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Abstract. Ocean-surface stress is a critical driver of polar sea-ice dynamics, air—sea interactions, and ocean
circulation. This work provides a daily analysis of ocean-surface stress on 25 km Equal-Area Scalable Earth
(EASE) grids across the ice-free and ice-covered regions of the polar oceans (2011-2021 for the Arctic, 2013—
2021 for the Antarctic), covering latitudes north of 60°N in the Arctic and south of 50°S in the Antarctic
and Southern Ocean. Ocean-surface stress is calculated using a bulk parameterization approach that combines
ocean-surface winds, ice motion vectors, and sea surface height (SSH) data from multiple satellite platforms.
The analysis captures significant spatial and temporal variability in ocean-surface wind stress and the resultant
wind-driven Ekman transport, while providing enhanced spatiotemporal resolution. Two sensitivity analyses are
conducted to address key sources of uncertainty. The first addresses the fine-scale variability in SSH fields, which
was mitigated using a 150 km Gaussian filter to smooth 3 d SSH datasets and enhance compatibility with the other
monthly product, followed by linear interpolation to achieve daily resolution. The second investigates uncertainty
in the ice—water drag coefficient, which revealed that variations in the coefficient have a proportional influence
on the computed ocean-surface stress under the tested conditions. These uncertainties are most pronounced
during winter, with median values reaching 20 % in the Arctic and 40 % in the Southern Ocean. Validation
efforts using ice-tethered profiler velocity records revealed weak to moderate correlations with satellite-derived
stress (r = 0.4-0.8) between observed surface velocities and satellite-derived estimates (Ekman + geostrophic) at
daily resolution, with significantly improved agreement when averaged to weekly means. This dataset is publicly
available at https://doi.org/10.5281/zenodo.15534576 (Liu and Yu, 2024).

greater complexity, with a modest long-term increase ob-

Earth’s polar regions have undergone profound changes over
the past decades, with sea ice playing a central role in the
polar climate system. By modulating heat, momentum, and
freshwater exchanges at the atmosphere—ice—ocean bound-
ary, sea ice directly influences global climate dynamics
(Meehl, 1984; Stammerjohn et al., 2012). In the Arctic,
rapid sea-ice decline has transitioned the region from pre-
dominantly thick, multiyear ice to thinner, more dynamic
ice, with increased interannual variability (Comiso et al.,
2008; Stroeve and Notz, 2018; Moore et al., 2022; Babb et
al., 2022). Meanwhile, Antarctic sea-ice trends have shown
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served until the mid-2010s, followed by a record loss in 2017
and a subsequent continued decline (Liu et al., 2004; Parkin-
son, 2019; Turner et al., 2022; Purich and Doddridge, 2023).
These changes in sea-ice extent and thickness have signifi-
cant implications for polar systems and global climate feed-
backs, influencing the Arctic’s ability to regulate planetary
heat, as well as impacting marine ecosystem, carbon cycling,
nutrient distribution, and thermohaline circulation (Talley,
2013; Campbell et al., 2019).

Atmospheric circulation is a primary driver of sea-ice dy-
namics and variability. Geostrophic winds, for instance, ac-
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count for over 70 % of sea-ice velocity variability (Thorndike
and Colony, 1982; Maeda et al., 2020), while broader climate
modes, including the Arctic Oscillation, Pacific Decadal Os-
cillation, and Southern Annular Mode, influence ice ex-
tent and distribution (Rigor et al., 2002; Park et al., 2018;
Lefebvre et al., 2004). These wind-driven processes inter-
act with sea ice to modify ocean-surface stress, impacting
Ekman dynamics and the transport of heat, salt, and nutri-
ents (Yang, 2006, 2009; Meneghello et al., 2018). This feed-
back mechanism, often described as the “ice—ocean gover-
nor” (Meneghello et al., 2017), plays an important role in
regulating polar freshwater storage and circulation (Marshall
and Speer, 2012; Abernathey et al., 2016; Ma et al., 2017).

Surface stress plays a pivotal role in driving Arctic Ocean
circulation by mediating the transfer of momentum from the
atmosphere to the ocean. In the Arctic, sea ice acts as a mod-
ulator of this momentum exchange, either dampening or am-
plifying the transfer, depending on its concentration and me-
chanical properties. Recent projections indicate that, as the
Arctic climate warms, sea ice will become thinner and less
extensive, leading to a more efficient transfer of wind en-
ergy to the ocean surface (Muilwijk et al., 2024). This en-
hanced momentum transfer is expected to accelerate surface
currents, increase ocean kinetic energy, and intensify vertical
mixing processes (Martin et al., 2014; Martin et al., 2016).
However, current climate models exhibit considerable uncer-
tainty in simulating these processes, due to simplified rep-
resentations of atmosphere—ice—ocean interactions. There-
fore, the development of observationally based surface stress
products is essential for validating and improving model sim-
ulations, leading to more accurate predictions of future Arc-
tic Ocean dynamics and their global implications.

To address the complexity of ice—ocean interactions, re-
cent modeling advances have highlighted the pivotal role of
sea-ice form drag in governing momentum exchange at the
ocean—ice—atmosphere interface. Tsamados et al. (2014) in-
troduced a physically grounded parameterization of ice form
drag that accounts for ice morphological features — such as
ridges, floe edges, and melt pond geometry — and demon-
strated that spatial and temporal variability in drag coeffi-
cients can substantially influence sea-ice dynamics and the
spin-up of the Arctic Ocean. Extending this approach, Sterlin
et al. (2023) implemented a variable ice form drag scheme in
the NEMO-LIM3 ocean—sea-ice model and found that it ex-
erts a pronounced control over ocean-surface stress patterns,
mixed layer depth, sea-surface salinity, and upper ocean tem-
perature across both polar regions. These modeling efforts
reveal that ice form drag is not merely a secondary detail
but a first-order process in polar ocean circulation and sur-
face forcing. However, the representation of ice—ocean drag
— often quantified through the coefficient — remains highly
uncertain, as it can vary markedly with environmental con-
ditions, including ice concentration, surface roughness, and
the presence of waves (Liipkes and Gryanik, 2015; Brenner et
al., 2021). This highlights the growing need for observation-
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ally based estimates of ocean-surface stress that can support
parameterization efforts, constrain model behavior, and im-
prove the physical realism of coupled ocean—ice simulations.

Despite significant advancements in understanding these
processes, direct measurements at the ice—ocean interface
remain limited, with most data concentrated in the Arctic’s
Canada Basin (Smith et al., 2019; Regan et al., 2019). Satel-
lite remote sensing has been instrumental in addressing these
gaps, providing open-ocean-surface wind retrievals, avail-
able since 1988 (Yu and Jin, 2014a), and tracking sea-ice mo-
tions since 1978 (Cavalieri et al., 1996). Recent advances in
satellite altimetry further enable high-resolution monitoring
of sea surface height (SSH) changes, offering new insights
into mesoscale ocean dynamics (Armitage et al., 2016, 2017;
Prandi et al., 2021).

Building upon the concepts developed in previous studies
(Yang, 2006, 2009; Meneghello et al., 2018), this analysis
utilizes recent satellite-based datasets on wind, ice motion,
and SSH to analyze ocean-surface stress across both ice-free
and ice-covered polar seas. Specifically, we present a daily
analysis of ocean-surface stress at 25km resolution using
Equal-Area Scalable Earth (EASE, see glossary in Table A1)
grids from 2011 to 2021 for the Arctic and 2013-2021 for the
Antarctic, covering latitudes north of 60° N in the Arctic and
south of 50°S in the Antarctic and Southern Ocean (Fig. 1).

Section 2 provides a description of the satellite datasets
used and processing steps, along with the methods for calcu-
lating ocean-surface stress and Ekman circulation. Section 3
presents the time-mean patterns and variability of the de-
rived surface stress and Ekman pumping fields. Section 4 ad-
dresses the quantification of uncertainties in the analysis, in-
cluding sensitivity to the ice-water drag coefficient and com-
parisons with in situ data.

2 Data, method, and processing of the analysis

2.1 Calculation of ocean-surface stress and the Ekman
transport

The ocean-surface stress is estimated using the methodol-
ogy proposed by Yang (2006, 2009), with modifications by
Meneghello et al. (2018). The total ocean-surface stress (7o)
is calculated as a weighted linear combination of ice—water
stress (Tjw) and air—water stress (T,w), based on the fractional
sea-ice concentration:

To=aTiw + (1 — ) Taw, (D

where « is set to O for the ice-free surfaces (defined as sea-
ice concentration less than 15 %) and 1 for ice-covered sur-
faces (defined as sea-ice concentration exceeding 15 %). The
stresses Tiy and T,y are parameterized using quadratic drag
laws:

Tiw = /OWCD,iW |Uice - U — Ug| (Uice —Ue — Ug) 2)
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Figure 1. Study region in (a) Arctic Ocean and (b) Southern Ocean. Blue shading represents the bathymetry in meters. Solid and dashed
magenta lines indicate the median sea-ice extent boundaries for March and September, respectively, defined by areas with sea-ice concentra-

tion.

and

Taw — paCD,aw [Uio0l U0, (3)

where Uice, Ue, Ug, and Uy are the local ice motion, Ekman
velocity, geostrophic velocity, and equivalent neutral wind at
10 m height, respectively; py = 1027.5kgm™> and p, repre-
sent the densities of water and air, respectively. In this for-
mula, 7, is taken directly from existing satellite wind prod-
ucts (Yu and Jin 2014a, b).

Cp.iw is the ice—water drag coefficient;
Cp.iw =5.5 % 1073 is adopted in this product as it is a
commonly recognized value. It is worth noting that, due
to the limited availability of direct observations, Cp iw
is identified as a key source of uncertainty. A sensitivity
analysis is therefore provided in the following section to
evaluate its potential impact.

In Eq. (2), surface ocean velocity is expressed as the sum
of Uy and U.. The representation of ocean-surface stress is
known to be highly sensitive to the assumed surface veloc-
ity used in the drag formulation. A range of approaches has
been employed in past studies — incorporating Ue or Ug or
even assuming zero ocean motion — each with markedly dif-
ferent implications. For instance, Zhong et al. (2018) showed
that mean Ekman pumping in the Beaufort Sea can vary by
over 50 %, depending on the inclusion of geostrophic flow.
Wau et al. (2021) reported similar sensitivities in the Nordic
Seas, while earlier works by Zhong et al. (2015) and Ma
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et al. (2017) further detailed the variability across Arctic
regimes. As a result, stress-based diagnostics remain sensi-
tive to parameterization choices, and conclusions should be
interpreted with that uncertainty in mind.

The geostrophic velocity Uy can be calculated from dy-
namic ocean topography datasets (McPhee, 2013; Armitage
et al., 2016, 2017). The Ekman velocity U, which moves at
an angle of 45° to the right of the ocean-surface stress in the
northern hemisphere, is calculated as

De—ir/4)
U, = ‘/_e—fo, )
fowDe

where f is the Coriolis parameter and D, is the Ekman layer
depth (20 m; Meneghello et al., 2018). Since U, and t, are
interdependent in Egs. (1) and (4), a modified Richardson it-
eration method is applied to solve them iteratively until con-
vergence is achieved, starting with U, = 0 in the first itera-
tion (Yang, 2006).

Subsequently, the vertical Ekman velocity we can be cal-
culated as follows:

1
we=—""V XT1,. ®)
¢ fow °

A positive w, indicates upwelling, while a negative we cor-
responds to downwelling.
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2.2 Data description

The calculation of total ocean-surface stress (Eqs. 1-4) re-
quires the following input datasets: ocean-surface wind stress
(Taw), sea-ice concentration (), sea-ice motion (Ujc), and
dynamic topography for geostrophic velocity (Ug). A brief
description of each satellite-based dataset is given in Table 1.

In this product, the air—water wind stress is taken from
OAFlux2 (Yu and Jin, 2014a, b), a satellite-derived 0.25°
gridded air-sea flux daily analysis (1988 to present) de-
veloped under the auspices of NASA’s Making Earth Sys-
tem Data Records for Use in Research Environments (MEa-
SURESs) program (Yu, 2019). OAFIux2 winds are synthe-
sized from 19 active and passive satellite wind sensors
and wind stresses are calculated from the Coupled Ocean—
Atmosphere Response Experiment (COARE) bulk algo-
rithm, version 3.6 (Fairall et al., 2003).

Daily sea-ice motion vectors for the Arctic and Antarctic
regions are obtained from the National Snow and Ice Data
Center’s (NSIDC’s) Polar Pathfinder Daily 25km EASE-
Grid Sea-Ice Motion Vectors, version 4 (Tschudi et al., 2019,
2020), covering the period from 1978 through 2023. The ice
motion fields are derived from multiple sources, including
passive microwave radiometers (e.g., SSM/I, AMSR-E), vis-
ible and infrared sensors (e.g., AVHRR, MODIS), scatterom-
eters (e.g., QuikSCAT), drifting buoys (e.g., IABP), and at-
mospheric wind reanalysis. Feature-tracking algorithms are
applied to sequential satellite images to identify ice displace-
ment, while optimal interpolation techniques combine the
various data sources to produce daily sea-ice motion esti-
mates. The resulting vectors represent sea-ice displacement
over a 24 h period and are gridded onto a 25 km EASE grid
2.0 (EASE2).

Geostrophic velocity in the Arctic and Antarctic are ob-
tained from the CLS/PML multi-altimeter combined Arc-
tic/Antarctic Ocean sea-level dataset (Prandi et al., 2021).
This dataset spans latitudes north of 50°N on a 25km
EASE2, with a temporal resolution of one grid point every
3d. Covering the Arctic from 2011 to 2021 and the Antarctic
from 2013 to 2021, the CLS dataset mitigates the spurious
meridional signals often introduced by the longer sampling
intervals of CryoSat-2 observations (Auger et al., 2022).

The sea-ice concentrations from Nimbus-7 SMMR and
DMSP SSM/I-SSMIS Passive Microwave Data, version 2
(NSIDC-0051, Cavalieri et al., 1996; DiGirolamo et al.,
2022) are used to define the daily ice boundary, based on
the 15 % ice concentration threshold. NSIDC-0051 provides
a reliable long-term record of sea-ice concentration, making
it valuable for studying sea-ice conditions and large-scale cli-
mate variability (Parkinson, 2019). Widely recognized for its
accuracy, the dataset is frequently used to validate and im-
prove climate model simulations. The daily dataset is avail-
able from 1987 to the present and provides coverage for a
25 km resolution polar stereographic grid for both polar re-
gions.
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The analysis period ends in 2021 to maintain consistency
with the most reliable iteration of the ongoing refinement of
the associated satellite products, as listed in Table 1. While
this choice limits the temporal extent, the framework itself
remains flexible and can be readily extended as newer, better-
resolved, datasets become available. With all considered, the
study period for Antarctica is constrained to 6 years (2013—
2021), while an 8-year period (2011-2021) is maintained for
the Arctic.

2.3 Data processing procedure

Using the methodology described in Egs. (1)—(5) and the in-
put data listed in Table 1, the workflow for processing and
analyzing data to calculate ocean-surface stress and derive
vertical Ekman velocity is shown in Fig. 2.

All datasets are interpolated onto a common 25 km EASE
grid format, providing uniform spatial resolution and facil-
itating consistent analysis across the Arctic and Antarctic
regions. Note that the 25 km resolution may introduce un-
certainties near the 15 % sea-ice concentration boundary, as
such coarse resolution can obscure sharp gradients in the
marginal ice zone and lead to misclassification of mixed ice—
water grid cells (e.g., Meier, 2005; Ivanova et al., 2015).

Despite efforts to merge ice-edge boundaries across mul-
tiple satellite products, we note that data gaps and inconsis-
tencies become more pronounced after 2019. This is primar-
ily due to increasing divergence between input datasets used
to define sea-ice concentration and motion. As a result, the
quality of the derived surface stress fields may be reduced,
particularly in the marginal ice zone (MIZ), where small
changes in ice coverage can significantly affect stress par-
titioning. Users should exercise caution when applying this
dataset to study MIZ dynamics after 2019; we recommend
validating results against independent sources where possi-
ble.

Temporal sampling frequency plays a critical role in de-
termining the accuracy and interpretability of ocean-surface
stress estimates. Daily and sub-daily sampling is often
needed to capture short-term variability in wind and sea-
ice motion, which directly affects transient stress fluctua-
tions and high-frequency Ekman responses (Meneghello et
al., 2018; Regan et al., 2020). Conversely, monthly aver-
aged fields may overly smooth dynamic features and obscure
important stress events, particularly in regions with strong
synoptic variability. In this context, the 3 d sampling of the
CLS/PML altimetry product offers a useful compromise: it
resolves large-scale mesoscale dynamics more consistently
than monthly data while maintaining better signal-to-noise
properties than noisy daily sea surface height reconstructions
in ice-covered regions (Prandi et al., 2021). Given the limita-
tions of satellite altimetry in the polar oceans, the CLS/PML
dataset provides a crucial improvement by reducing spurious
meridional errors and enabling more consistent estimation
of geostrophic velocities and their role in modulating sur-
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Table 1. Gridded satellite datasets used in the work.

4163

Variable Source Resolution Period Reference

Surface wind stress, Taw OAFlux2 Daily, 0.25° 1988—present Yu and Jin (2014a, b)

Ice motion, Ujce Polar Pathfinder v4  Daily, 25 km 1978-2023 Tschudi et al. (2019)

Geostrophic, Ug Multi-altimeter 3d, 25km 2011-2021 (Arctic) Prandi et al. (2021)
dataset 2013-2021 (Antarctic)

Sea-ice concentration, o NSIDCO0051, v2 Daily, 25 km 1988—present DiGirolamo et al. (2022)

Input Surface Wind Stress Tqw: Ice Motion: Dynamic Topography:
OAFlux2 Polar Pathfinder v4 Multi-Altimeter
I
I ‘
1
I | 3-day resolution
i | Dail
Pre-Processing | | interpolated to Daily

Re-gridding Regular
Grid to 25 km EASE2

)

2D Gaussian Spatial
Filter to Reconcile with
CPOM DOT

Boundary Matching
with OAFlux2

]

l 25 km, Daily
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Figure 2. Workflow for data processing and analysis to calculate ocean-surface stress and derive vertical Ekman velocity.

face stress (Auger et al., 2022). We revisit the implications
of time-averaging choices for surface stress/derived velocity
fields in Sect. 4.2.

While the CLS/PML product offers improved temporal
resolution and geophysical realism at finer spatial scales,
its use of multiple altimeters and interpolation techniques
can introduce high-frequency structures that remain diffi-
cult to validate, given the sparse in situ coverage at high
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latitudes (Prandi et al., 2021; Auger et al., 2022). In con-
trast, the CPOM dynamic ocean topography (DOT) dataset
(2003-2021) from the Centre for Polar Observation and
Modelling (CPOM; Armitage et al., 2016, 2017), despite
its coarser resolution and monthly cadence, has seen wider
adoption and validation across climate-scale Arctic stud-
ies (e.g., Meneghello et al., 2018; Zhong et al., 2018; Lin
et al.,, 2023), making it a valuable benchmark for cross-
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comparison. To reconcile the strengths of both datasets, we
apply a two-dimensional Gaussian spatial filter to smooth
CLS/PML fields, aligning their effective resolution with
CPOM and improving the interpretability of large-scale pat-
terns. This hybrid approach leverages the temporal detail of
CLS/PML while benefiting from the broader-scale reliabil-
ity of CPOM, offering a more balanced foundation for stress
estimation and error characterization in polar oceanographic
applications.

We employed a 2D Gaussian filter with a standard devia-
tion of 75 km to improve consistency and interpretability be-
tween CLS/PML and CPOM DOT datasets, which have dif-
ferent resolutions and small-scale characteristics. A sensitiv-
ity test was conducted to determine the optimal filter radius,
ranging from 50 to 250 km. Smaller filters (e.g., <50km)
preserve small-scale variability but may complicate the in-
terpretation of large-scale features, while larger filters (e.g.,
>250 km) can excessively smooth mesoscale processes, such
as boundary currents, reducing a dataset’s ability to capture
key processes of polar dynamics.

To find the optimal filter size, a series of tests were con-
ducted for 2011. The effectiveness of each filter setting was
evaluated using the root mean square deviation (RMSD):

1
RMSD = \/ﬁ Zi’j(wei,j - weref,(i,j))z ’ (6)

where we, ; represents the local vertical Ekman velocity we
derived from the CLS dataset, filtered with a specific Gaus-
sian filter size (e.g., 100, 150km); we, ; ; is the reference
vertical Ekman velocity calculated using the CPOM dataset;
and N is the total number of the grid points with sea-ice cov-
erage.

The unfiltered CLS/PML dataset exhibits clear seasonal
variations in RMSD, with values peaking at 25cmd™! dur-
ing winter and decreasing in summer (Fig. 3a). Applying
a Gaussian filter significantly enhances agreement with the
CPOM dataset, reducing RMSD by 10-15cmd~! for most
of the year. However, in late summer the reduction is only
2-5cmd

Increasing the filter size further enhances spatial agree-
ment (Fig. 3b). From no filter to a 100 km filter, the annual
mean RMSD is reduced to 17 cmd~!; increasing the filter
size to 150 km further lowers the RMSD to 15.5cmd ™. The
standard deviation of daily RMSD is also reduced by half
with a 150km filter, compared with the unfiltered results.
However, larger filter sizes (e.g., 200 and 250 km) yield only
marginal additional improvements. Therefore, the 150km
Gaussian filter is selected as a practical and effective balance
between preserving spatial features and minimizing small-
scale variability for this work.

Figure 3c—h demonstrate the impact of varying filter size
on the spatial structures of 7, and w. on 15 March 2011.
Without filtering, the CLS dataset exhibits residual merid-
ional striping due to satellite sampling artifacts (Auger et
al., 2022). This pattern is significantly suppressed with a
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150km Gaussian filter. Between the filtered CLS-derived
we (150km) and CPOM-derived we, the correlation coeffi-
cients improve markedly from 0.77 (no filter) to over 0.95
(p <0.05).

3 Results and regional statistics

3.1 Arctic Ocean

In this section, we provide a concise overview of the sur-
face stress and the corresponding Ekman velocity fields. Fig-
ure 4a shows the time-averaged ocean-surface stress (7o)
field across the Arctic for 2011-2021. The highest t, appears
in the ice-free Nordic Seas, where strong wind—ocean inter-
actions drive surface stresses exceeding 0.3 N'm~2. In con-
trast, sea ice reduces momentum transfer and lowers 7, in
ice-covered regions. In the seasonal ice zone (SIZ), marked
by the March and September sea-ice boundaries, t, typically
remains below 0.05Nm~2. Within the perennial ice zone
(PIZ), bounded by the September sea-ice boundary, it drops
further to below 0.02Nm™2.

The seasonal cycle of 7, is the dominant temporal vari-
ability across the Arctic (Stroeve and Notz, 2018). The
standard deviation (SD) shows a spatial distribution simi-
lar to the time-averaged 7, (Fig. 4b), with high variabil-
ity (=0.1Nm~2) in ice-free regions like the Nordic Seas.
Variability is significantly suppressed in the SIZ and PIZ,
with values below 0.02 and 0.01 Nm™2, respectively. The
coefficient of determination (R2, here, is calculated as the
proportion of variance explained by the seasonal cycle, i.e.,
R? = 1= (X (v = ¥seasonal)*)/(X; (i = ¥))) shows that, in
open-ocean regions, 40 %—60 % of variance is explained by
seasonal variability (Fig. 4c). In ice-covered areas, this ratio
drops to less than 30 %.

The time-mean Ekman pumping rate (we) and its SD
and R? patterns are given in Fig. 4d—f. Strong upwelling
(>50cmd~!) is observed in the Nordic Seas, while strong
downwelling (<—10 ecmd™!) occurs in the Beaufort and
Chukchi Seas. The spatial pattern of the SD of w, is simi-
lar to that of 7, (Fig. 4e). Seasonal variability ranges from
10-20cmd~! in ice-free regions and 4-6cmd~! in the SIZ,
and falls below 4 cmd~! in the PIZ. Seasonal variability ac-
counts for up to 60 % of w, variance south of the Denmark
Strait, but in other regions, including both ice-covered and
ice-free zones, it typically explains 10 %—-30 %.

The seasonal cycle of area-averaged wind—ocean-surface
stress (T,w) is marked by strong values in winter, peaking
around 0.4 N m~2, and much weaker values in summer, drop-
ping below 0.05 N m~2 (Fig. 5a). This variation corresponds
to the seasonal retreat of sea ice and the associated expansion
of open ocean during summer months.

In ice-covered regions, the seasonal cycle of ice—ocean-
surface stress (Tiy) is similar to that of 7., though with
significantly lower magnitudes (Fig. 5c). The seasonal peak
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Figure 3. Area-averaged ocean-surface stress 7, and vertical Ekman velocity we for different Gaussian filter settings. (a) Annual cycle of
root mean square deviation (RMSD) of we over 2011. Blue shading shows total ice-cover areas (right axis). (b) Annual mean RMSD of we
with shading indicating one standard deviation over a year. (¢) Snapshot of 7, with unfiltered CLS (15 March 2011). (d) Same as (c) but with
150 km Gaussian filter. (e¢) Same as (c¢) but with CPOM. (f)—(h) Same as (¢)—(e) but for we. Streamlines in (¢)—(e) show the direction of 7.
Black contours in (¢)—(h) mark 15 % ice concentration on 15 March 2011.
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Figure 4. Mean and variability of ocean-surface stress 7, and Ekman pumping rate we (positive indicates upwelling, negative indicates
downwelling) in the Arctic region over 2011-2021. (a) Mean 7o, with streamlines indicating the direction of stress. (b) Standard deviation
of 7, seasonal variability. (c) R2, representing 7, variance explained by seasonal variability. (d)—(f) Same as (a)—(c) but for we. The solid
and dashed black lines represent the March and September sea-ice boundaries, respectively, defined by 15 % sea-ice concentration averaged

over 2011-2021.

of 1;y is slightly higher in 2018 than 2013, increasing from
0.010N'm~2 to nearly 0.018 N m~2.

Due to the aforementioned uncertainties in sea-ice bound-
ary delineation, we do not present an analysis of the average
Ekman pumping rates w, after 2018, as these estimates be-
come highly sensitive to edge conditions and are thus domi-
nated by boundary artifacts.

In ice-free regions, the average pumping rate wWe aw
peaks during winter upwelling, reaching around 30 cmd ™!,
and transitions to weak downwelling during the summer
(Fig. 5e). Annual variation in winter maximum upwelling
rate is evident, with a notable decline to 10cmd ™! by late
2018 (Fig. 5f). In contrast, in ice-covered regions, We iw
is predominantly negative (Fig. 5g), although occasional
summer upwelling events occur on daily scales. Notably,
the winter downwelling rate has decreased from approx-
imately —8cmd™! in 2013-2014 to about —4cmd~! by
2017 (Fig. 5h).

Earth Syst. Sci. Data, 17, 4159-4184, 2025

3.2 Southern Ocean

The spatial distribution of the time-mean 7, in the Antarctic
region is shown in Fig. 6a; 1, exhibits a prominent circumpo-
lar pattern. In ice-free regions, 7, typically ranges from 0.2
to 0.3 N m~2. In the SIZ, 7, decreases significantly, falling to
0.04-0.06 N m~2, with strong regional variability.

The SD of 1, seasonal variability is evidently strong near
the September sea-ice boundary, exceeding 0.1 Nm™2, par-
ticularly between 0 and 90°E (Fig. 6b). Moving northward
into sub-polar open ocean, the SD gradually declines to
approximately 0.04 N m~2. Within the SIZ, seasonal vari-
ability diminishes further, typically ranging from 0.02 to
0.04 N'm~2.In the PIZ, it drops below 0.02N m~2. The value
of R? shows that in such regions as the Indian Ocean and the
southeast Pacific, seasonality explains over 50 % of the to-
tal variance, while in other areas this proportion ranges from
20 % to 40 % (Fig. 6¢).
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Figure 5. Mean seasonal cycle and annual time series of area-averaged surface stress 7, (red) and Ekman pumping rate we (orange: positive
indicates upwelling, negative indicates downwelling) for the Arctic region. Total areas a of the corresponding areal coverage are also plotted
(blue). Variables are subscripted “aw” when averaged/summed over ice-free open ocean and “iw” when averaged/summed over ice-covered
open ocean. Annual and monthly means are shown as dots in all panels. (a) Seasonal cycle of 74w over ice-free open ocean. (b) Time series of
Taw from 2011-2021. (c) Seasonal cycle of t;y, over ice-covered ocean. (d) Time series of tj,, from 2011-2021. (e)—(h) Same as (a)—(d) but
for we and 2011-2018.
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Figure 6. Mean and variability of ocean-surface stress 7, and Ekman pumping rate we (positive indicates upwelling, negative indicates
downwelling) in the Antarctic region over 2013-2021. (a) Mean 7o, with streamlines indicating the direction of stress. (b) Standard deviation
of 74 seasonal variability. (c) R2, representing t, variance explained by seasonal variability. (d)—(f) Same as (a)—(c) but for we. Streamlines
in (a) show the direction of t,. The solid and dashed black lines represent the March and September sea-ice boundaries, respectively, defined

by 15 % sea-ice concentration averaged over 2013-2021.

The spatial structure of the time-mean w. reveals
widespread upwelling south of 50°S (Fig. 6d), extending
nearly all the way to the coast of Antarctica. In contrast to
the Arctic, where strong ice—ocean coupling leads to clear
transitions between upwelling and downwelling across ice
boundaries, the Southern Ocean does not exhibit this distinct
pattern. Downwelling is generally found around 55°S and
farther north or more narrowly along the Antarctic coastline.

The SD pattern of seasonal variability in w, is relatively
consistent across the Southern Ocean (Fig. 6e), regardless
of sea-ice coverage, with an average value of approximately
10cmd—!. Higher variability, reaching up to 20 cm d=!, oc-
curs only near the September ice boundary and is very lo-
calized. The R? pattern is also relatively homogeneous, with
most areas showing seasonal variability accounting for about
30 % of the variance. Along the east coast of Antarctica, the
seasonal cycle explains more than 50 % of the variance.

The seasonal cycle and time series of area-averaged air—
water stress Ty in the Antarctic are shown in Fig. 7a and b.
In ice-free regions of the Antarctic, the average 7,y peaks in
August at 0.36 Nm~2 and reaches its minimum in January

Earth Syst. Sci. Data, 17, 4159-4184, 2025

at 0.13Nm~2. Annual variability is relatively small, rang-
ing between 0.022 and 0.026 N m~2, with a notable positive
anomaly in 2015, when the annual mean briefly increased to
0.028Nm~2.

In ice-covered regions, ice—water stress i shows a de-
layed seasonal cycle, compared with 7,4, and peaks in
September (Fig. 7¢). It is approximately one-fifth to one-half
of T,y, ranging between 0.02 and 0.08 N m~2. The seasonal
pattern is asymmetrical and aligns with the seasonal cycle of
sea-ice coverage (Eayrs et al., 2019). Similar to the Arctic,
the area-averaged summer minimum of t;, is slightly higher
in 2018, compared with 2013, increasing from 0.010Nm2
t0 0.022Nm~2.

Before 2019, the seasonal cycle of the open-ocean Ekman
pumping rate we ay is relatively weak (Fig. 7e), with higher
values in winter (12cmd™") and lower values in summer
(5cmd™1). The absence of a distinct seasonal signal is prob-
ably due to the weaker seasonal cycle observed in 2017 and
2018 (Fig. 7f). The annual mean varies narrowly between 7
and 9cmd~!.
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Figure 7. Time series and seasonal cycle of area-averaged surface stress 7, (red) and Ekman pumping rate we (orange: positive indicates
upwelling, negative indicates downwelling) for the Antarctic region. Total areas a of the corresponding areal coverage are also plotted (blue).
Variables are subscripted “aw” when averaged/summed over ice-free open ocean and “iw” when averaged/summed over ice-covered open
ocean. Annual and monthly means are shown as dots in all panels. (a) Seasonal cycle of 7,y over ice-free open ocean. (b) Time series of Taw
from 2013-2021. (¢) Seasonal cycle of Ty, over ice-covered ocean. (d) Time series of tjy, from 2013-2021. (e)—(h) Same as (a)—(d) but for

we and 2013-2018.
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In ice-covered regions, we iw is mostly positive through-
out the year, with a brief downwelling period between Jan-
uary and April. A shift toward stronger downwelling occurs
in February, with mean values decreasing from —2cmd ™! in
2013 to nearly —10cmd~! by 2017. A notable anomaly oc-
curred in 2015 when the annual mean rose sharply from 2 to
4cmd!.

4 Uncertainty and data quality assessment

4.1 Sensitivity analysis of ice—water drag coefficient and
uncertainty estimate

The ice—water drag coefficient, Cp jw, is often assumed to
be constant across time and space, due to the scarcity of
direct observations that capture its spatiotemporal variabil-
ity. However, Cp jw can vary significantly, depending on en-
vironmental conditions, such as wind and wave dynamics,
ice roughness, sea-ice concentration, and surface morphol-
ogy (Liipkes et al., 2012; Liipkes and Birnbaum, 2005; Cole
and Stadler, 2019). Reported values for Cp ;y range from 0.7
to over 10.0 x 1073 (Overland, 1985; Guest and Davidson,
1987, 1991; McPhee, 2008; Cole et al., 2014), with some ex-
treme cases reaching magnitudes of the order of 10.0 x 10!
(Kawaguchi et al., 2024).

Commonly, a representative value of 5.5 x 10~ has been
widely adopted as a pragmatic approximation by the sci-
entific community (Guest and Davidson, 1987; Anderson,
1987). However, this approximation may overlook impor-
tant spatial and temporal variations in Cp jy, highlighting the
need for ongoing efforts to improve observations and refine
its parameterization.

To evaluate the sensitivity of estimated t, to the varia-
tions in Cp iw, two sets of experiments are conducted for
2011: one with fixed Cp jw values ranging from 1.0 x 1073
to 10.0 x 1073 and another using a randomized weighting
map, dynamically varying Cp ;w between values of the order
of 1073 and 1072 on a daily basis at each grid cell.

The amplitude of 7, scales proportionally with Cp iw,
as implied from Eq. (2) (Fig. 8a). For fixed coeffi-
cients, the summer mean 7, increases from 0.003 Nm~2 at
Cp.iw =1.0x 1073 t0 0.015Nm™2 at Cp j, = 10.0 x 1073,
while winter means rise from 0.012 to 0.053 Nm™2. Results
from the random-weighted Cp jy, experiment closely follow
the fixed cases of Cp jw =5.0-6.0 x 1073, Similarly, the an-
nual mean 7, and its standard deviation increase proportion-
ally with Cp ;jw (Fig. 8b), quadrupling the annual mean and
raising the standard deviation from 0.003 to 0.017 Nm~2 as
Cp.iw increases.

Figure 8c—h show the spatial distribution of 7, and we
in response to varying Cp jw. Under circumstances of low
Cp.iw, momentum transfer between ice and ocean is reduced,
leaving small and indistinct scale variability, particularly in
the central Arctic. As Cp jw increases, regions with high sur-
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face stress intensify, particularly in areas like Baffin Bay, the
Chukchi Sea, and north of Fram Strait.

At Cp.iw = 1.0 x 1073, the Ekman pumping rate in re-
gions like the Fram Strait barely reaches +-8 cmd~!, whereas
at Cp,iw = 10.0 x 1073, it exceeds +30cmd™~!, with strong
contrasting upwelling and downwelling patterns. Addition-
ally, while the random-weighted Cp iy experiment intro-
duces spatial noise, the broader spatial structures of both 7,
and w, remain consistent with fixed-coefficient runs.

The final estimated uncertainty, &;y, in the ice—water stress
Tiw 18 quantified daily through the integration of standard er-
rors from sensitivity analyses of Cp jw and spatial Gaussian
filter tests. Both filter tests and Cp jy tests are extended to
the full analysis period: 11 years (2011-2021) for the Arctic
and 9 years (2013-2021) for the Antarctic. Using the root-
sum-square method, the combined uncertainty is expressed
as

Eiw =/ (Siw,F)2 + (Siw,c)2 = \/(%)2 + (;}%)2, (7N

where oF is the standard deviation of t;y from different Gaus-
sian filter settings and oc represents the standard deviation of
Tjw from sensitivity analysis on varying Cp jw. The terms N
and N> denote the number of runs performed in each sensi-
tivity analysis. This estimate assumes independence between
Cp.iw and geostrophic fields (which were spatially filtered),
with perturbations of comparable amplitude between the two
sets of sensitivity analyses.

Figure 9 shows the spatial distributions of relative un-
certainty (g&jw to tjw) for the Arctic (15 March 2013) and
the Southern Ocean (15 September 2013) during the winter
season. Overall, spatial filtering produces scattered patterns
(Fig. 9a—d), while varying ice—water drag coefficients yield
smoother distributions (Fig. 9e—h). Median uncertainties are
comparable between the two sets of experiments, ranging
from 14 %—-18 % in the Arctic to 22 %-25 % in the Antarc-
tic. The greater uncertainties in the Antarctic reflect higher
local stress variability and increased sensitivity to parame-
ter changes, which also manifest as the higher uncertainties
observed in winter, compared with summer (Figs. 3 and 8).

In the Arctic, combined uncertainties for zonal surface
stress (ty) typically range from 10 %-20 %, while locally
they could exceed 100 % along dynamic regions, such as
the Fram Strait and Beaufort Sea. Meridional stress (ty) ex-
hibits similar spatial distributions, but with higher uncertain-
ties near the Mendeleev Ridge. Median uncertainty levels for
both zonal and meridional components are below 20 %.

Conversely, Antarctic uncertainties are substantially
higher, with median values around 40 %. The highest uncer-
tainties (>60 %) are concentrated near the sea-ice boundary,
particularly in the eastern Weddell and Ross Seas. Regional
hotspots include the Antarctic Peninsula and west of Ross
Sea for 1y, and Enderby Land and the Amundsen Sea for 7.
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Figure 8. Area-averaged ocean-surface stress 7, and Ekman pumping rate we for different values of Cp jy,. (a) Annual cycle of 7, of 2011,
area-averaged over the sea-ice-cover region. Blue areas show total ice-cover areas (right axis). (b) Annual mean of t, with shading indicating
1 standard deviation over a year. The red dashed line marks Cp jw =35.5 x 10~3; the black dotted line shows the annual mean of the random
Cp,iw experiment. (¢) Snapshot of 7o with Cp jw = 1.0 x 1073 (15 March 2011). (d) Same as (c) but with Cp,iw =10.0 x 1073 . (e) Same as
(¢) but with random Cp ;. (f-h) Same as (¢)—(e) but for we. Streamlines in (¢)—(e) show the direction of 7,. Black contours in (¢)—(h) mark
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Figure 9. Estimated uncertainty fields for zonal and meridional ice—water surface stress, expressed as a ratio to the estimated ice—water
surface stress in the Arctic (15 March 2013) and Southern Ocean (15 September 2013). (a) Standard error introduced by Gaussian filter in
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as (a)—(d) but for standard error in ice-water drag coefficient Cp jy,. (i)—(I) Same as (a)—(d) but for the combined uncertainty.

In addition to the sensitivity analyses presented for drag
coefficient magnitudes and spatial filtering, several other
sources of uncertainty may influence the accuracy of the de-
rived surface stress fields. First, uncertainties in the atmo-
spheric reanalysis products used as forcing data — particularly
in wind speed and direction over sea ice — can propagate di-
rectly into surface stress estimates. Prior studies have shown
that different ice motion products can yield differences of
at least 20 %—-30 % in polar regions, due to discrepancies in
boundary-layer representation, data assimilation techniques,
and satellite retrieval biases (Sumata et al., 2014; Wang et
al., 2022). These differences are especially pronounced in the
marginal ice zone, where sharp gradients in atmospheric and
surface properties are common (Wang et al., 2021; Boutin et
al., 2020).

Earth Syst. Sci. Data, 17, 4159-4184, 2025

Second, the role of ocean and atmospheric stratification
is not explicitly resolved in our parameterization, yet it
can significantly affect stress transmission through the ice—
ocean interface. Observational and modeling studies (Liip-
kes and Gryanik, 2015; Liipkes et al., 2012; Brenner et al.,
2021) have shown that stability conditions in the atmospheric
boundary layer modulate drag coefficients by altering turbu-
lence and momentum fluxes — especially under stable stratifi-
cation, common in winter Arctic conditions. Likewise, verti-
cal stratification in the upper ocean can modify Ekman layer
dynamics and the effective depth over which stress-induced
velocities operate, introducing further uncertainty in esti-
mates of vertical transport (Meneghello et al., 2018; Zhong
etal., 2018).

https://doi.org/10.5194/essd-17-4159-2025
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Third, the spatial and temporal scales over which stresses
are calculated can introduce methodological uncertainty.
Coarse averaging may obscure high-frequency processes,
such as synoptic wind events, inertial motions, or mesoscale
eddies, while finer-scale estimates risk amplifying local noise
or aliasing undersampled variability (Timmermans et al.,
2008; Manucharyan and Thompson, 2017; Alberello et al.,
2020). This is particularly relevant in the marginal ice zone,
where surface properties evolve rapidly. A more detailed
analysis of scale effects and filtering sensitivity is presented
in the following section.

Together, these factors point to the need for caution when
interpreting surface stress magnitudes or derived quantities
like Ekman pumping, particularly when used to constrain
physical budgets or force ocean models. Future work should
prioritize uncertainty quantification through ensemble re-
analysis comparisons, the inclusion of stratification effects
in drag parameterizations, and adaptive filtering techniques
that respond to local dynamic conditions.

4.2 Validation with ITP observations

Since surface stress is not usually directly measured, as-
sessing the performance of our analysis is challenging. To
address this, we revisit the assumption that surface veloc-
ity comprises both Ekman and geostrophic components, as
described in Eq. (2). The geostrophic velocity (Uy) is de-
rived from the dataset provided by Prandi et al. (2021), while
the Ekman velocity component (Ue) can be easily calculated
from the ocean-surface stress using Eq. (4).

This assumption provides a first-order approximation
of surface velocity and neglects other processes, such as
ageostrophic motions, vertical shear, and sub-mesoscale dy-
namics, which may introduce additional uncertainties. To
robustly validate satellite-derived ocean-surface stress esti-
mates, we compared the derived surface velocity, i.e., the
sum of Uy and U, with in situ measurements from ice-
tethered profilers (ITPs; Krishfield et al., 2008; Toole et al.,
2011; http://www.whoi.edu/itp, last access: 30 May 2025).
In particular, several ITPs equipped with velocity sensors
(ITP-V, Williams et al., 2010) were used. To align the tem-
poral resolution of the datasets, we processed the I'TP data by
computing daily and weekly means, facilitating direct com-
parisons with daily satellite products. This approach avoids
the uncertainties associated with interpolating satellite data
to match the higher-frequency ITP profiles, which could in-
troduce significant errors due to the undersampling nature of
satellite observations.

Despite this temporal alignment, inherent limitations per-
sist, due to spatial and temporal sampling discrepancies.
ITPs provide high-resolution vertical profiles at specific lo-
cations, capturing fine-scale and transient oceanic features.
In contrast, satellite observations offer broader spatial cov-
erage but may not resolve such fine-scale variability, espe-
cially in polar regions, where data gaps are common due
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to persistent cloud cover and sea ice. These differences can
lead to reduced correlation and increased bias in validation
statistics, as observed in previous studies comparing satellite-
derived sea-surface salinity products with in situ observa-
tions (Thouvenin-Masson et al., 2022; Boutin et al., 2016;
Vinogradova and Ponte, 2013).

It is important to note that this comparison does not serve
as a definitive validation of the absolute accuracy of our
stress estimates. Instead, it assesses whether the foundational
assumptions underpinning our analysis sufficiently represent
the complex dynamics of the Arctic Ocean.

We use velocity data collected from five ITP-V missions
deployed on multiyear sea ice in the Canada Basin between
2011 and 2019 (Fig. 10; Table 2). Observations from ITP-
77,1TP-78, and ITP-79 are truncated to exclude periods with
significant data gaps and drifts near the end of their deploy-
ment.

The five ITP-Vs are categorized into two groups, based
on deployment timing and drift trajectories. ITP-70 and ITP-
80 were deployed during summer, operated for ~300d, and
primarily drifted between 75 and 80° N. In contrast, ITP-77,
ITP-78, and ITP-79, deployed in March 2014, operated for
less than 200 d and followed more constrained east-to-west
trajectories between 73 and 75° N.

To account for temporal sampling differences and mitigate
aliasing from high-frequency variability, the sub-daily ITP-V
velocity data are first averaged to daily means before compar-
ison with the satellite-derived velocity field (Ug + Ue). The
corresponding satellite values are then extracted at the near-
est grid point along each ITP track (Fig. 11). This approach
reduces mismatch due to sub-sampling in the satellite prod-
uct and ensures a more consistent temporal basis for compar-
ison.

Along the path of ITP-70 and ITP-80, satellite-derived
ocean-surface velocities exhibit moderate agreement with in
situ observations, particularly in capturing high-frequency
variability. In contrast, comparisons with ITP-77, ITP-78,
and ITP-79 reveal weaker correspondence, most notably in
the zonal velocity components. For the meridional compo-
nent, ITP-77 shows relatively better alignment during the ini-
tial 100 d period until mid-July.

Figure 12 presents the comparison of satellite-derived
surface velocity components against collocated ITP-V ob-
servations for the ITP-70 (panels a, b) and ITP-80 (pan-
els ¢, d) paths. For ITP-70, the zonal component yields a
Pearson correlation of r =0.31 and standard deviation of
0.022ms~!, while the meridional component gives r = 0.42
and SD=0.020ms~!. ITP-80 exhibits slightly stronger
zonal agreement (» = 0.43) but weaker meridional agreement
(r =0.34). In both deployments, scatter markedly decreases
for observations taken after ~200 d (warm colors), accompa-
nied with the predominantly northward drift of ITP-70 and
westward drift of ITP-80 seen in Fig. 10.

By contrast, Fig. 13 summarizes the additional ITP obser-
vational periods (panels a—f), where correlation coefficients

Earth Syst. Sci. Data, 17, 4159-4184, 2025
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Table 2. Details of ITP-V records.

C. Liu and L. Yu: Satellite-based analysis of ocean-surface stress

Unit ID Start ‘ Last # of days # of profiles
Position Date ‘ Position Date

ITP-70 76.81°N 26 Aug 2013 | 77.11°N 15 Jul 2014 324 3713
138.89°W 156.51°W

ITP-77 73.37°N 11 Mar 2014 | 75.89°N 2 Oct 2014 206 (153*) 2367 (1800%)
134.99°W 158.50°W

ITP-78 74.36°N 12 Mar 2014 | 74.08°N 6 Aug 2014 148 (130*%) 1694 (1500%)
135.14°W 145.43°W

ITP-79 75.38°N 22 Mar 2014 | 75.02°N 30 Sep 2014 193 (143*) 1694 (1636*)
136.50°W 148.37°W

ITP-80 77.36°N 14 Aug 2014 | 75.68°N 24 May 2015 284 3260
146.15°W 151.79°W

* Data toward the end of the series exhibit quality issues that necessitate truncation.
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Figure 10. ITP-V drift paths in the Arctic Ocean (colored curves). Deployment locations are marked by circles, latest locations by triangles,

and the cutoff locations for ITP-77 and ITP-79 by stars.

span r = 0.07-0.56 and SD =0.021-0.025ms~!. One com-
ponent reaches a moderate correlation (r = 0.56), while most
remain weak (r < 0.40); no coherent temporal clustering is
apparent. Across all deployments, satellite-derived velocities
exhibit a slight northward bias and tend to underestimate
ITP-measured surface speeds beyond 100 d post-release.
Table 3 and Fig. 14 provide a comprehensive compari-
son between satellite-derived surface velocity estimates and
in situ velocity measurements obtained from ITP-V across
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five deployments. The analysis includes both the zonal (east—
west) and meridional (north—south) velocity components and
considers statistics derived from both daily and weekly aver-
aged time series.

A consistent northward bias is evident in the satellite-
derived velocities across most ITP paths. While the mean
zonal velocities are generally in close agreement between
satellite and ITP-V data — for instance, at ITP-70 both
sources report a mean of —0.006 ms~! — some deployments

https://doi.org/10.5194/essd-17-4159-2025
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Figure 11. Daily mean time series of zonal and meridional surface velocity. (a) Zonal velocity along ITP-70 paths. (b) Zonal velocity along
ITP-77 paths. (¢) Zonal velocity along ITP-78 paths. (d) Zonal velocity along ITP-79 paths. (e) Zonal velocity along ITP-80 paths. (f)—
(j) Same as (a)—(e) but for meridional velocity. Green curves represent velocity data retrieved from ITPs. Red curves are collocated obtained
from the satellite-derived velocity fields, i.e., geostrophic plus Ekman velocity.

exhibit a more pronounced bias. ITP-77 and ITP-78, in par-
ticular, show a noticeable eastward offset, with satellite-
derived zonal velocities being more positive than the ITP-V
counterparts by approximately 0.005-0.01 ms~!. The merid-
ional component aligns more closely overall, but satellite ve-
locities still tend to be more northward. These biases are ev-
ident in Fig. 14a, where most points lie above the 1 : 1 line,
especially in the meridional direction.

In addition to the bias, satellite-derived velocities system-
atically exhibit reduced variability, compared with ITP-V
observations. Across all deployments and components, the
SD of satellite velocity is consistently lower than that ob-
served in the ITP-V data. For example, while the average
zonal SD in the ITP data is around 0.022ms™!, the corre-
sponding satellite value is approximately 0.011 ms~!. Fig-
ure 14b illustrates this discrepancy clearly: all data points fall
below the 1 : 1 line, indicating that satellite products under-
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estimate temporal variability. This reduced variability proba-
bly reflects the filtering and smoothing inherent in satellite
altimetry products, which are designed to represent large-
scale geostrophic flows and may not fully resolve the higher-
frequency or smaller-scale fluctuations captured by the ITP
instruments.

Despite these limitations, satellite-derived velocity fields
are able to explain a substantial portion of the observed vari-
ance in the ITP-V measurements on a daily mean scale. The
coefficients of determination (R2) indicate that, on average,
satellite products account for about 50 % of the variability
in the daily data. This explanatory power increases substan-
tially when the analysis is performed on weekly averaged
time series, with R? reaching as high as 0.77 for the zonal
component at ITP-78 and 0.60 for the meridional component
at ITP-79. These results suggest that, although satellite esti-
mates smooth out finer-scale variability, they effectively cap-
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Figure 12. Scatterplots of collocated surface velocity pairs for ITPs
with data spanning more than 200d (unit: m s_l). (a) Zonal veloc-
ity along ITP-70 paths. (b) Zonal velocity along ITP-80 paths. (c,
d) Same as (a, b) but for meridional velocity. The total number of
days (N) is given. Correlation coefficients, mean differences (DIF),
and standard deviations (SD) of the differences between satellite-
derived velocity and ITP observations are also displayed. 95 % con-
fidence ellipses (black contours) and linear fits (black dotted lines)
are also given in each panel.

ture the dominant patterns in large-scale motion. However,
the correlation coefficients between satellite and ITP-V ve-
locities are more modest, typically ranging from 0.3 to 0.4 in
the daily records. With weekly averaging, these correlations
improve significantly, sometimes by more than 0.2, as illus-
trated in Fig. 14c. This panel shows weekly averaged points
clustering nearer to or above the diagonal, particularly for
ITP-78 and ITP-79, while daily correlations tend to remain
lower and more scattered.

The performance of the satellite velocity estimates varies
by deployment. ITP-78 and ITP-79 demonstrate the strongest
agreement. For example, ITP-78’s zonal component yields
correlation coefficients of 0.42 for daily data and 0.78 for
weekly data, with R? values of 0.32 and 0.77, respectively.
Similarly, ITP-79’s meridional component shows a daily cor-
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Figure 13. Scatterplots of collocated surface velocity pairs for ITPs
with data spanning less than 200d (unit: rnsfl). (a) Zonal ve-
locity along ITP-77 paths. (b) Zonal velocity along ITP-78 paths.
(c) Zonal velocity along ITP-79 paths. (d)-(f) Same as (a)—(c) but
for meridional velocity. The total number of days (N) is given.
Correlation coefficients, mean differences (DIF), and standard de-
viations (SD) of the differences between satellite-derived velocity
and ITP observations are displayed. 95 % confidence ellipses (black
contours) and linear fits (black dotted lines) are also given in each
panel.

relation of 0.56 and a weekly correlation of 0.76, with corre-
sponding values of RZ of 0.47 and 0.60, respectively. These
high values underscore the ability of satellite altimetry to
capture meaningful geophysical signals under favorable con-
ditions. Conversely, performance is notably weaker at ITP-
77, where the zonal velocity component yields a daily corre-
lation of only 0.07 and a weekly correlation of 0.31, suggest-
ing a diminished ability of satellite products to resolve local
variability in that particular region or time frame. Such differ-
ences probably arise from a combination of regional oceano-
graphic complexity and satellite data limitations, including
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Figure 14. Scatterplots of statistics of satellite-derived velocity and ITP velocity. (a) Temporal mean and (b) standard deviation of paired
velocities (unit: ms™ 1 ). (c) Correlation between satellite-derived velocity and ITP velocity. (d) Coefficient of determination (Rz) of variation

in ITPs, explained by satellite-derived velocity.

issues related to proximity to sea ice or the presence of sub-
mesoscale activity not well resolved by gridded products.

The comparison between satellite-derived ocean-surface
stress estimates and ITP observations, despite their differ-
ences in resolution and sampling, shows encouraging agree-
ment at the first-order level. The satellite stress products suc-
cessfully capture the broad spatial and temporal variability
in surface velocity, supporting the utility of satellite-based
estimates in reflecting first-order dynamic signals. This level
of agreement supports the overall utility of satellite products
in characterizing large-scale stress variability and motivates
their continued use in data-sparse polar regions.

However, key limitations remain, due to inherent mis-
matches in spatial and temporal sampling between the

https://doi.org/10.5194/essd-17-4159-2025

datasets. Satellite observations, with their typical resolu-
tion of ~25km and daily sampling frequency, cannot re-
solve the sub-mesoscale variability and high-frequency pro-
cesses detectable in the pointwise and often sub-daily ITP
profiles (Timmermans et al., 2008). This spatial averaging
can smooth out gradients in wind, ice motion, or stress
fields that may be sharply defined at smaller scales, partic-
ularly in such regions as the marginal ice zone (MIZ), where
sea-ice concentration and morphology are highly variable
(Manucharyan and Thompson, 2017; Alberello et al., 2020).

Temporally, satellite-derived surface stress products may
fail to capture transient forcing events, such as storm-driven
accelerations, inertial oscillations, or short-lived leads in sea
ice. In contrast, ITPs can resolve such high-frequency pro-
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Table 3. Comparison of daily satellite-derived velocity with ITP velocity along ITP tracks. Correlations () with p < 0.05 are in bold.

Numbers in brackets are from weekly mean time series.

ITP-V Mean (ITP) Mean (Sat.) SD (ITP) SD (Sat.) r R?
ITP-70  Zonal —0.006 —0.006 0.022 0.014 0.31(0.45) 0.12(0.32)
Meridional —0.005 —0.003 0.021 0.015 0.42 (0.59) 0.20(0.40)
ITP-77  Zonal —0.022 —0.016 0.023 0.011 0.07 (0.31) 0.11 (0.20)
Meridional —0.005 —0.004 0.024 0.021  0.37 (0.47) 0.01(0.02)
ITP-78 Zonal —0.021 —0.011 0.022 0.014 0.42(0.78) 0.32(0.77)
Meridional —0.013 0.001 0.026 0.017 0.43 (0.61) 0.25(0.32)
ITP-79  Zonal —0.006 —0.007 0.024 0.013  0.24 (0.38) 0.02(0.11)
Meridional —0.020 —0.001 0.027 0.013  0.56 (0.76) 0.47 (0.60)
ITP-80 Zonal —0.004 —0.001 0.020 0.012  0.42 (0.61) 0.30 (0.60)
Meridional —0.002 0.010 0.024 0.012  0.34 (0.52) 0.23(0.16)
Mean Zonal —0.010 —0.008 0.022 0.011  0.29(0.50) 0.13(0.40)
Meridional —0.009 0.002 0.023 0.016 0.42(0.59) 0.22(0.28)

cesses (Toole et al., 2011; Timmermans et al., 2012), lead-
ing to potential discrepancies when aligning the two datasets.
Furthermore, since satellite estimates of stress are often de-
rived from independent wind and ice motion products (e.g.,
National Centers for Environmental Prediction Reanalysis,
NSIDC drift), their accuracy is subject to the limitations of
those input fields (Sumata et al., 2014; Lavergne et al., 2010).
The lack of fully collocated wind and ice motion fields at the
exact time and location of ITP measurements compounds the
uncertainty.

These spatial and temporal mismatches further introduce
representation errors, as mismatches are not due to sensor or
algorithm flaws but rather due to sampling disparities (Janji¢
et al., 2012). Such errors have been well documented in the
context of satellite sea-surface salinity measurement (Boutin
et al., 2016; Vinogradova et al., 2019). These limitations are
evident in the reduced agreement observed for ITP-77, ITP-
78, and ITP-79, where several compounding factors probably
contributed. First, the ~25 km resolution of the satellite prod-
uct may be insufficient to resolve sub-mesoscale features and
sharp velocity gradients. Second, the timing of deployment in
March overlaps with a period of elevated kinetic energy in the
Beaufort Gyre (Cassianides et al., 2023), during which inten-
sified eddy activity in the Canada Basin enhances mesoscale
variability (Son et al., 2022; Regan et al., 2020). This vari-
ability, well captured by the high-resolution ITP profiles, is
easily aliased or smoothed out in the satellite-derived daily
fields, further amplifying mismatches in direct comparisons.

Moving forward, best practices in validation should ac-
count for these differences explicitly. The development of
higher-resolution satellite products (Auger et al., 2022; Lu-
cas et al., 2023), along with assimilation into coupled mod-
els (Wang et al., 2018), also offers a promising path forward.
Increased density of ITP deployments, moored arrays, and
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coordinated airborne campaigns (Perovich et al., 2023) will
be crucial for better spatial coverage in dynamic regions, like
the Beaufort Gyre and the MIZ.

In conclusion, the comparison reveals that, while satellite-
derived velocities are subject to systematic biases and
reduced variability relative to in situ observations, they
nonetheless capture a significant portion of the observed vari-
ance, particularly when considered at weekly timescales. The
agreement is stronger for the meridional component and in
regions where large-scale geostrophic flows dominate. These
results support the use of satellite-derived velocity products
for basin-scale circulation studies, while also highlighting
the need for caution in applications requiring high-frequency
or fine-scale flow resolution.

5 Data availability

Daily fields of ocean-surface stress vectors and derived verti-
cal Ekman velocity for the polar oceans are provided for two
periods —2011-2021 for the Arctic (EPSG number 3408) and
2013-2021 for the Antarctic (EPSG number 3409) — and are
available at https://doi.org/10.5281/zenodo.15534576 (Liu
and Yu, 2024). The datasets include three auxiliary fields:
(i) land mask, (ii) grid longitudes and latitudes, and (iii) un-
certainty estimates for ocean-surface stress.

The input datasets can be found at the NSIDC (ice

motion: https://doi.org/10.5067/INAWUWO7QH7B,
Tschudi et al., 2019; ice extent:
https://doi.org/10.5067/MPYG15WAA4WX, Di-

Girolamo et al.,, 2022) and AVISO (dynamic to-
pography: https://www.aviso.altimetry.fr/en/data/
products/sea-surface-height-products/regional/

arctic-ocean-sea-level-heights.html, Prandi et al., 2021)
websites. ITP-V data used in this work are retrieved from
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the WHOI website at https://www2.whoi.edu/site/itp/
(Krishfield et al., 2008). CPOM DOT/geostrophic cur-
rent data are provided by the Centre for Polar Ob-
servation and Modelling, University College London
(https://www.cpom.ucl.ac.uk/dynamic_topography, Ar-
mitage et al., 2016). The associated scripts and packages
used in this study are openly available on GitHub at
(https://doi.org/10.5281/zenodo.15534576 Liu and Yu,
2024).

6 Conclusions

This work presents a daily 25km resolution dataset of
satellite-derived ocean-surface stress for the Arctic Ocean
(2011-2021) and Southern Ocean (2013-2021). The dataset
provides detailed daily maps of 7, across polar regions north
of 60° N and south of 50°S. This dataset achieves finer spa-
tial and temporal resolution, enabling more precise analysis
of short-term air—sea interactions and regional Ekman dy-
namics. In both the Arctic and the Antarctic, it captures short-
term and sharp transitions between Ekman upwelling in ice-
free regions and downwelling in ice-covered areas.

Uncertainty in the derived ocean-surface stress fields
arises primarily from two sources. The first is the spatial fil-
ter applied to the SSH datasets, which reduces small-scale
variability and enhances consistency between the sea-level
fields. The second source of uncertainty is related to the ice-
water drag coefficient, which is poorly observed and can vary
significantly between orders of 10™3 and 1072. These factors
result in a median uncertainty of approximately 20 % in the
Arctic and about 40 % in the Southern Ocean.

The derived Ekman velocity was used to validate against
ITP data from the Arctic’s Canada Basin. Satellite-derived
surface velocity, which combine Ekman and geostrophic
components, capture over 50 % of the observed variation in
surface velocity. Correlation coefficients range from 0.6 to
0.8 on monthly and longer timescales, indicating moderate
to strong agreement. It is important to consider the complex
dynamics of the Arctic Ocean when interpreting these statis-
tics. In addition to Ekman and geostrophic velocity (Regan et
al., 2019), such processes as shallow eddy activity (Timmer-
mans et al., 2008; Kenigson et al., 2021; Meneghello et al.,
2021), turbulent mixing (Guthrie et al., 2013; Kawaguchi et
al., 2014, 2019), and internal waves (Kawaguchi et al., 2016;
Zhao et al., 2016) also contribute to the observed variability.
Many of these processes remain challenging to observe and
parameterize.
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While atmospheric reanalysis products, such as ERAS, of-
fer wind estimates in the polar regions, they do not explicitly
capture sea-ice interaction and coupled models, though de-
tailed, are computationally expensive and often opaque in
their assumptions. Our product bridges this gap by offer-
ing a reproducible, observationally constrained, dataset that
supports process studies and model validation. Despite some
simplifying assumptions, it has comparable spatial resolution
to ERAS over the open ocean and offers added value in sea-
ice regions.

Future updates will focus on two primary areas. We plan
to extend the dataset’s temporal coverage through 2021 by
incorporating updated versions of OAFlux and other relevant
data products as they become available. This will ensure con-
sistency across components while maintaining the dataset’s
reliability. Second, the availability of reliable surface height
products for the polar region will further enhance data accu-
racy. While awaiting these advancements, we will assess the
potential impacts of transitioning to reanalysis data on our
results. Additionally, future research will address key pro-
cesses that remain underrepresented, such as variable Ekman
depth and mesoscale turbulence, to refine the depiction of
polar ocean dynamics. Incorporating these factors will im-
prove the ability to capture localized features critical for un-
derstanding air—ice—ocean interactions.
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Appendix A: Glossary of terminology

Table A1. Glossary of terminology and acronyms used in this study.

C. Liu and L. Yu: Satellite-based analysis of ocean-surface stress

Terminology/acronym  Description

AMSR-E Advanced Microwave Scanning Radiometer for Earth Observing System
AVHRR Advanced Very High Resolution Radiometer

CLS/PML Collecte Localisation Satellites/Plymouth Marine Laboratory
COARE Coupled Ocean—Atmosphere Response Experiment

CPOM Centre for Polar Observation and Modelling

DMSP Defense Meteorological Satellite Program

DOT Dynamic ocean topography

EASE Equal-Area Scalable Earth

IABP International Arctic Buoy Programme

I-SSMIS Improved Special Sensor Microwave Imager/Sounder

ITP Ice-tethered profiler

MEaSUREs Making Earth System Data Records for Use in Research Environments
MIZ Marginal ice zone

MODIS Moderate Resolution Imaging Spectroradiometer

NSIDC National Snow and Ice Data Center

OAFlux Objectively Analyzed Air-Sea Fluxes

PIZ Perennial ice zone

QuikSCAT Quick Scatterometer

RMSD Root mean square deviation

R? Coefficient of determination

SIZ Seasonal ice zone

SMMR Scanning Multichannel Microwave Radiometer

SSH Sea surface height

SSM Special Sensor Microwave

SSM/1 Special Sensor Microwave/Imager

SD Standard deviation
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