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Abstract. This paper reports on an innovative mass concentration (mascon) solution obtained with the short-arc
approach, named “GCL-Mascon2024”, for estimating spatially enhanced mass variations on the Earth’s surface
by analyzing K- and Ka-band ranging satellite-to-satellite tracking data collected by the Gravity Recovery And
Climate Experiment (GRACE) mission. Compared to contemporary GRACE mascon solutions, this contribution
has three notable and distinct features: first, this solution recovery process incorporates frequency-dependent
data-weighting techniques to reduce the influence of low-frequency noise in observations. Second, this solution
uses variably shaped mascon geometry with physical constraints such as coastline and basin boundary geome-
tries to more accurately capture temporal gravity signals while minimizing signal leakage. Finally, we employ a
solution regularization scheme that integrates climate factors and cryospheric elevation models to alleviate the
ill-posed nature of the GRACE mascon inversion problem. Our research has led to the following conclusions:
(a) GCL-Mascon2024 mass anomaly estimates from GRACE data show strong agreement with the (Release)
RL06 versions of mascon solutions (GSFC, CSR, JPL) in both spatial and temporal domains; (b) in Greenland
and global hydrologic basins, the correlation coefficients of estimated mass changes between GCL-Mascon2024
and other RL06 mascon solutions exceed 95.0 %, with comparable amplitudes, and, especially over non-humid
river basins, the GCL-Mascon2024 suppresses random noise by 27.8 % compared to contemporary mascon prod-
ucts; and (c) in desert regions, the analysis of residuals calculated after removing the climatological components
from the mass variations indicates that the GCL-Mascon2024 solution achieves noise reductions of over 29.3 %
as compared to the GSFC and CSR RL06 mascon solutions. The GCL-Mascon2024 gravity field solution (Yan
and Ran, 2025) is available at https://doi.org/10.5281/zenodo.15525467.
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1 Introduction

Comprehending the Earth as a dynamic system relies heavily
on our knowledge of its gravity field, mass variations induced
by fluid layers, and geophysical or climatic processes (e.g.,
Wahr et al., 1998; Pail et al., 2015). Over the last 2 decades,
significant achievements have been made through the avail-
ability of observations collected by satellite gravimetry mis-
sions, such as the Gravity Recovery And Climate Experiment
(GRACE) (Tapley et al., 2004; Tapley et al., 2019) and its
successor, GRACE Follow-On (GRACE-FO) (Flechtner et
al., 2016; Landerer et al., 2020). These satellite gravity mis-
sions have not only enhanced our understanding of temporal
variations in the Earth’s gravity field but also played a crucial
role in advancing various disciplines, including glaciology,
hydrology, geophysics, oceanography, and atmosphere and
climate science (e.g., Han et al., 2006a; Chen et al., 2009;
Rignot et al., 2011; Jacob et al., 2012; Rodell et al., 2018).

Gravity field variations expressed in spherical harmon-
ics have been extensively and widely employed in satel-
lite geodesy for decades (Chen et al., 2022). However, cer-
tain limitations persist in the application of spherical har-
monic solutions from GRACE and GRACE-FO data, in-
cluding the presence of north–south “stripes” (Swenson and
Wahr, 2006), as well as signal leakage (Kusche et al., 2009),
particularly in regions adjacent to the land–sea boundary.
The main reasons for the above problems are temporal alias-
ing (Wiese et al., 2011b) and the design of the satellite or-
bits and tracking systems (Wiese et al., 2011a), including
inclination, altitude, inter-satellite distance, and a co-planar
low–low satellite-to-satellite tracking system. Conventional
approaches involve the removal of stripes through empirical
smoothing (e.g., Wahr et al., 1998), de-striping (e.g., Swen-
son and Wahr, 2006), or regularization techniques (e.g., Save
et al., 2012). It is important to note that, although these meth-
ods are largely effective in preserving signals and suppress-
ing noise, the elimination of stripes also results in a reduction
in the genuine geophysical signals (e.g., Han et al., 2005; Yi
and Sneeuw, 2022; Zhou et al., 2023). Moreover, the efficacy
of destriping is highly dependent on the characteristics of the
signals, including their size, shape, and orientation (Watkins
et al., 2015). It is worth mentioning that the impact of aliasing
errors can be mitigated by combining gravity satellite forma-
tions within optimal constellation configurations (Yan et al.,
2024) or by recovering the temporal gravity field at a higher
temporal resolution (Yan et al., 2023).

Alternatively, mass concentration (mascon) solutions can
be utilized to model the temporal gravity field. This tech-
nique was initially introduced by Muller and Sjogren (1968)
in their efforts to develop a model for the static gravity field
of the moon. Thereafter, mascon solutions utilizing GRACE
level-1B data were initially conducted in a regional context
(e.g., Rowlands et al., 2005; Luthcke et al., 2006) and were
subsequently extended to encompass diverse global parame-
terizations (e.g., Luthcke et al., 2013; Watkins et al., 2015;

Save et al., 2016; Allgeyer et al., 2022). Besides this, some
attempts have been made to enhance mascon solutions’ spa-
tial (e.g., Loomis et al., 2021) or temporal resolutions (e.g.,
Croteau et al., 2020). Additionally, to mitigate the compu-
tational complexity, alternative variants of the mascon ap-
proach have been put forward, which utilize monthly sets
of spherical harmonic coefficients (SHCs, i.e., level-2 data)
as input (e.g., Forsberg and Reeh, 2006; Baur and Sneeuw,
2011; Schrama and Wouters, 2011). Numerous recent pub-
lications have used mascon solutions released by respon-
sible agencies, including the NASA (National Aeronautics
and Space Administration) Goddard Space Flight Center
(GSFC), the NASA Jet Propulsion Laboratory (JPL), and
the University of Texas at Austin Center for Space Research
(CSR) in the United States. The mascon solution released
by JPL (JPL RL06 mascon) utilizes explicit partial deriva-
tives with analytical expressions for the mascons to establish
the relationship between inter-satellite range rate measure-
ments and individual mascons (Wiese et al., 2018), whereas
the latest variants of GSFC mascon solutions (GSFC RL06
mascon) and CSR mascon solutions (CSR RL06 mascon) are
characterized by a finite series of spherical harmonic func-
tions, with the corresponding partial derivatives being com-
puted using the chain rule (Loomis et al., 2019; Save, 2020).
These GRACE and GRACE-FO gravimetry data-processing
centers also offer visualization tools for their mascon prod-
ucts, facilitating analysis and comparison of the latest mas-
con solutions, as well as generating time series data for spe-
cific regions.

Various methods, including the dynamic approach (e.g.,
Kvas et al., 2019), the short-arc approach (e.g., Mayer-Gürr,
2008), the celestial mechanics approach (e.g., Beutler et al.,
2010), the energy balance approach (e.g., Han et al., 2006b),
and the acceleration approach (e.g., Ditmar and van der
Sluijs, 2004), play a vital role in modeling the temporal grav-
ity field from level-1B satellite gravimetry data. To date, most
publicly available global mascon products based on level-1B
data commonly rely on longer arcs (e.g., 24 hr ones). This
includes the mascon solutions recovered using the dynamic
approach by GSFC (Loomis et al., 2019), CSR (Save, 2020),
and JPL (Watkins et al., 2015), as well as the mascon so-
lution by the Australian National University (ANU), which
utilizes the celestial mechanics approach (Allgeyer et al.,
2022; Tregoning et al., 2022; McGirr et al., 2023). This study
represents the first application of the short-arc approach to
recover the global mascon solution. A distinguishing fea-
ture of this methodology compared to other conventional ap-
proaches lies in its substantially reduced arc length integra-
tion interval (Mayer-Gürr et al., 2005; Mayer-Gürr, 2008).
The temporal gravity field based on the short-arc approach
exhibits enhanced stability and superior accuracy owing to
the substantially reduced condition number of the normal
equation system (Chen et al., 2015).

Frequency-dependent noise in GRACE measurements sig-
nificantly limits GRACE from reaching the pre-launch base-
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line accuracy; thus, modeling this noise is a critical aspect
for improving the accuracy of temporal gravity field recov-
ery. In the context of spherical harmonic coefficient solu-
tions, the impact of frequency-dependent noise in observa-
tions is typically accounted for by introducing empirical pa-
rameters (Liu et al., 2010; Zhao et al., 2011) to absorb errors
or by using frequency-dependent data-weighting (FDDW)
techniques (Klees et al., 2003; Ditmar et al., 2007). However,
the potential of suppressing frequency-dependent errors in
mascon modeling with the FDDW technique remains largely
unexplored.

The Geodesy and Cryosphere Laboratory (GCL) from the
Southern University of Science and Technology has released
a new series of mascon solutions (hereafter referred to as
GCL-Mascon2024) using the short-arc approach and FDDW,
as well as advanced regularization schemes. These mascon
solutions incorporate pertinent physical constraints to esti-
mate global mass variations directly from inter-satellite range
rate measurements. To alleviate the effects of errors intro-
duced by signal leakage, the GCL-Mascon2024 solution em-
ploys a strategy that involves segmenting the mascon shape
based on land–sea boundaries and the boundaries of distinct
hydrologic basins. Subsequently, this paper aims to investi-
gate the impact of selecting arc length and accelerometer cal-
ibration parameters in the short-arc approach on the mascon
solutions while also providing a quantitative evaluation of the
GCL-Mascon2024 solution.

The article is organized as follows. Section 2 describes the
methodology for recovering global mascon solutions with
the short-arc approach. Section 3 discusses the parameter de-
termination in global mascon solutions using the short-arc
approach. Section 4 evaluates the scientific results of real
data processing with the proposed approach. Finally, Sect. 5
provides the main conclusions. Section 6 provides detailed
information and links for accessing the dataset utilized in this
study, along with the GCL-Mascon2024 solution released in
this work.

2 Methodology

Building upon the earlier studies by Ran et al. (2018) and
Ran et al. (2021), we propose a new mascon approach re-
covered from GRACE level-1B tracking data based on the
short-arc approach. The primary distinction between GCL-
Mascon2024 and the aforementioned mascon solutions lies
in the type of exploited input data (i.e., level 1B vs. level 2).
The mascon solutions released by Ran et al. (2018, 2021)
are based on spherical harmonic coefficients and cover only
mass anomalies over Greenland. The GCL-Mascon2024 so-
lution is a series of global mascons with analytical partial
derivatives. In other words, we establish a direct relation-
ship between the mass variations of mascons and the inter-
satellite measurements. Section 2.1 elaborates on the utilized
functional model, which links GRACE level-1B data to mas-

con solutions. Section 2.2 outlines the strategy for defining
mascon geometry during the data inversion process. Sec-
tion 2.3 describes the background force models and input
data employed to recover the GCL-Mascon2024 solution.
Section 2.4 explains the suppression of frequency-dependent
errors by using the FDDW technique. Finally, the advanced
spatial constraints exploited in the inversion procedure are
presented in Sect. 2.5.

2.1 Mathematical formulation

A satellite in orbit around the Earth is subject to gravita-
tional forces, which are governed by Newton’s law of uni-
versal gravitation. The temporal gravity field can be mod-
eled as a series of N mascons, with the surface mass den-
sity (mass per unit area) of mascon Mi being represented
by ρi(i = 1,2, . . .,N ). When the satellite is at measurement
point p, the gravitational forces f p exerted on the satellite by
the mass variations of the Earth’s surface can be expressed as

f p = G
N∑
i=1

ρi

∫
Mi

d̂p · ds(
lp
)2 =G N∑

i=1
ρi · Îi,p. (1)

Here, G is the universal gravitational constant; d̂p is the unit
vector directed from the satellite measurement point toward
the surface mass; lp is the distance between the satellite mea-
surement point p and an integration point on the mascon;
and Îi,p is a vector pointing from the satellite measurement
point p to the given mascon Mi , which is calculated using
numerical integration. To that end, we utilize a composed
Newton–Cotes formula (Gonzalez, 2010) applied to the Fi-
bonacci nodes, i.e., the Fibonacci nodes as integration points,
as mentioned above. By defining the surface area and the
number of the Fibonacci nodes of mascon Mi as Si and Ki ,
we can calculate Îi,p as

Îi,p ≈
Ki∑
j=1

Si

Ki ·
(
li,j,p

)2 · d̂ i,j,p, (2)

where li,j,p represents the distance between a Fibonacci
point j located in the mascon Mi and the satellite measure-
ment point p, and d̂i,j,p is a unit vector pointing from the
satellite measurement point p to a Fibonacci point j located
in the mascon Mi .

Then,

f p =

N∑
i=1︸︷︷︸
x

ρi ·G
Si

Ki
·

Ki∑
j=1

d̂ i,j,p(
li,j,p

)2︸ ︷︷ ︸
Gp

. (3)

Combining Gp over multiple positions or epochs within an
arc yields the matrix G, which is used in the observation
model (Mayer-Gürr, 2008) with orbit and range rate mea-
surements as observation types.
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2.2 Parameterization

The choice of an appropriate mascon partitioning strategy is
crucial for mitigating noise amplification during the data in-
version process (Ran et al., 2018). In this study, the selec-
tion of mascon geometry is based on incorporating pertinent
physical constraints, such as the geometry of the coastlines
and basin boundaries. The definitions of these basin bound-
aries are derived from Scanlon et al. (2018). Regarding the
aforementioned parameterization, the primary assumption is
that there is no signal correlation between mascons located
in different basin systems (Ran et al., 2021), meaning that
basins do not share mascons with their neighboring basins to
reduce signal leakage between the corresponding basins.

In the GCL-Mascon2024 processing scenario, the esti-
mated monthly mascon solution has a spatial resolution of
about 300× 300 km and 400× 400 km on land and in the
ocean, respectively. The total number of mascons is 4069,
with 1852 terrestrial mascons and 2217 ocean mascons. Fig-
ure 1 provides the mascon partitioning of GCL-Mascon2024.
It is important to note that the mascons located within the
basins and coastal regions are defined in accordance with the
boundary geometry. The numerical integration points, as dis-
cussed in Sect. 2.1, are distributed on a Fibonacci grid with
an average spacing of 10 km, requiring the generation of ap-
proximately 5.1 million Fibonacci grid points for global cov-
erage. Parallel message-passing-interface (MPI) computing
is used to increase computational efficiency.

2.3 Background force models and input data

Using the aforementioned methodology and mascon parti-
tioning strategy, we have produced a time series of mas-
con solutions (GCL-Mascon2024) from the GRACE level-
1B data covering the time period from January 2003 to De-
cember 2015. Here, we concisely introduce the background
force models and input tracking data.

Table 1 provides an overview of the background force
models, which encompass various components, including
Earth’s static gravity field, third-body attractions, solid Earth
(pole) tides, ocean (pole) tides, atmospheric tides, atmo-
spheric and oceanic dealiasing effects, and general relativis-
tic correction. In addition to the background force models
mentioned above, these additional force models and correc-
tions are discussed in detail below, specifically (i) the elastic
response of the solid Earth to mass transport at the Earth’s
surface, (ii) glacial isostatic adjustments (GIAs), (iii) Earth
ellipsoidal corrections, (iv) low-degree term corrections, and
(v) GAD corrections. Following a standardized processing
workflow (Watkins et al., 2015; Save et al., 2016; Loomis
et al., 2019; Tregoning et al., 2022), the uncorrected mascon
solutions (i.e., MASCONuncorrected, which we will return to
in Sect. 2.5) are systematically integrated with the aforemen-
tioned corrected components to generate corrected mascon

grids. The formula to generate the corrected mascon grid is

MASCONcorrected =MASCONuncorrected

−MASCONC20 +SLRC20 +DEG1−GIA+GAD. (4)

Table 1 also lists the input used in mascon recovery, in-
cluding nongravitational accelerations, satellite attitudes,
reduced-dynamic orbits, kinematic orbits, and K-band range
rate measurements. The level-1B data used in the mascon re-
covery are mainly from JPL, e.g., ACC1B, SCA1B, GNV1B,
and KBR1B. Additionally, the kinematic orbit product re-
leased by the Graz University of Technology (Strasser et al.,
2019) was used in the GCL-Mascon2024 recovery frame-
work.

2.3.1 Earth’s elastic response

The solid Earth is not perfectly rigid but exhibits some elastic
response to surface loads (Boy and Chao, 2005). Here, we
estimate the effect of surface load or surface mass changes
based on the elastic loading theory of a spherical Maxwell
Earth, as formulated by Wahr et al. (1998), who used load
Love numbers (represented as kl) to quantify Earth’s elastic
deformation.

In this study, the temporal gravity field model released by
the Institute of Geodesy of the Graz University of Technol-
ogy (ITSG-Grace2018 (Kvas et al., 2019)) is used as the sig-
nal source to compute the Earth’s elastic deformation. Be-
cause this model is represented in terms of unfiltered spher-
ical harmonic coefficients, there exist north–south stripes
and high-frequency noise in the spatial domain. Thus, post-
processing in the form of the DDK4 filter (Kusche et al.,
2009) is used to mitigate these issues. The elastic deforma-
tions induced by the filtered ITSG-Grace2018 solutions are
incorporated into the GCL-Mascon2024 recovery framework
as an additional background force model.

2.3.2 Glacial isostatic adjustments

We apply GIA corrections in the GCL-Mascon2024 recov-
ery process as another background force model. The official
mascon products (i.e., CSR RL06 mascon, JPL RL06 mas-
con, and GSFC RL06 mascon) represent the surface mass
deviation relative to the 2004.0-2009.999 time mean base-
line. Subsequently, we model the GIA signals relative to the
middle epoch of 2007.000, utilizing the GIA model ICE-6G,
which was developed by Stuhne and Peltier (2015).

2.3.3 Earth ellipsoidal corrections

Temporal Stokes coefficients derived from GRACE satel-
lite data are typically converted into mass anomalies at the
Earth’s surface using spherical harmonic synthesis, as formu-
lated by Wahr et al. (1998). However, the results obtained us-
ing this approach reflect mass transport at a spherical surface
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Table 1. Summary of background force models and data used in GRACE mascon recovery.

GSFC RL06 mascon CSR RL06 mascon JPL RL06 mascon GCL-Mascon2024

Background force model

Static Earth gravity GGM05C GGM05C (d/o 360) GIF48 (d/o 180) GOCO06s (d/o 300)
(Kvas et al., 2021)

Solid Earth tides IERS2010 conventions IERS2010 conventions IERS2010 conventions IERS2010 conventions

Ocean tides GOT4.7 (d/o 90) GOT4.8 (d/o 180) GOT4.7 and
self-consistent
equilibrium
long-period tide
(convolution formalism
to degree/order 90)

FES2014b (Lyard et
al., 2021)

Solid pole tide IERS2010 conventions
(mean polar motion)

IERS2010 conventions
(mean polar motion)

IERS2010 conventions
(mean polar motion)

IERS2010 conventions
(mean polar motion)

Ocean pole tide IERS2010 conventions Desai models IERS2010 conventions Desai models (Desai,
2002)

Non-tidal atmosphere and
ocean dealiasing

ECMWF/MOG2D
(Carrère and Lyard,
2003)

AOD1B RL06 AOD1B RL06 AOD1B RL06
(Dobslaw et al., 2017)

Atmospheric tides – – – AOD1B RL06

Third-body attractions * DE-430 DE-421 DE-421

General relativity * IERS2010 conventions Point mass
perturbation, geodesic
and Lense–Thirring
(sun and Earth)

IERS2010 conventions

Local parameters estimated

Satellite state Position and velocity
(daily)

Position and velocity
(daily)

Position and velocity
(daily)

Position (2 h)

GPS phase bias * – Constant (each
GPS-GRACE pass)

–

KBR range rate biases Constant, drift, and
once per revolution
(3 h)

Constant, drift, and
once per revolution
(1.5 h)

Constant, drift, and
once per revolution
(1.5 h)

–

Accelerometer Bias X, Y , and Z
components (1.5 h)

Along-track: 1 per day
linear
Cross-track: 8 per day
linear
Radial: 1 per day linear

X, Y , and Z
components (daily)

X, Y , and Z
components (2 h)

Drift – – – X, Y , and Z
components (2 h)

Scale – Full matrix (daily) Full matrix (daily) X, Y , and Z
components (daily)

1 cycle per rev-
olution

1.5 hourly 3-D one-
cycle-per-revolution
empirical accelerations

– – –

Satellite observations

Accelerometer observations ACC1B RL02 with 1 s
sampling rate

ACC1B RL02 with 1 s
sampling rate

ACC1B RL02 with 1 s
sampling rate

ACC1B RL02 with 1 s
sampling rate

Attitude observations SCA1B RL03 with 1 s
sampling rate

SCA1B RL03 with 1 s
sampling rate

SCA1B RL03 with 1 s
sampling rate

SCA1B RL03 with 1 s
sampling rate
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Table 1. Continued.

GSFC RL06 mascon CSR RL06 mascon JPL RL06 mascon GCL-Mascon2024

GPS data GPS1B RL03 with 30 s
sampling rate

GPS1B RL03 with 30 s
sampling rate

GPS1B RL03 with 30 s
sampling rate

–

Reduced-dynamic orbit – – – GNV1B RL02 with 5 s
sampling rate

Kinematic orbit – – – Kinematic orbits from
Graz University of
Technology with a 10 s
sampling rate

K- and Ka-band ranging
satellite-to-satellite tracking
measurement

KBR1B RL03 with 5 s
sampling rate

KBR1B RL03 with 5 s
sampling rate

KBR1B RL03 with 5 s
sampling rate

KBR1B RL03 with 5 s
sampling rate

Details of mascon recovery

Inversion approach Dynamic approach Dynamic approach Dynamic approach Short-arc approach

Inter-satellite observation Range rate Range rate Range rate Range rate

Satellite observations Level 1B Level 1B Level 1B Level 1B

Mascon count 41 168 40 962 4551 4069

Mascon shape
(native resolution)

1 arcdeg equal-area
cells

1° equal-area geodesic
grid

3° equal-area spherical
cap

Land mascon
∼ 300× 300 km, ocean
mascon
∼ 400× 400 km, and
variably shaped
geometry constrained
to coastlines and basin
boundaries

Product resampled resolution 0.5°× 0.5° 0.25°× 0.25° 0.5°× 0.5° 1.0°× 1.0°

The relationship between
inter-satellite measurements
and mascons

The mascons are
related to the
inter-satellite
measurements via a
spherical harmonic
expansion that is
truncated at a finite
degree and order

The mascons are
related to the
inter-satellite
measurements via a
spherical harmonic
expansion that is
truncated at degree and
order 180

The mascons are
related to the
inter-satellite
measurements via the
explicit partial
derivatives with an
analytical expression

The mascons are
related to the
inter-satellite
measurements via the
explicit partial
derivatives with an
analytical expression

Other corrections

Ocean bottom pressure The “GAD” fields from the AOD1B product represented on the mascon geodesic grid are added back

Glacial isostatic adjustment ICE6G-D (Peltier et
al., 2018)

ICE6G-D (Peltier et
al., 2018)

ICE6G-D (Peltier et
al., 2018)

ICE6G-D (Peltier et
al., 2018)

Low-degree term correction Degree-1 terms
replaced using Sun et
al. (2016)
C20 replaced by TN-14
(Loomis et al., 2020)

Degree-1 terms
replaced using
Swenson et al. (2008)
C20 replaced by TN-14
(Loomis et al., 2020)

Degree-1 terms
replaced using
Swenson et al. (2008)
C20 replaced by TN-14
(Loomis et al., 2020)

Degree-1 terms
replaced using Sun et
al. (2016)
C20 replaced by TN-14
(Loomis et al., 2020)

Earth ellipsoidal correction – Ellipsoidal corrections
from Ditmar (2018)

Ellipsoidal corrections
from Li et al. (2017)

Ellipsoidal corrections
from Ditmar (2018)

Mean removed 2004.0-2010.0 2004.0-2010.0 2004.0-2010.0 2004.0-2010.0

* Data missing, indicating that the data or strategy are unavailable.
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Figure 1. Mascon partitioning of GCL-Mascon2024 solution.

with a fixed radius of 6378 km, which can introduce inaccu-
racies. Ditmar (2018) demonstrated that such a conversion
may lack sufficient precision and proposed a revised formu-
lation for converting Stokes coefficients into mass anomalies.
This updated approach assumes that (i) mass transport occurs
at the reference ellipsoid, and (ii) at each point of interest, the
ellipsoidal surface is approximated by a sphere with a radius
equal to the local radial distance from the Earth’s center (the
“locally spherical approximation”). In this study, we adopt
the spherical harmonic synthesis method proposed by Ditmar
(2018) to account for the effects of the Earth’s oblateness and
improve the accuracy of mass anomaly estimation.

2.3.4 Low-degree term corrections

Given the inherent limitations of the GRACE twin-satellite
tracking, it is not feasible to determine the effects of geo-
center motion, which can be represented in terms of time-
varying degree-1 coefficients. Consequently, we utilize the
coefficients derived by combining GRACE data with geo-
physical models (Sun et al., 2016). Furthermore, we incor-
porate the C20 (degree-2 order-0) coefficients derived from
satellite laser ranging (SLR) measurements (Chen et al.,
2005; Cheng et al., 2013) to enhance accuracy. To this end
and in line with previous studies (Watkins et al., 2015), the
mascon grid solutions are first converted to the spherical
harmonic coefficients by using spherical harmonic analysis.
Then, we replace the low-degree terms (i.e., degree-1 and
C20) and utilize the spherical harmonic synthesis proposed
by Ditmar (2018); the coefficients are converted back into
mascon grid solutions to correct the implied low-degree term
component of GCL-Mascon2024, considering the influence
of the Earth’s oblateness as detailed in Sect. 2.3.3.

2.3.5 GAD corrections

To explicitly contain seafloor pressure anomalies in the cor-
rected mascon solutions, the AOD1B RL06 GAD product

(Dobslaw et al., 2017) is reintegrated into the mascon cali-
bration framework.

2.4 Frequency-dependent data weighting

The concept of FDDW originates from the fast colloca-
tion technique (Bottoni and Barzaghi, 1993), which assumes
stationary measurement noise, thereby imparting a Toeplitz
structure onto the noise covariance matrix. Subsequently,
Ditmar et al. (2007) provided a detailed discussion of the
FDDW concept and employed the technique to estimate the
static Earth gravity field from the kinematic orbital acceler-
ation of the CHAllenging Minisatellite Payload (CHAMP)
satellite (Ditmar et al., 2006). The FDDW technique was
later adapted for solving the temporal gravity field model us-
ing the GRACE inter-satellite acceleration (Liu et al., 2010).
Afterward, Guo et al. (2018) utilized the FDDW technique
to account for KBR (K-band ranging) frequency-dependent
noise in the classical dynamic approach, leading to the devel-
opment of the WHU RL01 model. Chen et al. (2019) further
extended the application of the FDDW technique by incor-
porating both orbit and KBR frequency-dependent noise into
the optimized short-arc approach and released the temporal
gravity model named the Tongji-Grace2018 solution.

As indicated in numerous previous studies (e.g., Guo et al.,
2018; Chen et al., 2019), the inter-satellite range rate mea-
surements are affected by frequency-dependent noise. Be-
fore applying the FDDW technique, it is essential to build a
stochastic noise model using, e.g., post-fit residuals from the
GRACE measurements. As an example, we select the post-
fit residuals from June 2009, calculated using the preliminary
mascon solution for that month. As shown in Fig. 2a and c,
the time series of post-fit residuals from orbit and range rate
measurements on 5 June 2009 exhibit a clear dependence
on frequency. This is further illustrated by the power spec-
tral densities (PSDs) displayed in Fig. 2b and d, which indi-
cate that both orbit and range rate measurements, particularly
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the former ones, are contaminated by low-frequency noise.
The frequency-dependent noise in GRACE observations is
largely attributed to errors in the GRACE orbits (Ditmar et
al., 2012). This type of noise, in the essence of perfect orbital,
instrumental, and/or other models, is typically addressed by
either estimating (once or twice per orbital revolution) peri-
odic parameters to account for unmodeled accelerations or by
incorporating variance–covariance matrices to mitigate these
errors (Zhou et al., 2024). In this study, noise-whitening fil-
ters W, constructed based on post-fit residuals derived from
orbit and range rate measurements using the autoregressive
(AR) noise model implemented in the ARMASA toolbox
(Broersen and Wensink, 1998; Broersen, 2000), are applied
to transform frequency noise ε into Gaussian white noise
ε0. Following the methodology of Chen et al. (2019), the
variance–covariance matrix 6 can be constructed using the
law of variance–covariance propagation:

6 =W−1
· diag

[
(W · ε)2/(ε0)2

]
·

(
W T

)−1
. (5)

2.5 Advanced spatial constraints

The linear system that connects satellite range rate observa-
tions to the mass anomalies within each mascon for estima-
tion is rank-deficient. To stabilize the rank-deficient system
of equations in mascon recovery, we employ Tikhonov regu-
larization techniques (Tikhonov, 1963). Herein, we estimate
the mascon elements using the following equation:

x̂ =
(

AT PA+µCM

)−1
·AT PL, (6)

where x̂ represents the estimated mascons without any cor-
rections; A is the design matrix of partial derivatives; L is the
residual vector, which is obtained by subtracting the kine-
matic orbit or KBR measurements from the reference or-
bit positions or KBR data; P is the weight matrix derived
from the inverse of the variance–covariance matrix 6 (re-
fer to Sect. 2.4); µ is the regularization factor; CM is a di-
agonal constraint (or regularization) matrix of size n× n,
named the mass variation regularization constraint normal-
ized (MVRCN) matrix; and n is the number of the mascons
to be estimated.

For the advanced spatial constraints, we construct the
MVRCN matrix, which primarily comprises two compo-
nents: one derived from the continental region aridity–
wetness index, which is defined as the ratio of mean annual
precipitation to mean annual reference evapotranspiration
(Trabucco and Zomer, 2018), and the other from the ETOPO
Global Relief Model of ice sheet regions (i.e., Greenland
and Antarctica), an ice surface version that portrays the to-
pography of the top layer of the polar ice sheets (MacFer-
rin et al., 2025). The fundamental premise is that humid

basins on the continent require looser constraints for recov-
ering higher temporal gravity signals, while arid basins re-
quire tighter constraints. Similarly, on polar ice sheets, ar-
eas at lower elevations necessitate looser constraints to re-
cover mass variations, whereas regions at higher elevations
require tighter constraints. Figure 3 shows the spatial distri-
bution of the mascon-size MVRCN matrix. We employ the
L-curve method to determine the appropriate regularization
factor µ, employing monthly varying factor values to ensure
that the resulting regularization matrix is sufficiently tight to
suppress noise yet loose enough to allow the mascons to be
adjusted to their optimal values.

3 Short-arc approach for gravity field inversion

The short-arc approach, initially introduced by Schneider
(1968), is a commonly utilized method for satellite gravity
data inversion. Mayer-Gürr et al. (2005) introduced the short-
arc approach to determine a CHAMP gravity field model.
Mayer-Gürr (2008) further proposed a gradient correction al-
gorithm to enhance the accuracy of the short-arc approach
and applied it to real GRACE data inversion. Since then, the
short-arc approach has been employed in processing GRACE
data (e.g., Ran et al., 2014; Chen et al., 2019), demonstrating
its effectiveness and efficiency in recovering temporal gravity
field models. Section 3.1 is devoted to the optimal choice of
the arc length. Next, Sect. 3.2 discusses the design of calibra-
tion parameter estimation during the gravity inversion pro-
cess.

3.1 Arc length determination

Longer arcs (e.g., 24 h ones) are usually utilized in the dy-
namic approach to the temporal gravity solution recovery,
whether it be in the form of the mascon solution (e.g.,
Watkins et al., 2015) or spherical harmonic solutions (e.g.,
Mayer-Gürr et al., 2018). Regarding the short-arc approach,
the tendency is to select shorter arc lengths, such as 1 h
arcs for Bonn University’s ITG-GRACE2010 (Mayer-Guerr
et al., 2010) and 6 h arcs for Tongji University’s Tongji-
Grace2018 (Chen et al., 2019). However, as the arc length
decreases, the number of parameters per day increases. Given
that the total number of observations remains constant, this
increases the condition number of the estimation process
in the temporal gravity field recovery. In the mathematical
sense, the smaller the condition number of the normal ma-
trix, the more stable the resulting estimate of the gravity field
(Chen et al., 2019).

To determine the appropriate arc length for GCL-
Mascon2024, we conducted computations of a monthly mas-
con model using different arc lengths to compare the sta-
bility of the resulting estimates. Table 2 presents the condi-
tion numbers of the unconstrained normal matrices and the
corresponding computational time needed for different arc
lengths. From this standpoint, the 2 h arc length corresponds
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Figure 2. Time series and power spectrum densities (PSDs) of post-fit residuals from the orbit and KBR range rate.

Figure 3. The mass variation regularization constraint normalized
(MVRCN) matrix used in the GCL-Mascon2024 recovery frame-
work.

to the most stable arc length in the GCL-Mascon2024 recov-
ery. Figure 4 illustrates that increasing the arc length beyond
2 h in the short-arc approach leads to a significant increase in
noise in gravity field estimates as the normal equations be-
come more ill-conditioned. This observation aligns closely
with what we conclude from Table 2. Therefore, an arc length
of 2 h is determined to be the most suitable for the short-arc
approach employed in this work. Additionally, we incorpo-
rate the gradient correction algorithm proposed by Mayer-
Gürr (2008) to consider the influence of the kinematic orbit
errors.

Figure 4. Geoid height differences per degree with regard to
GOCO06s from mascon solutions of different arc lengths.

3.2 Calibration parameter estimation

The accelerometer represents a significant source of errors
in the GRACE mission (Kim, 2000), necessitating the im-
plementation of robust strategies to manage and mitigate ac-
celerometer errors effectively. Simultaneously, in the analy-
sis of GRACE observations, it is necessary to estimate not
only the gravity field parameters but also arc-related param-
eters, such as the two boundary position vectors of each arc
(Mayer-Gürr, 2008). That is, the error occurring at the bound-
aries of each arc is also of non-negligible magnitude. A com-
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Table 2. Condition numbers (log10) of normal matrixes and inver-
sion time cost in the GCL-Mascon2024 recovery framework with
different arc lengths.

Arc Condition Time
length per hour Numbers per log10 cost per hour

0.5 8.41 6.69
1.0 7.95 9.04
2.0 7.93 16.82
3.0 7.95 29.08
4.0 7.99 47.16
6.0 8.28 70.78

monly used strategy in temporal gravity field recovery is the
incorporation of calibration parameters to mitigate the im-
pact of the aforementioned errors.

The GRACE raw accelerometer measurements exhibit
systematic errors, including bias, scale error, and drifts (Han
et al., 2006b) along three axes (i.e., along, cross, and ra-
dial) for both satellites. The findings of Meyer et al. (2016)
demonstrate that the scale calibration of accelerometer data
at daily intervals significantly reduces the impact of solar ac-
tivity on the derived gravity field models. To this end, we
conduct the daily estimation of accelerometer scales along
three axes for both satellites in this study. In addition, bias
is a frequently employed parameter for estimating the local
parameters of accelerometers (Kim, 2000). Based on prior
studies (e.g., Han et al., 2006b; Bettadpur, 2007), we also
incorporate the estimation of drift parameters into the recov-
ery of the mascon solution. Combining the biases, drifts, and
scales, the calibration formula for the accelerometer data can
be constructed as

f new = bias+ scale×f ori+ drift× t, (7)

where f ori and f new denote the nongravitational accelera-
tions prior to and after calibration, respectively; bias, scale,
and drift are the estimated local parameters of the accelerom-
eters; and t represents the period during which the drift of
nongravitational accelerations is calibrated. Figure 5 illus-
trates the geoid height differences per degree with respect
to the GOCO06s of the mascon solutions, with accelerom-
eter calibration parameters (i.e., bias, drift, and scale) co-
estimated over different periods.

Table 3 provides a detailed definition of each consid-
ered case, characterized by three pre-defined periods for ac-
celerometer calibration parameters: bias, drift, and scale. One
can see from Fig. 5 that the inversion performs optimally
when bias and drift are co-eliminated per arc, as well as
with scale elimination on a per-day basis, with the premise
of estimating the boundary position parameters per arc. Af-
ter generating the normal equation for each arc, the calibra-
tion parameters of the boundary position can be eliminated
immediately. Then, once the normal equations for a specific
period are generated, the corresponding accelerometer cali-

Table 3. Estimation periods of accelerometer calibration parame-
ters (unit: minutes).

Case Bias Drift Scale

A 120 120 1440
B 120 360 1440
C 120 720 1440
D 120 1440 1440
E 360 360 1440
F 360 720 1440
G 360 1440 1440
H 720 720 1440
I 720 1440 1440
J 1440 1440 1440

Figure 5. Geoid height differences per degree with regard to
GOCO06s from mascon solutions under different scenarios. Each
scenario corresponds to a distinct set of parameters, reflecting vari-
ations in the estimation periods for accelerometer calibration pa-
rameters (i.e., bias, drift, and scale). Refer to Table 3 for detailed
information on parameter settings.

bration parameters are eliminated as well. Last, by combin-
ing all of the reduced daily normal equations, we obtain the
final monthly normal equation, which is solved for the mas-
con coefficients.

As mentioned above, a 2 h arc is selected for the GCL-
Mascon2024 computation. The calibration parameters for ac-
celerometer observations include biases and drifts estimated
per arc, as well as scales estimated per day, for the twin satel-
lites along three axes.

4 Analysis of scientific results

To evaluate and validate the GCL-Mascon2024 solution, we
compare the estimates of mass variation globally and over
specific regions with the RL06 mascon solutions released
by GSFC, CSR, and JPL. Here, annual amplitudes, monthly
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mass variations, basin hydrological signals, and polar re-
gion mass balances are utilized to assess the performance
of temporal-signal retrieval. At the same time, continental
random-noise and desert residuals are used to evaluate tem-
poral noise.

4.1 Global comparisons

We first analyze the global mass change signals in GCL-
Mascon2024 and in the RL06 mascon solutions provided by
GSFC, CSR, and JPL. To emphasize the differences in the
four mascon solutions, the results are presented as anomalies
in relation to the baseline defined as the time mean during the
period from January 2004 to December 2009. In Fig. 6, we
specifically present the long-term trends in temporal gravity
signals for the time span ranging from January 2003 to De-
cember 2015. Upon observing Fig. 6, we can discern a high
level of consistency in the global mass change signals across
all four models.

The annual amplitudes in mass change are depicted in
Fig. 7 for the time span ranging from January 2003 to De-
cember 2015. It is evident that the spatial distribution of the
four monthly mascon solutions exhibits a substantial level of
concurrence. Regions characterized by a more pronounced
annual fluctuation in total water storage are predominantly
concentrated in specific areas, namely the Amazon basin in
South America, the Niger basin in West Africa, the Zambezi
basin in South Africa, and the Ganges and Mekong basins in
Southeast Asia.

Ditmar (2022) proposed a technique to combine and reg-
ularize GRACE-based mass anomaly time series and, at the
same time, to quantify the standard deviation (SD) of random
noise in each time series. The latter is estimated using vari-
ance component estimation (VCE) as adapted from Koch and
Kusche (2002). Figure 8 illustrates the spatial distribution of
the random-noise SD estimated for various mascon solutions.
The noise SD of the mass anomaly time series over the globe
obtained for the mascon solutions from GSFC, CSR, JPL,
and GCL-Mascon2024 are 3.5, 4.1, 3.9, and 3.7 cm, respec-
tively. In northern Africa, the Arabian Peninsula, and east-
ern Asia (the border region between China and Mongolia),
GCL-Mascon2024 and JPL mascon solutions exhibit simi-
lar spatial distributions, with smaller SDs in terms of random
noise compared to GSFC and CSR solutions. Given the pre-
dominant desert coverage in these regions, it is reasonable to
expect lower standard deviations in terms of random noise.
Further quantitative analyses of random noise over specific
local regions, including river basins, Greenland, and desert
areas, are provided in the following section.

4.2 Regional comparisons

For a more comprehensive comparative analysis of signal
magnitudes across various mascon solutions, this study se-
lects distinct river basins, Greenland drainage systems, and

typical deserts. These specific selections allow us to discern
temporal signals associated with hydrological processes, ice
melting dynamics, and temporal noise, respectively.

4.2.1 Hydrology

Continental water storage is a pivotal constituent within both
terrestrial and global hydrological cycles, exerting a signif-
icant degree of control over intricate processes involving
water, energy, and biogeochemical exchanges (Famiglietti,
2004). As such, it plays a paramount role in shaping and in-
fluencing the Earth’s climate system (Chen et al., 2010). Of
significant importance in terrestrial basins, the comprehen-
sive analysis of total water storage (TWS) aids in understand-
ing the intricate dynamics of water distribution and availabil-
ity (Long et al., 2013). TWS refers to the summation of all
water present within a given region, accounting for its vari-
ous forms, such as surface water, groundwater, soil moisture,
and snowpack. The GRACE mission can accurately capture
the total mass variation caused by terrestrial water storage
change (e.g., Ramillien et al., 2008; Rodell et al., 2018).

Given the potential divergence in the temporal signals of
mass variations across river basins characterized by distinct
sizes and climate classifications, we have statistically ana-
lyzed the temporal signals within the 42 largest basins (area
> 5× 105 km2) in the world, which encompass different cli-
mate types. This selection intends to showcase the perfor-
mance of the temporal-signal recovery by the different mas-
con solutions. The basic definitions of the aforementioned
river basins are all taken from and credited to Scanlon et
al. (2018).

Figure 9 illustrates the time series of basin mass varia-
tions derived from the WaterGAP Global Hydrology Model
(WGHM); GCL-Mascon2024; and the mascon solutions
from GSFC, CSR, and JPL. The WaterGAP model (Müller
Schmied et al., 2021, 2024), primarily developed at the uni-
versities of Kassel and Frankfurt, simulates water flows,
storage, withdrawals, and consumptive use globally, serv-
ing as a tool to evaluate the human–freshwater system under
the influence of global change. As shown in Fig. 9, GCL-
Mascon2024 exhibits a high level of agreement with the
other models in terms of mass anomalies across all analyzed
river basins. Using WGHM-based mass variations as control
data, the time series derived from GCL-Mascon2024 for the
42 largest basins demonstrates a reduction of approximately
5.3 % in error compared to the other three mascon solutions
released by GSFC, CSR, and JPL. Notably, in the Murray
Basin, which exhibits the sub-arid climate type, the GCL-
Mascon2024 time series shows a 44.6 %–58.0 % reduction
in error compared to the other mascon solutions. As shown
in Table 4, the correlation coefficients for mass variations
within the selected regions between GCL-Mascon2024 and
the other mascon solutions exceed 95.0 %.

According to Table 5, the noise SD of the mass anomaly
time series over the aforementioned river basins for the mas-

https://doi.org/10.5194/essd-17-4253-2025 Earth Syst. Sci. Data, 17, 4253–4275, 2025



4264 Z. Yan et al.: GCL-Mascon2024

Figure 6. Long-term trends from January 2003 to December 2015 (in equivalent water height or EWH).

Figure 7. Annual amplitudes from January 2003 to December 2015 (in equivalent water height or EWH).

con solutions from GSFC, CSR, JPL, and GCL-Mascon2024
are 4.2, 4.6, 5.0, and 4.1 cm, respectively. It is important
to highlight that the ability of the GCL-Mascon2024 solu-
tion to suppress random noise is optimal in most non-humid
(i.e., subhumid, semiarid, and arid) basins. This indicates
that the noise reduction of the GCL-Mascon2024 solution
is 21.6 %, 29.2 %, and 32.6 %, respectively, compared to the
GSFC, CSR, and JPL RL06 mascon solutions. Those im-
provements provided by the GCL-Mascon2024 solution may
benefit from incorporating advanced spatial constraints de-
rived from the aridity–wetness index of continental regions.

The results presented in Fig. 9 and Tables 4 and 5 demon-
strate strong evidence that GCL-Mascon2024 is equally sen-
sitive to hydrological signals compared to the official mascon

solutions despite employing a shorter arc length (i.e., 2 h) and
exhibiting a superior capacity for random-noise suppression.

4.2.2 Cryosphere

The Greenland Ice Sheet (GrIS) is home to one of the largest
freshwater reserves on our planet. Due to its substantial accu-
mulation rate and considerable meltwater runoff, the GrIS is
a highly dynamic system (Chen et al., 2006). Rapid trans-
formations within the GrIS have the potential to raise the
mean sea level substantially (Ran et al., 2024) and could
significantly impact the North Atlantic thermocline circu-
lation, thereby affecting the global climate (Velicogna and
Wahr, 2005). One of the primary means for monitoring mass
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Figure 8. Spatial distribution characteristics of random noise of GSFC RL06 mascon, CSR RL06 mascon, JPL RL06 mascon, and GCL-
Mascon2024 (in equivalent water height or EWH), with the standard deviation computed according to Ditmar (2022).

Figure 9. Time series of mass anomalies over typical river basins from the hydrology model WaterGAP (outlined by the gray zone) and
mascon solutions recovered by GSFC, CSR, JPL, and GCL (yellow, green, blue, and red lines, respectively). The base map illustrates the 42
largest basins (area > 5× 105 km2) extracted from the Total Runoff Integrating Pathway database, as from Scanlon et al. (2018).

variation in the GrIS is the GRACE satellite mission (e.g.,
Schlegel et al., 2016; Velicogna et al., 2020).

In Greenland, it is critical to emphasize that the mascon
geometry of GCL-Mascon2024 is delineated based on the
boundaries of the Greenland drainage system and the coast-
line. Greenland is partitioned into 21 mascons and 7 individ-
ual drainage systems: north (NO), northeast (NE), northwest
(NW), central east (CE), central west (CW), southeast (SE),

and southwest (SW). The various mascon solutions over dif-
ferent drainage systems of Greenland are validated using the
input–output method (IOM) as control data, i.e., mass bal-
ance = surface mass balance− ice discharge. Mass varia-
tions caused by surface mass balance (SMB) processes are
derived from the MARv3.14.0 polar regional climate model
run at a resolution of 10 km over the whole of the GrIS and
with a 6 hourly forcing by the ERA5 reanalysis at its lateral
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Figure 10. Time series of detrended mass anomalies for individual drainage systems and the entirety of Greenland based on the mass
balance from the input–output method, i.e., surface mass balance – ice discharge (outlined by the gray zone) and mascon solutions recovered
by GSFC, CSR, JPL, and GCL (yellow, green, blue, and red lines, respectively). The middle panel presents the schematic illustration of the
mascon division, and its base map portrays the topography of the Greenland Ice Sheet. In this study, Greenland is partitioned into 21 mascons
and 7 individual drainage systems: north (NO), northeast (NE), northwest (NW), central east (CE), central west (CW), southeast (SE), and
southwest (SW).

boundaries and over the ocean (Fettweis et al., 2017). The
middle panel of Fig. 10 presents the schematic illustration
of the mascon division and the topography of the ice surface
on Greenland. The other subfigures of Fig. 10 illustrate the
time series of the detrended mass anomaly based on the mass
balance from the IOM outlined by the gray zone and the dif-

ferent mascon solutions integrated over seven drainage sys-
tems, as well as over the entirety of Greenland. As indicated
in Fig. 10, the time series of mass changes over Greenland
is generally consistent across the four different mascon solu-
tions, with all models effectively capturing the overall mass
change in Greenland. The correlation coefficients of mass
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Table 4. Correlation coefficients between mass anomaly time series
over the representative river basins from GCL-Mascon2024 and of-
ficial RL06 mascon solutions.

Basin name GSFC CSR JPL

Amazon 0.995 0.995 0.996
Lena 0.972 0.976 0.971
Volga 0.981 0.983 0.978
Murray 0.953 0.957 0.951
Ganges 0.983 0.987 0.988
Orinoco 0.986 0.988 0.988
Tocantins 0.975 0.975 0.972
Yukon 0.966 0.972 0.929

changes across the seven different drainage systems between
GCL-Mascon2024 and the other three RL06 mascon solu-
tions exceed 98.6 %. Furthermore, the correlation coefficient
for capturing the total mass change of Greenland across all
four models is as high as 99.8 %. Particularly in the north-
eastern drainage system of Greenland, where the mass vari-
ation is minimal, the time series for this region, extracted
from GCL-Mascon2024, demonstrates a reduction in error
of about 20 % compared to the other three mascon solutions
from GSFC, CSR, and JPL. By extracting the noise SD of the
mass anomaly time series within the Greenland drainage sys-
tem from various mascon solutions (Table 6), we find that the
noise SD for the GCL-Mascon2024 and GSFC RL06 mascon
solutions is 8.7 and 9.7 cm, respectively, whereas it is 14.4
and 13.7 cm for the CSR and JPL RL06 mascon solutions.
This indicates that the GCL-Mascon2024 solution achieves
a random-noise reduction of 32.6 % and 29.2 % compared
to the CSR and JPL RL06 mascon solutions. The observed
discrepancies and the improvement offered by our mascon
solution could be attributed to differences in the definition of
mascon geometry and the processing methodology.

4.2.3 Desert

The preceding two sections have delved into the signal char-
acteristics exhibited by the GCL-Mascon2024 solution over
river basins and Greenland. In this section, we aim to eval-
uate the uncertainties of our mascon solutions over deserts
and compare them with those of the other mascon solutions.
Our impetus stems from an understanding that precipitation
within desert regions is limited. It is critical to emphasize that
aridity cannot be equated with negligible temporal mass vari-
ations (e.g., Scanlon et al., 2022). Conversely, low precipita-
tion may stimulate an extensive consumption of groundwa-
ter. To that end, the residuals, calculated after removing the
climatological components (i.e., bias, trend, and amplitude)
from the mass variations, can be regarded as mis-modeling
signals or temporal noise signals that persist in the temporal
gravity fields (e.g., Zhou et al., 2024). Consequently, we an-
alyze the error characteristics inherent to the mascon models

Table 5. The root mean square of random noise over the 42 largest
basins (area> 5× 105 km2) from the mascon solutions recovered
by GSFC, CSR, JPL, and GCL. The definitions of these basin
boundaries are derived from Scanlon et al. (2018). The bolded value
indicates the lowest rms of random noise (unit: centimeters).

ID Basin name Climate type GSFC CSR JPL GCL

01 Amazon Humid 7.59 8.64 9.21 9.19
02 Congo Humid 4.58 4.41 5.39 5.12
03 Mississippi Humid 4.85 5.13 5.72 4.56
04 Ob Humid 4.10 4.18 4.41 3.58
05 Parana Humid 6.02 7.43 7.89 5.82
06 Nile Semiarid 3.24 4.27 4.62 4.07
07 Yenisei Humid 3.91 4.06 4.31 3.90
08 Lena Humid 2.99 2.92 3.31 3.29
09 Niger Semiarid 2.30 2.53 2.89 2.27
10 Amur Humid 3.81 3.83 4.07 3.60
11 Yangtze Humid 3.67 3.78 4.39 4.32
12 Tamanrasset Arid 1.39 1.05 0.76 0.78
13 Mackenzie Humid 2.79 2.50 2.92 2.43
14 Volga Humid 4.52 4.27 4.99 4.60
15 Zambezi Subhumid 6.61 7.86 7.91 8.86
16 Lake Eyre Arid 4.25 3.61 3.78 1.40
17 Nelson Humid 4.36 4.35 4.98 4.46
18 St. Lawrence Humid 4.69 6.19 5.52 4.68
19 Murray Semiarid 4.04 4.34 4.95 2.90
20 Ganges Humid 5.42 8.82 7.82 8.04
21 Orange Semiarid 2.56 2.36 2.60 1.02
22 Indus Semiarid 3.73 4.03 4.69 4.83
23 Chari Semiarid 2.86 2.57 3.43 2.12
24 Orinoco Humid 7.10 7.96 8.81 9.45
25 Tocantins Humid 6.59 7.40 8.53 7.78
26 Yukon Humid 3.72 3.52 4.97 6.21
27 Danube Humid 4.51 5.00 5.59 5.50
28 Mekong Humid 4.87 5.55 7.45 5.52
29 Okavango Semiarid 5.12 6.02 5.89 4.75
30 Victoria Arid 5.51 5.90 5.64 2.15
31 Huang He Subhumid 2.91 3.62 2.97 2.05
32 Euphrates Semiarid 3.35 4.21 4.52 1.92
33 Jubba Semiarid 2.50 2.11 2.18 1.54
34 Columbia Humid 3.35 3.00 2.94 2.99
35 Arkansas Subhumid 5.29 6.06 6.71 5.37
36 Brahmaputra Humid 3.70 5.59 5.17 6.56
37 Kolyma Humid 2.86 2.54 3.02 2.74
38 Colorado Semiarid 3.23 2.39 4.67 2.04
39 Rio Grande Semiarid 3.47 3.02 3.31 2.36
40 Sao Francisco Subhumid 6.44 10.91 9.47 4.27
41 Nullarbor Arid 2.75 2.43 2.27 1.28
42 Dnieper Humid 4.18 4.19 4.50 3.63

over typical deserts, such as the Sahara Desert in Africa, the
Taklamakan Desert in Asia, and the Atacama Desert in South
America.

Deserts are territories characterized by low precipitation.
They can be classified into several categories based on their
respective geographical locations and prevailing weather pat-
terns, which include trade wind deserts, rain shadow deserts,
and coastal deserts (Whitford and Duval, 2019). Trade wind
deserts are typically found on both sides of the horse lati-
tudes, between ±30° and ±35°. These regions are charac-
terized by subtropical anticyclones and the large-scale de-
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scent of dry air masses (Glennie, 1987). The Sahara Desert,
the largest hot desert in the world, is an example of this
type. By extracting the mass variation residuals of the Sa-
hara Desert from varying mascon solutions, the residual of
the GCL-Mascon2024 solution and the JPL RL06 mascon
solution is 62.7 and 50.5 Gt, but it is 84.5 and 70.2 Gt for the
GSFC and CSR RL06 mascon solutions, respectively. This
indicates that the noise reduction of the GCL-Mascon2024
solution is 25.8 % and 10.7 %, respectively, when compared
to the GSFC and CSR RL06 mascon solutions. Rain shadow
deserts are formed by the rain shadow effect. Orographic lift
forces air masses to rise over mountains, cooling and los-
ing moisture on the windward slopes. As the air descends on
the leeward side, it warms, increasing its moisture capacity
and creating a drier region with reduced precipitation (Sun
et al., 2008). The Taklamakan Desert, the largest in China,
located in the rain shadow of the Himalayas, exemplifies this
phenomenon. The residuals of mass variations in this region
are estimated to be 3.3, 2.0, 1.2, and 1.7 Gt according to the
GSFC RL06, CSR RL06, JPL RL06, and GCL-Mascon2024
mascon solutions, respectively. The Atacama Desert, a prime
example of a coastal desert, is one of the driest regions on
Earth, characterized by an almost complete absence of life
due to its extreme aridity. This hyperarid climate is primar-
ily caused by the orographic effects of the Andes Mountains
to the east and the Chilean Coast Range to the west, which
prevent the desert from receiving significant precipitation.
Additionally, the cold Humboldt Current and the persistent
Pacific anticyclone play critical roles in maintaining the re-
gion’s dryness (Westbeld et al., 2009). The root mean square
(rms) of mass variations over the Atacama Desert, as derived
from the mascon solutions by GSFC, CSR, JPL, and GCL-
Mascon2024 are 3.8, 1.9, 1.4, and 1.2 Gt, respectively, indi-
cating that the GCL-Mascon2024 solution has the smallest
error.

Figure 11 illustrates the mass variations and the rms of
residuals of typical deserts. The deserts selected for this
study include the Sahara Desert, the Sechura Desert, the
Atacama Desert, the Kyzylkum Desert, the Gobi Desert,
the Taklamakan Desert, and the Arabian Desert. The GCL-
Mascon2024 incorporates well-defined physical constraints,
such as coastal and basin boundaries, along with advanced
spatial constraints based on the MVRCN matrix, enabling it
to reduce errors in desert regions by approximately 29.3 %
compared to the GSFC and CSR RL06 mascon solutions.
Meanwhile, the JPL RL06 mascon demonstrates a slightly
superior error suppression capability compared to the GCL-
Mascon2024 solution in the aforementioned deserts. No-
tably, especially in the Atacama Desert, which is a long and
narrow coastal desert from north to south and the driest desert
in the world, GCL-Mascon2024 can achieve noise suppres-
sion ranging from 35.5 % to 68.2 % compared to the mas-
con solutions provided by GSFC and CSR. As shown in Ta-
ble 6, the noise SD of the mass anomaly time series over
the selected desert regions for the GSFC, CSR, JPL, and

GCL-Mascon2024 mascon solutions are 2.1, 1.5, 1.5, and
0.9 cm, respectively. This translates to a random-noise reduc-
tion ranging from 40.0 % to 57.1 % compared to the GSFC,
CSR, and JPL RL06 mascon solutions.

4.2.4 Lake and ocean

The utilization of mass variations in large lakes (e.g., the
Caspian Sea) to assess noise levels in GRACE solutions is a
well-established approach (e.g., Loomis and Luthcke, 2017;
Ditmar, 2022). Herein, we choose the largest lake on Earth,
the Caspian Sea, as an example for verification. We follow
the approach proposed by Ditmar (2022), wherein the mass
anomaly time series derived from GRACE is compared with
the water level time series obtained from satellite altimetry
observations. The latter time series is empirically rescaled
(with a scaling factor of 0.687 for the Caspian Sea, as pro-
vided by Ditmar, 2022) to account for signal damping in
the GRACE solution. Figure 12 presents the mass anomaly
time series over the Caspian Sea derived from various mas-
con solutions and satellite altimetry data. As illustrated, the
GCL-Mascon2024 solution shows strong consistency with
the other models in capturing mass variations in this region.
Using satellite-altimetry-derived mass variations, scaled by a
factor of 0.687, as the reference, the noise SD values for the
GSFC, CSR, JPL, and GCL-Mascon2024 mascon solutions
are 5.7, 5.8, 5.6, and 5.2 cm, respectively.

GRACE satellite gravity measurements over oceanic re-
gions directly correspond to ocean bottom pressure varia-
tions at spatial scales of∼ 300 km (Watkins et al., 2015). Fig-
ure 13 illustrates the time series of basin mass variations de-
rived from different mascon solutions. To assess the quality
of our solutions for ocean signals, we compute the correlation
coefficients between GCL-Mascon2024 and the RL06 mas-
con solutions released by GSFC, CSR, and JPL. The result-
ing correlations are 95.7 %, 98.0 %, and 98.2 %, respectively,
indicating a high level of consistency between our products
and official mascon products.

5 Data availability

All datasets used in this study were last accessed on
20 August 2025. The specific data repositories in-
clude GRACE level-1B data, downloaded from JPL
at https://podaac.jpl.nasa.gov (Case et al., 2010), and
kinematic orbits available from the Graz University of
Technology at ftp://ftp.tugraz.at (Suesser-Rechberger et
al., 2022). The ITSG-Grace2018 monthly solutions can
be accessed via https://doi.org/10.5880/ICGEM.2018.003
(Mayer-Gürr et al., 2018). The RL06 mascon solutions
released by JPL, CSR, and GSFC are available at, respec-
tively, https://doi.org/10.5067/TEMSC-3JC63 (Wiese et al.,
2023), https://doi.org/10.15781/cgq9-nh24 (Save, 2020),
and https://earth.gsfc.nasa.gov/geo/data/grace-mascons
(Loomis et al., 2019). The WaterGAP Global Hydrol-
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Figure 11. Time series of mass change residuals over deserts derived from the RL06 mascon solutions from GSFC, CSR, JPL, and GCL-
Mascon2024. The residuals indicate that the climatological components (i.e., bias, trend, and amplitude) have been removed from the mass
variation. The deserts chosen are the Sahara Desert, Sechura Desert, Atacama Desert, Kyzylkum Desert, Gobi Desert, Taklamakan Desert,
and Arabian Desert.

Table 6. The root mean square of random noise over individual drainage systems of Greenland and desert regions from the mascon solutions
recovered by GSFC, CSR, JPL, and GCL. The bolded value indicates the lowest rms of random noise (unit: centimeters).

Region type Drainage system/basin name GSFC CSR JPL GCL

Polar region (Greenland) North 7.09 8.77 10.96 6.88
Northeast 7.00 7.07 7.73 6.43
Northwest 8.12 20.43 14.69 11.83
Central east 8.45 10.57 8.74 7.82
Central west 9.61 14.96 15.48 10.53
Southeast 11.95 21.01 18.58 12.58
Southwest 13.55 22.37 23.87 16.72
Entirety of Greenland 8.86 14.43 13.71 9.68

Desert region Sahara 1.55 1.26 1.15 0.80
Arabian 1.62 1.75 1.39 0.94
Gobi 1.55 1.17 1.11 0.82
Kyzylkum 2.26 2.09 1.63 1.18
Taklamakan 1.76 1.17 0.59 0.74
Atacama 3.06 1.32 1.49 0.84
Sechura 3.07 2.06 3.11 1.03

ogy Model, for comparisons, can be downloaded from
https://doi.org/10.1594/PANGAEA.948461 (Müller
Schmied et al., 2022). The MAR (version 3.14)
model used in this study can be downloaded from
http://ftp.climato.be:80/fettweis/MARv3.14/Greenland/
(Fettweis et al., 2017). The time series of water level varia-

tions in the Caspian Sea is derived from satellite altimetry
data provided by the USDA/NASA G-REALM program
(https://ipad.fas.usda.gov/cropexplorer/global_reservoir/,
Birkett, 1995). The GCL-Mascon2024 model is available
at https://doi.org/10.5281/zenodo.15525467 (Yan and Ran,
2025).
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Figure 12. Comparison of GRACE-derived mass anomaly time se-
ries (expressed in equivalent water height, EWH) from different
mascon solutions with satellite-altimetry-based water level varia-
tions over the Caspian Sea. The time series derived from satellite
altimetry has been downscaled using a scale factor of 0.687 to ac-
count for signal attenuation (Ditmar, 2022).

Figure 13. Comparison of GRACE-derived mass anomaly time se-
ries (expressed in equivalent water height, EWH) over the global
sea from different mascon solutions.

6 Conclusions

Mascon solutions of Earth’s temporal gravity field can be
considered to be more “user-friendly” compared to spher-
ical harmonic solutions as they remove the need to ap-
ply empirical post-processing filters to eliminate errors in
the unconstrained spherical harmonic solutions. Given this
significant advantage, mascon solutions have been garner-
ing increased interest from the GRACE applications com-
munity. Herein, the Geodesy and Cryosphere Laboratory
from the Southern University of Science and Technology
presents a novel mascon solution named GCL-Mascon2024,
derived utilizing the short-arc approach and the level-1B data
from GRACE. GCL-Mascon2024 features uniquely variably
shaped mascon geometries integrated with relevant phys-
ical constraints such as coastline and basin boundary ge-
ometry, which ensures an accurate representation of tempo-
ral gravity signals while minimizing signal leakage. Mean-
while, this series of mascon recovery processes incorporates

frequency-dependent data-weighting techniques to reduce
the influence of low-frequency noise in observations. GCL-
Mascon2024 utilizes advanced spatial constraints based on
the MVRCN matrix, which is constructed by integrating a
priori basin climate factors and cryosphere elevation models.
The MVRCN matrix is carefully incorporated into the inver-
sion process as a regularization matrix to minimize errors,
ensuring the improvement of the signal-to-noise ratio in the
GCL-Mascon2024 recovery framework.

To evaluate the quality of GCL-Mascon2024, we analyze
the signal and error levels across continental regions globally,
assess signal strengths over selected river basins and Green-
land, and examine noise levels in representative desert areas.
Based on these analyses, we draw the following conclusions:

1. Over the continental regions, GCL-Mascon2024 mass
anomaly estimates from GRACE data show strong
agreement with the RL06 mascon solutions (GSFC,
CSR, JPL) in both spatial and temporal domains. For
global ocean signals, the correlation between GCL-
Mascon2024 and the RL06 mascon products from
GSFC, CSR, and JPL exceeds 95.7 %.

2. The long-term trends and amplitudes from GCL-
Mascon2024 over river basins and Greenland exhibit
strong consistency with the RL06 mascon solutions
from GSFC, CSR, and JPL. In particular, within non-
humid river basins, the GCL-Mascon2024 suppresses
random noise in the range of 21.6 % to 32.6 % compared
to contemporary mascon products. With SMB-based
mass balance as the benchmark, GCL-Mascon2024
achieves about 20 % error reduction compared to
the other three mascon solutions in the northeastern
drainage system of Greenland, where mass variation is
minimal.

3. Mass variations in deserts, regions characterized by low
precipitation, are typically minimal, offering an ideal
basis for assessing the temporal errors of different mas-
con models. Building on this premise, the work in-
vestigates the error characteristics across diverse desert
types, including the Sahara Desert (trade wind type),
the Taklamakan Desert (rain shadow type), and the At-
acama Desert (coastal type), along with other deserts.
The GCL-Mascon2024 reduces temporal errors in these
desert regions by approximately 29.3 % compared to the
RL06 mascon solutions from GSFC and CSR. Mean-
while, GCL-Mascon2024 achieves a random-noise sup-
pression ranging from 40.0 % to 57.1 % compared to the
other three mascon solutions.
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