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Abstract. The ESA CCI Soil Moisture multi-satellite climate data record is a widely used dataset for large-scale
hydrological and climatological applications and studies. However, data gaps in the record can affect derived
statistics such as long-term trends and – if not taken into account – can potentially lead to inaccurate conclu-
sions. Here, we present a novel gap-free dataset, covering the period from January 1991 to December 2023. Our
dataset distinguishes itself from other gap-filled products, as it is purely based on the available soil moisture
(SM) measurements (independent of ancillary variables to make predictions), and further due to the inclusion of
uncertainty estimates for all interpolated data points.

Our gap-filling framework is based on a well-established univariate discrete cosine transform with the penal-
ized least-squares (DCT-PLS) algorithm. This ensures that the dataset remains fully independent of other soil
moisture and biogeophysical datasets and eliminates the risk of introducing non-soil-moisture features from other
variables. We apply DCT-PLS on a spatial moving window basis to predict missing data points based on temporal
and regional neighbourhood information. The challenge of providing gap-free estimates during extended periods
of frozen soils is addressed by applying a linear interpolation for these periods, which approximates the retention
of frozen water in the soil. To quantify the inherent uncertainties in our predictions, we developed an uncertainty
estimation model that considers the input observations quality and the performance of the gap-filling algorithm
under different surface conditions. We evaluate our algorithm through performance metrics with independent in
situ reference measurements and by its ability to restore GLDAS Noah reanalysis data in artificially introduced
satellite-like gaps. We find that the gap-filled data perform comparably to the original observations in terms of
correlation and unbiased root mean squared difference (ubRMSD) with in situ data (global median R = 0.72,
ubRMSD= 0.05 m3 m−3). However, in some complex environments with sparse observation coverage, perfor-
mance is lower.

The new ESA CCI SM v09.1 GAPFILLED dataset is publicly available at https://doi.org/10.48436/hcm6n-
t4m35 (Preimesberger et al., 2024) and will see yearly updates due to its inclusion in the operational ESA CCI
SM production.
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1 Introduction

Satellite soil moisture data are relevant for a wide range of
applications, including water resource management, agricul-
ture, disaster risk assessment and response, weather predic-
tion, and climate monitoring (Dorigo et al., 2021a; Srivas-
tava, 2017). Soil moisture (SM) is classified as an essential
climate variable (ECV) (GCOS, 2022), and dedicated satel-
lite missions such as ESA’s SMOS (Kerr et al., 2010) or
NASA’s SMAP (Entekhabi et al., 2010) have been launched
to measure it. However, the data coverage of individual satel-
lites is limited by their lifespan and revisit frequency, requir-
ing multiple days for a complete set of global measurements.
Long-term analyses of climate variability and change require
at least 30 years of data (GCOS, 2022), which surpasses the
lifespan of any single Earth observation satellite. Measure-
ments from multiple platforms are therefore harmonized and
merged to create consistent multi-decadal records, such as
the ESA CCI soil moisture (ESA CCI SM) products (Dorigo
et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021).
Despite the high number of currently operational satellites
integrated in ESA CCI SM, it is still impossible to provide
global gap-free daily soil moisture because of several physi-
cal limitations to measure soil moisture, as discussed below.
Leaving these data gaps unfilled can perturb derived statistics
such as anomalies or long-term trends and, in the worst case,
lead to incorrect conclusions (Bessenbacher et al., 2023; Liu
et al., 2020c). Yet, observational datasets like ESA CCI SM
are still valued in addition to gap-free reanalysis products
because they can capture features that models might miss
(van der Schalie et al., 2022). This creates a challenge as
gap-free satellite data are often required, especially in var-
ious machine learning frameworks, such as those used for
spatial downscaling (Kovačević et al., 2020; Nadeem et al.,
2023), or for applications that require water balance closure
(Dorigo et al., 2021a). In an attempt to fill these gaps, users
unfamiliar with the underlying geophysical processes may
resort to oversimplified approaches, such as filling missing
values (“NaNs”) with zeros, which risks introducing further
bias into the analysis. Understanding the underlying causes
of data gaps in ESA CCI SM is therefore a prerequisite for
filling them.

As mentioned above, there are several reasons for data
gaps in ESA CCI SM. Apart from missing satellite over-
passes in earlier periods, data gaps originate from the under-
lying retrieval models to convert raw satellite measurements
(radiances, backscatter) into soil moisture. These models be-
come unreliable under certain surface conditions, leading to
flagged/masked data points and, therefore, gaps in the final
record. The most common cause are frozen soils (van der
Vliet et al., 2020). Retrieval models are designed to estimate
the amount of liquid water in the soil (Owe et al., 2008; Wag-
ner et al., 1999; Entekhabi et al., 2010). The dielectric proper-
ties of water change drastically between liquid and frozen ag-
gregate state (Naeimi et al., 2012). Consequently, measured

soil moisture normally drops when part of the satellite foot-
print is frozen (Amankwah et al., 2021; Dorigo et al., 2021b).
The second-most-common cause for unreliable retrievals is
dense vegetation, which can mask contributions from the
soil. This issue is more pronounced at shorter wavelengths
(K- and X-band), while L- and C-band measurements are less
affected (van der Schalie et al., 2021; Jackson et al., 1982).
Other reasons for failed retrievals include signal perturbation
due to radio frequency interference (RFI), mainly for C- and
L-band and overly densely populated areas (Uranga et al.,
2022; Oliva et al., 2012), as well as barren, dry soils, where
the received signal is noise-like and sometimes dominated by
responses from sub-surface sediments (Wagner et al., 2024;
Petropoulos et al., 2015).

Data gaps can be broadly classified into two – not strictly
separable – categories (based on Bessenbacher et al., 2022;
Rubin, 1976; Dorigo et al., 2017): (i) (quasi-)random and
(ii) systematic retrieval gaps. Random gaps appear noise-like
over time and affect only short periods. They are not directly
related to processes at the surface. Members of this category
include cases where there is no satellite overpass for a given
day, when the retrieval model does not converge for various
reasons or when it converges at soil moisture values outside
the physically possible boundaries, and RFI. Systematic gaps
are related to the surface state and, therefore, usually cover
longer periods. In the most extreme cases, systematic gaps
can be permanent, meaning no data are available for a loca-
tion (e.g. rainforests in ESA CCI SM). Systematic gaps are
more likely to obscure spatial and/or temporal features in the
data than random gaps. Gap-filling methods aim to restore
these features as accurately as possible without introducing
artificial (non-soil-moisture) patterns and without overfitting
the data.

There are generally two approaches to fill gaps in satel-
lite soil moisture records: (i) univariate, stand-alone inter-
polation methods and (ii) multivariate, covariate-enhanced
interpolation methods. The former uses only the available
(neighbourhood) information to predict missing values with
(geo)statistical methods, while the latter relies on support-
ing data to improve predictions. For soil moisture, most re-
cent gap-filling studies focus on the applicability of differ-
ent multivariate machine learning (ML) methods in small
to medium-sized study regions. Random forest (RF) has
been the dominant algorithm (Nadeem et al., 2023; Liu
et al., 2020c; Nadeem et al., 2023; Wang et al., 2023; Mao
et al., 2019; Bessenbacher et al., 2022) and was found to
outperform other covariate supported approaches such as
neural networks (NNs), XGBoost, support vector machines
(SVMs), or multivariate linear regression (Liu et al., 2023;
Sun and Xu, 2021; Tong et al., 2021; Almendra-Martín
et al., 2021). To predict missing soil moisture, these studies
use physically related variables such as air or land surface
temperature, precipitation, soil type, topography, land cover,
and vegetation properties. While multivariate approaches can
leverage additional datasets to improve predictions, univari-
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ate methods such as ordinary kriging (OK) or multiple linear
regression (MLR) do not. However, they remain viable alter-
natives. In homogeneous areas, they have often been found to
perform similarly to multivariate methods (Tong et al., 2021;
Sun and Xu, 2021; Yang et al., 2018).

In this study, we adopt a univariate approach to fill gaps
in ESA CCI SM. The choice of using a univariate method is
motivated by the fact that it allows for being totally indepen-
dent of any ancillary data and therefore mitigating the risk of
introducing spurious features. The greatest possible indepen-
dence of ancillary or model data is also one of the top priori-
ties expressed by the climate user community (Dorigo et al.,
2017). Gap filling of ESA CCI SM is based on discrete co-
sine transform with penalized least squares (DCT-PLS) (Gar-
cia, 2010) because (i) even without the use of any ancillary
data, it often performs similarly to multivariate methods such
as XGBoost, LSTM, ANN, or CNN (Shangguan et al., 2023;
Yang et al., 2018). (ii) It is considered a well-proven method
that has been successfully applied to gap fill soil moisture
(Wang et al., 2012; Yang et al., 2018) and other geophysical
variables such as land surface temperature (LST) (Liu et al.,
2020a; Pham et al., 2019), ocean surface current (Kongkul-
siri et al., 2018), chlorophyll-a concentration (Wang et al.,
2022), and lake surface water temperature (Fan et al., 2022)
data.

The multitude of gap-filling studies highlights the impor-
tance of this topic and the community’s need for a gap-free
ESA CCI SM data record. With the ESA CCI SM v09.1
GAPFILLED product, we aim to meet this community re-
quirement by providing an independent, gap-filled, global,
long-term, and satellite-based record. Consistently with other
ESA CCI SM products, we also provide uncertainty esti-
mates to quantify potential errors associated with the interpo-
lation process – a feature which to our knowledge has not yet
been included in any gap-filled satellite soil moisture record.
This will allow users to account for the expected accuracy of
our predictions and, for example, weigh them accordingly in
their analyses.

2 Data

2.1 ESA CCI SM

ESA CCI SM is a multi-satellite climate data record of daily
global surface soil moisture. The latest release, v09.1, cov-
ers the period from 1 November 1978 to 31 December 2023
(Dorigo et al., 2017; Gruber et al., 2019; Preimesberger
et al., 2021; Dorigo et al., 2024a). The COMBINED prod-
uct merges soil moisture derived from radiometer measure-
ments in the L-, C-, X-, and K-bands by the Land Parameter
Retrieval Model (LPRM) (Owe et al., 2008; van der Schalie
et al., 2015, 2016; van der Schalie et al., 2021) and from C-
band scatterometer observations using the TU Wien change
detection method (H SAF, 2022; Wagner et al., 1999, 2013;
Hahn et al., 2021). A timeline of all used satellite sensors

and frequency bands is shown in Fig. 1a. Soil moisture val-
ues are provided in volumetric units (m3 m−3). ESA CCI SM
data include quality flags, which are applied to mask unreli-
able data points and inform users about the underlying cause.
Currently, there are quality flags for (i) frozen soils, (ii) dense
vegetation, (iii) unsuccessful retrievals in all sensors, (iv) low
signal-to-noise ratio in all sensors, and (v) barren ground
(van der Vliet et al., 2020; Parinussa et al., 2011). While
flags (i)–(iv) coincide with missing data points in ESA CCI
SM, flag (v) only tags the observations but does not remove
them. ESA CCI SM data come with associated estimates
of measurement uncertainties (Gruber et al., 2017, 2019).
These uncertainties are propagated from sensor-level esti-
mates through triple collocation analysis on a day-of-year
basis (Stradiotti et al., 2025). ESA CCI SM represents mois-
ture in the upper soil layer (∼ 0–5 cm) with a regular spatial
sampling of 0.25° (∼ 25 km). The algorithm is regularly up-
dated with new data from available sensors to incorporate the
latest scientific advances and extend the product’s temporal
coverage. This study aims to fill data gaps in the period from
1 January 1991 onward, chosen to make the data suitable for
long-term (multi-decadal) studies (GCOS, 2022). From 1978
to 1991, no overlapping sensors were available (Fig. 1a), re-
sulting in very low data coverage (Fig. 1b) and high mea-
surement uncertainties (Dorigo et al., 2017). As this would
lead to even higher uncertainties after gap filling, this period
is excluded.

2.2 Model and reanalysis data

We use daily mean top-layer (0–7 cm) soil temperature from
ERA5 at a 0.25° resolution (Hersbach et al., 2020). In our
study, these data are used to classify which gaps occurred
during periods of frozen soils and which did not and to subse-
quently choose one of two different interpolation approaches.
ERA5 is a global reanalysis product that integrates in situ and
satellite observations into an open-loop run of the HTESSEL
land surface model, producing hourly, gap-free estimates of
various surface variables since 1940.

We further use ERA5-Land top-layer (0–7 cm) soil mois-
ture from 1991 to 2023 for a comparison of zonal anomalies
and long-term trends after gap filling (Muñoz Sabater et al.,
2021). ERA5-Land has been produced by replaying the land
component of ERA5 and provides surface variables with an
increased spatial resolution (0.1°).

Additionally, as reference data to assess the impact of gap
distribution and size on interpolation quality, we use daily av-
erages of gap-free soil moisture simulations for the 0–10 cm
layer (given in kg m−2) from the GLDAS Noah v2.1 model
(Rodell et al., 2004). The original data are available at a 3 h
temporal sampling and 0.25° spatial resolution for the pe-
riod after 2000. Notably, GLDAS Noah surface soil moisture
serves as the scaling reference for the ESA CCI SM COM-
BINED product (Dorigo et al., 2017). Hence, there is no bias
between the two.

https://doi.org/10.5194/essd-17-4305-2025 Earth Syst. Sci. Data, 17, 4305–4329, 2025



4308 W. Preimesberger et al.: ESA CCI Soil Moisture GAPFILLED

Figure 1. Availability of satellites and sensor frequency bands over time as of ESA CCI SM v09.1 (a) and data coverage over time of the
merged COMBINED product averaged by latitude (b).

2.3 Vegetation optical depth

We utilize vegetation optical depth (VOD) from the VODCA
v2 CXKu dataset (Zotta et al., 2024; Moesinger et al., 2020)
to predict the uncertainty in gap-filled values under differ-
ent vegetation conditions. VOD is a satellite-derived, unitless
measure of vegetation density closely related to vegetation
water content and biomass. VODCA v2 CXKu harmonizes
and merges VOD retrievals from nine passive sensors oper-
ating in the 6.8–19.4 GHz frequency range, creating a con-
sistent long-term record from 1987 to 2023.

2.4 In situ measurements

The International Soil Moisture Network (ISMN) is a data
hosting facility that collaborates with partners worldwide
to collect in situ measurements of soil moisture and other
geophysical variables into a harmonized, quality-controlled
database (Dorigo et al., 2021b, 2013, 2011). ISMN in situ
measurements serves as the primary source of ground refer-
ence data for global satellite soil moisture validation activ-
ities. An overview is provided by Dorigo et al. (2021b). In
our study, we use ISMN data to evaluate the quality of our
gap-filled soil moisture product. We use a subset of the full
ISMN database for the 0–10 cm depth range, downloaded in
March 2024. Specifically, we use a subset of the available
data labelled as fiducial reference measurements (FRMs),
which are point measurements found to be representative of
soil moisture at the radiometer scale and therefore recom-
mended for satellite validation (Himmelbauer et al., 2023;
Goryl et al., 2023). This subset consists of 1314 high-quality
time series (Fig. A3 in the Appendix). Soil moisture mea-

surements are provided with associated quality flags for each
time stamp and station metadata, such as land cover infor-
mation extracted from ESA’s CCI land cover v1.6.1 dataset.
ISMN measurements are unevenly distributed both tempo-
rally (with different stations covering different periods) and
geographically. This uneven distribution means that our val-
idation results are spatially and temporally biased towards
regions and periods with dense station coverage, primarily
North America and Europe after the year 2000 (Dorigo et al.,
2021b).

3 Preprocessing

The following steps are applied to the original ESA CCI
SM v09.1 COMBINED data before the interpolation process
takes place.

3.1 Additional retrievals under dense vegetation
conditions

Soil moisture values in areas covered by tropical rainforests
are associated with high uncertainties (Ulaby et al., 2014).
Consequently, these areas are masked out in ESA CCI SM,
leading to permanent gaps (Dorigo et al., 2017). Such large
gaps are particularly difficult to fill for any algorithm, regard-
less of whether covariates are used or not (Tong et al., 2021).
However, soil moisture is still retrieved, e.g. from deforested
patches, and therefore available for some frequency bands in
which electromagnetic waves can – at least to some degree –
penetrate through vegetation. Specifically, C-band data from
ASCAT-A, B, and C, as well as L-band data from SMOS
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and SMAP – despite the overall lower data quality compared
to other global regions – can serve as useful support points
for the interpolation algorithm when available. Hence, these
lower-quality observations, despite being masked out in the
original ESA CCI v9.1 COMBINED data, are included now
in the gap filling to serve as anchor points (compare Fig. 2e).
This is preferred over large-scale interpolation without any
support data (Guo et al., 2022).

Similar to the rest of the ESA CCI SM data, the ad-
ditional retrievals available for densely vegetated areas are
error-characterized via triple collocation analysis, harmo-
nized through scaling to a common reference, and merged
when more than one measurement is available for a grid point
on a given day (Liu et al., 2012; Dorigo et al., 2017; Gruber
et al., 2017, 2019).

3.2 Gap analysis

The observation density of ESA CCI SM depends on the
number of available satellites and surface conditions that af-
fect retrieval success rates. Figure 1b shows the temporal
coverage of the product. At the start of the data record, data
from only few sensors were available, leading to relatively
low data coverage. After 2002, coverage increases signif-
icantly, culminating in up-to-daily (i.e. gap-free) measure-
ments for certain latitude bands in recent years. However,
some regions still show large data gaps (Fig. 2e), especially
around the Equator and above 50° N, due to the dense vege-
tation cover and seasonally frozen soils, respectively.

Figure 2a–d evaluate data gaps in ESA CCI SM in terms
of their 3-dimensional (Euclidean) distance from the near-
est available valid data point. Gaps are analysed separately
depending on whether the corresponding reanalysis soil tem-
perature is above or below 0 °C. While in most cases a valid
observation is found within a range of a few pixels or days,
in some exceptional cases, the combined gap size in days and
pixels can reach up to 350.

The so derived distances are required for the initial guess
for gap filling (nearest neighbour), which is then further ad-
justed by the DCT-PLS. They are also essential for deriving
uncertainty estimates.

4 Gap-filling methods

To fill data gaps between observations in ESA CCI SM and
assign uncertainty estimates to the predicted values, we fol-
low the processing chain in Fig. 3. We start from daily ESA
CCI SM data with additional observations in the tropics
(Sect. 3.1). We then compute the gap statistics (Sect. 3.2)
required for all subsequent steps: (i) for each gap, we com-
pute the distance to the nearest observation (across 3 dimen-
sions), and (ii) we differentiate between gaps due to frozen
soils and other reasons based on (gap-free) ERA5 tempera-
ture information. We then fill data gaps in ESA CCI SM by
applying the DCT-PLS algorithm with local parameteriza-

tion (Sect. 4.1) but overwrite the so-derived values with a lin-
ear interpolation over time in periods where soil moisture is
frozen in a certain place (discussed in Sect. 4.1.1). Prediction
uncertainty models are derived based on the performance of
our method in restoring GLDAS Noah soil moisture data af-
ter introducing gaps from ESA CCI SM (Sect. 5). Finally,
the gap-filled soil moisture and uncertainty estimates from
gap statistics and pre-computed models are combined in the
final GAPFILLED product.

4.1 Core algorithm: DCT-PLS

We only provide a summary of the DCT-PLS algorithm here.
For the full description with all intermediate steps, see Gar-
cia (2010). Initially designed as a data smoother, DCT-PLS
can also provide estimates for missing data points by pre-
dicting a set of smoothed values ŷ for the original/input data
y. The algorithm optimizes for (i) minimal residual sum of
squares (RSS) between the input and smoothed observations
and (ii) optimal reduced roughness P (ŷ) between (smoothed)
elements (Eq. 1). DCT-PLS therefore ideally removes noise
in the data while retaining relevant information, i.e. finding
smoothed versions of input observations y so that F (ŷ) is
minimized.

F (ŷ)= RSS+ sP (ŷ)= ‖y− ŷ‖+ sP (ŷ) (1)

The penalty term P (ŷ) is based on (temporal and spatial)
neighbourhood information as differences (D) between ele-
ments of ŷ, thus optimizing for smoothed transitions between
them (Eq. 2).

P (ŷ)= ‖Dŷ‖2 (2)

Solving the linear system (Eq. 3, where In indicates the
identity matrix) to minimize F (ŷ) is a computationally ex-
tensive task when y is large.

(In+ sDTD)ŷ = y (3)

Garcia (2010) provides a step-by-step description of the
required (matrix) operations to find ŷ and discusses mod-
ifications to the base algorithm for improved performance.
In particular, computing D and performing eigenvalue (λ)
decomposition thereof is greatly simplified by the use of
equally spaced input data such as ESA CCI SM. In fact, a
predefined formulation for λi ofD can be used (Eq. 4) where
i are the values along the dimension and n the value count.

λij =−2+ 2cos((ij − 1)π/nj ) (4)

In the 3-dimensional case (N = 3; time, latitude, longi-
tude), this leads to tensor 3 (Eq. 5).

3Ni1,...iN =

N∑
j=1

λij (5)
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Figure 2. Distance to the nearest neighbour for each missing data point (excluding Greenland) in ESA CCI SM along each dimension:
time (a), longitude (b), latitude (c), and Euclidean distance across dimensions (d). Very large gaps (40–350 days/pixels) exist but are too rare
to be visible in the histograms. The temporal coverage for each grid point with additional anchor observations over tropical rainforests is
shown in (e). Gap classification (frozen vs. non-frozen) based on ERA5 soil temperature.

Figure 3. Flow chart of the main process steps to derive the ESA CCI SM GAPFILLED product (blue box). Dashed lines indicate optional
processing steps that – once the model parameters are known – can be left out.

Together with a realization of the smoothing parameter s,
we can define the tensor 0N (Eq. 6; ÷ and ◦ symbolize the
element-by-element division and multiplication).

0N = 1N ÷ (1N + s3N ◦3N ) (6)

This allows us to efficiently solve for ŷ using the discrete
cosine transform matrix (DCTN) of y and the inverse form
(IDCTN) for data with the dimension N = 3, respectively
(Strang, 1999). As data gaps are present in ESA CCI SM, as-

signing weights (W ) to observations is required (Eq. 7). Data
gaps are assigned a weight of zero and therefore interpolated
as part of the (robust) smoothing process, while observations
have an initial weight of 1. k here refers to one realization of
ŷ because this step is repeated multiple times when optimiz-
ing s, as explained later.

ŷk+1 = IDCTN
(
0N ◦DCTN(W ◦ (y− ŷk)+ ŷk)

)
(7)
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Finally, having an estimate for ŷ, the generalized cross-
validation (GCV) score is computed (Eq. 8), where nmiss is
the number of missing values of n overall samples.

GCV(s)=
wRSS/(n− nmiss)
(1− T r(H )/n)2

=
‖W 1/2(ŷ− y)‖2/(n− nmiss)

(1− T r(H )/n)2 (8)

T r(H ) is computed from λ (Eq. 4) as described in Eq. (9).

T r(H )=
n∑
i=1
[1+ s(2− 2cos((i− 1)π/n))2

]
−1 (9)

A bounded minimization – as implemented in SciPy’s “op-
timize” module (Virtanen et al., 2020) – is now applied to
find the smoothing parameter s for minimal GCV, and ŷ is
computed again using this s. s is the only free parameter in
the model that needs to be tuned using GCV.

As outliers can be present in ESA CCI SM data, we use the
“robust” implementation of DCT-PLS (Garcia, 2010), which
includes further iterations of the above described process to
detect outliers in the data and gradually reduce weights as-
signed to these observations until the optimization converges
at ŷk+1−ŷk→ 0, meaning that no more relevant changes be-
tween y and ŷ – before and after calibrating s, respectively –
are found.

DCT-PLS can take n-dimensional tensors of any size. We
apply it to (3-dimensional) spatial subsets of the dataset via
a 15× 15° moving window. We prefer a moving window
over a global s value to locally allow for different degrees
of smoothing and therefore reducing potential overfitting or
over-smoothing when using a global s value (Wang et al.,
2012). Therefore, local parameterization of s is also expected
to improve the interpolation results between areas with dif-
ferent levels of autocorrelation. In most cases, the chosen
window is large enough to provide sufficient data for a robust
estimation. However, for some edge cases, such as remote is-
lands, the initial window size is gradually extended by 5° (in
eight directions, in practice, the maximum was 35°) until the
GCV minimization process has sufficient data to converge
for s.

Predictions are made not only for missing data points,
but also at locations where observations are available. While
these (smoothed) observations are not used in the final gap-
filled product (because the original observations are kept
when available), they can be used to further harmonize pre-
dictions and observations before they are combined (see
Sect. 4.1.2).

4.1.1 Frozen soils

During periods of frozen soil moisture, it is a matter of def-
inition whether a dataset should represent only the liquid or
the total (frozen and non-frozen) soil moisture content. In the

first case, soil moisture would start to decline as soon as wa-
ter begins to freeze in a scene until it reached ∼ 0 m3 m−3.
Factors such as freezing point depression due to solutes can
result in the presence of liquid soil moisture even when the
soil temperature is below 0 °C (Amankwah et al., 2021). In
the second case, which we try to cover in our data record, soil
moisture remains constant over the period when it is frozen;
i.e. there is no soil water loss due to evaporation of perco-
lation. However, when predicted observations are based on
insufficiently-masked, low, and often noisy soil moisture ob-
servations from transitional zones/periods around a frozen
soil gap, these are often too low (Wang et al., 2012; Liu et al.,
2023). In addition, since DCT-PLS does not use any informa-
tion on soil temperature, it may predict temporal fluctuations
in soil moisture even when the soil is frozen. One could ar-
gue that this is the result of regional (sub-pixel) freeze/thaw
processes, but there is no reason to assume that univariate
algorithms, which do not account for soil temperature on a
sub-pixel scale, can accurately predict this.

We therefore carry the last (observed or interpolated) soil
moisture level before freezing starts forward over time un-
til thawing occurs and soil moisture changes can be mea-
sured again directly by the satellite. In practice, there can
be differences between the last and first available observa-
tions around a period of frozen soil, e.g. due to measurement
noise. We therefore use the mean of 30 d before and after an
affected period to perform a simple linear interpolation over
time between these points. This is in line with our definition
of frozen soil moisture content, deals with the expected noise
in observations around the affected period, and avoids tem-
poral fluctuations in predictions when soil moisture should
remain stable. These values are then used to replace those
from the DCT-PLS algorithm.

4.1.2 Combining predictions and observations

For the final GAPFILLED product, we use the predictions
(from either DCT-PLS or linear interpolation) to fill data gaps
in the original record. The available original observations are
not replaced. However, since DCT-PLS uses temporal and
spatial neighbourhood information to create predictions, the
mean and variance of the predictions for a grid point are
adjusted towards those of its neighbours, giving the data a
(spatially) smooth appearance. This characteristic, typical of
any spatial interpolation method (Llamas et al., 2020), can
lead to temporal inconsistencies between predictions and ob-
servations. To address this, we apply a linear transformation
(derived from linear regression on shared data points) to scale
the mean and variance of the predictions to match those of the
observations (Steven et al., 2003; Paulik et al., 2025). Finally,
the scaled predictions are used to fill gaps in the observation
time series.
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4.2 Validation

The gap-filled ESA CCI SM product is compared to ISMN
in situ reference measurements using the QA4SM online val-
idation platform (https://qa4sm.eu, last access: 20 August
2025). Time series for grid points collocated with FRMs
(see Appendix Fig. A3) are extracted from the original ESA
CCI SM COMBINED and the GAPFILLED product. For the
latter, we extracted four different subsets: (i) all available
data points from the GAPFILLED product (original observa-
tions plus filled values), (ii) only the filled values, (iii) only
the filled values from “small” gaps (classification based on
the Euclidean distance (ED) to the nearest observation) with
ED< 2 (i.e. adjacent to a valid data point in any dimen-
sion), and (iv) only the filled values within “medium/large”
gaps (ED≥ 2). All four datasets were uploaded to the ser-
vice. We select a temporal matching window of ±1 h around
00:00 UTC to align in situ measurements with the satellite
data (temporal reference). QA4SM offers filtering options to
include only in situ time stamps flagged as “good” – exclud-
ing erroneous measurements from, for example, frozen soils
(Dorigo et al., 2013) – and “(very) representative” time series
in terms of FRM qualification. Biases between satellite and
in situ time series are removed by matching their mean and
standard deviation using the in situ data as the (scaling) refer-
ence (Gruber et al., 2020). QA4SM validation results include
ESA CCI land cover information at the in situ sites, which we
use to stratify our results.

5 Uncertainty estimation

An uncertainty estimate is provided for each interpolated
value. This uncertainty depends on the uncertainty of the ob-
servations used (σobservations) and the availability of support
data and other inherent factors affecting the quality of DCT-
PLS predictions (summarized as σgapfilling). Combining both
as in Eq. (10) yields the uncertainty for our predictions.

σprediction =

√
σ 2

observations+ σ
2
gapfilling (10)

σobservations is characterized in ESA CCI SM using triple col-
location analysis and uncertainty propagation (Gruber et al.,
2016). The random error level of observations mainly de-
pends on the merged sensor frequency bands in conjunction
with surface characteristics, such as vegetation cover (Par-
inussa et al., 2011). Recently, a temporal component was
added to account for (sub)seasonal error dynamics (Stradiotti
et al., 2025). We use σobservations as the baseline for uncertain-
ties in the gap-filled values. For a conservative estimate, we
choose the 95th percentile of measurement uncertainties for
any grid point series (or the nearest-neighbour series in the
case of a permanent gap).

To estimate σgapfilling, we impose the gaps in the satel-
lite data on gap-free GLDAS Noah soil moisture and subse-
quently restore these gaps using the presented methodology

Table 1. Model parameters found from fitting f (x) for different
VOD levels (VOD classification in Fig. A1 in the Appendix).

f (x)= b · (1− ea·x ) a b

high VOD −0.089 0.128
medium VOD −0.218 0.08
low VOD −0.234 0.035

(Fig. 3). This approach preserves the original satellite gap
systematics as opposed to randomly splitting the input data
into training and validation sets, as is commonly done (e.g.
Wang et al., 2012; Liu et al., 2020b; Zhang et al., 2021). The
goal of this analysis is to derive a set of model functions for
the expected discrepancy between predictions and observa-
tions based on the gap size. Uncertainty models are preferred
over empirical values because they remain applicable even
in scenarios where GLDAS data are unavailable, ensuring
broader utility of the methodology (e.g. for the period be-
fore 2000, when GLDAS Noah v2.1 data are not available).
For improved accuracy, these functions should account for
both realistic gap conditions and varying surface complexi-
ties. To address the former, we use the previously computed
gap statistics (Euclidean distances). To address the latter, we
use a static VOD classification map for low, medium, and
high VOD based on the 2000–2023 average, derived from
the VODCA v2 CXKu archive (compare Fig. A1 in the Ap-
pendix). We therefore assume that prediction uncertainty will
generally increase for larger gaps and with denser vegeta-
tion cover, consistent with the observations (Parinussa et al.,
2011).

From analysing the differences between original and re-
stored values with regard to the gap systematics and VOD
level (compare Fig. 4a), a log-like function of form f (x)=
b · (1−ea·x) is fitted for different vegetation conditions. Each
a and b is found from fitting 1000 realizations of this function
(least squares with boundary conditions for a < 0 and b > 0)
to randomly drawn samples without replacement. Using the
medians of the obtained parameter sets for a and b (Table 1),
we defined the required models for the uncertainty of the gap-
filling process (σgapfilling) itself as shown in Fig. 4b.

6 Results

6.1 DCT-PLS parameterization

Figure 5 shows the result of the local parameterization of
the DCT-PLS model. A lower s means that more (day-to-
day temporal and/or regional spatial) variability is found in
the prediction (Fig. 5a). The highest s values are found in
arid climates, in northeast Africa and Arabia. This coincides
with the expected low variability in soil moisture in these
regions. Low s values (i.e. high variability) are found in sub-
tropical regions in central Africa and South America, South
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Figure 4. Absolute differences between original and restored GLDAS Noah soil moisture after gap filling (a) and function fits (b) (median
and standard deviation from 1000 randomly drawn samples) to predict σgapfilling for high, medium, and low VOD conditions.

Asia, and East Australia. The GCV scores in Fig. 5b were
minimized to find the optimal s in each cell. For most re-
gions, the GCV score is close to zero, which indicates a good
fit. Higher scores are found in subtropical regions, which in-
dicates a slightly larger discrepancy between the predictions
and available observations in these areas. This could be due
to underestimating the seasonal and/or overfitting of the day-
to-day soil moisture variability in the measurements.

6.2 Spatial data characteristics

The GAPFILLED product provides full daily coverage for
both soil moisture and uncertainty estimates. For a selected
day, Fig. 6 shows both fields before and after gap filling, re-
spectively. The gap filling has produced a smooth, spatially
consistent image without any outlier values or edges that
could arise from sudden differences in regional parameter-
ization of the DCT-PLS model. As expected, soil moisture
in tropical latitudes is high as a result of interpolating an-
chor retrievals from L- and C-band measurements within and
surrounding these areas. In high northern latitudes, the pre-
dictions come mainly from linear time interpolation between
autumn values of the preceding year and spring values ob-
served later in the year.

The uncertainties are within the range of 0 to 0.1 m3 m−3,
which is expected from the defined models for σgapfilling and
the value range of the original (triple collocation) error es-
timates σobservations (Gruber et al., 2016, 2019). The highest
values are found in (sub)tropical and boreal ecozones, the Ti-
betan Plateau, and southeast Asia. This is due to the low data
coverage and quality of the used retrievals in these regions,
which are noisy for dense vegetation and often missing in
mountainous regions.

While uncertainties increase as expected in most regions
covered by dense vegetation, an inverse effect appears in
some areas of the northwestern Amazon and the central
African rainforest (Fig. A2 in the Appendix), where the un-

certainties of the GAPFILLED product are lower than in
parts of the surrounding subtropical zones. Our analysis of
this phenomenon shows that – although uncertainties in the
GAPFILLED product increase according to σgapfilling – the
initial uncertainty estimates based on triple collocation anal-
ysis σobservations in the affected regions are too low (Fig. A2a).
This likely results from the poor agreement between satellite
and model data in these areas, whereas similar soil moisture
climatologies are found in the (independent) active and pas-
sive satellite products (Fig. A2d).

6.2.1 Time series characteristics

Figure 7 shows temporal subsets for five grid points in the
Northern Hemisphere, where also in situ measurements are
available. The locations were selected to represent a wide
range of environments and gap types as far as the spatial dis-
tribution of in situ sensors allows (for more information on
the chosen sites, see Table A1 in the Appendix). For visu-
alization purposes, a linear least-squares regression scaling
was applied to remove biases between point- and satellite-
scale time series (Steven et al., 2003; Paulik et al., 2025).
Anomalies are computed relative to the 1991–2023 aver-
age conditions. All R scores are based only on data points
from the visualized period and are statistically significant
(p < 0.05). Figure 7a illustrates the performance of the gap-
filling algorithm in predicting soil moisture for gaps because
of frozen conditions and gaps emerging for other reasons
in an area with a moderate number of missing data points
(40 %). The predicted values align reasonably well with the
available in situ data, with an anomaly correlation of 0.59
between the in situ measurements and the filled values only
(RFILLED VALUES, without the original observations). This is
lower than the 0.70 correlation between in situ measurements
and original satellite observation anomalies. However, this
is hardly surprising, as systematic gaps appear during more
challenging conditions. This plot also shows how combining
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Figure 5. Local parameterization of the DCT-PLS function to find the optimal value for s (a) that minimizes the GCV score (b).

Figure 6. Soil moisture and uncertainty before (a, b) and after (c, d) gap filling on 1 March 2007. Ice sheets (Greenland, Antarctica) are
excluded from the GAPFILLED product. Hatched regions indicate ERA5 soil temperature below 0 °C.

data from both the DCT-PLS and linear interpolation in a sin-
gle time series based on soil temperature can lead to incon-
sistencies for some edge cases (February 2018). In this case,
an individual, unobserved “non-frozen” data point is found
in the middle of a prolonged frozen period. Differences in
the predictions of the two interpolation algorithms can lead
to outliers in this case. Figure 7b is an example of a location
affected strongly by seasonally missing data. The periods of
linear interpolation (frozen) align well with missing in situ
values due to the (independent) quality-flag-based masking
based on in situ temperature measurements (Dorigo et al.,
2021b). The reanalysis temperature data below 0 °C there-
fore, for this location, provides a good approximation of the
period when soil moisture is frozen and kept at an almost
constant level. However, it also means that a direct compar-
ison between gap-filled values and in situ measurements is
usually not possible during winter. For the onset and termi-
nation of this period, the absolute values between gap-filled
and in situ data match well. Figure 7c represents a location
with only few missing data points and no relevant periods of
frozen soil moisture. In this case, we find a higher correla-
tion with the in situ data for the gap-filled values compared
to the original data (0.89 vs. 0.80), which we attribute to the
smoothing effect of DCT-PLS and therefore reduced noise in
the predictions. Figure 7d is for a location near the Equator,
where ESA CCI SM is normally permanently masked due

to the presence of dense vegetation (i.e. 100 % filled values).
The example time series shows how the additional C- and
L-band retrievals in this region form a consistent although
somewhat noisy record, which matches reasonably well with
the in situ data (anomaly correlation of 0.54). Figure 7e is lo-
cated in a complex topography on the Tibetan Plateau, with
significant amounts of missing data points due to soil freez-
ing. The performance of ESA CCI SM is generally poor in
this region and the gap-filled product shows only little varia-
tion and often contradicts the (sparse) in situ measurements.
The available observations are very noisy in this location, and
hence do not form a consistent time series with the gap-filled
data points.

6.2.2 Global anomalies and uncertainties

Global monthly anomalies and uncertainties over time are
shown in Fig. 8. The similarity in anomalies before (Fig. 8a)
and after (Fig. 8c) gap filling indicates that large-scale devi-
ations from normal conditions are equally well represented
in the gap-filled as in the original data. The main differences
(Fig. 8e) are found in equatorial regions (mainly due to the
additional observations used) and in transition zones/periods
between frozen and unfrozen soil moisture.

Uncertainties are high at the start of the record, when data
coverage is lowest (compare Fig. 8b, d to Fig. 1b), and for
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Figure 7. Selection of soil moisture anomaly time series from the original and gap-filled ESA CCI SM data set and available in situ
measurements (relative to the 1991–2023 climatological average). The locations of (a)–(e) are indicated in (f). All statistics are based only
on data from the shown sub-periods. R scores shown in bold are statistically significant (p < 0.05) and are based on the number of data
points indicated in parentheses. For more information about the chosen locations, see Table A1 in the Appendix.

equatorial latitudes due to reduced coverage and observa-
tion quality. Uncertainties in the gap-filled values often ex-
ceed 0.1 m3 m−3 in areas where ESA CCI SM measurements
are seasonally masked due to frozen soils, and linear inter-
polation potentially does not sufficiently account for diurnal
freeze–thaw processes, evaporation, and other factors. How-
ever, it is important to note that these higher uncertainties
reflect the inclusion of additional data points rather than a
decline in dataset quality.

6.2.3 Zonal anomalies and trends

Figure 9 shows annual anomalies expressed as Z scores
(Vreugdenhil et al., 2022) for different latitude bands of
the original observation-only ESA CCI dataset, its gap-filled
counterpart, and two reanalysis products. Gap filling can in-
fluence annual anomaly estimates, particularly when large
portions of observational data are (systematically) masked.
This effect is evident in the global estimates (Fig. 9a), where
the 1991–2023 trend shifts from negative to neutral after
gap filling. The most significant discrepancies between the
original and gap-filled ESA CCI SM data occur during the
first third of the time series (1992–2002), a period with lim-
ited observation coverage compared to the era following the
launch of AMSR-E in 2002. The gap-filled data are drier than
the original and the reanalysis products. From 2002 to 2016,

we find good agreement between all four datasets until the
two CCI (and reanalysis) records start to diverge again, with
gap-filled anomalies exceeding those of the original data.
The extreme dry anomaly in the original dataset in 2019 is
mitigated after gap filling, resulting in a closer alignment
with reanalysis. During the last 4 years, CCI and GLDAS
agree well, while ERA5-Land reached the lowest value on
record in 2023. For the Southern Hemisphere (Fig. 9b), we
find only minor differences between the original and gap-
filled data, mainly in the beginning and at the end of the time
series. We attribute this partly to the good initial data cov-
erage, but it also indicates that the integration of additional
observations for the previously permanently masked tropi-
cal rainforest regions was successful. The gap-filled time se-
ries is now slightly less variable and closer to GLDAS Noah.
The overall trend for the Southern Hemisphere has slightly
changed, from neutral to negative, in line with the reanalysis
products. Looking at Z scores for the tropical zone (Fig. 9c)
separately, we find a negative soil moisture trend after gap
filling. This trend, as well as the annual anomalies in gen-
eral, align better with the reanalysis products, compared to
the original data. Some differences are found during the first
5 and the last 10 years, when gap filling has a better aligned
CCI with GLDAS. Figure 9d comprises the data from a wide
range of climatic regions, from arid over temperate to bo-
real conditions. This subset contains the majority of points
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Figure 8. Time-latitude diagrams of monthly soil moisture anomalies and soil moisture uncertainties as in the original COMBINED (a, b)
and GAPFILLED (c, d) product. Differences between (a) and (c) are shown in (e).

over land for the Northern Hemisphere (excluding Green-
land). From 1991 to 2003 we find drier and from 2013 to
2020 wetter conditions after gap filling, which matches the
observations from Fig. 9a in the same period, where it had a
similar effect on the long-term trend in the data. The largest
discrepancies between the original and gap-filled data are
found for the boreal zone (Fig. 9e). The effect of the inter-
polation of seasonally missing values is clearly visible and
has led to a switch from a slight negative to a strong posi-
tive trend, which is in contrast to ERA5-Land. However, it
should be noted that the reliability of reanalyses in this case
is also unknown. This is also evident from the discrepancies
between GLDAS Noah and ERA5-Land in this zone.

We further assess global trend changes in Fig. 10, showing
Theil–Sen slopes computed from annual averages between
1991 and 2023, with a Mann–Kendall test for statistical sig-
nificance (Dorigo et al., 2012). Figure 10a is for the original
ESA CCI SM data (with gaps), and Fig. 10b is the same for
the gap-filled product. Figure 10c summarizes the differences
in terms of change in trend direction and significance. Only
a very small number of initially detected significant trends
changed their direction due to gap filling, either from positive
to negative (1.5 %) or vice versa (1.4 %). Affected regions are
in the northwest United States, Siberia, and Myanmar, where
positive trends are found after gap filling, as well as central
Africa and some spots in South America, where the trend
direction was inverted to negative. More prominently, large
parts of the Northern Hemisphere, where previously no sig-
nificant increase in soil moisture was found, now show a pos-
itive trend. This is the case for large parts of Russia, Alaska,
the northwest United States, and Canada. The opposite is
often found in the Southern Hemisphere, mainly in central
and western Africa and South America and also in northeast

China and Mongolia. The previously masked regions covered
by tropical rainforest do not show spatially consistent trends
after gap filling. For parts of Brazil and Columbia in partic-
ular, trends vary spatially, while a consistent negative trend
is found for the lower half of South America, which only
changed in some spots in the far south due to gap filling.

6.3 Evaluation of σgapfilling

Figure 11 shows Pearson’s R (masked for p < 0.05) and un-
biased root mean squared difference (ubRMSD), between
original daily soil moisture from GLDAS Noah and restored
GLDAS Noah points for the imposed ESA CCI SM gaps.
The gap-filling algorithm manages to restore the data well
(global median R = 0.81, ubRMSD= 2.69 kg m−2, corre-
sponding to ∼ 10 % relative error). When data from gaps
classified as “frozen” (Sect. 3.2) are excluded, i.e. without
values filled by linear interpolation, performance metrics im-
prove (global median R = 0.89, ubRMSD= 2.24 kg m−2).
By design, regions with a low R and high ubRMSD in this
analysis match with regions where our uncertainty models
predict a lower gap-filling accuracy (Figs. 6d, 8d).

6.4 GAPFILLED soil moisture validation with in situ data

Figure 12 shows aggregated performance metrics (R and
ubRMSD) between FRM in situ sites and the original ESA
CCI SM COMBINED product, the new GAPFILLED prod-
uct (original data with filled values), and the subset con-
sisting only of the filled values. All three datasets gener-
ally perform on a similar level. In terms of absolute value
correlations, the GAPFILLED product slightly outperforms
the original data. Note, however, that the temporal and spa-
tial coverage differs among the three products. Logically,
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Figure 9. Annual soil moisture anomaly Z scores across different latitude bands: (a) global, (b) Southern Hemisphere, (c) (sub)tropical
zone, (d) arid/temperate zone, (e) boreal zone. The dotted coloured lines indicate the zonal trends in the original and gap-filled data.

Figure 10. Significant (p < 0.05) long-term (1991–2023) soil moisture trends before (a) and after (b) gap filling. Panel (c) shows the change
in trend direction and significance: “+” indicates wetting, “–” drying, and “0” non-significant trends before and after gap-filling, respectively.
Inset numbers (%) are relative to the total number of points with a significant trend.

there is no overlap in observations between the original and
the filled values. Fill values typically comprise challenging
cases, where satellite retrievals were not possible in the first
place. Consequently, it is unsurprising that the performance
of only the filled values slightly lags behind the original
dataset in terms of absolute valuesR (Fig. 12a) and ubRMSD
(Fig. 12c), especially for stations near or under dense vege-
tation (“Tree Cover”). Metrics are slightly more spread for
the filled values. A good performance of the GAPFILLED
product is also found in terms of anomaly R and ubRMSD,
indicating that the gap-filling algorithm manages to capture

not only the seasonality, but also short-term events on par
with the observations (based on the same 1991–2023 refer-
ence period as in Sect. 6.2.1). The station count for anomaly
metrics can be lower than for absolute values as QA4SM ex-
cludes time series for which a reliable anomaly cannot be
computed (e.g. due to insufficient temporal coverage).

In Fig. 13, we assess the performance of the filled val-
ues separately in “small” and “medium/large” gaps with re-
spect to the same in situ reference measurements. Figure 13a
shows that the temporal agreement between in situ and filled
values decreases for larger gaps. However, it is less distinct
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Figure 11. Agreement between original and restored GLDAS Noah surface soil moisture obtained after imposing data gaps from ESA CCI
SM and subsequent filling. The top row is based on all restored data points, and the bottom row is with frozen periods excluded. Pearson’s R
in (a) and (d) is masked if p > 0.05 (≈ 3 % of all grid cells). ubRMSD is shown in (b) and (e), and the respective sample sizes (i.e. number
of gaps over time) over the period 2000–2023 are shown in (c) and (f).

Figure 12. Performance metrics between ISMN soil moisture time series and the “original” ESA CCI SM v09.1 COMBINED product, the
GAPFILLED product, and the “filled values” of the GAPFILLED product only. Pearson’s R (p < 0.05) based on absolute values (a) and
anomalies (b) and ubRMSD (c, d), respectively. The numbers in each box indicate the count of contributing time series.

in terms of ubRMSD (Fig. 13b), which barely increases for
larger gaps. Note, however, that there is a severe lack of ref-
erence data for the larger gaps, mainly due to the unavailabil-
ity of in situ measurements during winter. Hence, it was not
possible to evaluate “medium” and “large” gaps separately.

7 Code and data availability

The ESA CCI SM v09.1 GAPFILLED dataset is available at
https://doi.org/10.48436/hcm6n-t4m35 (Preimesberger et al.,
2024). It contains the gap-filled original soil moisture ob-
servations, gap-free uncertainty estimates, and the pure pre-
dictions before reimposing the observations (i.e. for missing

data points as well as in place of the original measurements).
We also provide two binary masks in the data to separate
(original) observations and filled values in the gap-filled soil
moisture field and to differentiate between DCT-PLS predic-
tions and linear interpolation values over frozen periods.

Our Python implementation of the DCT-PLS algo-
rithm is based on the original MATLAB implemen-
tation by Garcia (2010) and is provided as part of
the pytesmo soil moisture toolbox package in v0.18.0
(https://doi.org/10.5281/zenodo.14975386, Paulik et al.,
2025), available at https://github.com/TUW-GEO/pytesmo
(last access: 20 August 2025).
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Figure 13. Performance metrics between ISMN soil moisture and
only the filled values in the GAPFILLED product, separated by
their Euclidean distance (ED) to the nearest observation: small gaps
(ED< 2) and medium/large gaps (ED≥ 2). The shown metrics are
(a) Pearson’s R (only p < 0.05) and (b) ubRMSD. Narrow boxes
indicate the upper and lower boundary values of the 95 % confi-
dence interval for each data point. The numbers in each box refer to
the sample size (number of time series).

8 Discussion and conclusions

The gap-filling framework around the DCT-PLS algorithm
effectively estimates soil moisture for data gaps in the ESA
CCI SM dataset. Choosing a univariate algorithm ensures
that the resulting product relies solely on soil moisture obser-
vations independent of external satellite or model datasets.
Additionally, DCT-PLS is a performant algorithm suitable
for operational data production as envisaged for the Coperni-
cus Climate Change Service (C3S) (Dorigo et al., 2024b).

We incorporated additional soil moisture retrievals from
L- and C-band in equatorial latitudes with dense vegeta-
tion cover as anchor measurements for the interpolation al-
gorithm. Although these measurements are often noisy and
therefore justifiably excluded from the original ESA CCI SM
data, they serve as viable support points for gap filling, lead-
ing to a moderate agreement with available in situ measure-
ments in the area. However, we found that the retrieval un-
certainty estimates based on triple collocation analysis for
these areas are often too low, which can also affect the (prop-
agated) uncertainties of the GAPFILLED product. We con-
clude that not only the retrieval of soil moisture under very
dense vegetation layers remains challenging, but also that
the estimation of associated uncertainties warrants further re-
search. Studies utilizing these retrieval uncertainties, includ-
ing ours, could apply them to provide better estimates of the
quality of derived products based on these data.

Linear interpolation during periods when soil moisture
is frozen may appear simplistic but follows the logic that
there is no loss of water from the soil resulting in short-term
changes. We use the average of observations from 30 d before
and after periods when soil moisture is frozen as bounding

points for linear interpolation. The threshold was determined
based on regional experiments with satellite and in situ data
and was selected as the best compromise between stable in-
terpolation and a smooth transition between interpolated and
observed data. However, it could be further refined, for ex-
ample, by considering different onset periods for different
climates globally. Our approach has the drawback that it re-
lies on external soil temperature information, which can in-
troduce outliers in the time series when prolonged periods of
frozen soils (< 0 °C) are interrupted by brief thawing events.
This issue could be mitigated by adopting a slightly stricter
threshold value (e.g. 4 °C, in line with Gruber et al., 2020)
and/or by setting a minimum number of consecutive days
above 0 °C before a data point is classified as “unfrozen”.
Moreover, our method does not account for potential sub-
pixel freeze–thaw dynamics. Further research is needed to
better understand soil moisture dynamics at coarse scales in
such cases, enabling satellite retrievals and improved gap-
filling predictions in the future. In the final data files, we pro-
vide a separate flag to identify cases where linear interpola-
tion was applied so that users can filter them out or replace
them if necessary.

To provide users with a quality estimate for the gap-filled
values, we developed a method to quantify the uncertainties
in our predictions (σgapfilling). These uncertainties are gen-
erally higher for larger gaps and regions with dense vege-
tation compared to areas with better initial coverage. They
are combined with the observation uncertainties and included
as a separate field in the dataset. In order to quantify un-
certainties associated with the gap-filling process, we used
3-dimensional Euclidean distances to the nearest valid data
point as an estimate of gap size, but in practice, it could mat-
ter whether this point is close temporally or spatially due to
different levels of soil moisture autocorrelation in these di-
mensions (Piles et al., 2022). Evaluating these uncertainties
remains challenging due to limited reference data. While cor-
relation with in situ measurements decreases for larger gaps,
this could not be confirmed in terms of ubRMSD. We do not
consider the current uncertainty estimates final and encour-
age further research on this topic. Methods such as Gaussian
process regression (Gelfand and Schliep, 2016) have been
used to fill measurement gaps in time series data in the past
(De Caro et al., 2023). They provide uncertainty estimates
based on the variance of multiple predictions but for the same
reason were also found to be computationally too demanding
(Heaton et al., 2019) for operational application in a global
record such as ESA CCI and C3S SM.

We observed that the GAPFILLED product performs sim-
ilarly to the original observations for the absolute values (in-
cluding the climatological signals) and short-term fluctua-
tions (anomalies). In some cases, the filled values match bet-
ter with independent reference data than the original observa-
tions, likely due to the smoothing effect of DCT-PLS. Simi-
lar outcomes have been observed with other smoothing algo-
rithms, such as the exponential filter model, which is used to
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estimate root-zone soil moisture from surface measurements
(Pasik et al., 2023; Wagner et al., 1999; Albergel et al., 2008).
These conclusions are based on evaluations using in situ data
and from successfully restoring artificially introduced gaps
in the gap-free GLDAS Noah dataset. One downside of the
latter approach is that model and satellite soil moisture can
differ, for example, in terms of noise level, representation of
extreme events, or autocorrelation. This can be due to limited
model representations, for example, due to disregarded irri-
gation signals (Zaussinger et al., 2019) or unaccounted for
latent water influx from rivers (van der Schalie et al., 2022).
Thus, conclusions drawn from the restoration of model-based
data may not fully apply to satellite observations in some re-
gions, but they still give valuable insights. Regional parame-
terization of the DCT-PLS algorithm resulted in spatial vari-
ations in s. The use of GCV score optimization for s (Garcia,
2010) follows the recommendation of Wang et al. (2012).
While the impact on the predictive skill compared to using a
single global s value was not extensively evaluated, we found
a good global performance in restoring artificially excluded
data.

The GAPFILLED dataset is suitable for both long-term
and event-based studies. Our comparisons, as well as other
studies, have shown that derived statistics (such as changes
in annual anomalies) can be affected by gap filling (Bessen-
bacher et al., 2023). However, in complex environments with
little or no input observations, such as mountainous regions,
minimal variability is observed in our data. Similarly, using
a smoothing algorithm such as DCT-PLS for interpolation
may be detrimental in terms of preserving small-scale ex-
treme events. For applications that do not require a pure soil-
moisture-based dataset, multivariate methods might there-
fore still be preferred. These studies could potentially use our
data as starting values for further adjustment.

Appendix A

Figure A1. VOD classification based on VODCA v2 CXKu multiband 2000–2023 average conditions. Threshold values are 0.18 for
low/medium and 0.57 for medium/high VOD (µ± 1σ ).
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Figure A2. 1991–2023 average uncertainty estimates in parts of the tropical climate zone of (a) satellite observations used for the GAP-
FILLED product (based on triple collocation analysis), (b) the filled (propagated) values in the GAPFILLED product only, and (c) the final
GAPFILLED product overall (circles indicate areas with uncertainty estimates that are too low). Panel (d) shows the mean soil moisture
climatologies of SMAP, ASCAT, and GLDAS Noah over the area outlined by the red bounding box in (a).

Figure A3. ISMN Fiducial reference measurements (0–0.1 m depth) in ISMN v20240314 on http://qa4sm.eu (last access: 20 August 2025)
(network references in Table A2 in the Appendix).
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Table A1. ISMN sensor locations and properties from Fig. 7.

Network Station Sensor Type Latitude Longitude Elevation Depth Land Cover Climate
Name Name [°] [°] [m] [cm] Class Class

(a) TERENO Schoeneseiffen Hydraprobe-II-Sdi-12 50.5149 6.37559 612 5 130 Cfb
(b) RISMA SK2 Hydraprobe-II-Sdi-12 51.33504 −106.5639 590 0–5 130 Dfb
(c) SCAN Stephenville Hydraprobe-Digital-Sdi-12-(2.5-Volt) 32.25 −98.2 407.896 5.08 130 Cfa
(d) TAHMO BiaSHTSDebiso TEROS12 6.66462 −3.09725 228.0 10 130 Aw
(e) NGARI SQ08 5TM 32.55603 79.84004 4308.0 5 200 Dsb

Table A2. Soil moisture FRM networks available through QA4SM.

Network Reference

AMMA-CATCH Pellarin et al. (2009), Mougin et al. (2009), Cappelaere et al. (2009), Rosnay et al. (2009), Lebel et al. (2009), Galle et al. (2015)
ARM Cook (2016, 2018)
COSMOS Zreda et al. (2008, 2012)
CTP_SMTMN Yang et al. (2013)
DAHRA Tagesson et al. (2014)
FLUXNET-AMERIFLUX –
FMI Ikonen et al. (2018, 2016)
FR_Aqui Al-Yaari et al. (2018), Wigneron et al. (2018)
GROW Xaver et al. (2020), Zappa et al. (2019, 2020)
HOAL Blöschl et al. (2016), Vreugdenhil et al. (2013)
HOBE Bircher et al. (2012), Jensen and Refsgaard (2018)
ICN Hollinger and Isard (1994)
IMA_CAN1 Biddoccu et al. (2016), Capello et al. (2019), Raffelli et al. (2017)
IPE Alday et al. (2020)
KIHS_CMC –
KIHS_SMC –
LAB-net Mattar et al. (2016, 2014)
MAQU Su et al. (2011), Dente et al. (2012)
MOL-RAO Beyrich and Adam (2007)
NAQU Su et al. (2011), Dente et al. (2012)
NGARI Su et al. (2011), Dente et al. (2012)
OZNET Smith et al. (2012), Young et al. (2008)
PTSMN Hajdu et al. (2019)
REMEDHUS González-Zamora et al. (2019)
RISMA Ojo et al. (2015), L’Heureux (2011), Canisius (2011)
RSMN –
SASMAS Rüdiger et al. (2007)
SCAN Schaefer et al. (2007)
SD_DEM Ardö (2013)
SMN-SDR Zhao et al. (2020), Zheng et al. (2022)
SMOSMANIA Calvet et al. (2016), Albergel et al. (2008), Calvet et al. (2007)
SNOTEL Leavesley et al. (2008), Leavesley (2010)
SOILSCAPE Moghaddam et al. (2011, 2016), Shuman et al. (2010)
SWEX_POLAND Marczewski et al. (2010)
TAHMO –
TERENO Zacharias et al. (2011), Bogena et al. (2018, 2012), Bogena (2016)
UDC_SMOS Schlenz et al. (2012), Loew et al. (2009)
UMBRIA Brocca et al. (2011, 2008, 2009)
UMSUOL –
USCRN Bell et al. (2013)
VAS –
VDS –
iRON Osenga et al. (2021, 2019)
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