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Abstract. This data paper outlines the development and the structure of a new synthetic dataset within an
extended optical domain, encompassing inherent and apparent optical properties (IOPs and AOPs) alongside
associated optically active constituents (OACs). Bio-optical modeling benefited from knowledge and data accu-
mulated over the past 3 decades, enabling the imposition of rigorous quality standards and the definition of novel
bio-optical relationships that are significant contributions on their own. Employing the HydroLight scalar radia-
tive transfer equation solver, above-surface and submarine light fields between 350 and 800 nm at 1 nm steps
were generated, facilitating algorithm development and assessment for present and forthcoming hyperspectral
satellite missions. A smaller version of the dataset, delivered at 12 Sentinel-3 Ocean and Land Colour Instrument
(OLCI) bands (400 to 753 nm), was also produced, targeting multispectral sensor algorithm research. Derived
AOPs encompass an array of above- and below-surface reflectances, diffuse attenuation coefficients, average
cosines, and Q factor. The dataset is distributed in 5000 files, each encapsulating a specific IOP scenario, en-
suring sufficient data volume for each represented water type. AOPs are resolved across the complete range of
solar and viewing zenith and azimuthal angles as per the HydroLight default quadrants, amounting to 1300 an-
gular combinations. This comprehensive directional coverage caters to studies investigating signal directionality,
which previously lacked sufficient reference data. The dataset is publicly available for anonymous retrieval via
the FAIR repository Zenodo at https://doi.org/10.5281/zenodo.11637178 (Pitarch and Brando, 2024).

1 Introduction and review

1.1 Background

Marine optics studies the light that is measured by optical ra-
diometers both in the water or above the surface. The optical
signal is conveniently formulated in terms of apparent opti-
cal properties (AOPs), which are normalized quantities less
dependent on the intensity of the incident light than the ra-
diances or irradiances from which they originate. The most
notable AOP is the remote-sensing reflectance (Rrs), defined
as the water-leaving radiance (Lw) per unit of above-water

planar downwelling irradiance (Es), retrievable from satel-
lite observations after atmospheric correction. Other quanti-
ties like diffuse attenuation coefficients, average cosines, and
the Q factor find applications in marine optics too (Mobley,
1994).

AOPs are linked to the optically active water constituents
(OACs), which are commonly phytoplankton and other sus-
pended and dissolved substances. Phytoplankton is typically
quantified in terms of the chlorophyll concentration (C), and
non-living solids suspended in the water can be grouped in
the non-algal particles (NAP), quantified by their concentra-
tion (N ), though different splits of the particulate material
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are possible, such as particles of organic and inorganic ori-
gin. Dissolved substances, optically categorized as colored
dissolved organic matter (CDOM), are not commonly given
in terms of mass concentration units but in terms of the ab-
sorption coefficient spectrum, commonly at 440 nm (Y or
ag (440)).

Empirical algorithms can be developed to invert any of
the OACs from measured AOPs by finding statistical rela-
tionships between matched AOP and OAC data (IOCCG,
2006). This approach, although sometimes operationally ro-
bust and mechanistically meaningful, hampers progress in
understanding the optical influence of OACs, which is given
by the inherent optical properties (IOPs) – namely, the ab-
sorption and scattering coefficients. The IOPs can be math-
ematically linked to the OACs with the so-called bio-optical
relationships and to the AOPs through the radiative transfer
equation, hence making it a mathematical bridge between the
AOPs and the OACs (Mobley, 1994).

The OACs are the independent variables that drive the
generation of a synthetic dataset (SD). They can be a sin-
gle quantity like C (IOCCG, 2006; Loisel et al., 2023), typ-
ically chosen for open sea conditions, or a triplet formed by
C, N , and Y (Nechad et al., 2015) or another combination,
which is a usual choice for optically complex waters. More
variables give more flexibility, but bio-optical relationships
must be established for all of them to derive the IOPs. Statis-
tical relationships between C and IOPs have been studied for
decades (Bricaud et al., 1998; Loisel and Morel, 1998; Morel
and Maritorena, 2001). Much less is known about N and
Y , particularly in optically complex waters, where their bio-
optical properties are much more regionally variable. Never-
theless, in the last 2 decades, fractional information on Aus-
tralian waters (Blondeau-Patissier et al., 2009; Cherukuru et
al., 2016; Blondeau-Patissier et al., 2017), European waters
(Tilstone et al., 2012; Martinez-Vicente et al., 2010; Astoreca
et al., 2012), South African lakes (Matthews and Bernard,
2013), North American coastal waters (Aurin et al., 2010; Le
et al., 2013, 2015), and other localized areas have contributed
to a significant increase in the understanding of the bio-optics
in optically complex waters.

Assuming an unpolarized submarine light field, IOPs con-
sist of the absorption coefficient (a) dependent on the wave-
length (λ) and the volume scattering function (VSF; symbol
β), which can be broken down to the contribution of single
OACs. For the setup used in this SD, consisting of phyto-
plankton, NAP, and dissolved matter, the IOPs break down
as in Eq. (1), which includes the contribution by seawater
itself and assumes that dissolved material does not signifi-
cantly scatter light in the optical domain:{
a(λ)= aw(λ)+ aph(λ)+ aNAP(λ)+ ag(λ),
β (9,λ)= βw (9,λ)+βph (9,λ)+βNAP (9,λ) . (1)

For radiative transfer purposes, it is the total absorption co-
efficient, a, that is the relevant quantity. Instead, the VSF is
resolved as a function of the scattering angle (9). This cre-

ates a varying balance of the single contributors to scattering
as their respective variabilities with 9 are different. Specif-
ically, the strongest differences are between water and other
particulate materials.

Because of the technical difficulties in measuring angu-
larly resolved scattering, optical theory deals mostly with an-
gular integrals of the VSF that are much more commonly
measured with commercial instrumentation. If the VSF is in-
tegrated across the backward hemisphere, one obtains the
backscattering coefficient (bb), whereas if one integrates
across all directions, one obtains the scattering coefficient
(b). The total light attenuation along a direction is quanti-
fied with the beam attenuation coefficient (c = a+ b). c is
arguably the most measured IOP in all of optics’ history, and
its bio-optics has been studied for many decades as opposed
to b and especially bb, the measurements of which are much
scarcer and more recent. c keeps the same additive property
for each constituent. Hence, Eq. (2) applies: bb (λ)= bbw (λ)+ bb,ph (λ)+ bb,NAP (λ) ,
b(λ)= bw(λ)+ bph(λ)+ bNAP(λ),
c(λ)= cw(λ)+ cph(λ)+ cNAP(λ)+ ag(λ).

(2)

Given a certain constituent, whether phytoplankton or NAP,
its VSF is normalized by its scattering coefficient to obtain
the phase function (PF) as in Eq. (3):

β̃x =
βx

bx
, x = ph or NAP. (3)

This normalization removes the variation in scale due to par-
ticle concentration so that the PF is a specific characteristic of
the given particle type. For radiative transfer calculations, the
PF must be set a priori for each OAC. That can be a measured
phase function (He et al., 2017) but is more commonly from
a family of simulated functions after electromagnetic scat-
tering calculations (Morel et al., 2002; Fournier and Forand,
1994). For the latter case in particular, Mobley et al. (2002)
arranged an mathematical equation to select one PF from the
Fournier–Forand PF family given the backscattering ratio,
defined as in Eq. (4):

Bx =
bb,x

bx
, x = ph or NAP. (4)

Despite the fact that the bio-optical modeling for this SD
considers the separate phytoplanktonic and non-algal parts
individually, their scattering and attenuation coefficients can-
not be measured separately Instead, there is literature on bio-
optical relationships involving their “particle” aggregates as
in Eq. (5): bbp (λ)= bb,ph (λ)+ bb,NAP (λ) ,
bp(λ)= bph(λ)+ bNAP(λ),
cp(λ)= cph(λ)+ cNAP(λ).

(5)

Bulk absorption and attenuation are also commonly mea-
sured and, after removing the water baselines, become the
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“non-water” components as in Eq. (6):{
anw(λ)= aph(λ)+ aNAP(λ)+ ag(λ),
cnw(λ)= cph(λ)+ cNAP(λ)+ cg(λ). (6)

In order to develop updated bio-optical relationships and
remote-sensing algorithms, there is a need for large concomi-
tant OAC–IOP–AOP datasets across a range of data values,
seasons, and geographical locations, with fully characterized
uncertainties. However, despite broader accessibility of field-
and laboratory-based IOP instrumentation, current data avail-
ability and quality are below what was expected 25 years
ago, when instrumentation became commercially available.
Open-access OAC–IOP–AOP datasets are scarce, strongly
concentrated in some areas, and without characterized un-
certainties. Given this absence of data, it has been a common
choice to develop SDs for optical studies (IOCCG, 2006;
Nechad et al., 2015; Loisel et al., 2023). Their IOP–AOP re-
lationships can be considered error-free as they are derived
from the solution of the radiative transfer equation, yet this
exact relationship does not confer validity to the SD per se as
the IOPs resulting from bio-optical modeling could be unre-
alistic. SDs have a history of applications to the development
of algorithms of varying complexity, from semi-analytical al-
gorithms (Lee et al., 2002) to complex neural networks (Do-
erffer and Schiller, 2007). If different sun-view geometries
are considered for the output AOPs given an IOP setup, the
directional aspects of AOPs such as the diffuse attenuation
coefficient (Lee et al., 2013) or the reflectance (Morel and
Gentili, 1993, 1996; Morel et al., 2002; Park and Ruddick,
2005; Lee et al., 2011) can be studied, and analytical models
for these variations can be proposed.

New and forthcoming hyperspectral satellite ocean color
sensors, such as NASA’s PACE or ESA’s CHIME, are foster-
ing research on inherently hyperspectral algorithms that may
potentially retrieve more information from the oceans than
classical multispectral sensors. It is then timely to produce a
hyperspectral SD that covers relevant spectral ranges of the
aforementioned sensors for a globally representative range of
water types.

In the absence of hyperspectral ocean color data hyper-
spectral SDs can help to understand how much information is
embedded in some key bands of multispectral sensors. In this
respect, Talone et al. (2024) in use a preliminary version of
this SD to propose a hyperspectralRrs reconstruction scheme
from the ocean color component of the AERONET program
(AERONET-OC), in order to validate satellite-derived hyper-
spectral radiometric products, confirming the validity of the
reconstruction in large portions of the visible spectrum with
constrained uncertainties.

1.2 Existing synthetic datasets

Numerical models for computing light fields have been used
for decades (Mobley et al., 1993). Some authors developed

internal codes (D’Alimonte et al., 2010), while others re-
leased them to the public (Chami et al., 2015; Rozanov et
al., 2014). By far, the most popular code in the marine optics
community has been HydroLight (formerly by Sequoia Sci-
entific, Inc., now by Numerical Optics, Ltd.), which is avail-
able upon purchase. Its popularity arises from, on the one
hand, convenient data input management, which allows for
the simulation of every possible case study in ocean optics
with relative ease, and the data output, which includes the full
array of radiometric quantities and AOPs needed. Its preva-
lence in the field is such that all SDs reviewed in this paper, as
well as the one presented here, were generated with Hydro-
Light. It is therefore of importance that support and further
development of HydroLight is ensured for the future. This
article only considers SDs that were publicly released. Only
their main characteristics are mentioned, especially those rel-
evant to the new SD that we are presenting.

1.2.1 The IOCCG dataset

The first and the most cited of the SDs in this small review is
the IOCCG SD (IOCCG, 2006). The release of this SD came
at a time where the study of bio-optical relationships and
the development of algorithms was at its all-time high (e.g.,
Twardowski et al., 2001; Loisel and Morel, 1998; Morel and
Maritorena, 2001; Lee et al., 2002). It is a SD for testing and
development of in-water algorithms in open and oceanic wa-
ters.

The single independent variable that drives IOP variabil-
ity is the chlorophyll concentration (C) ranging from 0.03 to
30 mg m−3. Phytoplankton absorption bio-optical modeling
uses a database of aph spectra measured in the field. Given a
C value, a random aph value is chosen within the database,
scaled by a factor, so that the scaled aph(440) verifies there is
an average relationship of the latter to C given by Bricaud et
al. (1995), given by aph (440)= A (440)CE(440). Notably, the
chosen aph belongs to a subset of aph spectra associated with
C values within a narrow range of the given C. This choice
implies assuming that aph spectra that are related to very dif-
ferent concentrations differ in not only magnitude, but also
shape.

The rest of the bio-optical relationships is set after
(mostly) published relationships, with the addition of some
randomness that models the spread around the mean rela-
tionship that is attributed to natural causes and not captured
by these average equations. While that choice is a positive
feature of the SD, many parameterizations appear arbitrary.

The VSF is modeled after splitting the particulate matter
in phytoplankton and NAP. The former scatters light follow-
ing a Fournier–Forand phase function of fixed Bph = 0.01,
whereas the latter scatters light according to the average Pet-
zold phase function, BNAP = 0.0183. This is identified as a
major limitation as there are a number of concerns on the
Petzold phase function that are detailed below.
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Radiances are available from 400 to 800 nm every 10 nm
for the nadir view direction and for two sun zenith angles (0
and 30°).

1.2.2 The CoastColour dataset

The CoastColour SD (Nechad et al., 2015) was generated in
the framework of an ESA project aimed at the evaluation of
algorithms for coastal waters. The project included the com-
pilation of large amounts of in situ data, but the patchiness
in the geographical and data range distributions and the dis-
parity of measurement techniques, without quantified uncer-
tainties, made evident the need of a SD that focused on such
areas and associated data ranges.

The SD is driven by three OACs: phytoplankton, “min-
eral particles”, and CDOM. This, in principle, ignores the
contribution of non-algal particles of biological origin, but in
practice, their mineral particles compartment de facto stands
for “non-algal particles”. In total, 5000 triplets of their re-
spective concentrations (C, N , Y ) were randomly generated.
Although not documented in their paper, these three con-
stituents show some degree of linear crossed correlation, a
feature that is seen in in situ datasets when these variables
span across a large range. This choice also mechanistically
avoids the generation of many unrealistic Rrs spectra coming
from unrealistic (C, N , Y ) triplets.

Bio-optical modeling relationships are based on average
parameters and regression equations from literature with-
out randomization strategies to mimic natural variability. For
example, phytoplankton absorption is modeled by simply
applying the average A and E power-law coefficients by
Bricaud et al. (1995) at 440 nm for a given C, which makes
all 5000 modeled Rrs have the same average pigment fea-
tures. Furthermore, spectral slopes as well as the specific ab-
sorption and scattering coefficients at reference bands are set
to a constant value. Overall, these bio-optical choices create
an optical uniformity that results in fictitiously tight relation-
ships between various IOPs or between IOPs and AOPs, as
well as their ratios, potentially misleading users about the
performance of any algorithm that is evaluated.

Following the IOCCG approach, angular scattering is
modeled by assuming a Fournier–Forand phase function for
phytoplankton and the average Petzold phase function for
NAP, with fixed backscattering ratios for both.

The SD delivers the absorption coefficient divided in the
total non-water component and the phytoplankton absorp-
tion. To separate CDOM and NAP absorption, the users need
to generate CDOM spectra from the reported value at a given
wavelength and the CDOM spectral slope.

AOPs are given from 350 to 900 nm every 5 nm for the sun
zenith angles of 0, 40, and 60° and the single nadir viewing
angle for radiances.

1.2.3 The Loisel et al. (2023) dataset

The Loisel et al. (2023) SD is mainly characterized by its ef-
fort to compensate for the disproportionate in situ data den-
sity from coasts and shelves with respect to the open oceans,
which cover a much larger area. Such disproportion in other
datasets may have a biasing effect when developing optical
algorithms based on AOP vs. IOP relationships, especially
when the underlying goal is to represent a broad range of
IOPs encountered within the global ocean. In this regard, the
SD by Loisel et al. (2023) benefits from satellite-retrieved
IOPs over the global oceans organized in histograms that are
used as guides to “trim” the in situ data histograms so that the
data distributions in the SD closely match the global ones.

Bio-optical modeling follows the IOCCG approach with
modifications. IOP variability is driven by chlorophyll con-
centration only, and phytoplankton absorption is taken ran-
domly from a pool of real spectra and then scaled. The
CDOM and NAP spectral slopes are given random values
within wide uniform distributions. This choice is preferable
to fixed values, yet some level of constraint with available in
situ data pools appeared to be possible instead.

Angular scattering of phytoplankton is modeled with a
fixed Fournier–Forand phase function of Bph = 0.01. There
is, however, evidence (Whitmire et al., 2010) that Bph varies
across an order of magnitude. In HydroLight, Bph is used
to choose the phase function, which, for a given bph, im-
plicitly determines bb,ph and therefore the amplitude of the
signal. This detail is important when one seeks to replicate
relationships of bbp to other IOPs that are found in mea-
sured data. NAP scattering is modeled as a spectral power
law. Its angular scattering incorporates one innovation with
respect to the previous SDs by dropping the Petzold phase
function and instead using a Fournier–Forand function of
BNAP = 0.018, with a BNAP that is close to the average Pet-
zold value but with an angular variation that resembles mea-
sured VSFs much more closely (Sullivan and Twardowski,
2009).

Output AOPs are given in the range from 350–750 nm in
steps of 5 nm. Several versions of the SD are available for
various combinations of inelastic scattering being considered
or not. Notably, this SD provides the data output at several
depths. Simulations are made for the sun zenith angles of 0,
30, and 60° and the single nadir viewing angle for radiances.
All data are compiled in a single netCDF file for each type of
simulation.

1.3 Creating a new dataset

This brief review of existing SDs has identified limitations
that can be summarized in

1. Overly simplified bio-optical parameters. Spectral
slopes, specific absorption, or scattering at a reference
wavelength are often set as static values, mostly coming
from dataset averages, thereby masking the optical di-
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versity inherent within them. In this new SD, we address
this limitation by considering the variability in each op-
tical parameter across available datasets and exploring
their predictability as a function of other parameters.

2. An absence of constraints between absorption and scat-
tering of a given water OAC. It is evident that absorp-
tion and scattering of a given AOC must exhibit sta-
tistical correlations due to their association with the
same type of particles, but it is a rule that both prop-
erties are modeled independently, potentially resulting
in absorption-scattering pairs that do not accurately re-
flect the characteristics of naturally occurring particles.
In this SD, we address this issue by leveraging in situ
data to constrain the modeling of both phytoplankton
and NAP. This approach ensures that the corresponding
absorption-scattering pairs align with all experimental
evidence in statistical terms.

3. Extrapolation of bio-optical relationships. A published
relationship between two quantities is applied to differ-
ent ones. For example, the average relationship between
chlorophyll and particle scattering by Loisel and Morel
(1998) has been used to model phytoplankton scatter-
ing, which is only a fraction of the total scattering.

4. Limited validation of bio-optical models. Some statisti-
cal relationships are presented without evidence. In situ
datasets offer an opportunity to assess historical bio-
optical relationships while also fostering the develop-
ment of new ones, and such potential has not been fully
developed yet.

5. Limited spectral coverage of the blue UV. In view of
present and future satellite missions, it is desirable to
generate SDs that at least cover the range from 350 nm.

6. Limited directional AOP output. Published SDs focus
on the nadir viewing direction for a few sun zenith an-
gles. However, the light field is inherently directional,
and ignoring directionality introduces errors in remote-
sensing algorithms. In consonance with a renewed im-
petus of optical studies that address the problem of di-
rectionality, the aim is to generate a fully directional SD,
accounting for all possible sun and view geometries.

2 Spectral IOPs data mining and reduction

The generation of bio-optical relationships needs support by
in situ data, and a high quality is required to be confident
enough that the relationships that are found within the data
are neither biased nor spurious. It was nevertheless assumed
that data providers, based on their experience, followed best
practices as most of these data were collected in the frame-
work of optical studies funded by space agencies. Still, data
were selected based on the usage of appropriate instrumen-
tation and processing when such information was available.

Furthermore, selection criteria were rather aggressive and
based on shape and fitness indices, overall providing con-
fidence in the final retained data.

2.1 Phytoplankton absorption

Phytoplankton absorption, aph, has a complex spectral shape,
which determines the small-scale spectral features of related
AOPs. For this reason, it is important to select high-quality
aph data suitable as input for radiative transfer simulations.
For this SD, it was required that aph was sampled close to
the surface of the water column as bio-optical relationships
involving phytoplankton seem to vary depending on the ver-
tical layer (Bricaud et al., 1995; Loisel and Morel, 1998).
In terms of the spectral range, a condition was imposed that
aph has to be given in at least the range from 350 to 800 nm,
which was quite a limiting requirement for the lower limit as,
in most cases, aph is provided down to 400 or 380 nm.

Data were searched for in the database SeaBASS, provid-
ing many spectra, though a significant number of them with
anomalous spectral patterns. A PANGAEA search delivered
many excellent spectra instead, collected in seven Polarstern
cruises (Soppa et al., 2013a; Liu et al., 2019b, c; Bracher,
2019; Bracher et al., 2021k, f; Bracher and Taylor, 2021),
one Sonne cruise (Bracher et al., 2021l), and one Heincke
cruise (Bracher et al., 2021c). The PACE dataset (Casey et
al., 2020), in particular data from the principal investigator
(PI) Schaeffer and from the Biosope cruise, was also used. In
this latter case, the spectral range requirement was relaxed,
allowing for a maximum wavelength coverage of 750 nm, in
order to keep necessary low-end value of aph that represent
the clearest waters. At the high end of the range, the Castagna
et al. (2022) dataset on Belgian coastal and inland waters was
used. Their published aph was only available from 380 nm,
so Alexandre Castagna kindly reprocessed the aph spectra
down to 350 nm especially for this investigation, though he
expressed some methodological concerns about the data ac-
curacy in the UV. Finally, a new CNR small dataset from a
recent cruise was also included in the global dataset.

In terms of selection and processing, the residual NIR
value, estimated as the average aph value between 780 and
800 nm (between 740 and 750 nm for Biosope), was sub-
tracted. Given the high amount of data in total, it was pre-
ferred that rather aggressive filter selection criteria are ap-
plied. Spectra were smoothed with an 11 nm rectangular
moving window to eliminate random noise introduced by the
spectrophotometers. A noise parameter was calculated as the
standard deviation of the difference between the unfiltered
and the filtered aph, divided by a guess of the chlorophyll
concentration based on aph(665) after Bricaud et al. (1995).
Spectra were retained if this noise parameter was lower than
0.002, except for the Biosope dataset, where the threshold
was relaxed and raised to 0.004. Additionally, the absolute
value of the second derivative with respect to the wavelength,
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∣∣∣, was calculated as a measure of spectral noise and spec-

tra, with the 90th percentile of
∣∣∣a′′ph

∣∣∣ between 350 and 800 nm
that is lower than 0.0032 selected.

Further selection criteria were applied based on spectral
shape. We defined the following indices:

mUV =min
{
aph (λ ∈ [350nm, 450 nm])

}
,

MUV =max
{
aph (λ ∈ [350nm, 450 nm])

}
,

MG =max
{
aph (λ ∈ [550nm, 560 nm])

}
,

ICHL =max
{
aph (λ ∈ [650nm, 700 nm])

}
−min

{
aph (λ ∈ [650nm, 700 nm])

}
.

(7)

Therefore, the following selection thresholds were applied to
the indices in Eq. (7) which were chosen based on experi-
ence so that clearly anomalous spectra would be discarded
while trying not to penalize natural variability. These were
mUV/ICHL > 0.1, MUV/ICHL < 6, and MG/MCHL < 2. In
particular, the thresholds involving the UV discarded many
spectra that raised excessively in the UV, likely a conse-
quence of insufficient bleaching of the filtered sample, or
that tended to zero or even negative values instead. In the
green range, it was assumed that the spectrum would present
a valley or at least a value that is not much larger than the
chlorophyll peak.

Finally, some spectra exhibited secondary peaks very dis-
tant from 676 nm, which was likely a sign of spectral mis-
alignment. Therefore, it was required that such a peak had to
be between 670 and 681 nm for inclusion.

All the filtering procedures led to the selection of 3025
high-quality aph spectra, representing a very wide range of
values and water types.

2.2 CDOM absorption

CDOM absorption at 440 nm (ag (440) or Y ) is one of the
three independent variables of bio-optical modeling. Its value
is therefore given. Still, such a value needs to be propa-
gated to the whole spectrum by assuming a spectral varia-
tion, modeled here as the usual exponential shape. The value
of the spectral slope, Sg, and its potential relation to ag (440)
must be determined after bio-optical modeling from a pool
of in situ CDOM absorption spectra. CDOM is stored by
filtering seawater with 0.2 µm pore size filters, and absorp-
tion is measured through light transmission as the scattering
of the sample can be considered negligible. The most com-
mon measurement instrument is a bench spectrophotometer,
where water is poured in a cuvette of a given path length,
usually between 1 and 10 cm. In clear waters, because of
the short path length that makes resulting data very noisy,
a liquid waveguide capillary cell (LWCC) system like Ultra-
Path™ (World Precision Instruments, Inc.) is preferred as it
has a much larger path length, up to 2 m, therefore obtain-
ing proper optical densities for a given sample even in the
clearest waters. In this article, only open-access CDOM data
measured with UltraPath were selected in open ocean wa-

ters, whereas in complex coastal and inland waters, cuvette-
based measurements were accepted as well. Therefore, the
pooled CDOM data consisted of the PACE datasets Scha-
effer, Biosope, and Mouw; Castagna et al. (2022) measure-
ments; and a large PANGAEA dataset based on several Po-
larstern cruises (Bracher et al., 2021a, b, i, h) and some
smaller campaigns in coastal areas (Juhls et al., 2019; Höle-
mann et al., 2020; Bracher et al., 2021g; Pykäri, 2022). In
all cases, data had to be provided in the range from 350 to
750 nm and close to the surface.

CDOM spectra were fitted to a decreasing exponential
function with a given offset, âg,mod = ag (λ0)e−Sg(λ−λ0)

+

ag,off, using non-linear least squares, with a bi-square weight-
ing function to minimize the effect of outliers. Notably, fits
were made on a linear scale as making them on a logarith-
mic scale would artificially raise the weight of spectral re-
gions where CDOM is less relevant. An excellent fit between
model and data was required (r2 > 0.995) to exclude shapes
that did not verify the exponential assumption. Finally, the
offset was removed: ag,mod = âg,mod− ag,off. The result of
this procedure was 1168 (ag (λ0) , Sg) pairs.

2.3 NAP absorption

As with CDOM, NAP absorption spectra (aNAP) are not in-
troduced directly in the radiative transfer simulations but
modeled as exponential functions. Data selection again pri-
oritized quality as the data quantity was sufficient to de-
rive statistical relationships. A PANGAEA search delivered
data from various Polarstern cruises (Gonçalves-Araujo et
al., 2018; Liu et al., 2019a, d; Wiegmann et al., 2019; Bracher
et al., 2021j, e, d; Bracher and Liu, 2021; Soppa et al., 2013a,
b) and one Heincke cruise (Bracher et al., 2021d). From
the PACE database, aNAP from the cruise Biosope and the
PIs Mouw and Schaeffer were included. The Castagna et al.
(2022) measurements were also included, along with recent
CNR data.

An exponential shape was fitted, âNAP,mod =

aNAP (λ0)e−SNAP(λ−λ0)
+ aNAP,off on a linear scale, and

the condition r2
≥ 0.995 was imposed. The offset was re-

moved thereafter, meaning aNAP,mod = âNAP,mod− aNAP,off,
still recognizing that at least a part of aNAP,off might be
physically realistic and not due to residual scatter errors.
In such a case, it would be necessary to pursue bio-optical
relationships between aNAP,off and other variables. In the
absence of sufficient knowledge, we adopted the classical
approach of removing the offset like in previous SDs
(IOCCG, 2006; Nechad et al., 2015; Loisel et al., 2023). The
result of this procedure was 1349 (aNAP (λ0) , SNAP) pairs.

2.4 CSIRO’s dataset

Data collected in Australian waters by CSIRO researchers
(Blondeau-Patissier et al., 2009, 2017; Cherukuru et al.,
2016; Oubelkheir et al., 2023; Brando et al., 2012) con-
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Table 1. Summary of the bio-optical modeling.

aph (λ) aph (λ) from a quality-controlled database adjusted by a factor to satisfy
aph (670)= A (670)CE(670) , A (670)= 0.019093, E (670)= 0.95568

cph (λ)
β̃ph (9)

cph (λ)= cph (660)
(

660
λ

)n1

n1 =−0.4+ 1.6+1.2R
1+C0.5

R← U(0,1)
β̃ph (9)∼ FF (Bph)
Bph←N (µ,σ )
µ= 0.002+ (0.01− 0.002) · exp

[
−0.56log10 (C)

]
σ = 0.001

(
3− log10 (C)

)
+ 0.001

aNAP (λ) aNAP (λ)=Na∗NAP (440) · e−SNAP(λ−440)

log10a
∗
NAP (440)←N (µ,σ )

µ= a e

(
blog10

C
N
+c
)

a =−0.1886, b =−1.055, c =−1.27
σ = 0.2627
SNAP←

U (0.01,0.035) ∗ if aNAP (440)< 4 · 10−4 m−1

LnN (−0.308x− 5.101,−0.0558x+ 0.1164) if aNAP (440) ∈
[
4× 10−4,0.06

)
m−1

N (0.011,0.016) if aNAP (440)≥ 0.06m−1

cNAP (λ) , β̃NAP (9) cNAP (λ)= cNAP (440)
(
λ

440

)−γNAP

γNAP←N (µ,σ )
µ= 0.7, σ = 0.3
c (440)= aNAP (440)+ bNAP(440)
bNAP (440)= bb,NAP(440)

BNAP
BNAP← U (0.01,0.02)
bb,NAP (440)= T bbp (440)− bph (440)
T =N + 0.07C

b∗bp (440)= b∗bp (555)
(

440
555

)−η
η← Burr (α,c,k)
α = 0.854, c = 4.586, k = 1.108
log10b

∗
bp(555)←N (µ,σ )

µ=mlog10a
∗
NAP (440)+ n

m= 0.6834, n=−0.9483
σ = 0.2627
β̃NAP (9)∼ FF (BNAP)

ag (λ) ag (λ)= Ye−Sg(λ−440)

Sg←


U (0.01,0.025) if ag (440)< 0.02m−1

N (−0.00040161x+ 0.017508,−0.0003012x+ 0.001881) if ag (440) ∈ [0.02,5) m−1

U(0.0143,0.017) if ag (440)≥ 5m−1

tain several IOPs, such as aph (440), aNAP (440), ag (440),
bbp(555), and an estimate of its spectral slope (η). Also, the
chlorophyll concentration (C) and the total suspended matter
concentration (T ) are contained in the dataset.

3 Bio-optical modeling

The bio-optical modeling of the various terms of the absorp-
tion and scattering budgets as a function of the OACs is ex-
plained in high detail in the following sub-sections. Readers
interested in a comprehensive summary can find all sequen-
tial steps summarized in Table 1.
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Table 2. Parameters of the probabilistic modeling of the optically active constituents.

Burr distribution Scale
parameters coefficient

Variable α c k d

Chlorophyll concentration (C) 3 3 2 3
Non-algal particles concentration (N ) 3 4 1 4
CDOM absorption coefficient at 440 nm (Y ) 2 6 1.3 4

3.1 Optically active constituents

The intention is to generate a SD that covers the widest possi-
ble range of optical water types. The historic case 1 assump-
tion is inappropriate, and an IOP definition based on a single
index such as chlorophyll concentration (C) is therefore not
adopted. Instead, a generic three-variable model is used in
which variability is driven by C, N , and Y separately. How-
ever, C, N , and Y shall not be completely independent be-
cause, if that were the case, the bio-optical modeling would
generate unrealistic IOP combinations. Instead, C, N , and Y
may be expected to have a certain degree of general relation-
ship, tighter for the smaller values, that are found in the ocean
and more scattered for the higher values.

Here, the partial relationship between the three variables
on a logarithmic scale was modeled with the generation of
5000 triplets, following three Burr type XII random prob-
ability density functions, αx← Burr(α,c,k), related by a
cross correlation matrix among them with the off-diagonal
elements ρCN = 0.8, ρCY = 0.75, and ρYN = 0.6. Then, the
derived random numbers were transformed to the actual (C,
N , Y ), variables with X = 10x−d , where X is either C, N ,
or Y and x is their logarithmic counterparts. These param-
eters are summarized in Table 2. Because the Burr distribu-
tion does not have an upper bound, it generated very few out-
liers,C > 1000 mg m−3,N > 2000 g m−3, and Y > 100 m−1

(∼ 0.2 % or less), that were considered excessive. Such re-
alizations were re-generated with a log-normal distribution,
with the mean and standard deviation calculated from the rest
of the dataset.

In Fig. 1, the outcomes of OAC generation are depicted,
showcasing broad ranges. The data distributions are skewed,
mirroring histograms observed in broad-range datasets: fre-
quencies of data surge from the lower values, peak at levels
commonly encountered in global oceans, and gradually taper
off at higher extremes. Some degree of an interrelationship
is observable, which, in the case of C and Y , shows general
agreement with the empirical case 1 curve by Morel (2009).
As values ascend, the connection diminishes, which is con-
sistent with expectations for coastal waters.

3.2 Phytoplankton absorption and scattering

Phytoplankton absorption, aph, was modeled using data from
the pool described in Sect. 2.1. In order to generate phy-

toplankton diversity, it was important to ensure that, each
time, a real aph spectrum was used. A similar approach to
aph generation in the IOCCG SD was followed, but, first, it
was found appropriate to revisit the relationship between C
and aph. Matched data (Valente et al., 2022; Castagna et al.,
2022) at several wavelengths (Fig. 2) revealed a tight linear
relationship on a log–log scale, though with some scatter, a
part of which is attributable due to pigment variation. Fol-
lowing Bricaud et al. (1995), a power-law model (Eq. 8) was
regressed at each wavelength:

aph(λ)≈ A (λ)CE(λ). (8)

Table 3 presents the regression outcomes, including the
two model parameters (A, E), data number (n), root mean
square in percent units, and coefficient of determination
(r2). A comparison to results from previous publications
(Churilova et al., 2023; Bricaud et al., 1995; Zibordi and
Berthon, 2024) is made in Fig. 3, showing some discrepan-
cies with respect to the first three references but a high agree-
ment with recent results by Zibordi and Berthon (2024).

Our results show that the 670 nm band has the highest ca-
pability for predicting C given aph. It is important to empha-
size that our modeling does not generate aph for a specific C;
rather, it associates each aph with its characteristic C from
the inversion of Eq. (8). This enables us to sort the 3025 aph
spectra based on C, dividing them into 55 pools of specific C
sub-ranges, each containing 55 spectra. Consequently, for a
given C value from the (C, N , Y ) triplet, a random aph spec-
trum from the corresponding pool is selected. Subsequently,
the spectrum is adjusted by a factor so that aph(670) equals
the predicted aph(670) from C after Eq. (8). This methodol-
ogy guarantees consistency between aph and empirical evi-
dence for a given C while ensuring a broad diversity in aph
spectral shapes.

Phytoplankton scattering (bph) modeling is unfortunately
based on much less background knowledge, mostly due to
the lack of instruments that can measure in situ bph or bb,ph.
Electromagnetic modeling of light scattering by particles
suspended in water can be applied, although the contribu-
tions, albeit notable, are limited (Lain et al., 2023; Poulin et
al., 2018). Upon this lack of information, it is often referred
to historic measurements by Loisel and Morel (1998) of non-
water beam attenuation coefficient at 660 nm cnw (660) with
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Figure 1. The upper half of each panel shows histograms of the water constituents chlorophyll concentration (C), non-algal particles con-
centration (N ), and CDOM absorption at 440 nm (Y ). The lower half of each panel shows the relationships among them. For the relationship
between C and Y , the average regression curve by Morel (2009) in oceanic waters is added for comparison.

Table 3. Output variables and statistical metrics of the regression between matched chlorophyll concentration and phytoplankton absorption
of the merged datasets of Valente et al. (2022) and Castagna et al. (2022) at several bands.

λ [nm] 411 443 489 510 555 670

A 0.043934 0.051348 0.03299 0.02132 0.0077002 0.019093
E 0.80289 0.77654 0.76732 0.8214 0.92914 0.95568
n 3509 3526 3525 3507 3231 2875
RMSE [%] 58.951 59.249 57.358 52.626 56.781 47.256
r2 0.85688 0.84553 0.84846 0.88033 0.89645 0.92553

a transmissometer, matched to chlorophyll concentration in
case 1 waters. For surface waters, they found cnw (660)=
0.407C0.795. Furthermore, the authors reasonably assumed
that the dissolved contribution was secondary, so cp (660)≈
cnw (660). Unfortunately, this relationship was directly ex-
ported to phytoplankton scattering modeling used in the
CoastColour SD (Nechad et al., 2015), replacing cp (660)
with cph (660) and ignoring that even in open sea waters, the
non-algal scattering is considerable.

Here, the same generic power-law dependence as in the
IOCCG SD (IOCCG, 2006) is used:

cph (660)= p3C
h. (9)

According to the IOCCG report, h= 0.57, although applica-
tion of Eq. (9) to the downloadable SD reveals h= 0.63. In
the CoastColour SD, h= 0.795. Here, h= 0.7 is used as a
balance of both.
p3 was set to a random value between 0.06 and 0.6 in

the IOCCG SD. Interestingly, that leaves the contribution of
phytoplankton mostly below what was found by Loisel and
Morel (1998) for the total attenuation, which appears phys-
ically meaningful. The type of randomness of p3 was not
disclosed, but an inspection to the IOCCG SD revealed that
it was uniform. This parameter is modeled here like in the

IOCCG SD given the absence of empirical evidence that jus-
tifies otherwise.

The spectral variation is set by assigning a power law to
cph. A power-law function provides a better fit for cph than
for bph as the latter is affected by anomalous dispersion ef-
fects that result in some negative peaks with the shape of
an aph spectrum, which is more evident at high phytoplank-
ton concentrations (Bernard et al., 2009). Interestingly, if the
power-law function is imposed on cph, the anomalous disper-
sion feature, bph, automatically appears after bph = cph−aph.
Therefore, in the current SD, neither bph nor bb,ph follow
power-law functions.

Regarding the actual exponent of the spectral power law,
the same relationship as in the IOCCG SD is used (Eq. 10):

cph (λ)= cph (660)
(

660
λ

)n1

,

n1 =−0.4+
1.6+ 1.2R

1+C0.5 , (10)

with R being a random number that follows a uniform distri-
bution in the interval [0,1].

Given the randomness of aph and cph, it is possible that
some realizations generate cases where aph ≥ cph, which is
unphysical. A given aph represents an assemblage of several
phytoplankton communities, each with their specific scatter-
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Figure 2. Matched C and aph data (Valente et al., 2022; Castagna et al., 2022) at six wavelengths. A linear fit in log–log form is displayed
on top.

Figure 3. Regression statistics of the fit between C and aph data of Fig. 2. Left and center plots are Bricaud’s A and E parameters, whereas
the right plot is the coefficient of determination (r2).

ing characteristics, that could be somewhat predicted given
aph. This information could be extracted from the fine spec-
tral features of aph. There are some simplified modeling re-
sults using electromagnetic theory for certain phytoplank-
ton species (Lain et al., 2023), although a general model-
ing theory of phytoplankton scattering linked to absorption
is still non-existent. Thus, in this SD, as in the preceding
ones (IOCCG, 2006; Nechad et al., 2015; Loisel and Morel,
1998), aph and cph are modeled independently yet related to
the same chlorophyll concentration. To ensure a minimum
degree of physical consistency, the procedure for determin-
ing aph and cph was repeated until ensuring aph < cph at all
wavelengths.

The remaining parameter to be set to run HydroLight is the
phytoplankton backscattering ratio, Bph =

bb,ph
bph

. This para-
meter has not been given much attention in previous research
as it was considered relatively unimportant, so it is common
to find it set to a constant value on the order of 0.006 or

0.01. It is indeed secondary in semi-analytical algorithms that
model Rrs from bb

a+bb
or variations, but in bio-optical model-

ing, it can be very relevant if bph is fixed first because bb,ph is
then implicitly determined through the choice of the respec-
tive phase function given Bph (Mobley et al., 2002), thereby
strongly influencing the intensity of Rrs. Fixing bb,ph first as
a function of C would be another modeling option, for in-
stance, by adapting relationships between bbp and C found
in the ocean (Brewin et al., 2012) to bb,ph.

In an effort to provide a more accurate determination of
Bph than in previous approaches, we propose a formula that
is consistent with the general trend that phytoplankton size
increases with C. In its turn, the size increase lowers Bph
because larger particles scatter relatively more in the forward
hemisphere with respect to smaller ones, hence loweringBph.
Twardowski et al. (2001; Fig. 11) presented pioneering re-
sults for Bp in their case. Here, to mimic such an effect, it is
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Figure 4. Phytoplankton backscattering ratio, Bph, vs. phytoplank-
ton specific backscattering coefficient at 560 nm, b∗b,ph(560). Black
dots represent new SD. Red dots represent data in Whitmire et
al. (2010).

set to

Bph ∼N (µ,σ ) ,

µ= 0.002+ (0.01− 0.002)exp[−0.56log10 (C)],
σ = 0.001

(
3− log10 (C)

)
+ 0.001. (11)

To avoid unlikely low Bph values after Eq. (11), any realiza-
tion delivering Bph < 0.001 was set to 0.001 as a lower limit.

Independent validation of the modeling of phytoplankton
scattering in Eq. (11) is possible, with unique data of chloro-
phyll concentration matched to scattering and backscatter-
ing for an array of phytoplankton cultures by Whitmire et
al. (2010). Calculating the chlorophyll-specific phytoplank-
ton backscattering coefficient, i.e., b∗b,ph =

bb,ph
C

at 560 nm,
and matching it to Bph produces dot clouds in Fig. 4. Our
new SD follows the average trend displayed by the Whitmire
et al. (2010) in situ data fairly well. Figure 4 also shows some
degree of positive covariation between b∗b,ph and Bph. Indeed,
b∗b,ph decreases with increasing C as well because larger par-
ticles have a smaller surface area per unit volume, which
diminishes specific scattering. A mechanistic model for bbp
that agrees with this principle was presented in Brewin et
al. (2012). All in all, this leads to the visible correlation be-
tween Bph and b∗b,ph, with the scatter caused by species dif-
ferences.

3.3 NAP absorption and scattering

Bio-optical modeling of NAP absorption, aNAP, is complex,
as NAP is formed by particles of very diverse nature of bio-
genic and non-biogenic origin. Modeling approaches (Bengil
et al., 2016) are valid as long as the derived relationships hold
for the specific area of application. Here, it is aimed at a mod-

Figure 5. Non-algal particles specific absorption coefficient at
440 nm a∗NAP(440), plotted as a function of the chlorophyll-to-NAP
concentration ratio, C/N . Results for CSIRO data are given in red
dots, a best fit in blue, and generated data for the SD (black dots).

eling approach of general validity, consistent with the in situ
datasets that were collected from worldwide waters.

Modeling begins with linking aNAP to the NAP concen-
tration, N , through the specific absorption (to NAP concen-
tration), a∗NAP. Taking 440 nm as the reference band, other
approaches have set it to a constant value (Nechad et al.,
2015), although a variability between 0.001 and 0.1 m2 g−1

was reported by Blondeau-Patissier et al. (2009). When look-
ing for a predictive formula, one may think that the actual
value depends on the type of particles. Following this con-
sideration, the ratio C/N is proposed here as a first-order
predictor of a∗NAP(440). This dependence assumes that NAP
absorbs more efficiently in the relatively higher presence of
chlorophyll, which suggests that NAP may be of biogenic
origin to a larger extent than if the chlorophyll concentra-
tion was relatively lower, where NAP may be more of a min-
eral origin instead. CSIRO data confirmed some degree of
covariation (Fig. 5). The fit to the CSIRO data was made
on a logarithmic scale, so y = log10

[
a∗NAP (440)

]
was re-

gressed as a function of x = log10
(
C
N

)
, proposing a func-

tional form of the type y = a exp(bx)+ c. A robust regres-
sion (bi-square weighting) gave a =−0.1886, b =−1.0551,
and c =−1.2700. The standard deviation of the fit was σ =
0.2627. To generate the synthetic data, given C/N , the re-
gression curve was applied and then a random value, gener-
ated with a normal distribution N (0,σ ) was added, in order
to replicate the spread found in real data. C

N
in our SD cov-

ers a wider range than CSIRO’s data, so, to avoid producing
resulting synthetic a∗NAP (440) values significantly out of the
range of the measured data, the lower and upper bounds of
−3 and −0.5 were set for log10

[
a∗NAP (440)

]
. The results are

shown in Fig. 5.
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Figure 6. Non-algal particles absorption spectral slope (SNAP),
plotted as a function of the NAP absorption coefficient at 440 nm
(aNAP(440)). Red dots: in situ data. Black dots: synthetic data.

Posteriorly, it is necessary to project a∗NAP(440) onto all
bands. It can be done by assuming an exponential spectral
shape and then guessing the spectral slope (SNAP). Historic
data showed a distribution of SNAP with an average value of
0.0123 nm−1 (Babin et al., 2003), though with a significant
spread. Using a single average SNAP for all simulations re-
moves optical diversity and likely generates a∗NAP spectra that
are unlikely for some regions. It is a better choice to generate
a prediction function for SNAP given the available informa-
tion. After the exponential fits for each of the compiled aNAP
spectra, detailed in Sect. 2.3, the 1349 (aNAP (λ0) , SNAP)
pairs were plotted together in Fig. 6.

The data distribution in Fig. 6 shows a SNAP spread that
largely varies depending on the aNAP range. For a very
small aNAP, SNAP shows no particular pattern between two
bounds, so a uniform distribution was found adequate. For
the middle range, the SNAP distribution somewhat narrows
as aNAP(440) increases, and data show some positive skew-
ness, which is well represented by a log-normal curve. For
the higher aNAP(440) range, a Gaussian distribution is appar-
ent, in agreement with Babin et al. (2003). Therefore, given
x = log10[aNAP(440)], SNAP was modeled as a piece-wise
random distribution:

SNAP←


U (0.01,0.035) if aNAP (440)< 4× 10−4 m−1,

LnN (−0.308x− 5.101,−0.0558x+ 0.1164)
if aNAP (440) ∈

[
4× 10−4,0.06

)
m−1,

N (0.011,0.016) if aNAP (440)≥ 0.06m−1,

(12)

where U(a,b), LnN (µ,σ ), and N (µ,σ ) are the uniform,
log-normal, and normal distributions, respectively. The ran-
dom parameterization for SNAP in Eq. (12) is rather convo-
luted. However, it ensures fitness to a high quality and large
in situ dataset, and it does not generate outliers, as can be

Figure 7. Specific particle backscattering coefficient at 555 nm
b∗bp(555), plotted as a function of the non-algal particles specific ab-
sorption coefficient at 440 nm a∗NAP(440). Results for CSIRO data
in red dots, the best linear fit in blue, and generated data for the SD
(black dots).

seen when overlapping the synthetic data to the field data in
Fig. 6.

NAP scattering needs bio-optical modeling too. Ap-
proaches that model NAP absorption and scattering inde-
pendently may generate unrealistic IOPs for that particular
material. It is beneficial to look for relationships that link
NAP scattering to NAP absorption as it is expected to oc-
cur in natural waters. The CSIRO dataset contains b∗bp(555)
data, concurrent with a∗NAP (440). It must be clarified that,
while a∗NAP (440) is specific of N , b∗bp has been defined by
normalizing bbp to the total suspended matter concentration
(T ), which is not to be confused with non-algal particles
concentration N , as the latter is only a fraction of the for-
mer, which also contains the phytoplanktonic part. Brando
and Dekker (2003) proposed a somewhat crude relationship,
T =N + 0.07C, where both T and N are expressed in the
usual units of g m−3 and C is in mg m−3. For interested read-
ers, such a relationship was derived from measurements in a
shallow, turbid, and eutrophic lake in the Netherlands (Gons
et al., 1992).

The relationship between a∗NAP (440) and b∗bp(555) data is
very marked (Fig. 7, red dots). A linear trend was a very
good fit between the log-transformed variables, with a slope
m= 0.6834 and an intercept n=−0.9483. The data spread
followed a normal distribution (σ = 0.2627) after removing
the trend line. To reproduce this spread in the SD, a random
number following a random normal distribution N (0,σ ) was
added to the fit-predicted b∗bp(555) prior to the conversion to
linear scale again. Results of the data cloud generated are
seen in Fig. 7 (black dots).

Completing the bio-optical modeling for NAP requires the
projection of b∗bp from 555 to 440 nm. CSIRO data provide
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Figure 8. Histogram of the particle backscattering coefficient spec-
tral slope (η). A Burr type XII fitted distribution is plotted on top.

an estimate of the particle backscattering spectral slope (η)
for every data point. For synthetic data generation, a mod-
eling function for η must be derived. No relationship be-
tween η and any other parameter within the CSIRO dataset
was found. Its histogram was fitted well, with a random Burr
distribution and the parameters α = 0.854, c = 4.586, and
k = 1.108, shown in Fig. 8. Therefore, η was randomly gen-
erated using this distribution.

With η determined, b∗bp was shifted to 440 nm: b∗bp(440)=

b∗bp (555)
(

440
555

)−η
. It must be remarked that this bbp slope is

only used in this step and that it is not used to model bbp
with a power law in the SD. In the bio-optical modeling of
NAP and of phytoplankton, a spectral shape is assumed for
attenuation and not for backscattering.

The NAP backscattering at 440 nm was derived in Eq. (13)
by the subtraction of the phytoplanktonic part, which is
known from Sect. 3.2:

bb,NAP (440)= b∗bp (440) · T − bb,ph (440) . (13)

A backscattering ratio for NAP (BNAP) must be assumed to
obtain bNAP (440) and cNAP (440). There are no direct mea-
surements ofBNAP given the current impossibility of measur-
ing NAP scattering parameters in the field. Nevertheless, this
poses a minor problem for radiative transfer calculations, es-
pecially in remote-sensing applications. As long as bb,NAP is
fixed, BNAP is relatively unimportant as one can deduct from
simplified analytical models for reflectance or diffuse attenu-
ation. If bNAP was fixed instead, BNAP would be a fundamen-
tal parameter as it would implicitly set bb,NAP in a much less
accurate fashion. BNAP was fixed as a random number here,
following a uniform distribution between 0.01 and 0.02 as in
Eq. (15):

BNAP← U (0.01,0.02) . (14)

Then, the scattering coefficient of NAP was determined with
Eq. (15):

bNAP (440)=
bb,NAP (440)
BNAP

. (15)

Then, the NAP attenuation at 440 nm was expressed in
Eq. (16) as a function of values that are all known:

cNAP (440)= a∗NAP (440) ·N + bNAP (440) . (16)

The remaining step for NAP modeling is extending NAP at-
tenuation to all wavelengths. As for phytoplankton, a power
law is assumed, and it is preferred to impose it on atten-
uation than scattering, though recognizing that, given the
much featureless shapes of NAP absorption, a fit to scatter-
ing may be realistic too. A cNAP spectral slope, γNAP, must
be assumed. This parameter is largely unknown as it cannot
be measured in the field. Here, an educated guess is made,
generating γNAP randomly, with γNAP←N (0.7,0.3). There-
fore, Eq. (17) completes the NAP modeling:

cNAP (λ)= cNAP (440)
(

440
λ

)γNAP

. (17)

3.4 CDOM absorption

The 1168 (ag (λ0) , Sg) pairs, calculated in Sect. 2.2 are plot-
ted together in Fig. 9. The middle section shows a data
spread whose mean and standard deviation decrease with
ag(440). Variation in the lower and upper range ends could
not be linked to any parameter, so Sg was modeled as uni-
form distributions fairly within the data range. Overall, Sg
was then modeled as a piece-wise random distribution given
x = log10[ag(440)].

Sg←


U (0.01,0.025) if ag (440)< 0.02m−1

N (−0.00040161x+ 0.017508,−0.0003012x
+0.001881) if ag (440) ∈ [0.02,5) m−1

U(0.0143,0.017) if ag (440)≥ 5m−1

(18)

Figure 9 compares the field (ag (λ0), Sg) pairs to those
generated with the combination of random distributions in
Eq. (18). It can be seen that the SD includes an order of mag-
nitude more of ag(440) at the lower end than the in situ data
in Fig. 9. This is due to the very stringent condition of ex-
ponential variation set in Sect. 2.2 that mostly affected the
low ag spectra. In terms of predicting Sg, extrapolation may
raise some concerns, but on the one hand, Sg values are well
bounded in this part of the range, and on the other hand, one
must also note that ag(440) becomes very low, so potential
errors in Sg are not relevant for the absorption budget. In
terms of the data range, it is shown in Sect. 4.1 that the low-
est ag(440) in the SD is on the order of ag(440) in the most
oligotrophic oceans.
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Figure 9. CDOM spectral slope (Sg) plotted as a function of the
CDOM absorption coefficient at 440 nm (ag(440)). Red dots repre-
sent in situ data. Black dots represent synthetic data.

3.5 Pure water absorption and scattering

Pure liquid water absorbs electromagnetic radiation, which
can be mechanistically explained as the energy consump-
tion by the two O–H molecular bonds needed to vibrate at
given resonant frequencies, creating an absorption spectrum,
aw, with characteristic maxima and minima at specific wave-
lengths. In practice, aw must be measured at a wide enough
spectral range, and its values must be tabulated for usage in
bio-optical modeling. However, literature only offers partial
spectral-range aw measurements, owing to the specific re-
quirements and challenges inherent in such measurements.
A broad-range aw must then be a merged product from in-
dividual sources. A crucial step here involves compensating
for the different temperatures at which aw was measured in
different laboratories and, in the spectral ranges where differ-
ent measurements are available, selecting those of the highest
quality that are retained. Fortunately, this process had already
been undertaken within the framework of an ESA project
(Roettgers et al., 2016), where the water optical properties
processor (WOPP) produced a dataset of pure water absorp-
tion, normalized to 20 °C. Notably, this dataset encompasses
measurements by Mason et al. (2016) from UV to green
wavelengths, revealing lower water absorption in the UV and
blue regions than previously documented thanks to meticu-
lous sample preparation and precise measurements. In other
spectral regions, data from various authors are merged, some-
times overlapping spectrally and sometimes not. Overall, the
WOPP pure water absorption data can be considered the state
of the art. For comprehensive insights, readers are directed to
the project report.

When marine salts are dissolved in water, the ions dissoci-
ate and create a stable solution whose absorption can be re-
lated to that of pure water proportionally to the salinity (9S)

dependent on the wavelength. Temperature affects absorp-
tion in a similar manner through 9T, thus leading to

aw (T ,S)= aw (T0,0)+9T (T − T0)+9SS. (19)

Both 9T and 9S can be empirically determined. To the
WOPP pure water merged absorption, a shift to an average
ocean salinity of S = 35 PSU was made with Eq. (19) using
the 9S coefficient provided by Roettgers et al. (2014) for ar-
tificial seawater.

Scattering by pure water finds explanation with the
Smoluchowski–Einstein fluctuation theory of light scatter-
ing (Zhang and Hu, 2021), according to which a certain
volume of water can be seen as consisting of smaller sub-
volumes that contain, on average, the same number of water
molecules. However, the instantaneous numbers vary among
them due to random thermal motions at the molecular level,
resulting in microscopic density fluctuations that induce scat-
tering. In the presence of solutes such as salts, this effect is
magnified as fluctuations in the spatial arrangement of dis-
solved ions lead to variations in the overall refractive index.
For common ocean salinities, scattering is augmented by ap-
proximately 30 % with respect to fresh water. Recent work
by Zhang and Hu (2021) provide a comprehensive review of
this theory, offering the most precise estimates to date (likely
within±2 %–4 %). Nevertheless, rigorous experimental vali-
dation remains imperative. The formulas provided as supple-
mentary material in their paper were employed to compute
seawater scattering, assuming a temperature of T = 20 °C
and a salinity of S = 35 PSU, as for the absorption data.

4 Results of the synthetic dataset

4.1 Modeled IOPs

The bio-optical modeling detailed in the Sect. 3 generated the
IOPs that determine the resulting light field and related AOPs
given the boundary conditions. These bio-optical relation-
ships have been individually assessed, and consistency with
literature and with new data is ensured in that section. How-
ever, the overall result of the bio-optical modeling can be
tested by checking the crossed relationship between differ-
ent commonly measured IOPs at specific wavelengths, com-
pared to in situ data, in order to verify that the relationships
that are found in the world’s waters are represented.

In situ datasets were searched that contained IOP data
at the reference wavelength of 440 nm. The following pub-
licly available data were used: the PACE data, including the
Biosope cruise data from the clearest ultraoligotrophic wa-
ters of the south Pacific gyre, with some stations in coastal
upwelling water off Peru and Mouw’s data in Lake Supe-
rior (Casey et al., 2020); the NOMAD dataset (Werdell and
Bailey, 2005); the Castagna et al. (2022) data in Belgian
coastal and inland waters; the measurements in coastal Eu-
ropean waters (Massicotte et al., 2023); the measurements
in Svalbard (Petit et al., 2022) and a recently published
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Figure 10. IOP cross-relationship comparison between the SD and various in situ datasets.

Figure 11. IOP cross-relationship comparison between this and other SDs.

dataset in European seas (Zibordi and Berthon, 2024). In ad-
dition, two datasets not yet publicly available were queried
from the authors, who kindly sent them for use in this ar-
ticle: data from the Persian Gulf (Moradi and Arabi, 2023)
and from Australian waters (Blondeau-Patissier et al., 2009,
2017; Cherukuru et al., 2016; Oubelkheir et al., 2023; Brando
et al., 2012). The Castagna et al. (2022) data lacked bbp, but
since such a dataset was considered unique and relevant, bbp
was inferred through semi-analytic closure from absorption
and Rrs (Lee et al., 2011).

Figure 10 presents relationships among various IOPs at the
reference wavelength of 440 nm. The upper panels study the
three non-water absorption components with respect to par-
ticle backscattering, and the two lower panels compare the
different absorption compartments. Because the two given
IOPs are expected to linearly covary to the first degree, the
vertical axis plots the ratio between the two so that the linear
covariation is eliminated, restricting the dynamic range and
highlighting the differences among datasets. The plots show
that available measurements in different geographic areas
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Figure 12. Rrs spectra (normalized geometry) of the SD divided into 12 classes using the k-means classifying algorithm, with their total
number (N ) indicated above. Relative to each class, the ternary plots of the absorption budget are plotted. The line and dot colors indicate
particle backscattering at 440 nm according to the attached color bar. Note the varying vertical scale, across the classes, necessary to visualize
the spectral variability across the dynamic ranges.

and seasons cover different regions of the data space and that
the SD globally encompasses all of them, notably extend-
ing the data volume in oligotrophic oceanic waters, which
are geographically large but grossly under-sampled. Over-
all, this figure provides rather robust evidence that the SD
has global coverage, from the clearest oceans to all kinds of

coastal waters, and that the bio-optical relationships adopted
in this study are in line with empirical evidence.

This SD is also compared to the three publicly available
SDs in Fig. 11: the IOCCG SD (IOCCG, 2006), the Coast-
Colour SD (Nechad et al., 2015), and the Loisel et al. (2023)
SD. Some overlap is noticeable for all crossed IOPs, with the
Loisel et al. (2023) SD being shifted more towards clearer
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waters than IOCCG and CoastColour. Also, this SD shows
trends that appear more consistent with our SD. The Coast-
Colour SD covers the upper part of the range, but due to its
optical modeling, many dots are clustered near each other in-
stead of covering a wider range of values. The new SD covers
a wider range of waters than the other SDs combined, which
is a consequence of not only the broad ranges for the OACs,
but also the adequate amount of statistical randomness that
was given to the bio-optical relationships.

4.2 Radiative transfer calculations

Radiative transfer simulations were made with Hydro-
Light 5.1.2 (Sequoia Scientific, Inc.). Normalized sky radi-
ances were computed using the sky model HCNRAD (Har-
rison and Coombes Normalized RADiances) (Harrison and
Coombes, 1988). Diffuse and direct sky irradiances were
computed using the RADTRANX (RADTRAN eXtended
for 300–1000 nm) model (Gregg and Carder, 1990). The
ozone concentration was estimated from a climatology de-
rived with binned monthly average TOMS v8 ozone con-
centrations (data from 2000–2004 were averaged to give 5-
year climatological averages for 5° latitude and 10° longi-
tude quadrants) for the 90th day of the year, coordinates
40° N and 0° E, resulting in 354.9 DU. The US Navy aerosol
model was fed with the values: air mass type 5, relative hu-
midity of 80.0 %, precipitable water of 2.5 cm, and horizon-
tal visibility of 40.0 km. Sea surface roughness was mod-
eled with a HydroLight-embedded Monte Carlo module fed
with an assumed wind speed of 5.0 m s−1. The water in-
dex of refraction was calculated as a function of wavelength
(Roettgers et al., 2016) for the given seawater, T = 20.0 °C
and S = 35.0 PSU. The sea was considered vertically homo-
geneous and infinitely deep. IOP input was configured with
a generic case 2 water scenario. Input IOP parameters and
phase functions were set as detailed in Table 1. Inelastic scat-
tering effects were not considered.

The source code of HydroLight was modified so that the
“printout” output files included reflectances, both above and
below the surface, for the whole set of viewing zenith and az-
imuth angles defined by HydroLight default quadrants, that
is, a view angle varying from 0 to 80° in steps of 10° and then
a last value of 87.5° (10 values in total) and the azimuth vary-
ing from 0 to 180° in steps of 15° (13 values in total). Sim-
ulations were made for the whole range of sun zenith angles
defined by the quadrants, that is from 0 to 80° in steps of 10°
and then a last value of 87.5° (10 values in total). Therefore,
for every IOP setup, directional AOPs are given at 1300 an-
gles, and non-directional AOPs are given at the 10 sun zenith
angles.

4.3 Reflectance overview and classification

Synthetic Rrs was scrutinized to ensure that a diverse range
of optical water types had been produced. The data under-

Figure 13. Angular variability in Rrs for the oligotrophic water
spectrum shown in Fig. 14. The polar plots are divided into se-
lected sun zenith angles (rows) and wavelengths (columns). The
polar angle represents the azimuth (zero “looking at the sun”),
while the radius represents the radiance propagation angle (same
as the viewing zenith angle). The color represents the Rrs magni-
tude. The color scale among wavelengths for visualization purposes.
For θs = 60° specifically, some indicated slices are presented in 1D
plots in Fig. 14. Section 1: sun’s meridian plane. Section 2: per-
pendicular plane to the sun’s meridian plane. Section 3: constant
θ = 60°.

went partitioning into 12 clusters via a k-means algorithm
(Fig. 12). Ternary plots were employed to visualize the ab-
sorption budget for all Rrs values within each class, with
curves and dots colored based on particle backscattering.
This classification is only used here as a method to show the
extensive optical diversity within the SD and does not consti-
tute a part of it. Descriptively, the water types are as follows:

– Classes 2 and 6 relate to clear oceanic waters.

– Class 1 corresponds to highly absorbing waters, with
little NAP content.
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Figure 14. Angular variability in HydroLight-simulated Rrs for the oligotrophic water case (spectrum shown in the corner). The plots
represent the three sections for θs = 60° in Fig. 13 in consecutive columns. Here, the sections are plotted in Cartesian coordinates in the
upper plots and polar coordinates in the lower ones.

– Classes 3, 5, 7, and 8 represent coastal waters, exhibit-
ing moderate concentrations of all constituents, in vary-
ing proportions.

– Classes 4 and 9 display highly productive waters,
marked by high CDOM and NAP levels, respectively.

– Classes 10, 11, and 12 portray highly and very highly
turbid waters. Notably, despite categorizing this water
type into three classes, their cumulative occurrence is
discrete. This outcome stems from the classification,
which accentuates disparities inRrs values that are high.

4.4 Angular variation

Besides the wide IOP ranges, a unique characteristic of this
SD is the resolution of the AOPs for the whole range of sun-
view geometries. This matter is relevant for algorithm devel-
opment and validation; for instance, in either in situ or satel-
lite Rrs, the sun is very rarely at the zenith. The view angle is
off nadir in above-water platforms and in satellite data, and
the azimuth is normally such that it avoids maximum sun
glint. This Rrs bidirectionality is very often ignored. Algo-
rithms that use band ratios, such as the oceanic OCx, partially
suppress the bidirectional effect because its spectral pattern
is quite flat, but algorithms that rely on the absolute magni-
tude of Rrs will inevitably propagate bidirectional effects as
errors. This section showcases the anisotropy of Rrs for two
distinct water types. The first represents very oligotrophic
oceanic waters, while the second relates to more productive
waters. The azimuthal angle definition follows that of Hy-

droLight (i.e., solar photons travel in the φ = 180° direction;
that is, the sun is located at φ = 0).

A first example of the Rrs anisotropy for a clear water
scenario is displayed in Fig. 13 for three wavelengths and
five sun zenith angles. The related Fig. 14 focuses on one
sun zenith angle (θs = 60°), the sun’s meridian plane (φ =
0,180°) and its perpendicular vertical plane (φ =−90,90°),
and a constant zenith view section (θ = 60°), all cases for
a reference sun zenith angle (θs = 60°). Increasing the sun
zenith lowers the azimuthal symmetry and strengthens the
radiance anisotropy. A zone of higher values forms along the
solar plane for φ = 0. It is known that, for very clear wa-
ters, the single-scattering approximation can, at least qualita-
tively, explain the results. The phase functions of both water
and particles have a local maximum at a scattering angle of
9 = 180°, leading to an overall maximum at θ = 60°, that
is, the backscattering direction. The secondary maximum at
θ =−60° (or θ = 60° for φ = 180°) can be explained by the
balance between a progressive increase in the particle phase
function and a decrease in the water phase function as 9 de-
creases.

Figures 15 and 16 show an analog example for a produc-
tive water scenario. Notable is the azimuthal maximum shift
to the φ = 180° direction. This is explained by the domi-
nance of the particle phase function and the appearance of
multiple scattering, which starts to become important even
for small concentrations. This implies that the radiance at
an angle of θ =−70° (or θ = 70° for φ = 180°) is less in-
fluenced by the shape of the phase function at the partic-
ular direction given by the single scattering direction. In-
stead, multiple scattering makes the resulting radiances in-
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Figure 15. As in Fig. 13 but for the angular variability in Rrs for
the productive water case.

fluenced by the phase function in variable ranges reaching
9 < 120°, where it increases sharply. Indeed, multiple scat-
tering does not generate isotropy in Rrs, as might be be-
lieved by some, but instead changes the angular pattern of
the anisotropy. This behavior, although already documented
(Loisel and Morel, 2001), was somehow not assimilated by
most within the community.

4.5 Reflectance validation with in situ data

The number of relationships imposed to the IOPs, as well
as the cross-checks among them, gives confidence in the re-
alism of the SD generated. Yet to be further confident that
the synthetic AOPs represent natural waters, it is desirable to
show some comparison to in situ data that involve the AOPs
themselves.

We evaluated in Fig. 17 the Rrs (normalized geometry)
of our entire SD through the spectral quality index (QWIP)
by Dierssen et al. (2022). Such an index aims at provid-
ing a quality estimate for a hyperspectral Rrs. QWIP de-
veloped a large dataset of in situ Rrs, so this comparison
can be seen as a comparison to real Rrs data. In Dierssen et

al. (2022), it is mentioned that values within the 0.2 margins
have a high similarity to real spectra measured in the field,
which, for the case of the SD, is verified in 4993 out of the
5000 spectra. Still, these seven spectra are close to the limit
and may simply contain some bio-optical characteristics that
were not present in the QWIP calibration dataset. No spectra
are clearly off from the main trend line, thus giving confi-
dence in the quality of our SD in terms of this index and of
the data from which it was derived.

The next assessment helps to verify the covariability be-
tween Rrs and the absorption coefficient. A one-dimensional
predictor χ is derived from Rrs (Lee et al., 2002) as in
Eq. (20):

χ = log10

Rrs (443)+Rrs (490)

Rrs (560)+ 5R
2
rs(665)
Rrs(490)

 . (20)

This χ index is matched to the non-water absorption spec-
trum at 560 nm anw(560). There are several open-access,
freely available in situ datasets that contain both measured
variables matched together, such as Valente et al. (2022);
Zibordi and Berthon (2024); and PACE Schaeffer, Mouw,
and Biosope datasets (Casey et al., 2020). Figure 18 clearly
shows the excellent average overlap between our SD and
measured data besides differences due to the difficulties of
measuring very low absorption. Different bio-optical charac-
teristics produce slight deviations from the mean trend, indi-
cating natural variability.

A typical benchmark is shown next, where a given chloro-
phyll concentration in the SD is related to the generated Rrs
through the maximum band ratio, MBROC4, an index that is
used to estimate chlorophyll in the ocean, defined in Eq. (21):

MBROC4 =
max[Rrs (443) ,Rrs (490) ,Rrs (510)]

Rrs (560)
. (21)

This index has been also used to study the consistency of a
given SD in all kinds of water (Nechad et al., 2015). Here,
matched MBROC4 and chlorophyll concentration from two
large in situ datasets is plotted (Valente et al., 2022; Zibordi
and Berthon, 2024), showing a good general overlap, though
with some degree of differences among them that are ex-
plainable due to a different bio-optical characteristics of the
seas sampled (Szeto et al., 2011). Data from our SD generally
agree with the trend, which essentially shows high linearity
in the middle section while saturating at the extremes due to
loss of sensitivity. The data cloud of the SD also displays a
spread that embraces the in situ datasets used for comparison,
suggesting that the optical variability in the in situ datasets is
well represented.

The last comparison to real Rrs data involves the relation-
ship to the total suspended matter concentration (T ), a rel-
evant parameter for coastal and inland water studies, which
usually show higher turbidities. Interestingly, this involves
the absolute value of Rrs and not ratios. In particular, it is
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Figure 16. As in Fig. 14 but for the angular variability in Rrs for the productive water case.

Figure 17. (a) Scatterplot between the apparent optical wavelength
(Vandermeulen et al., 2020) and the normalized difference index
(NDI) index: NDI(492665)= Rrs(665)−Rrs(492)

Rrs(665)+Rrs(492) . Magenta lines rep-
resent the QWIP score (Dierssen et al., 2022) and error bars.
(b) Histogram of the QWIP score, defined as the difference with
respect to the QWIP curve.

known that T covaries with Rrs at long wavelengths and that
665 nm is commonly employed due to the lesser disturbance
by CDOM. Our SD does not use T for its generation, so the
estimation T =N +0.07C is used, after Brando and Dekker
(2003). Figure 20 shows that the new SD follows the same
trend as that from in situ datasets (Valente et al., 2022; Zi-
bordi and Berthon, 2024), but also that it displays a level of
spread that includes the in situ datasets, once more demon-

Figure 18. A scatterplot between the Rrs-generated χ index and
the matched non-water absorption spectrum at 560 nm anw(560).
Black dots are from the SD and colored dots are from field data
from various references (see text).

strating the success in reproducing a range of natural vari-
ability.

5 Data file description

Output data are organized in netCDF files, each containing a
given IOP setup and the entire directional AOP output. Ta-
ble 4 details the file structure. Variables have different sizes,
according to their dependence on the following variables that
can take the following number of different values: sun zenith
angle, θs, ns = 10; zenithal direction of radiance propaga-
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Figure 19. Chlorophyll concentration as a function of the maxi-
mum band ratio for OC4-type algorithms for the SD and for data in
Valente et al. (2022) and Zibordi and Berthon (2024).

Figure 20. Total suspended matter concentration as a function of
Rrs(665) for the SD and for data in Valente et al. (2022) and Zibordi
and Berthon (2024).

tion, θ , nθ = 10; azimuthal direction of radiance propaga-
tion, φ, nφ = 13; and wavelength of radiation in vacuum,
λ, nλ = 451. All in-water AOPs refer to zero depth, just be-
low the surface. Diffuse attenuation coefficients instead re-
quired the choice of two close depths to approximate the
depth derivatives, which were 0 m and 1 cm as set by default
in HydroLight.

6 Data availability

Data described in this paper are freely accessible from Zen-
odo at https://doi.org/10.5281/zenodo.11637178 (Pitarch and
Brando, 2024). The repository hosts two versions of the
dataset: one hyperspectral, from 350 to 900 nm, in steps of

1 nm, and a smaller, multispectral one for the 12 Sentinel-3
Ocean and Land Colour Instrument (OLCI) bands between
400 and 753 nm.

7 Conclusions

The presented dataset fills several gaps as identified in our
literature review of publicly available in situ and synthetic
datasets. The large quantity and high quality of the in situ
data allowed for the application of stringent quality control
procedures to develop novel bio-optical relationships involv-
ing parameters that model absorption and scattering of the
optically active constituents. The spread in the data clouds
used for bio-optical modeling was reproduced as probability
density functions, resulting in a realistic depiction of the nat-
ural variability of the in situ data. Validation exercises were
provided for the remote-sensing reflectance, showing consis-
tency with the benchmark in situ datasets for every example.
Our dataset is therefore representative of natural waters of
varying trophic levels and optical complexity. It can be as-
sumed that the underlying bio-optical relationships will be-
come a reference for future optical studies.

Apparent optical properties are resolved at all geomet-
ric angles available by the radiative transfer simulations,
making this one the first directional dataset ever published.
This detail makes it suitable for directional studies of re-
flectance, diffuse attenuation, and any other derived quan-
tity. The dataset, in its hyperspectral and multi-angular for-
mat, is relevant for bio-optical and directional studies applied
to current satellite-borne sensors such as OLCI and to next-
generation missions such as PACE and CHIME.

The synthetic dataset is distributed in netCDF format as a
single file for each IOP case, enabling efficient space man-
agement as well as straightforward handling with software
packages. Despite the very fine spectral step of 1 nm between
350 and 800 nm and the fact that each file contains the IOP
setup as well as all directional AOPs for all 1300 angular con-
figurations (hemispheric variables such as Kd are included
for all 10 sun zenith angles), each of the 5000 files is only
approximately 5700 kB in size.
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Table 4. File description.

Parameter Description Unit Size

C Chlorophyll concentration mg m−3 1× 1
N Non-algal particles concentration g m−3 1× 1
Y Light absorption coefficient of colored dissolved organic matter at 440 nm m−1 1× 1
theta _s Sun zenith angle (zero at zenith) ° ns× 1
theta Zenithal direction of radiance propagation (zero towards zenith) ° nθ × 1
phi Azimuthal direction of radiance propagation (zero towards the sun) ° nφ × 1
lambda Wavelength of radiation in vacuum nm nλ× 1
Esdir_Es_ratio Above-surface direct to total downwelling irradiance ratio – ns× nλ
aw Spectral light absorption coefficient by seawater at 20 °C and S = 35 PSU m−1 nλ× 1
aph Spectral light absorption coefficient by phytoplankton m−1 nλ× 1
ay Spectral light absorption coefficient by colored dissolved organic matter m−1 nλ× 1
aNAP Spectral light absorption coefficient by non-algal particles m−1 nλ× 1
bw Spectral light scattering coefficient by seawater at 20 °C and S = 35 PSU m−1 nλ× 1
bph Spectral light scattering coefficient by phytoplankton m−1 nλ× 1
bNAP Spectral light scattering coefficient by non-algal particles m−1 nλ× 1
bbw Spectral light backscattering coefficient by seawater at 20 °C and S = 35 PSU m−1 nλ× 1
bbph Spectral light backscattering coefficient by phytoplankton m−1 nλ× 1
bbNAP Spectral light backscattering coefficient by non-algal particles m−1 nλ× 1

Rrs Spectral angle-dependent above-water remote-sensing reflectance
(
Lw
Es

)
sr−1 ns× nθ × nφ × nλ

rrs Spectral angle-dependent underwater radiance reflectance
(
Lu
Ed

)
sr−1 ns× nθ × nφ × nλ

Q Spectral angle-dependent underwater Q factor (Eu
Lu

) sr ns× nθ × nφ × nλ
Kou Spectral diffuse attenuation coefficient of scalar upwelling irradiance m−1 ns× nλ
Kod Spectral diffuse attenuation coefficient of scalar downwelling irradiance m−1 ns× nλ
Ko Spectral diffuse attenuation coefficient of scalar total (spherical) irradiance m−1 ns× nλ
Ku Spectral diffuse attenuation coefficient of planar upwelling irradiance m−1 ns× nλ
Kd Spectral diffuse attenuation coefficient of planar downwelling irradiance m−1 ns× nλ
Knet Spectral diffuse attenuation coefficient of net planar irradiance m−1 ns× nλ
KLu Spectral diffuse attenuation coefficient of upwelling radiance towards the zenith m−1 ns× nλ
mu_u Spectral average cosine of the upwelling radiance – ns× nλ
mu_d Spectral average cosine of the downwelling radiance – ns× nλ
mu_tot Spectral average cosine of the total radiance – ns× nλ
R Spectral underwater irradiance reflectance (Eu

Ed
) – ns× nλ
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