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Abstract. Insufficient spatiotemporal coverage of observations of the surface partial pressure of CO2 (pCO2)
has hindered precise carbon cycle studies in coastal oceans and justifies the development of spatially and tempo-
rally continuous pCO2 data products. Earlier pCO2 products have difficulties in capturing the heterogeneity of
regional variations and decadal trends of pCO2 in the North American Atlantic Coastal Ocean Margin (NAA-
COM). This study developed a regional reconstructed pCO2 product for the NAACOM (Reconstructed Coastal
Acidification Database-pCO2, or ReCAD-NAACOM-pCO2) using a two-step approach combining random for-
est regression and linear regression. The product provides monthly pCO2 data at 0.25° spatial resolution from
1993 to 2021, enabling investigation of regional spatial differences, seasonal cycles, and decadal changes in
pCO2. The observation-based reconstruction was trained using Surface Ocean CO2 Atlas (SOCAT) observa-
tions as observational values, with various satellite-derived and reanalysis environmental variables known to
control sea surface pCO2 as model inputs. The product shows high accuracy during the model training, valida-
tion, and independent test phases, demonstrating robustness and a capability to accurately reconstruct pCO2 in
regions or periods lacking direct observational data. Compared with all the observation samples from SOCAT,
the pCO2 product yields a determination coefficient of 0.92, a root-mean-square error of 12.70 µatm, and an
accumulative uncertainty of 23.25 µatm. The ReCAD-NAACOM-pCO2 product demonstrates its capability to
resolve seasonal cycles, regional-scale variations, and decadal trends of pCO2 along the NAACOM. This new
product provides reliable pCO2 data for more precise studies of coastal carbon dynamics in the NAACOM re-
gion. The dataset is publicly accessible at https://doi.org/10.5281/zenodo.14038561 (Wu et al., 2024a) and will
be updated regularly.
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1 Introduction

Accurate and comprehensive datasets of the sea surface par-
tial pressure of CO2 (pCO2) are necessary for quantify-
ing coastal CO2 uptake and assessing the impact of climate
change on coastal ocean ecosystems. On a global scale, the
coastal ocean, covering 8.4 % (30.4× 106 km2) of the global
ocean surface area (Chen et al., 2013; Dai et al., 2022), plays
a significant role in the global carbon budget, accounting for
approximately 10.9 % of the global ocean CO2 uptake from
the atmosphere (0.25 of 2.3 Pg C yr−1) on the global average
(Dai et al., 2022; Friedlingstein et al., 2023). However, on
regional scales, areal-based CO2 uptake in specific coastal
regions are often much greater than those in open oceans
despite their less distinguishable global means (Dai et al.,
2022). This is because sea surface pCO2 is highly variable
due to the influence of various physical and biogeochemi-
cal processes in coastal oceans, such as riverine input, up-
welling, tidal mixing, and large-scale circulations (Laruelle
et al., 2018; Roobaert et al., 2024b). Thus, accurately quan-
tifying the CO2 uptake in specific coastal regions becomes
particularly challenging when only using observations due to
the incomplete coverage of pCO2 data in space and time.

This study focuses on the North American Atlantic Coastal
Ocean Margin (NAACOM; Fig. 1). The entire region is de-
fined as the area within 400 km of the coastline and is di-
vided into six subregions following Fennel et al. (2019)
based on their geographic locations: the Gulf of Mexico
(GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight
(MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and
Gulf of St. Lawrence and Grand Banks (GStL&GB). The
carbonate system in the NAACOM is influenced by large-
scale circulations (Fig. 1), including the Gulf Stream and
Labrador Current, as well as local processes like river dis-
charge, export from marshes, and upwelling dynamics (Cai
et al., 2020; Fennel et al., 2019; Wang et al., 2013). These
complex physical and biogeochemical processes contribute
to substantial spatial and temporal heterogeneity in sea sur-
face pCO2 across the NAACOM (Cai et al., 2020). Elucidat-
ing the driving mechanisms of these spatiotemporal pCO2
variations necessitates extensive data coverage in time and
space in this region. Over the past 2 decades, coastal field in-
vestigation efforts in this region have substantially increased
through programs like the East Coast Ocean Acidification
(ECOA) and Gulf of Mexico Ecosystems and Carbon Cruise
(GOMECC) (Cai et al., 2020; Wang et al., 2013; Wanninkhof
et al., 2015). Ongoing measurements from these cruises,
combined with ongoing measurements from volunteer ob-
serving ships and buoys, are quality-controlled and compiled
in the Surface Ocean CO2 Atlas (SOCAT) database (Bakker
et al., 2016), substantially advancing our understanding of
coastal inorganic carbon chemistry along the NAACOM (Cai
et al., 2020).

Despite significant progress in observational efforts, the
spatial and temporal coverage of pCO2 data remains lim-
ited in the NAACOM, with observations encompassing only
2.9 % of grid cells during the period 1993–2021 (Fig. 2).
Observations are concentrated in the southern region, with
fewer samples available during winter. This data scarcity in-
troduces substantial uncertainty into air–sea CO2 exchange
quantification and hinders comprehensive understanding of
coastal inorganic carbon dynamics, particularly in areas
north of Cape Cod where measurements are very sparse
(Fig. 2). For example, reported air–sea CO2 fluxes for
the GoMe exhibit a wide range spanning from −0.50 to
+2.50 mol C m−2 yr−1, with conflicting reports characteriz-
ing it as a CO2 source (Fennel and Wilkin, 2009; Vandemark
et al., 2011), CO2-neutral (Signorini et al., 2013), or a CO2
sink (Cahill et al., 2016; Rutherford et al., 2021), underscor-
ing the need for improved pCO2 data coverage.

Recently, various pCO2 products, global or regional, with
full coverage in time and space were developed as essen-
tial supplements to observations. These products usually em-
ployed diverse algorithms, environmental proxies from satel-
lites and reanalysis products as model inputs, and SOCAT
observations as constraints to reconstruct the pCO2 field with
full temporal and spatial coverage. The development of those
products has significantly advanced our understanding of in-
organic carbon chemistry and the ocean carbon cycle. For ex-
ample, seven global pCO2 products were used to evaluate the
ocean CO2 uptake in the Global Carbon Budget 2023 edition
(Friedlingstein et al., 2023). However, most of these products
reconstruct pCO2 in the open ocean, with coastal regions
often being extrapolated or excluded. Currently, only one
pCO2 product has been developed specifically for the coastal
ocean on a global scale (Laruelle et al., 2017; Roobaert et al.,
2024a). This product was recently combined with an open-
ocean product to create a global reconstruction of the ocean
CO2 sink (Landschützer et al., 2020) and has since been
utilized to narrow the variability in global reconstructions
(Fay et al., 2021). However, global products primarily aim
to ensure high accuracy of parameters on a global average;
they may not guarantee equivalent accuracy for spatiotempo-
ral variations on the regional scale. In comparison, regional
pCO2 products have demonstrated superior capability in re-
solving detailed small-scale variations.

Within the NAACOM region, several area-specific pCO2
products have been reconstructed, focusing on specific re-
gions such as the GoMx (e.g., Chen and Hu, 2019; Fu et al.,
2020; Lohrenz and Cai, 2006) and the SAB and MAB (e.g.,
Wang et al., 2024; Xu et al., 2020). These regional and global
pCO2 products are valuable for validating model estimations
(Roobaert et al., 2022; Ross et al., 2023). However, exist-
ing products often have limitations in spatial coverage, tem-
poral resolution, or trend analysis capabilities. For instance,
Chen and Hu (2019) provided a high-resolution (4 km) pCO2
product for the GoMx, but this product faces challenges in
capturing decadal changes in pCO2 (Wu et al., 2024b). Con-

Earth Syst. Sci. Data, 17, 43–63, 2025 https://doi.org/10.5194/essd-17-43-2025



Z. Wu et al.: A machine-learning reconstruction of coastal surface pCO2 45

Figure 1. Topography (m) and large-scale circulation along the North American Atlantic Coastal Ocean Margin (NAACOM). The study
region, defined as coastal areas extending 400 km offshore, is indicated by blue shading. The thick black line is the 200 m isobath, which
roughly marks the shelf break and typically defines the continental shelf boundary. The Gulf Stream (thick red dashed line with an arrow)
flows northward along the eastern coast of the United States before veering eastward into the open Atlantic Ocean around Cape Hatteras. The
Labrador Current (thick light-blue dashed line with an arrow) flows southward along the eastern coast of Canada before meeting the Gulf
Stream. Following Fennel et al. (2019), the study region is divided into six subregions by straight orange lines: the Gulf of Mexico (GoMx),
South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand
Banks (GStL&GB). Dashed contour lines indicate bathymetric depths of 50 and 100 m on the shelf (from the coastline to the 200 m isobath)
and 1000, 2000, 3000, and 4000 m from the shelf break to the open ocean.

versely, Xu et al. (2020) successfully captured decadal trends
of pCO2 but only as area-averaged pCO2 time series for
the SAB and MAB, lacking comprehensive spatial coverage.
Signorini et al. (2013) reconstructed a product using multiple
linear regression (MLR) covering the areas from the SAB to
SS, but this only spans 8 years (2003–2010). Despite these
valuable efforts, there remains a lack of comprehensive data
products that adequately capture regional variations, seasonal
cycles, and decadal changes in pCO2 simultaneously for the
entire NAACOM.

This study aims to develop a regional pCO2 prod-
uct specifically designed for the NAACOM, encompassing
coastal regions extending 400 km offshore from the GoMx to
the GB (Fig. 1). We integrated random forest and linear re-
gression methods with hydrological parameters from satellite
observations and reanalysis data to generate a monthly recon-
structed pCO2 product at 0.25° spatial resolution spanning
the period from 1993 to 2021. The pCO2 product, termed the
Reconstructed Coastal Acidification Database or ReCAD-
NAACOM-pCO2, is specifically designed to resolve the spa-
tial variations, seasonal cycles, and decadal changes of pCO2
along the NAACOM.

The structure of this paper is as follows: Sect. 2 details the
methodology used to reconstruct ReCAD-NAACOM-pCO2
and describes the datasets employed. Section 3 evaluates the

accuracy of the reconstructed product, performance, and ap-
plicability in resolving seasonal cycles, regional variations,
and decadal trends of pCO2. Sections 4 and 5 provide links
to access the dataset and codes used to generate the dataset
and figures presented in this study. The final section sum-
marizes the conclusions. ReCAD-NAACOM-pCO2 demon-
strates enhanced capability in resolving spatial variations and
capturing the seasonal cycle and decadal trends of pCO2
compared to the global products across different subregions
in the NAACOM. This product offers improved insights into
coastal carbon dynamics in this complex region, addressing
the need for a comprehensive pCO2 dataset in the NAA-
COM. Applications of this data product to examine the pro-
cesses controlling the spatial variability, seasonal cycle, and
decadal trends of pCO2 and air–sea CO2 flux will be pub-
lished separately.

2 Data and methods

2.1 Observational data from SOCAT

The observational data for training the regression model were
measurements of the seawater fugacity of CO2 (f CO2) ex-
tracted from the SOCAT database (2023 edition). f CO2 rep-
resents the pCO2 corrected for the nonideal behavior of the
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gas in seawater, and both are commonly used in oceano-
graphic studies. SOCAT compiles quality-controlled f CO2
measurements from various platforms, including research
vessels, commercial ships, and moorings (Bakker et al.,
2016). This study used the monthly gridded SOCAT coastal
product with a spatial resolution of 0.25°× 0.25° (but with
data gaps). The gridded product incorporated measurements
with quality flags A and B (uncertainty of 2 µatm) and C and
D (uncertainty of 5 µatm) (Bakker et al., 2016). Over the pe-
riod of 1993–2021, the SOCAT product encompassed 55 347
grid cells within our study area (Fig. 2), accounting for ap-
proximately 2.9 % of the total number of grid cells in the
NAACOM. The observational data show a lower sampling
density in the areas north of Cape Cod and the western and
southern GoMx (blue box in Fig. 2). The temporal distri-
bution of the samples exhibits a notable bias, with reduced
collection during winter (Fig. 2d). Despite these spatial and
temporal heterogeneities, the SOCAT observations provide
coverage across all subregions and seasons of the NAACOM
(Fig. 2). This comprehensive, albeit sparse, coverage facili-
tates the reconstruction of the f CO2 and pCO2 field through
interpolation and regression techniques.

2.2 Model design

The procedures for developing and reconstructing the pCO2
product are illustrated in Fig. 3. Initially, the input variables
and sea surface f CO2 data were matched to create a com-
prehensive dataset. To maintain consistency with the SO-
CAT database, which reports seawater CO2 concentrations
as f CO2, we adopted f CO2 as the model training label and
first-step output variable in our model. During the model
development phase, f CO2 measurements served as train-
ing labels for the machine-learning algorithm. The matched
dataset was then divided into two sets: X1, encompassing
the periods 1993–2003 and 2006–2021, and X2, covering
2004–2005. Set X1 was randomly subdivided further, with
80 % allocated for model training and the remaining 20 %
for the validation test. Set X2 served as an independent test
set. The model training set (80 % of X1) was used to de-
velop a two-step RFR–LR (random forest regression–linear
regression) model. The RFR model is designed to capture
complex, nonlinear relationships between the input variables
and the target variable (i.e., f CO2), while the LR model is
subsequently applied to mitigate potential systematic biases
in RFR-derived f CO2 values arising from spatiotemporal
heterogeneities in the SOCAT observational dataset (Fig. 2).
RFR, an ensemble learning technique, combines multiple de-
cision trees to produce more accurate and stable predictions
(Breiman, 2001; Lu et al., 2019). Each decision tree in the
RFR model is trained on a randomly selected subset of the
input data, with the final prediction derived from the average
output of all the trees. This approach mitigates overfitting and
enhances the generalization performance of the model, mak-
ing it particularly suitable for large datasets with complex,

nonlinear variable relationships. The RFR model was trained
using 10-fold cross-validation with optimized hyperparame-
ters, including a minimum leaf size of 1, a bagging method
for ensemble aggregation, and 300 learning cycles after tun-
ing. After RFR model training, the LR model was applied to
the RFR-estimated f CO2 (f CO2est) output to make sure that
the RFR model was not systematically biased:

f CO2obs = a× f CO2est+ b+ ε, (1)

where f CO2obs is the observed f CO2 from SOCAT, a is the
linear regression coefficient, b is the intercept, and ε is the
residual that the linear model cannot resolve. This additional
step was implemented to mitigate potential systematic bias
in the RFR model that could arise from areas with a higher
sampling density, thereby ensuring a more balanced repre-
sentation across the entire study region. The comparison be-
tween the estimated pCO2 before and after LR calibration
is presented in Appendix A. The calibration was applied to
each grid cell individually. To increase the data pool for lin-
ear regression, samples within a 5× 5 grid window in space
(i.e., 1.25°× 1.25°) were aggregated for LR model develop-
ment. As the available measurements could not cover every
grid cell and were insufficient to produce continuous spatial
maps of the calibration coefficients (i.e., a and b in Eq. 1),
we employed a locally interpolated regression strategy sim-
ilar to that of Carter et al. (2018). Mathematically, given the
spatial and temporal continuity of f CO2est and f CO2obs, the
coefficients a and b must also be continuous in space and
time. Therefore, we linearly interpolated the coefficients a

and b across the NAACOM. The interpolated coefficients
were subsequently used to adjust the RFR-derived f CO2est.

The validation set, comprising 20 % of X1 randomly sam-
pled from 1993–2003 and 2006–2021, serves as a critical
monitoring step for model evaluation. This subset plays two
key roles: first, it tests hyperparameter tuning by provid-
ing independent performance metrics on unseen data, and
second, it helps detect potential overfitting by monitoring
the divergence between training and validation performance.
While the validation set itself cannot prevent overfitting, it
enables the detection of overfitting patterns when the perfor-
mance of the model improves on training data but deterio-
rates on validation data. Through this continuous evaluation
process, the validation set ensures more robust model devel-
opment and helps achieve better generalization capabilities.

The independent test set (X2), covering the years 2004–
2005, serves as a critical evaluation period specifically de-
signed to assess the reliability of the model in predicting
values for years that were completely excluded from both
the training and validation phases. Because we intentionally
withhold these 2 years from model development, this ap-
proach directly tests the capability of the model to generate
reliable predictions and fill temporal data gaps for periods
without observational data.

Finally, the trained model is applied to all the satellite and
reanalysis data to generate the final gap-free reconstructed
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Figure 2. Spatial distribution of sea surface pCO2 observations from the SOCAT database (2023 edition) in the NAACOM across the four
seasons from 1993 to 2021. Grid samples with data were counted by season: (a) spring (March to May), (b) summer (June to August), (c) fall
(September to November), and (d) winter (December to February). The study region is divided into northern (blue box) and southern (red
box) areas at approximately 41.5° N (Cape Cod). The number and percentage of the grid samples are indicated for each region by season.
The color scale represents pCO2 values (µatm). A higher sampling density is evident in the southern area. Winter shows the lowest overall
sampling coverage. Note that the SOCAT database provides quality-controlled f CO2 measurements as the default parameters, which are
subsequently converted into pCO2 using Eq. (2).

f CO2 data. As most products reported seawater CO2 con-
centrations as pCO2, we subsequently converted the recon-
structed f CO2 values into pCO2 using the following equa-
tion (Takahashi et al., 2020), and our final product reports
both f CO2 and pCO2:

pCO2 = f CO2× (1.00436− 4.669× 10−5
×SST). (2)

2.3 Regression model input variables from satellite and
reanalysis

The input variables for training the regression model are lon-
gitude (long), latitude (lat), month, sea surface temperature
(SST), sea surface salinity (SSS), sea surface height (SSH),
and atmospheric pCO2 (pCO2air). Longitude, latitude, and
month serve as spatiotemporal predictors, enabling the algo-
rithm to identify and capture regional and seasonal variability
in f CO2 within the study area (Su et al., 2020; Yang et al.,
2024). SST, SSS, and SSH are critical variables that charac-
terize the physical and biogeochemical ocean settings, which
play a crucial role in determining the spatial and tempo-
ral variability of f CO2. pCO2air represents the atmospheric
forcing in the air–sea CO2 exchange. Including pCO2air is
essential for accurately assessing the decadal pCO2 trend.

SST data were obtained from the National Oceanic and
Atmospheric Administration (NOAA) Optimum Interpola-

tion Sea Surface Temperature (OISST) v2.1 product (Huang
et al., 2021). The OISST dataset is a global gridded SST
analysis that blends observations from various sources, in-
cluding satellites, ships, and buoys. The dataset employs an
optimum interpolation technique to combine these observa-
tions and generate a daily SST field at a spatial resolution of
0.25°× 0.25°. For this study, the daily SST data were aver-
aged to create a monthly product.

SSS data were obtained from the Simple Ocean Data As-
similation (SODA) v3.15.2 product (Carton et al., 2018).
SODA is a comprehensive reanalysis dataset that integrates a
global ocean model with observational data to estimate ocean
state variables consistently. The SODA system assimilates
observations from multiple sources, including floats, moor-
ings, and ship-based measurements, thereby constraining the
model output and enhancing the accuracy of the represented
ocean physical properties, including SSS. The SODA v3.15.2
product offers monthly SSS data with a temporal resolution
of 1 month and a spatial resolution of 0.5°× 0.5°, which
were linearly interpolated to a 0.25°× 0.25° grid resolution
to maintain consistency with other input variables and the
gridded SOCAT f CO2 data. Note that such interpolation
could potentially introduce additional errors. We doubled the
SSS uncertainty in the region, assuming that this would en-
compass its true uncertainty (see Appendix B).
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Figure 3. A flowchart of the two-step machine-learning regression model for generating the reconstructed pCO2 product. The grey boxes
represent the input and output datasets. The blue boxes illustrate the model training, validation testing, and independent test processes. The
orange boxes represent the final trained model for predicting the reconstructed product. The two models in the orange boxes are identical.
The training data, consisting of paired input variables (longitude, latitude, month, sea surface temperature (SST), sea surface salinity (SSS),
sea surface height (SSH), atmospheric pCO2 (pCO2air), and the corresponding sea surface f CO2 (f CO2sea) labels), are divided into two
sets: X1 (1993–2003 and 2006–2021) and X2 (2004–2005). X1 is randomly divided further into subsets for the model training set (80 %) and
the validation set (20 %). The predictive model combines a random forest regression (RFR) algorithm and a linear regression (LR) algorithm.
The trained and validated regression model is then applied to all satellite and reanalysis data (without gaps) to generate the 3D reconstructed
f CO2sea product, which is then converted into pCO2sea with satellite SST data.

SSH data were extracted from the Global Ocean Grid-
ded L4 Sea Surface Heights (CMEMS, 2021) created by
the Copernicus Marine Environment Monitoring Service
(CMEMS). Since 1993 (ongoing) this product has provided
daily SSH data derived from altimeters with a spatial res-
olution of 0.25°× 0.25°. Daily SSH data were averaged to
monthly means.

pCO2air data converted from the mole fraction of CO2
in dry air (xCO2air) were downloaded from the NOAA Ma-
rine Boundary Layer (MBL) reference product (Lan et al.,
2023). The MBL reference product provides weekly zonal
average xCO2air measurements from a global observation
network. The xCO2air data were linearly interpolated to the
same spatial and temporal resolution as the other input vari-
ables (0.25°× 0.25°, monthly). xCO2air was converted into
pCO2air with the equation

pCO2air = xCO2air× (P −pw), (3)

where P is the total atmospheric pressure on the sea surface,
which was downloaded from the fifth-generation reanalysis
(ERA5) of the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Hersbach et al., 2019), and pw is the
water vapor pressure, which was calculated using the formula
of Weiss and Price (1980), SST from OISST, and SSS from
SODA.

2.4 Evaluation of the models

The accuracy of the model outputs was assessed using sev-
eral statistical metrics, including the coefficient of determi-
nation (R2), root-mean-square error (RMSE), mean absolute
error (MAE), and mean bias error (MBE). These metrics
were calculated for the training and validation set phases as
well as for the independent validation set:

R2
= 1−

∑N

i

(
yobs,i − yest,i

)2
/
∑N

i

(
yobs,i − yobs

)2
, (4)

RMSE=

√
1
N

∑N

i

(
yobs,i − yest,i

)2
, (5)

MAE=
1
N

∑N

i

∣∣yobs,i − yest,i
∣∣ , (6)

MBE=
1
N

∑N

i

(
yobs,i − yest,i

)
, (7)

where i denotes the ith sample, yobs and yobs are the observed
pCO2 values from SOCAT and their average, yest represents
the predicted pCO2 values from the final model, and N is the
total number of matched samples.

2.5 Uncertainty of the reconstructed pCO2

The uncertainty of the estimated pCO2 in our product for
each grid cell was accumulated from four sources of un-
certainties: the direct pCO2 measurement uncertainty from
SOCAT (uobs), gridding uncertainty (ugrid), mapping uncer-
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tainty (umap), and the uncertainty accumulated from the input
variables (uinputs). The first three sources of uncertainty were
calculated according to the approach used by earlier recon-
structed pCO2 products (Landschützer et al., 2014; Roobaert
et al., 2024a; Sharp et al., 2022). uobs is inherited from the
SOCAT observations. The SOCAT database uses discrete
samples with quality flags A and B (accuracy <2 µatm) and C
and D (accuracy <5 µatm) to create the gridded file. Adopt-
ing a conservative approach, we used the maximum uobs of
5 µatm. ugrid was calculated as the standard deviation of the
samples used to calculate the gridded f CO2 in each grid
cell. umap is introduced by reconstructing the pCO2 using
the RFR–LR model. It was evaluated as the RMSE between
the reconstructed pCO2 and the observed pCO2 values fol-
lowing Roobaert et al. (2024a) and Sharp et al. (2022). Given
that the derivation of uobs, ugrid, and umap is contingent upon
SOCAT observations, these three uncertainties and the total
uncertainty upCO2 are reported on a subregional basis.

In addition to these three sources of uncertainty, this
study incorporated cumulative uncertainties from input vari-
ables (uinputs), including SST, SSS, SSH, and pCO2air. These
satellite-derived or reanalysis-based variables inherently pos-
sess uncertainties that propagate nonlinearly through the re-
gression model, ultimately affecting the estimated pCO2 val-
ues (Wang et al., 2021, 2023). We employed a Monte Carlo
simulation to calculate uinputs. For each input variable (SST,
SSS, SSH, and pCO2air), we added white noise following a
normal distribution N (0,uxi

), where uxi
is the uncertainty of

the respective input variable xi . We then recalculated pCO2
using these noise-added inputs and determined the resulting
changes in pCO2. This process was repeated 100 times for
each input variable, and the resulting uncertainty in pCO2
from each variable was calculated as the standard deviation
of the differences between the original reconstructed pCO2
and the pCO2 values after adding noise to each grid cell. The
final uinputs was computed as the square root of the quadratic
sum of these individual uncertainties from the four input
variables. Detailed procedures for determining uinputs are de-
scribed in Appendix B.

Assuming that these sources are independent, the uncer-
tainty of the estimated gridded pCO2 in our product, upCO2 ,
was calculated using the error propagation (Hughes and
Hase, 2010; Taylor, 1997):

upCO2 =

√
u2

obs+ u2
grid+ u2

map+ u2
inputs. (8)

2.6 Comparison with the global reconstructed pCO2
product

The ReCAD-NAACOM-pCO2 product was evaluated
through comparisons with seven reconstructed pCO2 prod-
ucts developed for the global ocean and used in the Global
Carbon Budget 2023 edition (Friedlingstein et al., 2023)
and one reconstructed pCO2 product specifically developed
for the global coastal ocean (ULB_SOMFNN_coastal_v2;

Roobaert et al., 2024a). These data products reconstructed
pCO2sea data using different machine-learning algorithms.
Detailed information on the products is summarized in Ta-
ble 1.

3 Results and discussion

3.1 Evaluating the regression model performance

Our product employs a two-step RFR–LR algorithm to re-
trieve pCO2. The initial RFR step accurately captures most
seasonal and decadal pCO2 variations across all six subre-
gions (Appendix A). When comparing only at matching grid
cells where SOCAT measurements are available, the differ-
ences (N = 12) in the monthly mean climatology between
the SOCAT- and RFR-derived pCO2 are less than 2 µatm
on average, with standard deviations below 5 µatm across all
the subregions (Fig. A1). However, the RFR-derived pCO2
shows lower accuracy in capturing long-term pCO2 changes
in the GoMe and SAB. The subsequent LR calibration im-
proves the performance significantly: R2 values increase
from 0.69 to 0.81 in the GoMe and from 0.83 to 0.93 in the
SAB, while the RMSE decreases from 12.43 to 10.51 µatm in
the GoMe and from 10.83 to 8.12 µatm in the SAB (Fig. A2).

The ReCAD-NAACOM-pCO2 product demonstrated ro-
bust performance and high accuracy in capturing pCO2 vari-
ability across the NAACOM (Fig. 4). During the model
training phase, the product achieved an R2 of 0.96, an
RMSE of 9.1 µatm, an MAE of 5.92 µatm, and an MBE of
0.05 µatm (Fig. 4a). The model demonstrated comparable
performance metrics during the validation phase (Fig. 4b).
To further evaluate the generalizability and robustness of
the model, we also conducted an independent test using
data from 2004 to 2005 in which not all the data samples
were included in the model training and validation sets. Dur-
ing this independent test phase, the pCO2 product main-
tained high accuracy, with R2

= 0.64, RMSE= 27.2 µatm,
MAE= 18.86 µatm, and MBE= 0.07 µatm (Fig. 4c). Ad-
ditionally, most independent validation samples were dis-
tributed around the 1 : 1 correspondence line, proving the
ability of the models to predict pCO2 across unsampled spa-
tial and temporal domains without overfitting. The model
consistently demonstrated strong performance during the
training, validation, and independent test phases across all
the subregions (Table 2). Overall, compared with all the
available samples in SOCAT, it achieved an R2 of 0.92, an
RMSE of 12.70 µatm, an MAE of 7.55 µatm, and an MBE
of 0.13 µatm for the entire NAACOM (Table 2), highlighting
the generalizability of the ReCAD-NAACOM-pCO2 prod-
uct and robustness in effectively capturing the variability in
pCO2 and providing reliable predictions of pCO2 across the
studied regions.
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Table 1. References for the global pCO2 products used for comparison with ReCAD-NAACOM-pCO2 in this study. The abbreviations in the
Methods column are RFRE for random-forest-based regression ensemble, SOM-FFN for self-organizing map–feed-forward network, MLR
for multiple linear regression, FFNN for feed-forward neural network, XGB for the eXtreme Gradient Boosting algorithm, and GRaCER for
geospatial random-cluster ensemble regression.

Data Method Type Period Resolution Source

Open-ocean
product

MPI_SOM-FFN_v2022 SOM-FNN 1982–2021 1°× 1°, monthly Landschützer et al. (2017)
Jena-MLS MLR 1951–2021 2°× 2°, monthly Rödenbeck et al. (2022)
CMEMS-LSCE-FFNNv2 Ensemble of nonlinear

models
1985–2021 1°× 1°, monthly Chau et al. (2022)

LDEO-HPD XGB 1985–2018 1°× 1°, monthly Gloege et al. (2022)
NIES-NN FFNN 1980–2020 1°× 1°, monthly Zeng et al. (2014)
JMA-MLR MLR 1998–2022 1°× 1°, monthly Iida et al. (2021)
OS-ETHZ-GRaCER GRaCER 1982–2020 1°× 1°, monthly Gregor and Gruber (2021)

Coastal-ocean
product

ULB–SOM–FFN–coastalv2 SOM-FNN 1982–2020 0.25°× 0.25°, monthly Roobaert et al. (2024a)

Figure 4. Evaluation of the regression model for reconstructing the ReCAD-NAACOM-pCO2 product. The density scatterplots compare
the product-estimated pCO2 (pCO2est) with the in situ SOCAT observations (pCO2obs) during the (a) model training phase (80 % of the
samples during the periods 1993–2003 and 2006–2021), (b) validation phase (20 % of the samples during the periods 1993–2003 and 2006–
2021), and (c) independent test phase (samples during the period 2004–2005). The statistical metrics include the coefficient of determination
(R2), root-mean-square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and number of samples (N ). The color bar
represents the number of data points in each bin.

3.2 Spatial distribution of the product bias

The ReCAD-NAACOM-pCO2 product exhibited a negligi-
ble area-mean bias of +0.13 µatm with a standard deviation
of 12.70 µatm when compared to all SOCAT observation grid
cells across the entire NAACOM (Fig. 5 and Table 2). This
small average difference suggests no consistent overestima-
tion or underestimation by the regression model, indicating
the reliability of the product in estimating the monthly and
annual mean climatology of pCO2 across the entire NAA-
COM region.

While the area-averaged difference is small, the differ-
ences are distributed heterogeneously in space. Larger dif-
ferences (absolute difference >10 µatm) tend to occur in
nearshore regions, particularly along the coastlines of the
GoMx and SAB, as well as in northern areas such as the
GoMe, SS, and GStL&GB (Fig. 5). These regional varia-
tions can be attributed to complex coastal processes such as

terrestrial inputs, sparse observations in the northern areas
(Lavoie et al., 2021; Rutherford et al., 2021; Salisbury and
Jönsson, 2018), and less accurate satellite observations in the
nearshore regions (Song et al., 2023). Conversely, smaller
differences (absolute difference <2.5 µatm) are observed in
the central parts of the GoMx, offshore regions of the SAB
and MAB, and some nearshore regions of the SS and GB,
which is likely due to more stable oceanic conditions in those
regions. The regional MBEs for different machine-learning
development phases (training, validation, and test sets) are
detailed in Table 2. Despite these regional differences, the
MBEs of both the validation set (−1.0 to 1.0 µatm) and the
independent test set (−4.5 to 7.5 µatm) demonstrate minimal
values across the subregions (Table 2), underscoring the ef-
fectiveness of the product in capturing the broader pCO2 pat-
terns across the NAACOM.
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Table 2. Performance of the regression model during the model training, validation, and independent test phases across the different sub-
regions. The metrics include the coefficient of determination (R2), root-mean-square error (RMSE), mean absolute error (MAE), and mean
bias error (MBE). The subregions are the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine
(GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB).

Region Type R2 RMSE (µatm) MAE (µatm) MBE (µatm)

GStL&GB Training set 0.97 7.81 5.31 0.33
Validation set 0.91 13.57 8.83 0.44
Independent test set 0.76 25.23 16.82 −5.64

All 0.94 11.48 6.92 −0.15

SS Training set 0.96 9.35 6.61 −1.13
Validation set 0.90 13.27 9.41 −0.90
Independent test set 0.50 30.92 24.12 −3.50

All 0.90 13.82 8.89 −1.32

GoMe Training set 0.95 10.62 7.72 0.14
Validation set 0.81 20.12 14.35 0.83
Independent test set 0.49 31.66 23.95 3.72

All 0.90 14.91 9.97 0.49

MAB Training set 0.97 9.39 6.60 −0.06
Validation set 0.84 19.49 13.47 −0.19
Independent test set 0.56 37.93 28.53 7.13

All 0.93 13.26 8.44 0.08

SAB Training set 0.96 6.76 4.24 0.30
Validation set 0.87 12.03 6.98 0.98
Independent test set 0.73 23.60 16.75 1.33

All 0.91 10.63 5.95 0.52

GoMx Training set 0.94 9.13 5.14 0.08
Validation set 0.76 19.08 9.82 0.74
Independent test set 0.46 14.70 7.64 −4.49

All 0.90 11.86 6.10 0.09

NAACOM Training set 0.96 9.11 5.92 0.05
Validation set 0.84 17.89 11.04 0.50
Independent test set 0.64 27.17 18.86 0.07

All 0.92 12.70 7.55 0.13

3.3 Evaluating the capacity of the product to capture
pCO2 seasonality

One of the primary objectives of this product is to capture the
seasonal cycle of pCO2 across the NAACOM region. Fig-
ure 6 showcases the applicability of the product in captur-
ing the pCO2 seasonal cycles across the southern and north-
ern areas of the NAACOM (red and blue boxes in Fig. 2).
The comparison of monthly climatologies between the gap-
filled product and SOCAT observations reveals strong agree-
ment in the southern region despite the coverage differ-
ence, with the product-estimated monthly means being only
3.05± 5.60 µatm higher than those of SOCAT (Fig. 6a) and

suggesting that our product effectively captures the seasonal
cycle where data are abundant.

In the northern region where SOCAT data are sparse, the
gap-filling ability of the product is also demonstrated well.
In the northern region, the area-averaged monthly pCO2 cli-
matology calculated from the continuous reconstructed prod-
uct is 22± 11.12 µatm lower than the SOCAT observations,
which can be attributed to the limited observational coverage
in this area. This area is characterized by sparse sampling,
with the observational density approximately 50 % lower
than in the southern region (Fig. 2) due to the smaller area
and limited cruise coverage. For instance, the GStL region
only has one summer cruise in the SOCAT database (Fig. 2b),
and the SS and GoMe have particularly sparse winter obser-
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Figure 5. Spatial distribution of the MBE between the ReCAD-NAACOM-pCO2 product and SOCAT observations across the NAACOM.
The MBE is calculated for each grid cell as the average difference between product estimates and SOCAT observations. Positive values
(red) indicate product overestimation, while negative values (blue) indicate underestimation relative to SOCAT. Regional MBE values with
1 standard deviation are shown for each subregion, corresponding to the values in the last column of Table 2. The overall bias error for the
NAACOM is +0.13± 12.97 µatm. Following Fennel et al. (2019), the study region is divided into six subregions using straight orange lines:
the GoMx, SAB, MAB, GoMe, SS, and GStL&GB. The thick black line is the 200 m isobath, which roughly marks the shelf break and
typically defines the continental shelf boundary.

Figure 6. Monthly mean climatology of pCO2 in the southern and northern areas of the NAACOM from 1993 to 2021. The subregions are
(a) the southern areas with the red box in Fig. 2 and (b) the northern areas with the blue box in Fig. 2. Two data representations are shown:
(1) SOCAT observations (black curves), which may be influenced by missing data, and (2) the complete gap-filled product output (red
curves). The error bars denote 1 standard deviation of the monthly mean climatology of pCO2. The numbers indicate the mean difference
(± 1 standard deviation) in the monthly climatological pCO2 calculated from the two sources, with positive values indicating higher product
estimates compared to SOCAT observations. The x axis shows the months (1–12, where 1 represents January), and the y axis shows pCO2
(µatm).

vations (Fig. 2d). The higher latitudes typically exhibit larger
seasonal amplitudes in pCO2, making the limited sampling
from SOCAT particularly problematic for accurate character-
ization. Our gap-free product provides comprehensive spa-
tial and temporal coverage, enabling more robust analysis of
pCO2 patterns and variability in these historically undersam-
pled regions.

Over the 29-year period, the product predicts smaller
monthly standard deviations in the southern region (less than
40 µatm; error bars in Fig. 6a), suggesting higher model ac-

curacy and less interannual variability in these areas. Con-
versely, larger monthly standard deviations are observed in
the northern areas, suggesting potentially lower accuracy and
remarkable interannual variability. However, the larger inter-
annual variability in these areas may be an artifact of the lim-
ited observational data available for regression model train-
ing, resulting in greater uncertainty in the predictions. De-
spite differences in the mean monthly climatology, the sim-
ilar seasonal pCO2 cycles calculated from SOCAT and the
reconstructed product demonstrate the ability of the ReCAD-
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NAACOM-pCO2 product to represent seasonal pCO2 vari-
ability across diverse coastal environments. Nevertheless,
there exist larger differences between the observations and
reconstructed pCO2 in some months and regions (Fig. 6b),
highlighting the importance of the gap-free product in an un-
biased understanding of regional carbon cycles (Ren et al.,
2024). Detailed sea surface pCO2 seasonal cycles and their
controlling mechanisms across different subregions of the
NAACOM will be presented in our subsequent work.

3.4 Evaluating the ability of the products to capture
regional variation by comparing them to global
products

The ReCAD-NAACOM-pCO2 product demonstrates the ca-
pability to resolve fine-scale regional spatial distributions of
pCO2. Figure 7 illustrates the spatial distribution of the an-
nual mean climatology of pCO2 across the NAACOM as ob-
served by SOCAT and predicted by different global open-
and coastal-ocean pCO2 products. Despite being affected
by missing data, SOCAT observations (Fig. 7a) reveal sig-
nificant regional variations in pCO2. In the Louisiana Shelf
(LAS) estuary plume region (box 1 in Fig. 7), pCO2 values
consistently remain below 340 µatm, while the West Florida
Shelf (WFS; box 2 in Fig. 7) exhibits elevated values exceed-
ing 400 µatm. These contrasting patterns have been reported
in previous regional studies (Kealoha et al., 2020; Robbins et
al., 2018; Wu et al., 2024b).

The ReCAD-NAACOM-pCO2 product demonstrates su-
perior alignment with SOCAT observations in capturing
those regional features that have been reported in previ-
ous observation-based studies (Fig. 7b), accurately repre-
senting the low pCO2 values in the LAS Mississippi River
plume (box 1) and the elevated pCO2 levels in the WFS
(box 2). In contrast, the global reconstructions of pCO2,
represented by the ensemble of seven open-ocean pCO2
products (Fig. 7c), face challenges in resolving these re-
gional pCO2 variations, as previously discussed in Wu
et al. (2024b). The coastal pCO2 product from Roobaert
et al. (2024a; ULB_SOMFFN_coastal_v2) also captures
some small-scale structures like the low pCO2 in the LAS
(Fig. 7d), but the ReCAD-NAACOM-pCO2 product exhibits
values that are closer to the observations. In the northern
region (box 3), the ReCAD-NAACOM-pCO2 product pre-
dicts higher pCO2 levels that are closer to observations in
the nearshore region (Fig. 7b). This is not surprising, as
ULB_SOMFNN_coastal_v2 is a global product known for
its high accuracy on the global average.

In addition to these previously documented regional vari-
ations, our product reveals several notable features not pre-
viously captured by observations or other existing products.
For instance, the GoMe displays intermediate pCO2 levels
of around 380 µatm, which is distinctly higher than surround-
ing waters at comparable latitudes, a feature previously doc-
umented by a pCO2 product reconstructed using multiple

linear regression (Signorini et al., 2013) and 5-year (2004–
2009) mooring and cruise data (Vandemark et al., 2011).
However, this contradicts two other studies based on numeri-
cal models (Cahill et al., 2016; Rutherford et al., 2021). In
the southern GStL (S.GStL; box 4 in Fig. 7), pCO2 val-
ues are slightly higher compared to adjacent waters at simi-
lar latitudes, aligning with high nutrient concentrations typi-
cally observed in these river-influenced waters (Lavoie et al.,
2021). These regional patterns could not be captured com-
pletely by the global products (Fig. 7c and d). The ability
of the ReCAD-NAACOM-pCO2 product to resolve such re-
gional features demonstrates its potential value for investi-
gating coastal carbon dynamics and their responses to local
and regional forcing factors in the NAACOM.

3.5 Evaluating the capacity of the product to detect
decadal linear trends of pCO2

Using pCO2 products to accurately reconstruct pCO2 lin-
ear trends in coastal regions presents significant challenges
due to the high spatial heterogeneity of coastal pCO2 dy-
namics. This heterogeneity often leads to sea surface pCO2
changes that deviate from atmospheric trends (Laruelle et al.,
2018). Even when utilizing similar observational datasets,
derived products may not consistently reflect the underlying
trends. For instance, Wu et al. (2024b) examined the ability
of various products to reflect pCO2 changes in the GoMx,
a region where pCO2 trends exhibit significant spatial vari-
ability. Despite this heterogeneity, seven global open-ocean
products (listed in Table 1) indicate trends similar to atmo-
spheric pCO2 across the entire GoMx without regional dif-
ferences. In contrast, the GoMx-specific regional product de-
veloped by Chen and Hu (2019) demonstrates no significant
overall trend. The discrepancy in trend detection stems pri-
marily from the design of the regression model and the se-
lection of the input variables. These factors are critical in
capturing the complex spatiotemporal variability of coastal
pCO2 and its long-term evolution.

To assess the capability of the product in resolving decadal
pCO2 trends, we conducted an analysis of the pCO2 evolu-
tion using three distinct regions within the NAACOM (three
boxes in Fig. 7) as representative examples (Fig. 8). Decadal
trends of deseasonalized time series were calculated follow-
ing the protocol established by Sutton et al. (2022). The LAS
(box 1 in Fig. 7) has been identified as an increasing CO2
sink characterized by a negative pCO2 rate increase from
2002 to 2021 (Wu et al., 2024b). Our product results for
the extended period of 1993–2021 indicate that pCO2 in-
creased at a rate of +0.44± 0.11 µatm yr−1 (Fig. 8a). This
rate is significantly lower than the observed atmospheric
pCO2 increase in this region during 2002–2021, which is
approximately +1.8 µatm yr−1. These findings corroborate
our previous conclusion that the LAS is an increasing CO2
sink, demonstrating the capability of our product in revealing
long-term pCO2 trends in this dynamic river plume region,
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Figure 7. Spatial distribution of the annual mean pCO2 climatology in the NAACOM from different sources. (a) SOCAT observations,
(b) the ReCAD-NAACOM-pCO2 product, (c) the ensemble mean of the seven global open-ocean pCO2 products listed in Table 1, and
(d) the coastal pCO2 product ULB_SOMFFN_coastal_v2 (Roobaert et al., 2024a). The black contour delineates the coastal-ocean margin.
The three boxes represent subregions in the NAACOM: box 1 for the Louisiana Shelf (LAS), box 2 for the West Florida Shelf (WFS), box 3
for the entire northern region, and box 4 for the southern GStL (S.GStL). Mean pCO2 ± standard deviations of all the grid cells are provided
for each dataset. The color scale represents pCO2 (µatm).

extending the analysis period by nearly a decade compared
to previous studies. In contrast, the WFS (box 2 in Fig. 7) ex-
hibits an accelerated pCO2 increase that is faster than the at-
mospheric pCO2 of around +2.0 µatm yr−1 (Fig. 8b), align-
ing with observations reported by Robbins et al. (2018), who
found a transition from a CO2 sink to a source in this region
during the 1990s.

Both ReCAD-NAACOM-pCO2 and SOCAT consistently
report a pCO2 trend of around+2.3 to+2.5 µatm yr−1 in the
northern region (box 3 in Fig. 7) over 1993–2021 (Fig. 8c),
which is faster than the atmospheric pCO2 increase (around
+2.0 µatm yr−1), suggesting that these areas are becoming a
decreasing CO2 sink. However, limited observational data in
this area necessitate cautious interpretation and warrant fur-
ther validation in future research. Overall, the spatiotempo-
ral heterogeneity in surface-ocean pCO2 trends across the
NAACOM underscores the importance of long-term mon-
itoring to elucidate the drivers of these trends, particularly
in regions influenced by major current systems and in areas
with limited observational data.

3.6 Evaluating the uncertainty of the product

The uncertainty of the reconstructed pCO2 values in each
grid cell was estimated by accumulating uncertainties from
mapping (umap), gridding (ugrid), measurement (uobs), and
input variables (uinputs; see Sect. 2.5 for further details on the
calculation). To maintain a conservative estimate, we adopted
the larger value of 5 µatm as uobs for all the data points. The
gridded f CO2 values from SOCAT are reported as the aver-
ages of all samples collected within each grid cell. Accord-
ingly, ugrid was quantified as the standard deviation of sam-
ples within each grid cell, calculated across six subregions.
Following the previous literature (Roobaert et al., 2024a;
Sharp et al., 2022), umap was calculated using the RMSE val-
ues of the model validation phase reported in Table 2. The un-
certainty from the validation set (20 % of X1) was chosen for
its sample size that was larger than the independent test set
(X2) and for consistency with the 10-fold cross-validation re-
sults while avoiding potential underestimation from the train-
ing set. uinputs was calculated using a Monte Carlo simulation
(Appendix B). These four sources of uncertainty were evalu-
ated across different subregions of the NAACOM, as shown
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Figure 8. Decadal linear trends of sea surface pCO2 in three regions of the NAACOM from 1993 to 2021. The blue and red dots are monthly
average pCO2 values (deseasonalized) calculated from SOCAT observations and the reconstructed ReCAD-NAACOM-pCO2, respectively.
The thick lines are linear fitted regression lines. The three regions are the boxes in Fig. 7: the (a) LAS (northern Gulf of Mexico shelf river
plume region), (b) WFS, and (c) northern areas. Linear trends are calculated following the protocol established by Sutton et al. (2022). The
numbers in parentheses are the number of months with data and p values.

in Table 3. umap contributes the largest portion to the total
number of uncertainties across all the sub-subregions, with a
maximum value of up to 20.12 µatm in the GoMe. Overall,
the ReCAD-NAACOM-pCO2 product demonstrates uncer-
tainties ranging from 16 to 28 µatm across the six subregions
and an average uncertainty of 23.25 µatm for the entire NAA-
COM.

Our uncertainty estimation employs a conservative estima-
tion using maximum values at the calculation step. This ap-
proach likely overestimates the true uncertainty. Despite this
conservative method, our calculated uncertainty for the At-
lantic margins is comparable to the 43.4 µatm reported by
Sharp et al. (2022) for areas within 100 km of the North
American Pacific margins, suggesting good performance of
our product. It is important to note that our uncertainty cal-

culation assumed independence among all the sources, which
is a simplification. Recent research has highlighted that these
uncertainties are often correlated (Ford et al., 2024). Future
studies should consider these inter-variable correlations to re-
fine uncertainty estimates. In addition, the uncertainties re-
ported in this section and provided in the NetCDF file rep-
resent the propagated errors for individual pCO2 values in
each grid cell. Methods to calculate uncertainties in regional
averages of pCO2 or air–sea CO2 fluxes over specific spatial
and temporal domains are detailed in Roobaert et al. (2024a)
and Landschützer et al. (2014).
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Table 3. Uncertainty estimates for the ReCAD-NAACOM-pCO2
product across the different subregions of the NAACOM. uobs,
ugrid, umap, and uinputs represent the measurement uncertainty,
gridding uncertainty, mapping uncertainty, and uncertainty accu-
mulated from input variables, respectively (see Sect. 2.5 for further
details). upCO2 is the total combined uncertainty (µatm). The subre-
gions are the GoMx, SAB, MAB, GoMe, SS, and GStL&GB.

Region uobs ugrid umap uinputs upCO2

GStL&GB 5.00 15.44 13.57 5.57 21.88
SS 5.00 15.37 13.27 6.18 21.80
GoMe 5.00 16.05 20.12 7.51 27.27
MAB 5.00 16.14 19.49 5.97 26.48
SAB 5.00 8.29 12.03 5.99 16.57
GoMx 5.00 10.38 19.08 5.55 22.97

NAACOM 5.00 12.69 17.89 5.86 23.25

3.7 Challenges and limitations

Even though ReCAD-NAACOM-pCO2 resolves regional
pCO2 variability with high accuracy in the NAACOM, this
product still has room for improvement in the future. Poten-
tial areas of improvement include the 0.25° spatial resolu-
tion, which is inadequate for resolving submesoscale vari-
ability at the scale of 0.1–10 km (McWilliams, 1985). Fur-
thermore, during the independent validation phase, the accu-
racy of the model-predicted values decreased in the GoMe
(R2
= 0.49) and GoMx (R2

= 0.46) (Table 2), which may
be due to the complex biological and physical conditions in
the estuary plume regions in these two gulfs. In this study,
we opted not to include chlorophyll-a (Chl-a) concentra-
tions and wind speeds as input variables for model training
and prediction. This decision was primarily due to the lim-
ited temporal coverage of satellite-derived Chl-a data, which
only extends back to 1997 with the launch of the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) satellite (O’Reilly et
al., 1998). The inclusion of Chl-a would have restricted the
temporal range of our model, potentially limiting its ability
to capture long-term trends and variability in pCO2. Future
versions of our model will aim to address this limitation.
One potential approach is to develop a two-phase model: one
phase for the period before 1997 without Chl-a data and an-
other for the post-1997 period incorporating Chl-a informa-
tion. Alternatively, we may explore methods to reconstruct
historical Chl-a data or use proxy variables that correlate
with biological productivity and are available for the entire
study period.

In our previous work, we demonstrated that incorporating
wind speeds and sea surface roughness data derived from
synthetic aperture radar (SAR) could enhance model per-
formance in predicting pCO2 at submesoscale resolutions
(Wang et al., 2024). In this work, we evaluated the inclusion
of wind speed as an input variable in our model. However,
at the 0.25° resolution employed here, the addition of wind

speed data did not significantly improve the model perfor-
mance (it only increased the R2 by 0.1). Moreover, when
using the same Monte Carlo simulation approach applied
to other variables, incorporating wind speeds would intro-
duce an additional 6 µatm uncertainty to pCO2 estimates,
doubling the input-related uncertainties. Consequently, we
excluded wind speeds from our regression model to reduce
input-related uncertainties. Despite this omission, our prod-
uct demonstrates robust capability in resolving regional vari-
ations, seasonal cycles, and decadal trends in pCO2, making
it valuable for future studies.

4 Data availability

The reconstructed f CO2 and pCO2 and the uncertainty in
ReCAD (v1.1) are available as a NetCDF file at https://doi.
org/10.5281/zenodo.14038561 (Wu et al., 2024a) and will be
updated regularly.

5 Code availability

The Python and MATLAB code used to process the data and
create the figures included in this paper is provided at https:
//github.com/zelunwu/ReCAD (Wu, 2024).

6 Conclusions

The ReCAD-NAACOM-pCO2 product developed in this
study represents a significant advancement in our ability to
detect the spatial variations, seasonal cycles, and decadal
changes of surface-ocean pCO2 dynamics in the NAACOM.
By leveraging a two-step approach combining random forest
and linear regression and a set of environmental predictors,
we have created a high-resolution, long-term dataset (1993–
2021 period) that captures the complex spatial and tempo-
ral variability of pCO2 across the region. On average, com-
pared with all available samples from the SOCAT observa-
tions in our study region, the product has an R2 of 0.92, an
RMSE of 12.70 µatm, an MAE of 7.55 µatm, and an MBE of
0.13 µatm for the entire NAACOM, with an average uncer-
tainty of 23.25 µatm. The key findings from this study are the
following:

1. The product demonstrates high accuracy and reliability,
as evidenced by strong performance metrics during the
training, validation, and independent test phases across
the six subregions.

2. Distinct seasonal cycles are observed between the
southern and northern subregions, with the product cap-
turing nuanced features such as elevated pCO2 levels
during fall and winter in the northern areas.

3. Comparison with global products highlights the supe-
rior ability of the ReCAD-NAACOM-pCO2 product to
resolve small-scale coastal features and variability.
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4. The pCO2 product successfully reconstructed decadal
linear trends that were consistent with previous stud-
ies while also revealing a rapid increase in pCO2 in the
northern region of the NAACOM.

While areas of future improvement exist, such as increasing
spatial resolution and enhancing accuracy in estuary-plume-
influenced regions, the ReCAD-NAACOM-pCO2 product
provides a robust foundation for studying coastal carbon dy-
namics. This dataset will be valuable for investigating air–
sea CO2 fluxes, assessing ocean acidification impacts, and
understanding the role of coastal systems in the NAACOM.

Future research should validate the reconstructed trends,
particularly in areas with limited observational data, and ex-
plore the mechanisms driving the spatiotemporal variabil-
ity in pCO2 across the NAACOM region. Additionally, the
methodologies developed here can contribute to a more com-
prehensive understanding of coastal-ocean carbon dynamics
in the face of climate change and have the potential to be
applied globally.

Appendix A: Before and after LR calibration

Figure A1. Comparisons of the monthly pCO2 climatology with SOCAT observations across the six subregions: evaluations before and
after LR calibration. Values indicate the mean difference (± 1 standard deviation; blue: before LR and red: after LR) between model-
estimated pCO2 and SOCAT observations over the 12-month period, computed only at grid points and times where SOCAT measurements
are available.
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Figure A2. Comparisons of deseasonalized monthly pCO2 anomalies with SOCAT observations across the six subregions: evaluations
before and after LR calibration. Values indicate the R2 and RMSE between model-estimated pCO2 and SOCAT observations (blue: before
LR; red: after LR), computed only at grid points and times where SOCAT measurements are available.

Appendix B: Monte Carlo simulation in calculating
uinputs

A crucial step in calculating uinputs is determining the uncer-
tainties of the input variables. In our reconstructed model,
there were four variables that needed to be evaluated: SST,
SSS, SSH, and pCO2air. Our general principle was to adopt
conservative estimates, using the largest reported uncertainty
for each product when available.

SST errors are provided within the OISST product at the
grid level. On the global average, OISST reports a mean bias
and RMSE of −0.04 and 0.24 °C when compared with the
observations on the global average (Huang et al., 2021). For
our study region, we calculated the mean SST error across all
the grid cells, yielding a value of 0.23 °C.

The SODA database assimilates observational data but
does not directly provide SSS error estimates. Given this lim-
itation in uncertainty reporting, we derived an estimate based
on the RMSE between the model SSS and observations near
our study region, as reported by Carton et al. (2018). Their
analysis (their Fig. 8) indicates an RMSE exceeding 0.3 psu
in the vicinity of our area of interest. In addition, interpolat-
ing the 0.5° SSS data to 0.25° resolution could potentially
introduce more errors. To maintain a conservative approach
in our uncertainty quantification, we doubled the uncertainty
and adopted a value of 0.6 psu as the SSS uncertainty for our
calculations.

SSH errors are directly provided in the dataset, which has
a mean uncertainty of 1.8 cm in our study region.

pCO2air, calculated from xCO2air (MBL references), has a
global mean uncertainty of 0.22 ppm.

To propagate these input uncertainties to the final pCO2
estimate, a Monte Carlo simulation approach was imple-
mented:

1. For each input variable xi , random perturbations εi were
generated following a normal distribution N (0,ui),
where ui represents the uncertainty of the respective
variable listed above.

2. Perturbed inputs (xi + εi) were used to calculate pCO2
with the established model.

3. The difference (1i) between the reconstructed pCO2
before and after adding the perturbation was computed.

4. Steps 1, 2, and 3 were iterated 100 times for each input
variable.

5. The uncertainty contribution from each variable was
quantified as the standard deviation of the 100 1i values
in each grid cell.

The total uncertainty attributed to the input variables (uinputs)
was then calculated as the square root of the quadratic sum
of individual uncertainties:
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uinputs =

√
u2

SST+ u2
SSS+ u2

SSH+ u2
pCO2air

. (B1)

The largest uncertainties propagated from these variables
are sourced from SSS and SSH (Fig. B1a and c). Simulating
salinity in coastal regions is still challenging due to complex
land–ocean interaction. For the SSH, the greatest uncertain-
ties were observed in the GoMe and GStL. Overall, uinputs is
largest in the West Florida Shelf and nearshore waters around
the GoMe, with a mean uinputs uncertainty of 5.9± 4.7 µatm
for the entire NAACOM.

Figure B1. Uncertainties of pCO2 accumulated from the different input variables of the model.
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