667 (1.5%)
2012 686 (-8%)
2011 569 (-5.9%)
2010 694 (-3.6%)
0 5 10 15 20 25

PR

Figure 3. Density distributions of daily precipitation values over the withheld station data for the observations (OBS) and the different
methods used for interpolation for the years 2010-2019. The values shown in the plots are the total annual precipitation values, whereas the
relative biases between the different methods and the observations are shown in parentheses.
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Figure 4. Spatial distribution of total annual precipitation for the period 2010-2019, as estimated by the different interpolation methods (a—
d) and observed data (e). Each panel includes the spatial average (M) calculated over all grid points (or over all stations in e). For (a)—(d), the
relative BIAS, MAE (in mm), RMSE (in mm), and KGE are provided, based on comparisons between the interpolated values at the nearest

grid points and the corresponding station observations.

displaying the highest RMSE and MAE values in every sea-
son, has the lowest annual BIAS (0.00 °C) and relatively low
seasonal BIAS values (e.g., —0.04 °C in DJF, —0.27 °C in
MAM), indicating alignment with the observed annual mean
but poor performance in capturing daily variability. When ex-
amining the annual differences between the observations and
the various methods (Fig. 5), GAM demonstrates the lowest
absolute annual deviations, remaining below 0.2 °C, indicat-
ing strong agreement with long-term averages. In contrast,
FRK exhibits the highest annual deviations, reaching up to
0.6 °C.

For TG and TN, FRK emerges as the most robust method,
outperforming others across all metrics on both annual and
seasonal scales. It consistently delivers the lowest RMSE,
MAE, and KGE values. Importantly, FRK also exhibits
the lowest annual BIAS values for TG (0.08 °C) and TN
(0.10°C), underscoring its minimal systematic deviation
from observations. In comparison, other methods present
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substantially higher BIAS values, particularly KNN (0.57 °C
for TG, 0.74 °C for TN) and SVM (0.71 °C for TG, 0.56 °C
for TN). Furthermore, FRK’s mean absolute annual devia-
tions remain lower than 0.3 °C for both TG and TN (Figs. 6—
7), whereas other methods show deviations reaching up to
0.8 °C, depending on the variable and method.

In terms of spatial distribution, similar patterns to those
observed for precipitation are identified. In particular, GAM,
KNN, and SVM demonstrate limited ability to accurately
represent temperature gradients influenced by topography
(not shown).

4.2 Results of the comparison between
CLIMADAT-GRid and CHELSA for the period
1981-2016

This section presents the results of the comparison between
CLIMADAT-GRid and CHELSA for both temperatures and
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Figure 5. Density distributions of daily maximum temperature (TX) values over the withheld station data for the observations (OBS) and
the different methods used for interpolation for the years 2010-2019. The values shown in the plots are the average annual values, whereas
the biases between the different methods and the observations are shown in parentheses.

precipitation. It is important to note that, based on the find-
ings in Sect. 4.1, FRK was selected as the method used to
construct the CLIMADAT-GRid for both variables.

4.2.1 Daily maximum, mean, and minimum temperature

results

Figures 8, 9, and 10 present the annual and seasonal average
temperature results for TX, TG, and TN for the CLIMADAT-
GRid and CHELSA datasets, respectively, while their differ-
ences are shown in Fig. S1 of the Supplement. For TX, both
datasets show broadly comparable spatial average tempera-
tures over the entire domain (denoted as M in the figures)
(Fig. 8). CLIMADAT-GRIid consistently matches station ob-
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servations well, as indicated by zero BIAS and minimal error
metrics across all seasons. MAE and RMSE values remain at
or below 0.02 °C, and KGE values are close to 0.99 through-
out. In contrast, CHELSA systematically underestimates TX,
with biases ranging from —0.49 °C in MAM to —0.69 °C in
DJF and RMSE values up to 0.72 °C. CHELSA’s lower KGE
values (e.g., 0.86 in DJF) further suggest reduced agreement
with observations. CLIMADAT-GRid, blended with WRF
in the gridded dataset, captures the orographic temperature
gradients more effectively exhibiting lower temperatures in
elevated regions such as the northwest of Greece, the cen-
tral Peloponnese, and western Crete (Fig. S1). Conversely,
CHELSA tends to show cooler conditions in the Ionian is-
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Figure 6. Density distributions of daily mean temperature (TG) over the withheld station data for the observations (OBS) and the different
methods used for interpolation for the years 2010-2019. The values shown in the plots are the average annual values, whereas the biases
between the different methods and the observations are shown in parentheses.

lands and the Cyclades but warmer conditions in Rhodes and
Samos.

For TG, the pattern is similar but slightly more pronounced
in favor of CLIMADAT-GRid (Fig. 9). The mean annual
TG is 14.3 °C in CLIMADAT-GRid and 14 °C in CHELSA.
CLIMADAT-GRid demonstrates extremely low errors and
near-zero bias across all seasons, with RMSE values consis-
tently at 0.01-0.02 °C and KGE values at or near 0.99. In
contrast, CHELSA underestimates TG with average annual
and seasonal biases between —0.29 °C (DJF) and —0.79 °C
(JJA) and RMSE values reaching up to 0.81 °C. The KGE
for CHELSA is lower, particularly in DJF (0.90) and SON
(0.92), indicating less accurate temperature modeling com-
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pared to CLIMADAT-GRid. The spatial differences also re-
flect the better performance of CLIMADAT-GRid, especially
in mountainous regions where it more accurately captures
lower mean temperatures (Fig. S1).

For TN, both datasets report nearly identical domain-
averaged values, with the largest difference being only 0.2 °C
in MAM and SON (Fig. 10). CLIMADAT-GRid slightly un-
derestimates TN (bias from —0.01 to —0.03 °C), whereas
CHELSA slightly overestimates it during DJF and MAM
(bias up to 0.27 °C), though both datasets perform well in JJA
and SON. Despite the small average differences, error met-
rics again favor CLIMADAT-GRid, which shows low MAE
and RMSE (0.01-0.03 °C) and perfect or near-perfect KGE
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Figure 7. Density distributions of daily minimum temperature (TN) values over the withheld station data for the observations (OBS) and the
different methods used for interpolation for the years 2010-2019. The values shown in the plots are the average annual values, whereas the
biases between the different methods and the observations are shown in parentheses.

values (> 0.99). CHELSA, by contrast, displays larger errors
(RMSE up to 0.34°C in MAM) and lower KGE, particu-
larly annually (0.85) and in JJA (0.85), indicating a mod-
est degradation in its representation of minimum tempera-
tures. Regionally, the most significant TN discrepancies ap-
pear in coastal and island areas (Fig. S1). CHELSA shows
notably higher TN values than CLIMADAT-GRid across Za-
kynthos, Kefalonia, Crete, and many of the Aegean islands.
The higher temperatures in CHELSA can be attributed to the
implementation of a basic statistical downscaling approach
that employs atmospheric temperature lapse rates, B-spline
interpolations, and high-resolution orography rather than a
full physical scheme (Karger et al., 2023). Furthermore, ac-
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cording to the authors, constant lapse rates were utilized for
all air temperature variables impacting minimum tempera-
tures to a greater extent, as minimum temperatures in high
altitudes are frequently the result of nighttime inversions.

Figure 11 presents a comparative analysis of the number
of days exceeding key temperature thresholds, TX > 25 °C
(SU), TX > 35°C (SU35), and TN > 20°C (TR) based on
the CLIMADAT-GRid and CHELSA datasets. While both
datasets show close agreement in domain-averaged values for
SU and SU35, notable discrepancies emerge for TR, where
CHELSA reports a higher frequency (23 d yr—!) compared to
CLIMADAT-GRid (18 dyr™).
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Figure 8. Average annual and seasonal TX (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) for the period 1981-2016 for
CLIMADAT-GRid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid points covering the
area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the station locations are shown within
each panel.
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Figure 9. Average annual and seasonal TG (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) for the period 1981-2016 for
CLIMADAT-GRIid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid points covering the
area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the station locations are shown within
each panel.
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Figure 10. Average annual and seasonal TN (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) for the period 1981-2016 for
CLIMADAT-GRIid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid points covering the
area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the station locations are shown within
each panel.
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Table 3. Daily maximum (TX), mean (TG), and minimum (TN) temperatures of annual and seasonal BIAS, RMSE, MAE, and KGE statistics
based on daily values between the 13 reference stations and the interpolated ones as derived from the different interpolation approaches.

FRK | GAM | KNN | SVM

BIAS RMSE MAE KGE | BIAS RMSE MAE KGE | BIAS RMSE MAE KGE | BIAS RMSE MAE KGE
TX
Annual  —0.33 069 055 098 | 000 163 048 098] 011 060 050 098|012 060 049 098
DJF —-0.41 068 055 091 | —0.04 16 041 093 | -030 060 049 093 | —038 064 053 094
MAM  —0.06 060 047 097 | —027 153 053 097 | —033 067 056 098 | —021 062 051 098
JIA —-040 072 058 097 | —0.14 135 049 098 | —0.18 060 050 098 | —0.12 056 046 098
SON  —047 076 061 096 | —0.15 148 047 098 | —0.02 055 045 099 | 003 057 046 098
TG
Annual 008 045 036 098 | 041 281 048 097 | 057 069 059 097 ] 071 08 073 096
DIF —-0.18 045 036 098 | 024 256 038 097 | 053 067 056 093| 064 077 066 092
MAM 023 045 036 097 | 053 243 057 096| 066 075 067 095| 070 080 071 0095
JIA 023 048 037 097 | 051 232 055 097 | 053 066 057 097 | 078 08 079 096
SON 023 042 035 096 | 051 253 043 097 | 053 067 058 097 | 078 08 074 09
TN
Annual 010 052 041 099 | 051 38 059 096 | 074 08 077 094 | 056 077 064 095
DJF —-0.04 063 052 092 | 039 38 058 08| 075 097 080 080 | 066 093 075 082
MAM 022 052 043 098 | 066 38 070 093 | 075 08 078 092 049 072 060 095
JIA 017 042 034 098 | 055 379 057 097 | 073 083 073 096 | 049 065 054 095
SON 006 048 038 099 | 045 385 054 096 | 074 08 077 094 | 062 079 068 095

When benchmarked against observations, CLIMADAT-
GRid demonstrates stronger agreement, particularly for SU.
CHELSA underestimates SU by approximately 10dyr~!,
whereas CLIMADAT-GRid closely tracks observed values,
reflecting its higher reliability for this metric. Statistical
evaluation supports this, since for SU, CLIMADAT-GRid
achieves a low BIAS (1°C), MAE (1.11°C), and RMSE
(1.4°C) and a high KGE (0.97), outperforming CHELSA,
which shows a significant negative BIAS (—9.34 °C), higher
MAE (9.34°C) and RMSE (9.69 °C), and a slightly lower
KGE (0.91).

For TR, the results are more nuanced. CLIMADAT-GRid
shows a greater negative BIAS (—4.02d yr’1 ), but CHELSA,
despite the smaller BIAS (—1.28dyr™!), presents higher
MAE and RMSE values (3.09 and 3.72d yr~!, respectively),
suggesting differences in how each dataset captures night-
time temperature extremes. Both datasets perform compa-
rably in terms of KGE, with values of 0.84 (CLIMADAT-
GRid) and 0.82 (CHELSA).

Spatial differences further reveal key distinctions between
the two datasets (Fig. S2). Discrepancies in SU are concen-
trated over the Ionian Sea islands (Zakynthos and Kefalo-
nia) and the Cyclades, while differences in TR are more
widespread, notably affecting Crete, the Aegean islands, and
again the Ionian Sea region. In addition, CLIMADAT-GRid
captures the spatial distribution of TR capturing the urban
heat island effect in Athens. In contrast, this urban signature
is less pronounced in the CHELSA data, suggesting limita-
tions in its resolution or calibration over complex urban ter-
rains. Similarly, CLIMADAT-GRid effectively captures the

Earth Syst. Sci. Data, 17, 4455-4477, 2025

spatial distribution of SU35, accurately identifying thermal
hotspots across Greece.

Together, these findings highlight the greater consistency
and spatial sensitivity of the CLIMADAT-GRid dataset, par-
ticularly in reflecting observed heat extremes and local vari-
ability across the Greek region.

4.2.2 Precipitation results

Figure 12 presents the total annual and seasonal precipita-
tion results averaged over the period 1981-2016 for both
datasets. In general, CLIMADAT-GRIid indicates higher pre-
cipitation values compared to CHELSA on both the annual
and seasonal timescales (their relative differences are shown
in Fig. S3). Both datasets capture the west-to-east precipita-
tion gradient in Greece, with wetter conditions prevailing in
the west and drier conditions in the east.

When evaluated against observations, CLIMADAT-GRid
shows minimal biases. Specifically, the annual BIAS is
—1.56 %, with seasonal biases ranging from —1 % in DJF to
—9.27 % in JJA. CLIMADAT-GRIid also maintains low MAE
and RMSE values across all seasons; for example, annual
MAE is 11.5mm and RMSE is 15.17 mm, with high KGE
values near 0.98, indicating strong agreement with observa-
tions.

In contrast, CHELSA demonstrates significant underesti-
mations. The annual precipitation BIAS is —19 %, and sea-
sonal BIAS ranges from —11.97% in SON to —38.27 %
in JJA. The errors are also substantially larger, with annual
MAE and RMSE at 142.51 and 147.02 mm, respectively.

https://doi.org/10.5194/essd-17-4455-2025
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Figure 11. Average annual number of days TX > 25 °C (SU), number of days TX > 35 °C (SU35), and number of days TN > 20 °C (TR) for
the period 1981-2016 for CLIMADAT-GRid (a, ¢, €) and CHELSA (b, d, f). In each panel, M denotes the spatial average over the grid points
covering the area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the station locations are

shown within each panel.

Seasonal MAE and RMSE values are consistently higher
than those of CLIMADAT-GRid, particularly during DJF,
MAM, and SON. Additionally, CHELSA’s KGE values are
lower across all seasons, with a peak of 0.82 in SON and a
low of 0.65 in JJA, indicating comparatively reduced relia-
bility in capturing observed precipitation patterns.
Regarding the number of wet days (RR1; Figs. 13 and
S4), both datasets demonstrate a systematic overestimation
relative to the observed spatial means. For CLIMADAT-
GRid a positive BIAS of about 49 d yr~! is shown, while for
CHELSA the bias reaches about 31 d yr~'. MAE and RMSE
for CLIMADAT-GRid are about 49 and 50dyr~!, respec-
tively, with a negative KGE of —0.51, indicating poor agree-
ment with observations despite its more pronounced oro-
graphic pattern. CHELSA performs somewhat better in this
respect, with a lower MAE (31dyr~') an RMSE (31dyr™!)
and a positive KGE of 0.31. This highly positive bias in
the number of wet days has also been found in other grid-

https://doi.org/10.5194/essd-17-4455-2025

ded products (e.g., IBERIAO1), and it is a byproduct of the
selected interpolation methods. One way to reduce the in-
flated number of wet days is to introduce a third term in
the interpolation scheme of precipitation by interpolating the
daily occurrence of rainfall (0 or 1 depending on whether
PR > 0.1 mm) considering a threshold between 0.1 and 0.9
for assigning a wet day to a grid point (Cornes et al., 2018;
Varotsos et al., 2023a). For instance, if we assign a value of
0.2 for the wet days and multiply the interpolated fields with
the daily precipitation product, the average number of wet
days is reduced to 90d yr~!, however with increased under-
estimation in the annual and seasonal precipitation sums (not
shown). For future studies utilizing the CLIMADAT-GRid
precipitation dataset, a threshold of 2mmd~! could be con-
sidered when analyzing the number of wet days.

In terms of the number of days with daily precipitation
equal to or greater than 10 mm (RR10; Figs. 13, S4), the
two datasets display similar spatial distributions, with both

Earth Syst. Sci. Data, 17, 4455-4477, 2025
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Figure 12. Total annual and seasonal PR (winter (DJF), spring (MAM), summer (JJA), and autumn (SON)) for the period 1981-2016 for
CLIMADAT-GRIid (left column) and CHELSA (right column). In each panel, M denotes the spatial average over the grid points covering the
area. In addition, the evaluation metrics between the stations and the data for the closest grid points to the station locations are shown within
each panel.
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Figure 13. Average annual number of days PR > 1 mm (RR1) and number of days PR > =10 mm (RR10) for the period 1981-2016 for
CLIMADAT-GRid (a, ¢) and CHELSA (b, d). In each panel, M denotes the spatial average over the grid points covering the area. In
addition, the evaluation metrics between the stations and the data for the closest grid points to the station locations are shown within each

panel.

indicating the highest frequencies in western Greece and
the lowest in the east. However, CLIMADAT-GRid per-
forms better quantitatively, with a mean annual RR10 of
23d and a bias of about —3d yr~!, compared to CHELSA’s
19d yr~! and a larger negative bias of about —7 d yr~!. Addi-
tionally, CLIMADAT-GRid exhibits lower MAE and RMSE
(3dyr~! for both metrics, respectively), along with a higher
KGE of 0.86, indicating close agreement with observations.
CHELSA, in contrast, yields a higher MAE and RMSE
(7dyr~! for both metrics, respectively) and a lower KGE of
0.73, reinforcing the overall tendency of CLIMADAT-GRid
to more accurately represent moderate-to-heavy precipitation
events.

5 Data availability

The CLIMADAT-GRid dataset is freely
available in the web repository Zenodo
(https://doi.org/10.5281/zenodo.14637536) and cited as
Varotsos et al. (2025). Moreover, the dataset is available
through http://ostria.meteo.noa.gr/repo/ CLIMADAT _Grid/
(last access: 19 December 2024; Varotsos et al., 2025).
The NOAAN network measurements and the histori-
cal weather station data from the National Observatory
of Athens in Thissio are available via the CLIMPACT
data repository: https://data.climpact.gr/en/dataset/
497dc26d-45e0-4ad5-b8f3-5t8890f65129 (National Obser-
vatory of Athens/meteo.gr, 2021) and https://data.climpact.

https://doi.org/10.5194/essd-17-4455-2025

gr/en/dataset/2f5Sbbe2a-7¢27-40e7-9ff6-1dcc08c507fa (Na-
tional Observatory of Athens/IERSD, 2022), respectively.
ERAS5-land data were obtained from the Copernicus Cli-
mate Data Store (https://doi.org/10.24381/cds.e2161bac,

Copernicus Climate Change Service, 2019),
while CHELSA-W5 data were obtained from
https://doi.org/10.48364/ISIMIP.836809.2 (Karger et
al., 2022).

6 Conclusions

In this paper, we described the construction of CLIMADAT-
GRid, a new publicly available 1km x 1km daily gridded
climate dataset for Greece that focuses on temperatures and
precipitation from 1981 to 2019. CLIMADAT-GRid is based
on quality-controlled and homogenized daily temperature
and precipitation data gathered from 122 and 312 stations,
respectively. To produce the gridded fields, we evaluated
four interpolation methods — fixed rank Kriging (FRK), gen-
eralized additive models (GAMs), support vector machines
(SVMs), and k-nearest neighbors (KNNs) — using indepen-
dent station data for validation. FRK emerged as the most re-
liable method, demonstrating consistent performance across
variables and timescales, particularly for precipitation. It also
best captured spatial patterns, especially over the complex
terrain of Greece. For temperatures, SVM and KNN per-
formed well for maximum temperatures, while FRK was
more consistent for mean and minimum temperatures. FRK

Earth Syst. Sci. Data, 17, 44554477, 2025


https://doi.org/10.5281/zenodo.14637536
http://ostria.meteo.noa.gr/repo/CLIMADAT_Grid/
https://data.climpact.gr/en/dataset/497dc26d-45e0-4ad5-b8f3-5f8890f65129
https://data.climpact.gr/en/dataset/497dc26d-45e0-4ad5-b8f3-5f8890f65129
https://data.climpact.gr/en/dataset/2f5bbe2a-7e27-40e7-9ff6-1dcc08c507fa
https://data.climpact.gr/en/dataset/2f5bbe2a-7e27-40e7-9ff6-1dcc08c507fa
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.48364/ISIMIP.836809.2

4474

was ultimately chosen as the method for constructing the
CLIMADAT-GRid. In addition, to obtain the gridded tem-
perature data the observations were blended with a high-
resolution WRF simulation over Greece for the year 1999.

The comparison with the CHELSA-WS5ES dataset for the
period 1981-2016 showed that CLIMADAT-GRid generally
produced similar results for temperatures but captured spa-
tial variability better with a closer agreement to observations
on both the mean values and the extremes. For TX, both
datasets showed similar temperatures, with CLIMADAT-
GRid closely matching station data, while CHELSA con-
sistently underestimated the observations by 0.5 to 0.7 °C.
CLIMADAT-GRid also better captured the temperature gra-
dients in mountainous areas compared to CHELSA. Con-
versely, for TN, both datasets showed identical spatial means
overall, with a tendency in CHELSA to overestimate ob-
servations. The differences between the datasets were most
noticeable in the Ionian Sea islands, Crete, and the Aegean
Sea islands, with CHELSA showing higher temperatures in
these regions. Regarding the extremes, both datasets pro-
duced similar spatial means for the number of days with max-
imum temperatures above 25 and 35 °C, with CLIMADAT-
GRid indicating the lowest biases compared to the obser-
vations. However, CHELSA indicated a higher number of
days with minimum temperatures above 20 °C compared to
CLIMADAT-GRid. The spatial variability of these results
is most noticeable in the Ionian and Aegean islands, with
CLIMADAT-GRIid effectively capturing hotspots. Overall,
the study highlights the differences between CLIMADAT-
GRid and CHELSA in capturing temperature variations
in different regions, with CHELSA often underestimating
or overestimating observations compared to CLIMADAT-
GRid.

For precipitation, the comparison between CLIMADAT-
GRid and CHELSA datasets for the annual and seasonal pre-
cipitation in Greece during the period 1981-2016 revealed
that CLIMADAT-GRid generally indicated higher precip-
itation values compared to CHELSA. Both datasets cap-
ture the west-to-east gradient of precipitation in Greece,
with the differences being more pronounced in CLIMADAT-
GRid, especially during the rainy season. When compared
to observations, CLIMADAT-GRid had negligible biases,
while CHELSA indicated relatively high biases ranging from
15 %—-24 % depending on the season. Concerning the num-
ber of wet days, both datasets overestimate compared to
observed spatial means, with CLIMADAT-GRid showing a
more pronounced orographic pattern than CHELSA. More-
over, both datasets show similar results in the number of days
with precipitation amounts equal to or higher than 10 mm,
with CLIMADAT-GRid indicating higher values for this spe-
cific index in western Greece and better agreement with the
observations.

In conclusion, CLIMADAT-GRid serves as a valuable
resource for climate research in Greece, providing high-
resolution daily gridded datasets for temperatures and pre-
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cipitation. Future work involves the construction of gridded
datasets for other variables, such as relative humidity and
wind speed, as well as extending the dataset to include more
recent years.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-4455-2025-supplement.
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