
Earth Syst. Sci. Data, 17, 4097–4124, 2025
https://doi.org/10.5194/essd-17-4097-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

GIRAFE v1: a global climate data record for precipitation
accompanied by a daily sampling uncertainty

Hannes Konrad1, Rémy Roca2, Anja Niedorf1, Stephan Finkensieper1, Marc Schröder1, Sophie Cloché3,
Giulia Panegrossi4, Paolo Sanò4, Christopher Kidd5,6, Rômulo Augusto Jucá Oliveira2,a,

Karsten Fennig1, Thomas Sikorski1, Madeleine Lemoine2, and Rainer Hollmann1

1Deutscher Wetterdienst, Satellite-Based Climate Monitoring,
Frankfurter Str. 135, 63067 Offenbach am Main, Germany

2Laboratoire d’Etudes Géophysiques et d’Océanographie Spatiales,
14, av. Edouard Belin, 31401 Toulouse CEDEX 9, France

3Institut Pierre-Simon Laplace, Sciences du Climat, route de Saclay, 91128 Palaiseau, France
4National Research Council of Italy, Institute of Atmospheric Sciences and Climate,

Via del Fosso del Cavaliere 100, 00133 Roma, Italy
5University of Maryland, Earth System Science Interdisciplinary Center,

5825 University Research Ct., College Park, MD 20740, USA
6NASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA

anow at: Hydro Matters, 1 Chemin de la Pousaraque, 31460 Le Faget, France

Correspondence: Hannes Konrad (hannes.konrad@dwd.de)

Received: 29 November 2024 – Discussion started: 13 February 2025
Revised: 23 May 2025 – Accepted: 8 June 2025 – Published: 26 August 2025

Abstract. Here, we introduce the first version of the Global Interpolated RAinFall Estimation (GIRAFE v1),
the first dedicated global climate data record for precipitation by the Satellite Application Facility on Climate
Monitoring (CM SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EU-
METSAT). GIRAFE is based on precipitation rate estimates obtained from observations by a variety of passive
microwave (PMW) radiometers on board low-Earth orbit satellites and related retrieval algorithms and frequent
and highly resolved infrared observations from geostationary satellites covering all longitudes and used at lat-
itudes below 55° N/S. At higher latitudes, only the PMW-based precipitation rates are utilised. GIRAFE v1 is
available globally at 1° resolution as daily accumulations and monthly means for the years 2002–2022, with
an implementation of continuous production planned for 2025 onwards. The daily product is accompanied by
a dedicated sampling uncertainty estimate based on decorrelation scales in space and time in infrared-based in-
stantaneous precipitation fields. The methods for the generation of GIRAFE v1 are described in detail, followed
by the results of quality assessment and intercomparison activities. GIRAFE v1 reproduces reference datasets
with a performance similar to that of established precipitation products, especially those that are – like GIRAFE
v1 – not adjusted to ground-based observations. Likewise, GIRAFE v1 proves to be suitable for the analysis
of regional precipitation extremes, e.g. in their relation to sea surface temperatures. The main objective in the
production of GIRAFE v1 is climate applications, for which we find the dataset highly suitable according to the
stability and homogeneity analysis. The GIRAFE v1 data record is hosted by CM SAF and is freely available at
https://doi.org/10.5676/EUM_SAF_CM/GIRAFE/V001 (Niedorf et al., 2024a).
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1 Introduction

Precipitation estimates from space have emerged as a criti-
cal tool for both academic research and operational applica-
tions, providing unique insights into the Earth’s hydrological
cycle. From an academic point of view, space-based obser-
vations allow the study of precipitation patterns on a global
scale, which is essential for understanding climate dynamics,
weather systems, and water resource management. Satellites
equipped with advanced sensors, such as active and passive
microwave instruments, consistently provide comprehensive
data, enabling the analysis of precipitation processes across
different scales – ranging from local storms to the global
climate. Furthermore, space-based precipitation monitoring
aids in refining the quantification of the global water bud-
gets and supports long-term climate studies that help as-
sess the impact of anthropogenic climate change (Stephens
et al., 2023). From an operational standpoint, satellite precip-
itation estimates complement ground-based radar and rain-
gauge networks used by operational agencies, especially in
regions where ground observations are sparse or unavailable.
This global coverage is crucial for the monitoring of extreme
weather events, such as floods and droughts, which have
significant societal and economic impact (Levizzani et al.,
2018).

Over the last two decades, monitoring precipitation from
space has benefited from the emergence of a constellation
of satellites with microwave observation capabilities, a sus-
tained and improved fleet of operational meteorological geo-
stationary satellites, and mature retrieval algorithms (Lev-
izzani and Cattani, 2019). There is now a large number of
precipitation datasets spanning that period or longer (Roca
et al., 2019a). While climate monitoring has usually been
performed at monthly timescales, monitoring precipitation
distributions at daily scales is important for extreme events.
Over land, satellite-based precipitation products incorporat-
ing rain-gauge data perform better overall than reanalysis-
based products (Bador et al., 2020; Alexander et al., 2020).
Recent assessments nevertheless point to the need for bet-
ter products in view of the academic and societal challenges
ahead (Roca et al., 2021).

Here, we introduce the result of a coordinated effort at the
European scale around the European Organisation for the Ex-
ploitation of Meteorological Satellites (EUMETSAT) Satel-
lite Application Facility for Climate Monitoring (CM SAF),
elaborating and distributing a new satellite precipitation cli-
mate data record (CDR) – the Global Interpolated RAinFall
Estimation version 1 (GIRAFE v1). Our product is gener-
ated by an algorithm applied in an operational environment to
multi-source observations from the historical record (2002–
2022) as well as the recent past (monthly updates with a 3-
month latency, becoming available in 2025). This paper aims
at introducing this new product and its performance with em-
phasis on climate compliancy metrics.

Section 2 explains the rationale of the production. Sec-
tion 3 introduces the data feeding into GIRAFE v1, while
the methodology is detailed in Sect. 4. Section 5 is dedicated
to the evaluation of the product against various reference and
non-reference datasets using climate-focused metrics. Sec-
tion 6 describes data access for GIRAFE v1 and respective
input data as well as for the various datasets that are used
and evaluated together with GIRAFE v1 in Sect. 5. Finally,
Sect. 7 provides a conclusion.

2 Data generation overview

The overall data processing (Fig. 1) is built around the GI-
RAFE algorithm. The GIRAFE algorithm combines instan-
taneous infrared brightness temperatures (Tbs) (Level-1) ob-
served by geostationary satellites (Sect. 3.1) and instanta-
neous precipitation rate estimates (Level-2) provided by pas-
sive microwave (PMW) radiometers on board Low Earth
Orbit (LEO) satellites (Sect. 3.2). Both input streams un-
dergo dedicated pre-processing: quality control of the instan-
taneous infrared Tbs (Sect. 4.1) and a homogenisation of the
instantaneous precipitation rate estimates via quantile map-
ping (Sect. 4.2).

For latitudes inside 55° N/S, the GIRAFE algorithm
merges the two input data streams towards the gridded daily
accumulated precipitation output (Sect. 4.3.1). Grid cells
outside of 55° N/S are based only on the PMW-based data
stream (Sect. 4.3.2). The limit for using the infrared data
stream is defined at 55° N/S because the distortion of the
fields of view becomes larger towards the poles due to in-
creasing viewing angles, leading to a trade-off between the
improved temporal sampling and the declining accuracy of
the infrared observations. This is similar to the latitudinal
boundary used in GPCP v3.2 (Huffman et al., 2023a). The
uncertainty module of the GIRAFE algorithm uses the vari-
ance in the daily precipitation fields and intermediate results
of the merging module for a quantification of the number
of independent samples to derive the sampling uncertainty
associated with the daily accumulated precipitation product
(Sect. 4.4). The monthly mean daily accumulated precipita-
tion is derived directly from the daily fields (Sect. 4.5).

3 Input data

3.1 Geostationary Level-1 infrared brightness
temperatures

Passive infrared imagers on board at least five geostation-
ary satellites have been providing a quasi-global cover-
age with the above-mentioned latitudinal restrictions. While
there have been gaps in the constellation of geostationary
satellites prior to 1998, it is complete in the time period con-
sidered for GIRAFE v1 (2002 onwards). All infrared imagers
feature an infrared channel between 10.3 and 11.5 µm with
spatial resolutions between 2 and 5 km at nadir, with tempo-
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Figure 1. Overview of the algorithm and data streams.

ral samplings between 10 and 30 min, including partial scans
of the Northern and Southern hemispheres. Figure 2 provides
an overview of the available platforms. Instrument details are
summarised in Table 1.

Instantaneous infrared Tb observations (Level-1) for the
entire time series have been collected from the corresponding
agencies (EUMETSAT, NOAA, JMA/JAXA). In principle,
despite GIRAFE being designed for climate applications, the
infrared Tb observations are not required from high-quality
intercalibrated fundamental CDR (FCDR) archives: long-
term drifts in the infrared observations are intercepted by the
training of the infrared observations with PMW-derived pre-
cipitation rate estimates over short windows (1 d periods; see
Sect. 4.3.1). Therefore, non-intercalibrated data from oper-
ational archives may be used. Operational calibration coef-
ficients are applied to convert raw image counts to Tbs. As
one available exception, EUMETSAT’s FIDUCEO MVIRI
FCDR (Rüthrich et al., 2020a–c) for Meteosat First Gener-
ation is preferred over the operational data due to the im-
proved (inter-)calibration and the accompanying quality con-
trol. Where possible, future GIRAFE versions will rely on
more infrared datasets of FCDR quality.

3.2 Passive microwave-based Level-2 precipitation rate
estimates

The PMW-derived database used for GIRAFE v1 is diverse
in the sense that we use the data obtained from nine different
types of PMW radiometers operated on a series of 19 differ-
ent LEO satellites, processed by three different algorithms.
The diversity in their retrievals, such as the frequency dis-
tribution of the occurrence of precipitation rates, makes the
pre-processing described in Sect. 4.2 necessary. Figure 3 lists
all PMW satellites that feed into GIRAFE v1. Table 2 pro-

vides details on the instruments. The respective retrieval al-
gorithms and data sources are detailed in Sects. 3.2.1–3.2.3.

3.2.1 HOAPS

Instantaneous precipitation rates from PMW imagers over
ice-free ocean are based on the Hamburg Ocean Atmosphere
Parameters and fluxes from Satellite (HOAPS) dataset. For
the precipitation rate retrieval, an artificial neural network
(ANN) trained with precipitation rates retrieved from assim-
ilated Tbs in a 1D-Var scheme from the European Centre
for Medium Range Weather Forecast (ECMWF) has been
designed to derive a statistical retrieval from SSM/I and
SSMIS (SSMI(S) from here) Tbs (Andersson et al., 2010).
The resulting HOAPS precipitation retrieval is a statistical
algorithm that depends only on Tbs as input data. As ar-
gued by Andersson et al. (2010), precipitation rates below
0.3 mmh−1 are set to 0 due to their low signal-to-noise ratio,
i.e. where the microwave signatures possibly stemming from
(wind-driven) surface emission modulations or the presence
of cloud liquid water or water vapour are misinterpreted as
those of precipitation or vice versa (e.g. Ferraro et al., 1998).
The ANN is designed for PMW imager Tbs of the CM SAF
SSMI(S) FCDR (Fennig et al., 2020) at the resolution of the
37 GHz channel of the respective sensor.

Instantaneous precipitation rates from PMW imagers TMI,
GMI, and AMSR-E intercalibrated to the SSMI(S) FCDR
are also retrieved with the above-mentioned ANN. As
these PMW imagers have a higher resolution compared to
SSMI(S), related footprints of the L1C data are averaged to
match the SSMI(S) footprints. Additionally, based on Olson
et al. (2001), a correction factor for the level of mixing of
convective and stratiform precipitation was developed using
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Figure 2. Geostationary platforms and their temporal coverage as used in GIRAFE v1. The respective instruments are colour-coded;
see also Table 1. The labels on the vertical axis indicate the sub-satellite longitude range of the platforms in the respective position.
H-9=HIMAWARI-9, Met-9=Meteosat-9.

Table 1. Geostationary instruments used in GIRAFE v1.

Platform series Instrument Channel Spatial resolution Temporal
(infrared imager) (µm) at nadir resolution

(km) (min)

GMS-5 Visible/Infrared Spin Scan Radiometer (VISSR) 11.0 5 60

MTSAT-1R Japanese Advanced Meteorological Imager (JAMI) 10.8 4 30

MTSAT-2 MTSAT-2 Imager 10.8 4 30

HIMAWARI Advanced Himawari Imager (AHI) 10.4 2 20∗

Meteosat First Generation Meteosat Visible Infra-Red Imager (MVIRI) 11.5 5 30

Meteosat Second Generation Spinning Enhanced Visible and Infra-Red Imager
(SEVIRI)

10.8 3 15

GOES-I/N GOES-I/N Imager 10.7 4 30

GOES-R Advanced Baseline Imager (ABI) 10.3 2 15/20∗

∗ Reduced temporal resolution to limit computation time.

polarisation differences at the inter-calibrated 85 GHz (V–H)
vs. the average 85 GHz Tbs.

3.2.2 PNPR-CLIM

The Passive microwave Neural network Precipitation Re-
trieval for CLIMatological applications (PNPR-CLIM;
Bagaglini et al., 2021) has been developed within the Coper-
nicus Climate Change Service (C3S) programme for de-
riving instantaneous precipitation rates from Tbs observed
by AMSU-B and MHS cross-track scanning radiometers
as provided in the respective FIDUCEO FCDR v4.1 (Hans
et al., 2019) over land and ocean. PNPR-CLIM consists
of two ANNs, one for the detection of precipitation in
AMSU-B/MHS Tbs and the other for its quantification. Both
are trained with high-quality precipitation observations by
the combined GMI and Dual-frequency Precipitation Radar
(DPR) instruments on board the GPM Core Observatory
(GPM-CO) (2B-CMB V06A data; Grecu et al., 2016), col-
located with FIDUCEO MHS data. In addition to instanta-
neous Tbs and respective differences between selected chan-

nels, the inputs to the algorithm are the scan angle, a global
land/sea mask for surface classification, and ERA5 fields
(Hersbach et al., 2020) at 0.25° and monthly resolution
for the auxiliary input variables, namely, 2-metre temper-
ature, freezing level, total precipitable water vapour, snow
depth, and sea-ice concentration. In the presence of deep
convection – detected in Tb differences from the 183 GHz
sounding channels – the precipitation rates are calibrated to
match the distribution of the high-resolution ground-based
Multi-Radar-Multi-Sensor System dataset in North America
(Zhang et al., 2016), similarly to the quantile mapping ap-
plied here (Sect. 4.2). Indicators of the degradation of the
quality, such as the presence of sea ice or snow (based on
ERA5; see also Sect. 4.6), are provided as quality flags. With
the respective FIDUCEO FCDR ending in 2017, PNPR-
CLIM was adapted for the NASA PPS L1C MHS observa-
tions from 2018 onwards, with only negligible discontinu-
ities in spatiotemporally averaged per-satellite precipitation.
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Table 2. Overview of PMW instruments used in GIRAFE v1. Figure 3 illustrates the deployment of these instruments and their usage in
GIRAFE v1. Lower maximum latitudes imply orbits further away from sun-synchronicity, hence providing a more diverse diurnal sampling.

Instrument Type Retrieval Maximum observed Nominal footprint
algorithm latitude

Special sensor microwave/imager (SSM/I) Co-I HOAPS (ifo) 88° 28 km× 37 km

Special Sensor Microwave Imager/Sounder (SSMIS) Co-I HOAPS (ifo) 89° 28 km× 45 km

Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI)

Co-I HOAPS (ifo) 39° 10 km× 18 km

Advanced Microwave Scanning Radiometer – Earth
Observing System (AMSR-E)

Co-I HOAPS (ifo) 90° 8 km× 14 km

Global Precipitation Measurement (GPM) Microwave
Imager (GMI)

Co-I HOAPS (ifo) 69° 8.6 km× 14 km

Advanced Microwave Sounding Unit B (AMSU-B) CT-S PNPR-CLIM 90° 16 km× 16 kma

Microwave Humidity Sounder (MHS) CT-S PNPR-CLIM 90° 16 km× 16 kma

Sondeur Atmosphérique du Profil d’Humidité
Intertropicale par Radiometrie (SAPHIR)

CT-S PRPS 28° 10 km× 10 kmb

Advanced Technology Microwave Sounder (ATMS) CT-S PRPS 90° 16 km× 16 kmb

Co-I=Conical-scanning PMW imager; CT-S=Cross-track scanning PMW sounder; ifo= ice-free ocean only. a Valid at nadir; distortion at higher scan angles
accounted for in the downstream GIRAFE processing. b Multiples of DPR resolution; no distortion assumed at higher scan angles.

3.2.3 PRPS

The Precipitation Retrieval and Profiling Scheme (PRPS)
(Kidd et al., 2021) uses L1C observations from PMW sen-
sors (ATMS and SAPHIR in the case of GIRAFE v1) to re-
trieve L2 precipitation estimates over both land and ocean.
PRPS relies on observational data with minimal, if any, input
of ancillary data. PRPS-SAPHIR was developed for opera-
tional use alongside the Goddard Profiling scheme (GPROF;
Kummerow et al., 2011) and is obtained from NASA GPM
repositories (see Sect. 6). PRPS uses an a priori database
that is based upon matched Tb observations of SAPHIR or
ATMS and aggregated DPR observations (2B-CMB v06 A;
see Sect. 3.2.2) with a maximum temporal difference of
5 min and geolocation within 2.5 km. For a given SAPHIR
or ATMS observation (set of Tbs from different channels),
PRPS finds the six closest matched database entries at similar
sensor scan positions and averages the respective DPR-based
precipitation rates. PRPS-ATMS reveals unrealistically high
precipitation rates over ice-covered surfaces, so that respec-
tive observations are discarded according to the Operational
Sea Surface Temperature and Ice Analysis (OSTIA) at 0.05°
resolution (Good et al., 2020) and for static masks over
Antarctica, Lake Baikal, and the Aral Sea. This step is not
necessary for PRPS-SAPHIR because of its low-latitude cov-
erage (Table 2).

4 Methods

In this section, the algorithms and their scientific basis for
pre-processing and merging of the input data streams are
introduced. The GIRAFE algorithm for daily accumulated
precipitation (Sect. 4.3) and the respective sampling uncer-
tainty (Sect. 4.4), as well as the upstream infrared qual-
ity control (Sect. 4.1), are based on the methods used for
the Tropical Amount of Precipitation with an Estimate of
ERrors (TAPEER) algorithm and product (Chambon et al.,
2013; Roca et al., 2018), developed for the exploitation of
observations by the Megha-Tropiques satellite mission. The
pre-processing of PMW-based precipitation rates (Sect. 4.2)
is necessary because of the diversity of the PMW database
(Sect. 3.2). Sections 4.5 and 4.6 discuss the post-processing
steps of aggregating the monthly resolved product and the
flag for identifying the quality-reducing presence of surface
snow or ice.

4.1 Infrared quality control

Except for the MVIRI FIDUCEO FCDR, we use operational
geostationary datasets (Sect. 3.1), which require quality con-
trol to make them suitable for climate applications. Erro-
neous scan lines in infrared images are flagged using a ra-
diometric quality control algorithm (Szantai et al., 2011) and
are subsequently ignored in the GIRAFE algorithm.
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4.2 Quantile mapping of PMW-based precipitation rate
estimates

The various sources of the PMW-based input stream require
a homogenisation procedure. This is particularly important
because of the use of a detection threshold (Sect. 4.3), as a
mismatch between satellites or retrieval algorithms will have
a strong impact on the training of the infrared observations in
the final GIRAFE output. Here, quantile mapping is applied,
which is a common method for constructing precipitation
datasets from a variety of PMW-based input. For example,
Huffman et al. (2007), Tan et al. (2021), or Yamamoto and
Kubota (2022) use quantile mapping or methods, although
the details vary. We derive the mapping from non-collocated
instantaneous (Level-2) precipitation rate estimates and ap-
ply it to these same instantaneous observations.

Observations by SSMIS on board DMSP-F17 (algorithm
HOAPS) and MHS on board METOP-A (algorithm PNPR-
CLIM) are selected as targets for the quantile mapping proce-
dure over ocean and land, respectively (Fig. 3), because of the
long and stable time series from these sensors. Instantaneous
precipitation rates r observed by other satellites according to
the respective retrieval algorithms are converted to match the
distributions of the target platforms:

rT = g
−1(f (r)). (1)

Here, f and g are the cumulative probability density func-
tions of the precipitation rates from the mapped and the tar-
get satellite, respectively. The mapped precipitation rates, rT ,
are used in the PMW-based input stream to GIRAFE. As
the distributions representing f and g depend on precipita-
tion regimes and overall climatological situations, they are
constructed separately for each month of the year and for
each surface type (land and ocean, hence two target satel-
lites) by counting the number of instantaneous observations
in respective precipitation rate bins and then accumulating
along the precipitation rate dimension. Also, the distributions
are collected separately over bands in latitude (8° spacing
at the Equator to 20° at higher latitudes) and longitude (six
bands in total, separating continents). Besides the definition
of distributions by month of the year, no time dependency is
implemented, i.e. the distributions are based on all available
years from the respective satellite between 2002 and 2020.
This also implies that this method impacts the homogeneity
and stability of the GIRAFE v1 time series only by remov-
ing average inter-sensor discontinuities, but not any drifts of
single satellites. In the presence of a strong drift, residual dis-
continuities may occur when the respective satellite joins or
leaves the constellation. However, based on the findings in
Sects. 5.3 and 5.4, there is no evidence for such situations
when comparing against other (quasi-)global datasets over
the regions specified in our homogeneity and stability analy-
ses.

Months with strong El Niño–Southern Oscillation (ENSO)
amplitudes as per the MEI v2 index (Wolter and Timlin,

2011) are discarded during the collection of distributions,
due to reportedly high dependency of HOAPS on these con-
ditions (e.g. Masunaga et al., 2019). Strong ENSO events are
identified by the MEI v2 index surpassing 1.0 (El Niño) or
falling below −1.25 (La Niña). These thresholds have been
defined ad hoc.

The mapping as per Eq. (1) is substituted by an iden-
tity mapping (i.e. effectively no quantile mapping) in lati-
tudes above 70° N/S during the hemispheric winter half-year,
due to few or no (non-zero) observations over snow and ice
in either of the three sub-databases (HOAPS, PNPR-CLIM,
PRPS; Sects. 3.2.1–3.2.3), and in latitude/longitude boxes
with less than 3 % of the respective surface type (land/ocean),
due to few observations possibly leading to spurious distri-
butions. Finally, the mapping is interpolated in narrow tran-
sitions between the above-mentioned latitude and longitude
bands in order to avoid unphysical discontinuities at these
boundaries. The positive homogenising effect of the quantile
mapping procedures is illustrated in Appendix A.

Observed Tbs are often affected by geometric distortions,
leading, among others, to a very low spatial resolution,
especially in the case of cross-track scanning microwave
sounders. Therefore, the five outer scan positions for AMSU-
B and MHS are discarded for both the construction of the
distributions and the later use in the merging procedures, ac-
cording to PNPR-CLIM quality flagging. For the other cross-
track scanning sensors ATMS and SAPHIR, only the outer
two scan positions are discarded because the sensor reso-
lution is prescribed by the PRPS algorithm (Table 2). Mi-
crowave imagers are less affected due to their conical scan-
ning geometry.

Data from single satellites during periods when Tbs and
hence precipitation rate estimates are contaminated or show a
strong trend not detected by other satellites are discarded for
both the quantile mapping and the later use in the merging.
These periods are detected in a non-automated fashion by eye
in per-satellite anomaly time series of monthly means over
different regions (tropics, northern/southern extra-tropics,
and separately over land and ocean; see Niedorf et al.,
2024b). Such trends occur mostly at the start or towards
the end of the lifetime of a satellite. The respective re-
movals lead to the periods detailed in Fig. 3, which, in these
cases, deviate from the actual satellite uptime values. Data
from a single shorter period of contamination for NOAA-
19 in October 2017 as reported by Sanò et al. (2021) were
also removed. No further quality control was carried out
on the PMW-based data. The utilisation of mostly quality-
controlled FCDR sources for PMW Tb observations in GI-
RAFE gives confidence that contaminations are rare, but
their occurrence cannot be entirely excluded.

4.3 Derivation of daily accumulated precipitation

The estimation of accumulated precipitation is based on the
TAPEER algorithm (Chambon et al., 2013). The merging
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Figure 3. Overview of satellites bearing PMW sensors and their temporal availability used in GIRAFE v1. The labels indicate the satellite,
instrument, and corresponding precipitation retrieval algorithm; see also Table 2. Identical instruments are identified by the same colour.
* Quantile mapping target over ocean (Sect. 4.2); ** quantile mapping target over land.

of PMW and infrared observations inside 55° N/S follows
the GOES Precipitation Index technique (Arkin, 1979), more
specifically the Universally Adjusted GOES Precipitation In-
dex (Xu et al., 1999); see Sect. 4.3.1. for details. This ap-
proach separates the daily accumulated precipitation (Pacc)
in a 1°×1°×1d (1DD) grid cell into the conditional precip-
itation rate (R, in mmh−1) and the precipitation fraction (F ,
unitless) in this cell:

Pacc = R ·F · 24h , (2)

hence assuming that, if it rains in the grid cell, it occurs at a
constant average intensity. The derivation of R is based only
on the PMW database:

R =

∑
iriai∑
iai

. (3)

Here, the index i specifies instantaneous PMW observa-
tions in the 3°× 3°× 3d (3DD) environment centred around
the 1DD grid cell, regardless of the source satellite/sensor,
for which the precipitation rate estimates ri lie above a pre-
defined rate threshold (Table 3). The choice of 3DD for the
size of the environment optimises the frequency distributions
of 1DD precipitation rates simultaneously with the respective
rate thresholds and detection thresholds (see below) when
compared to established datasets. The respective footprint
areas ai (Table 2) are used for linearly weighting the pre-
cipitation rate estimates because observations of large areas
are expected to be more representative for the entire 3DD

environment than those of smaller ones. The derivation of
F and the rate threshold for the derivation of R depend on
whether the 1DD grid cell is inside (Sect. 4.3.1) or outside
(Sect. 4.3.2) of 55° N/S.

One day is defined from 00:00:00 UTC to 00:00:00 UTC
on the next day in the official product discussed here. How-
ever, for users who need to rely on a different local time
equivalent, unofficial variants with periods shifted by 6, 12,
and 18 h exist and are available upon request (see Sect. 6).
Figure 4 shows the resulting intermediate results for F and
R (panels a and b) for 1 exemplary day, as well as the final
daily accumulated precipitation Pacc as per Eq. (2) in panel c.

4.3.1 Inside 55° N/S (merging)

At latitudes below 55° N/S, where infrared observations from
geostationary satellites are utilised, the GIRAFE algorithm
derives the precipitation fraction F from the merged infrared
and PMW-based data streams following the Universally Ad-
justed GOES Precipitation Index technique (Xu et al., 1999).
For a given 1DD grid cell, the GIRAFE algorithm finds col-
located observations in the infrared and PMW-based data
streams in a 3°× 3°× 1d environment centred around the
1DD grid cell. Observations are ingested into the colloca-
tion database (i) if the infrared observation lies inside the
much larger footprint ellipse of the respective PMW obser-
vation (spatial criterion; see Table 2) and (ii) if the infrared
observation and the PMW observation were recorded within
the duration of one geostationary infrared imager scan cycle
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Table 3. Overview of the thresholds used for the computation of the conditional precipitation rate R and the precipitation fraction F during
the merging in the GIRAFE algorithm.

Name Application Value inside 55° N/S Value outside 55° N/S

Rate threshold Filter PMW-based data stream for observations
contributing to the conditional precipitation
rate derivation

1 mmh−1 0.5 mmh−1

Detection threshold Find precipitation events in the PMW-based
data stream

0.5 mmh−1 0.3 mmh−1

Infrared threshold Find precipitation events in the infrared data
stream

Trained locally by PMW-based
observations using the collocation
database

Not applicable

Figure 4. Example fields for the GIRAFE v1 precipitation fraction F (panel a), the conditional precipitation rate R (panel b), the resulting
daily accumulated precipitation Pacc (panel c), and the sampling uncertainty σS (panel d) on 13 July 2021. The minimum value of the fields
illustrated in panels a, c, and d using logarithmic colour scales is 0.

(temporal criterion; see Table 1). The infrared observations
are processed at the sensor-specific resolution and sampling
rate; differences between the sensors do not impact the re-
sults systematically because of the above-mentioned training
that is local in space and time.

Based on this collocation database, a threshold for the de-
tection of precipitation in the infrared Tbs is derived (“in-
frared threshold”, Table 3) for the 1DD grid cell. For this,
the fraction of PMW-based precipitation rate estimates ex-

ceeding the detection threshold of 0.5 mmh−1 (Table 3) in
the collocation database is determined. The infrared thresh-
old is then derived as the quantile in the infrared Tb distri-
bution in the collocation database, which corresponds to this
PMW-based precipitation fraction, cf. Fig. 5. The precipita-
tion fraction, F , is computed as the fraction of precipitation
events (Tb below the derived infrared threshold) in all in-
frared observations falling into the 1DD grid cell.
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Figure 5. Example derivation of the infrared threshold (vertical red
dashed line) based on the PMW-based precipitation fraction (hor-
izontal red dashed line) and the distribution of infrared (IR) Tbs
(thick black line), both in the collocation database of the respective
1DD grid cell.

Inside 55° N/S, the conditional precipitation rate for a 1DD
cell is computed using a rate threshold of 1.0 mmh−1, which
was found to bring the overall frequency distributions of
daily accumulated precipitation in GIRAFE v1 closest to
established datasets in early results – in tandem with the
0.5 mmh−1 detection threshold used for the training of the
infrared threshold (see above) and the 3DD environment for
the averaging of the conditional precipitation rate.

4.3.2 Outside 55° N/S

Where no infrared data are used, the GIRAFE algorithm re-
lies only on the PMW-based data stream as follows: the pre-
cipitation fraction F is the fraction of PMW-derived precip-
itation rates exceeding 0.3 mmh−1 in the 1DD grid cell (Ta-
ble 3). This threshold for the detection of precipitation in the
PMW data stream is lower than that inside the 55° N/S region
(0.5 mmh−1; see Sect. 4.3.1) due to precipitation occurring
at lower rates at higher latitudes in general. In this respect,
GIRAFE deviates from the TAPEER methods established by
Chambon et al. (2013), who did not consider regions of the
planet where infrared observations from geostationary satel-
lites cannot be used.

The 1DD conditional precipitation rate is computed in the
same way as inside 55° N/S but using a rate threshold of
0.5 mmh−1 (Table 3), which proved optimal in reproduc-
ing frequency distributions of established datasets in tandem
with the 0.3 mmh−1 detection threshold and the 3DD en-
vironment for the averaging of the conditional precipitation
rate (see above) in an early version.

4.4 Daily sampling uncertainty

The GIRAFE sampling uncertainty is based on instantaneous
precipitation fields that are obtained from the infrared Tb
observations by applying the 1DD infrared threshold as ex-
plained in Sect. 4.3.1. It is therefore only available inside
the 55° N/S latitude band covered by geostationary satellites.
These instantaneous precipitation fields can take two differ-
ent values: 0 for infrared Tbs exceeding the infrared thresh-
old (no precipitation) or the conditional precipitation rate R
otherwise. Following Roca et al. (2010) and Chambon et al.
(2013), the sampling uncertainty, σS, is computed as

σS =
σ
√
Nind

, (4)

with σ = R ·
√
F · (1−F ) being the standard deviation of

the binary infrared-based precipitation field in the 1DD cell.
With strong correlations present between neighbouring in-
frared pixels, the number of independent observations Nind
in Eq. (4) is well below the number of available infrared ob-
servations. It is estimated as

Nind =
A · T

d2 · τ
, (5)

where A is the area of the 1°× 1° grid cell, T = 24h is
the temporal extent of the grid cell, and d and τ are the
decorrelation scales of the precipitation signal in space and
time, respectively. These decorrelation scales are estimated
separately from exponential fits to variograms of the binary
infrared-based precipitation fields in the respective dimen-
sions.

This uncertainty measure is useful when satellite and
ground-based estimates are compared as detailed, for in-
stance, in Roca et al. (2010) and Gosset et al. (2018). It
has also been successfully used to assess the sensitivity of
the satellite products to the configuration of the microwave
constellation (Roca et al., 2018; Oliveira and Roca, 2022).
Dataset-specific uncertainties could also be very useful in the
context of hydrological modelling applications, as an added
value for exploring different scenarios of river discharge sim-
ulations through ensembles constructed by otherwise offline
estimates of precipitation uncertainty (e.g. Paiva et al., 2013,
Wongchuig et al., 2024), particularly in intertropical basins,
which are subject to strong spatiotemporal variability of pre-
cipitation.

The variograms are collected over larger fixed (i.e. non-
moving) 5°× 5°× 10d environments, thereby increasing the
underlying databases to form a larger statistical ensemble
rather than covering only few events. The variograms in spa-
tial dimensions are first computed per scan in 5°× 5° cells
based on spatial increments in the scan line and scan posi-
tion directions only, and then the per-scan variograms over
the 10 d period are averaged. Conversely, the temporal var-
iograms are first computed per geostationary pixel over the
10 d period based on differences in scan times, and then the
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Figure 6. Example space variogram (red) and time variogram
(blue) of a 5°× 5°× 10d environment. The 5°× 5° box is centred
at 12.5° N/27.5° W (tropical East Atlantic Ocean), and the time pe-
riod covers 11–20 July 2021. Red axes (left and bottom) belong to
the space variogram, whereas blue axes (right and top) are assigned
to the time variogram. Stars mark the computed experimental var-
iograms, and dashed lines show the respective fit. The dotted ver-
tical lines illustrate the fitted decorrelation scales in space (blue,
19.84 km) and time (red, 2.85 h).

per-pixel variograms are averaged over the 5°×5° boxes. For
both types of variograms, the binary infrared-based precipi-
tation fields are sampled to coarser resolutions, depending
on sensor specifications (scan frequency and spatial resolu-
tion at nadir; see Table 1), roughly matching a temporal res-
olution of 1 h and a spatial resolution of 5 km (nadir) for
the spatial variograms and 30 min and 15 km for the tem-
poral variograms, respectively. In general, this resampling
harmonises the available resolutions of different sensors as
far as possible. However, the lowest resolution is not always
taken as the target to not reduce the quality of the more ad-
vanced instruments. Therefore, outliers such as the VISSR
sampling frequency of 60 min cannot be overcome, and the
resulting larger minimum lag between two observations for,
e.g., VISSR may have a systematic effect on the resulting
decorrelation scales. Figure 6 shows an example space var-
iogram and time variogram of a 5°× 5°× 10d environment
and its respective fits and decorrelation scales.

The fit procedure works well for truly exponentially
shaped variograms, such as the ones shown in Fig. 6. There
are situations in which the variograms cannot be calculated or
have irregular shapes, for example, falling below the plateau
at higher lags or an alternation of high and low values at
low lags instead of a monotonous increase, possibly due to
many missing infrared scenes or in arid settings. This typ-
ically leads to implausibly low or high or entirely missing
decorrelation scales, due to numerical instabilities in the fit-
ting routine in the latter case. These situations are filtered
by identifying cases for which the decorrelation scale is be-
low the minimum lag, above the maximum lag, or not re-
trieved. In order to avoid gaps, the respective values are re-
placed by climatological values (20 km for spatial and 1.5 h

for temporal decorrelation). These values are relatively well
aligned with the most frequent values of the variogram fits in
both GIRAFE v1 and TAPEER v1.5 (Figs. 5–13 in Konrad
et al., 2024). A flag is provided that identifies these situations
and allows the rejection of respective derived uncertainty es-
timates.

Figure 4 shows the resulting sampling uncertainty as per
Eqs. (4) and (5) for 1 exemplary day in panel d.

4.5 Monthly aggregation of daily accumulated
precipitation

For the convenience of users who are interested in an average
monthly precipitation, the global 1DD accumulated precipi-
tation fields (Sect. 4.3) are averaged along the temporal di-
mension over each month, yielding 1°×1°×1month (1DM)
gridded global fields. The number of days available for av-
eraging is provided for each 1DM grid cell, as well as a flag
that informs users whether there are more than 10 d or more
than 4 consecutive days missing in the 1DM grid cell, in
which case the 1DM value is non-compliant with guidelines
by the World Meteorological Organization (WMO, 2017).
The daily sampling uncertainty is not propagated to the 1DM
resolution, due to the unknown day-to-day uncertainty corre-
lation.

4.6 Snow/ice flag

With HOAPS not providing PMW-derived precipitation rates
over ice- or snow-covered areas, PRPS output being specif-
ically filtered for these situations (Sect. 3.2.3), and PNPR-
CLIM being reportedly weak in these situations (Bagaglini
et al., 2021), a snow/ice flag (SIF) is introduced follow-
ing the PNPR-CLIM quality flag setting for snow and ice
cover: ERA5 snow depth and sea-ice concentration (Hers-
bach et al., 2020) above 0 in a 3DD environment (matching
the maximum extent of the GIRAFE environments) around
a 1DD grid cell indicate a probable degradation of the data
quality in GIRAFE v1; hence, SIF= 1 and SIF= 0 other-
wise for the 1DD grid cell. For the monthly GIRAFE v1 data,
the number of days with SIF= 1 are counted for each 1DM
grid cell.

5 Validation, intercomparison, and verification

GIRAFE v1 comes with an extensive validation report (Kon-
rad et al., 2024) featuring comparisons against reference
datasets and similar quasi-global datasets, a dedicated stabil-
ity and homogeneity analysis, the verification of the plausi-
bility of the uncertainties and the underlying decorrelation
scales, and an analysis of missing values in the 1DD and
1DM datasets. In this section, we condense the information
of this validation report and refer the interested reader to the
validation report for the extended analysis. Particular empha-
sis is put on the homogeneity analysis (Sect. 5.3), the stability
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analysis (Sect. 5.4), and the analysis of the scaling of daily
extreme precipitation with sea surface temperature (SST),
which was not featured in the validation report (Sect. 5.5).
Finally, Sect. 5.6 illustrates how the GIRAFE v1 sampling
uncertainty resembles the validated TAPEER v1.5 uncertain-
ties.

We focus on the assessment of the 1DD dataset of
the GIRAFE v1 CDR. In order to put the GIRAFE v1
CDR results in perspective, the validation activities pre-
sented in Sect. 5.1 are carried out also for the established
(quasi-)global satellite-based datasets: Global Precipitation
Climatology Project (GPCP) v3.2 (Huffman et al., 2023a),
Climate Prediction Center Morphing Technique (CMORPH)
v1 (Xie et al., 2017), Integrated Multi-satellitE Retrievals for
GPM (IMERG) v6 (Huffman et al., 2020) and v7 (Huffman
et al., 2023b; not present in the previously mentioned val-
idation report by Konrad et al., 2024), and Global Satellite
Mapping of Precipitation (GSMaP) NRT v8 (Kubota et al.,
2007; not present in the previously mentioned validation re-
port by Konrad et al., 2024). The reanalysis dataset ERA5
(Hersbach et al., 2020) is also included in these comparisons.
GPCP v3.2 is corrected towards rain gauge observations over
land, which is not the case for GIRAFE v1. There are both
corrected and uncorrected versions for CMORPH (CRT and
RAW), IMERG (FC and FU), and GSMaP (with and with-
out “gauge” in the labels below). Where feasible, we also in-
clude TAPEER v1.5 (Roca et al., 2018). For the homogene-
ity and stability analyses (Sects. 5.3 and 5.4), we also use
the TRMM Multi-satellite Precipitation Analysis (TMPA)
3B42 v7 (Huffman et al., 2016) and the Global Precipita-
tion Climatology Centre (GPCC) v2022 (Ziese et al., 2022)
datasets. All datasets are retrieved at 1DD resolution from the
Frequent Rainfall Observations on GridS (FROGS) archive
(Roca et al., 2019a).

Following, for example, Gosset et al. (2018), we rely on
established indicators of quality for assessing the various
datasets, namely, bias (mean difference), bias-corrected root-
mean-square difference (bc-RMSD), correlation coefficient
(CC), detection statistics (hit rate, HR; probability of detec-
tion, POD; false alarm rate, FAR; and Heidke skill score,
HSS), and the frequency of error bar overlap (FEBO). Apart
from the detection statistics, no distinction is made between
non-zero and no precipitation during the computation of the
indicators. Where spatial dimensions are collapsed during
the computation of the bias and bc-RMSD, each 1DD grid
cell is weighted according to the area, i.e. proportional to
sin(latitude). For the detection scores, the occurrence of pre-
cipitation in a 1DD grid cell is determined at 1 mmd−1,
which is a common threshold for distinguishing dry and rainy
days (e.g. Gosset et al., 2018).

5.1 Validation

The analyses in Sects. 5.1.1 and 5.1.2 are considered
validations in the sense that the validating local dataset

AMMA-CATCH and regional dataset EURADCLIM are
high-resolution and high-accuracy. These datasets are lim-
ited both in time and more so in space. Already between
these two regions, the advantages and disadvantages of the
validated datasets vary (see below). It can be expected that
regions with other surface settings and climatological con-
ditions will also see different results. Hence, the validation
here can only be considered a sample rather than complete.

5.1.1 AMMA-CATCH

We use the data from a high-resolution, dense rain gauge
network near Niamey, Niger, in the “African Monsoon Mul-
tidisciplinary Analysis – Couplage de l’Atmosphère Trop-
icale et Cycle Hydrologique” (AMMA-CATCH) dataset
(Lebel et al., 2009) to validate GIRAFE v1 and the other
above-mentioned (quasi-)global datasets. AMMA-CATCH
has been used previously for the validation of satellite-based
precipitation estimates (Gosset et al., 2018, and references
therein). The Niamey gauge network covers the 1°× 1° area
around 13.5° N, 2.5° E and consists of 40–50 stations. Accu-
mulated precipitation from these stations is extended to the
entire 1°×1° area by kriging before aggregation over spatial
dimensions. The respective kriging uncertainty is available.
We use 24 h accumulations from 2002 to 2019. Precipitation
in Niamey is governed by the West African Monsoon, so the
comparison is carried out for observations between June and
September. It is noted that according to the above specifica-
tion of the Niamey network, the validation extends to only a
single grid cell in spatial dimensions for GIRAFE v1.

GIRAFE v1 has a bias and bc-RMSD against AMMA-
CATCH that are in the range of other datasets that have not
been adjusted to rain-gauge datasets (Table 4). While the
POD of GIRAFE v1 is as high as in most other datasets, the
GIRAFE v1 FAR is notably high, leading to lower scores
also in terms of CC, HR, and HSS. The overestimation of
precipitation in GIRAFE v1 is likely a feature of the PNPR-
CLIM Level-2 data, which also produces increased precipi-
tation over Africa (Bagaglini et al., 2021). The datasets that
are adjusted to rain-gauge datasets usually perform better,
indicating that future developments in GIRAFE context in-
volving such an adjustment may also improve these scores.
ERA5, except for the FAR statistic, performs weakest against
the AMMA-CATCH dataset, possibly because no informa-
tion relevant to precipitation is assimilated in the vicinity of
the Niamey 1DD grid cell. In the absence of 1DD uncertainty
information in the other datasets, except TAPEER v1.5, the
FEBO of GIRAFE v1 is exceptionally high (60 %). The bet-
ter performance of TAPEER v1.5 in this metric is likely a
result of this dataset being designed for tropical conditions,
of the generally lower bias, and of the better detection statis-
tics. A more detailed discussion of the sampling uncertainty
is given in Sect. 5.6.
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Table 4. Statistics from the 1DD comparison of the evaluated datasets against the AMMA-CATCH Niamey data. The comparison is carried
out for June–September in 2002–2019 (exceptions: a 2002–July 2017; b 2012–2019).

Dataset Bias bc-RMSD CC HR POD FAR HSS FEBO
(mmd−1) (mmd−1) (%) (%) (%) (%) (%) (%)

Datasets without adjustment towards rain gauge data

GIRAFE v1 1.10 5.67 75 83 92 24 66 60
CMORPH v1 RAWa 2.24 7.12 85 89 91 13 78 43
TAPEER v1.5b

−0.16 3.80 88 90 87 8 79 73
IMERG v6 FU 1.76 6.00 89 91 94 12 81 47
IMERG v7 FU 0.95 5.31 87 90 91 11 80 46
GSMaP NRT v8 −0.37 6.32 72 86 78 9 70 46

Datasets with adjustment towards rain gauge data

GPCP v3.2 −0.17 3.60 90 92 91 8 83 53
CMORPH v1 CRT 0.31 4.75 85 89 87 9 78 52
IMERG v6 FC 0.05 3.54 91 91 92 9 83 51
IMERG v7 FC 0.01 3.76 90 91 91 9 81 48
GSMaP Gauge NRT v8 −0.05 5.99 78 87 82 8 74 47

Reanalysis
ERA5 −1.78 8.30 35 67 52 22 30 21

5.1.2 EURADCLIM

We compare GIRAFE v1 and the above-mentioned
(quasi-)global datasets to the 2013–2020 ground-based pre-
cipitation radar dataset EURADCLIM (Overeem et al.,
2023). The 24 h accumulations are averaged from their na-
tive 2km× 2km resolution to 1DD. An ad hoc sampling un-
certainty is computed according to Eqs. (4) and (5), exclud-
ing the temporal dimension and with the default GIRAFE
spatial decorrelation scale of 20 km. With the temporal sam-
pling not being accounted for, the resulting uncertainty is
likely to be underestimating the true sampling uncertainty
in EURADCLIM. The comparison is restricted to 1DD grid
cells south of 60° N for a fair comparison with CMORPH
v1 and IMERG, which are (mostly) not available north of
this latitude. The 528 remaining 1DD grid cells cover West
and Central Europe, southern Scandinavia and the southern
Baltic Sea, and parts of East Europe; see Appendix B for an
illustration of the availability of mutual grid cells.

GIRAFE v1 tends to underestimate the amount of precip-
itation in EURADCLIM (low bias shown in Table 5) but re-
mains largely in the range of the other unadjusted datasets.
The overall bc-RMSD given in Table 5 is very close to the op-
timal values found in all datasets. This finding is confirmed
in the comparison of spatial distributions of the bc-RMSD
(Fig. 7). In general, GIRAFE v1, like the other datasets, sees
an increased deviation from EURADCLIM over the Alps, the
Pyrenees, the Balkans, the northern parts of Ireland and Great
Britain, and the southern Norwegian coast. Most of these ar-
eas are mountainous, which makes the inference of precipi-
tation from both satellites and ground-based radars more dif-
ficult.

The detection statistics of GIRAFE v1 (and hence also
CC) suffer from a relatively low POD (Table 5). Other un-
adjusted datasets have similarly low or lower POD, while
the adjustment towards rain gauges for most datasets allevi-
ates this effect. The evaluation of GIRAFE v1 over summer
months only (row 2 in Table 5) yields a significant improve-
ment in all measures towards or above the other datasets’
all-year performance, while the evaluation of GIRAFE v1
over the entire year, but with the SIF (Sect. 4.6) applied,
ranges in between. Hence, the low POD is likely related to
detecting snowfall or liquid/mixed precipitation over snow
and ice-covered regions. It should be noted that the applica-
tion of the SIF removes ∼ 45% of the 1DD grid cells in the
EURADCLIM-GIRAFE v1 comparison due to the conser-
vative extension of the ERA5 information on snow and sea-
ice cover to a 3DD environment (Sect. 4.6). Again, the ad-
justed datasets score better in principle than their unadjusted
counterparts, indicating the potential of a future adjustment
in GIRAFE. Finally, as in Sect. 5.1.1, in the absence of 1DD
uncertainty estimates in the other datasets, GIRAFE v1 out-
performs these in terms of FEBO; a more detailed discussion
of the sampling uncertainty can be found in Sect. 5.6.

5.2 Intercomparison with (quasi-)global datasets

GIRAFE v1 features the expected climatological patterns
over the globe (Fig. 8, panel a vs. b–g). It tends to overes-
timate precipitation with respect to the other datasets in the
tropical rain belt and in the western Pacific Ocean (Fig. 8h),
except in South America. At higher latitudes, GIRAFE v1
generally tends to underestimate the other datasets, with a
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Table 5. Statistics from the 1DD comparison of the evaluated datasets against the EURADCLIM dataset. Only latitudes below 60° N are
considered. The comparison is carried out for 2013–2020 (exception: ∗ 2013–July 2017).

Dataset Bias bc-RMSD CC HR POD FAR HSS FEBO
(mmd−1) (mmd−1) (%) (%) (%) (%) (%) (%)

Datasets without adjustment towards rain gauge data

GIRAFE v1 −0.86 3.17 74 82 62 5 60 52
GIRAFE v1 (June–August) −0.31 3.05 78 86 74 6 70 60
GIRAFE v1 (SIF applied) −0.55 2.89 77 85 66 5 66 57
CMORPH v1 RAW∗ −1.36 3.62 64 74 41 3 42 39
IMERG v6 FU 0.45 5.12 73 85 74 8 68 40
IMERG v7 FU −0.48 3.19 77 83 68 6 64 40
GSMaP NRT v8 −0.72 3.36 73 82 63 6 60 39

Datasets with adjustment towards rain gauge data

GPCP v3.2 0.06 3.68 76 84 72 8 65 42
CMORPH v1 CRT −0.62 3.71 69 79 54 6 51 39
IMERG v6 FC 0.25 4.00 78 85 75 8 69 41
IMERG v7 FC −0.03 3.01 83 85 75 8 68 49
GSMaP Gauge NRT v8 −0.55 3.37 74 82 65 7 61 38

Reanalysis
ERA5 −0.04 2.83 82 87 82 10 72 40

Figure 7. Maps of the bc-RMSD in the 1DD precipitation for the validated datasets against EURADCLIM. The datasets appear in the same
order as in Table 5. Panels (a–e) represent the unadjusted datasets, (f–j) represent the adjusted datasets, and panel (k) represents the ERA5
reanalysis. GIRAFE v1 has been analysed without the application of the snow flag. The analysis of CMORPH v1 RAW (panel b) ends in
July 2017; all other comparisons extend over mutually available grid cells in the 2013–2020 period.
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few exceptions such as western North America or the North
American Atlantic coast. This general underestimation is at
least partially related to the inadequate detection of precip-
itation over snow and ice surfaces discussed in Sect. 5.1.2
and shows up strongest in the sub-polar Antarctic, where GI-
RAFE v1 misses most precipitation over sea ice. The differ-
ent treatment of 1DD grid cells inside and outside of 55° N/S
in GIRAFE v1 (Sect. 4.3) manifests in latitudinal discontinu-
ities at the boundaries (Fig. 8a and g, also in Fig. 11).

As an example of GIRAFE v1’s temporal evolution com-
pared to these other datasets, we focus on low latitudes.
Again, the validation report (Konrad et al., 2024) contains a
more detailed picture for other regions, too. Over land, on
average, GIRAFE v1 resembles the other datasets closely
(Fig. 9a), except CMORPH v1 and GSMaP v8, which are
biased low compared to the other datasets. Over low-latitude
ocean (Fig. 9b), all datasets show a relation to ENSO, with
precipitation being highest during El Niño events. GIRAFE
v1 sees the highest precipitation in this region (see also the
discussion of Fig. 8h above) and also the strongest link to
ENSO. This is most likely inherited from the HOAPS PMW
dataset, which has been shown to be more sensitive than oth-
ers (Masunaga et al., 2019).

Without a clear reference, the most obvious deviations of
GIRAFE v1 from the other datasets over tropical oceans in
terms of more precipitation and a stronger correlation with
ENSO are currently classified as a feature rather than a defi-
ciency.

5.3 Homogeneity analysis

Homogeneity is an important aspect in a dataset that is
designed for climate applications, as inhomogeneities, or
breakpoints, stemming from changes in the observing sys-
tem can be misinterpreted as a climate signal. In this sec-
tion, we assess the degree of homogeneity of GIRAFE v1
and other datasets in terms of the occurrence of breakpoints,
following methods by Weatherhead et al. (1998) and Mieruch
et al. (2014), also utilised in GEWEX water vapour assess-
ment (Schröder et al., 2016, 2019; Trent et al., 2024). Var-
ious homogeneity tools exist (see Venema et al., 2012, for
an overview). We apply two tests: the Penalised Maximal F
(PMF) test (Wang, 2008a, b) and a variant of the standard
normal homogeneity (SNH) test (Hawkins, 1977; Alexander-
sson, 1986), as proposed in Reeves et al. (2007). The SNH
test is carried out only on breakpoints previously identified
by the PMF test. The detection of a breakpoint confirmed by
the SNH test can then be considered to be of increased con-
fidence because of the 2-fold evaluation. These situations are
referred to as “confirmed breakpoints” in the discussion be-
low. The resulting breakpoint analysis detects abrupt changes
in a time series of precipitation at a 0.05 significance level,
in terms of the timing and the strength of the breakpoint.

Input to the PMF and SNH tests are time series of anomaly
differences, i.e. the difference between the anomalies from a
dataset and a reference dataset after removal of the mean an-
nual cycles. Using a record as reference does not constitute a
statement on superior quality. Instead, references are chosen
because they are widely used, have global (land) coverage,
and are observation-based (GPCP v3.2, GPCC v2022) or are
independent from the former datasets (3B42 v7 after 2000,
CMORPH V1 CRT, which uses the rain-gauge-based dataset
CPC; Chen et al., 2008). For each region and analysed pa-
rameter (rows in Fig. 10), two reference datasets are cho-
sen to further increase confidence in breakpoints (columns
in Fig. 10): the occurrence of simultaneous breaks against
both reference datasets points to a homogeneity issue in the
dataset under consideration. Conversely, mutual breakpoints
in several datasets against the same reference dataset may in-
dicate an inhomogeneity in the respective reference dataset.

The anomaly differences analysed in these tests are based
either on monthly totals (Fig. 10a–d) or – representing ex-
treme precipitation (see also Sect. 5.5) – on the monthly
99.9th percentile (Fig. 10e and f), each transferred to log-
scale and each based on the 1DD GIRAFE v1 product and
FROGS variants of the other datasets. If a grid-based time
series of daily accumulated precipitation does not cover all
days, the monthly total based on the available daily values
is scaled accordingly. More sophisticated approaches use,
for example, reference climatologies (Wang et al., 2023). Fi-
nally, it is noted that the breakpoint analysis is affected by un-
certainties; in particular, actually existing breakpoints might
go undetected.

Figure 10 shows the anomaly time series and associated
breakpoints in the various settings for GIRAFE v1 and sev-
eral of the previously introduced datasets. For a detailed
overview, Appendix C provides a list of all breakpoints
shown in the various panels. Here, we focus on the discus-
sion of the homogeneity of GIRAFE v1; however, some im-
plications of breakpoints in the other datasets are discussed
in Sect. 5.4. Over global ocean surfaces inside 50° N/S, GI-
RAFE v1 does not exhibit confirmed breakpoints (no red
star-shaped markers in panels a and b of Fig. 10), while over
land inside 50° N/S, a single, confirmed breakpoint is de-
tected in December 2008. This breakpoint is only present rel-
ative to GPCC v2022 but not relative to CMORPH v1 CRT
(red star-shaped marker in panel c but not in panel d). This re-
duces confidence in the presence of a breakpoint in GIRAFE
v1 and points to a potential issue in GPCC v2022, which is
generated from various input streams of rain gauge data and
intense and – to a significant extent – manual quality con-
trol. The combination of this leads to a delay in the ingestion
of data and causes a strong, abrupt decrease in the amount
of input data in approximately 2009 (see Fig. 1 in Schneider
et al., 2022), coinciding with the observed break in GIRAFE
v1 and those of other datasets against GPCC v2022 in Oc-
tober 2008 (GPCP v3.2 and ERA5; see also the full list of
breakpoints in Appendix C). Note that, consistent with this,
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Figure 8. Spatial distributions of climatological mean precipitation (2002–2020) for various datasets (a-g). Panel h: difference between the
GIRAFE v1 climatological mean (panel a) and the ensemble mean of the other datasets (panels b–g).

Figure 9. Time series of mean precipitation inside 30° N/S separately for land (a) and ocean (b) for various datasets. The thick coloured
lines are obtained via application of a 30 d running average.

GPCC v2022 together with 3B42 v7 exhibits a breakpoint
relative to CMORPH v1 in October 2008 (again, see also
Appendix C). Further analysis is needed to better understand
this feature. GIRAFE v1 does not exhibit confirmed break-
points relative to GPCP v3.2 and 3B42 v7 in terms of the
monthly 99.9th percentile inside 30° N/S (no red star-shaped
marker in panels e and f), and it is therefore concluded that
GIRAFE v1 proves stable in terms of extremes.

5.4 Stability analysis

Breakpoints, as discussed in Sect. 5.3 or, artificial trends
caused by drifts or ageing of the observing system itself
rather than the Earth system affect the stability of a CDR.
Again following Weatherhead et al. (1998), Mieruch et al.
(2014), Schröder et al. (2016, 2019), and Trent et al. (2024),
we define stability as the trend in a time series of the bias
of one dataset relative to another one over a given spatial
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Figure 10. Homogeneity analysis. (a) Monthly total precipitation over ocean inside 50° N/S with GPCP v3.2 as the reference dataset for the
homogeneity tests. (b) Same but with 3B42 v7 as the reference dataset. (c) Monthly total precipitation over land inside 50° N/S with GPCC
v2022 as the reference dataset for the homogeneity test. (d) Same but with CMORPH v1 CRT as the reference dataset. (e) 99.9th percentile
of precipitation over land and ocean inside 30° N/S with GPCP v3.2 as the reference dataset for the homogeneity test. (f) Same but with
3B42 v7 as the reference dataset. The time series (identical in the left and right columns per row) illustrate the anomaly in the respective
dataset shifted by the respective overall mean. Small, circle-shaped markers indicate the presence of breakpoints detected by the PMF test
only. Breakpoints, illustrated by large, star-shaped markers, are also confirmed by the SNH test. A complete list of detected breakpoints is
given in Appendix C. Note that some time series start between January 1998 and January 2002 or end prior to December 2022, deviating
from the GIRAFE v1 coverage.

area and assess the stability of GIRAFE v1 in this sense.
Trends in the single datasets were computed as well, util-
ising the same methods, but applied to absolute values rather
than differences (bias). A linear trend model, the amplitudes
and frequencies of four modes, and the strength of ENSO
were simultaneously fitted to the time series analysed in
Sect. 5.3. The uncertainty of the linear trend estimates was
corrected for autocorrelation of autoregressive data of order 1
(Schröder et al., 2019). The significance of the stability be-
ing different from 0 mmd−1 decade−1 at a level of 0.05 was
assessed as well. The trends and the stability were estimated
for the same cases as in the homogeneity analysis (Sect. 5.3;
monthly totals inside 50° N/S separately for ocean and land
and the 99.9th percentile inside 30° N/S). Results are shown
in Table 6.

In general, an increase in precipitation with an increase in
surface temperature is expected, which – in a warming cli-
mate – would manifest as a positive trend over time. In par-
ticular, over the ocean, such an increase is to be expected, as
the supply of water vapour via evaporation feeding precip-
itation is not limited. Over land, such an increase might be
subdued, as the supply of water vapour through evapotran-
spiration and advection is limited (e.g. Roca, 2019a). In our
analysis, trends are not significant in the majority of cases.
In particular, GIRAFE v1 exhibits no significant trend in the
considered settings. However, the considered period is rela-
tively short, and, even on these spatially aggregated scales,
quite a significant level of variability exists. Both factors im-
pact the significance of trend estimations.

The stability estimates in Table 6 (right block) are all
given between GIRAFE v1 and the various listed datasets.
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Table 6. Trends (i.e. in time series of absolute values in single datasets) in the various datasets (left block) and stabilities of GIRAFE v1
against the respective reference dataset (i.e. trends in time series of differences; right block) and their uncertainty in mmd−1 decade−1 in the
2002–2020 period. Asterisks (*) indicate significant trends/stabilities.

Trends Stability

±50° N/S ocean ±50° N/S land ±30° N/S ±50° N/S ocean ±50° N/S land ±30° N/S
monthly total monthly total 99.9th percentile monthly total monthly total 99.9th percentile

GIRAFE v1 0.032± 0.032 −0.002± 0.025 −0.89± 1.21 – – –
GPCP v3.2 −0.016± 0.018 0.014± 0.020 −6.96± 1.14* 0.048± 0.022*

−0.017± 0.016 6.07± 0.76*

ERA5 −0.009± 0.010 0.056± 0.023* 6.09± 1.02* 0.041± 0.028 −0.058± 0.017*
−6.98± 0.86*

GPCC v2022 – −0.011± 0.025 – – −0.012± 0.023 –
CMORPH v1 CRT −0.009± 0.015 −0.080± 0.024*

−1.78± 1.11* 0.041± 0.021 −0.082± 0.016* 0.89± 1.01
IMERG v7 FU 0.044± 0.019* 0.062± 0.023* 0.35± 0.94 −0.011± 0.024 −0.064± 0.016*

−1.24± 0.66

GIRAFE v1 is stable with respect to a given dataset if
the respective stability value does not deviate significantly
from 0 mmd−1 decade−1. In general, the stability estimates
do not exhibit a unique pattern in terms of significance.
GIRAFE v1 exhibits negative stabilities over land rela-
tive to all other considered datasets. However, the smallest
and also non-significant stability occurs relative to GPCC
(−0.012mmd−1 decade−1). Over ocean, where, in general,
a positive trend is expected (see above), GIRAFE v1 shows
a non-significant positive trend in contrast to the non-
significant negative trend of GPCP v3.2 (left block in Ta-
ble 6). This discrepancy in the trends explains the signifi-
cantly non-zero stability estimate (0.048 mmd−1 decade−1)
between the two.

The largest and second largest stability values of GIRAFE
v1 for extremes (99.9th percentile, ±30° N/S columns in Ta-
ble 6) are observed relative to ERA5 and GPCP v3.2, respec-
tively, with opposite signs. We note that GIRAFE v1 does not
show confirmed breakpoints (Sect. 5.3) and generally shows
a non-significant and smaller trend in the 99.9th percentile
(left block in Table 6). The opposite signs in stability of GI-
RAFE v1 against these two datasets is thereby caused by
the decreasing trend in GPCP v3.2 and an increasing trend
in ERA5 in extremes, as evident in Table 6 (left block) and
Fig. 10e and f. Again, we can argue with expectations, i.e.
with increasing surface temperatures, the extremes in precip-
itation are expected to increase and not decrease (see also
Sect. 5.5). However, the results are based on land and ocean
observations, with land potentially undergoing an unknown
moisture supply. When looking closer at Fig. 10e and f, ex-
tremes in GPCP v3.2 and ERA5 agree well after 2014, but
in the early part of the period, both exhibit maximum differ-
ence. This approximately coincides with the end of the TR-
MM/TMI data in 2014/2015. Given that both datasets exhibit
the largest negative and positive trends, this can be an indi-
cation that both are affected by stability issues. At the same
time, CMORPH v1 CRT, ERA5, and IMERG v7 FU might
also be affected by breakpoints relative to GPCP v3.2 and
3B42 v7 (Fig. 10e, f and Appendix C), possibly also caused

by the removal of TRMM/TMI in these reference datasets.
Sound conclusions regarding a potential stability issue in
GPCP v3.2 and ERA5 are not possible, and further analy-
sis is needed. A potential way forward can be to follow the
approaches outlined in Nguyen et al. (2024), replacing the
use of data from neighbouring stations in this study with that
of multiple datasets.

We conclude here that GIRAFE v1 has stability well
within the range of available, widely used precipitation
datasets, both in terms of the monthly total (i.e. mean) and
extreme precipitation.

5.5 Scaling of daily precipitation extremes with surface
temperature

5.5.1 Qualitative analysis

Daily extreme precipitation is conventionally defined with
the high percentile of the daily wet-days precipitation dis-
tribution (Schär et al., 2016). Figure 11 shows the map of the
climatology of the annual 99.9th percentile based on the GI-
RAFE v1 data and allows for a discussion of the representa-
tion of extreme precipitation in GIRAFE v1 in the following.
It is very similar to Rx1d maps (Bador et al., 2020; Alexan-
der et al., 2020), although magnitudes vary across extreme
indicators Rx1d and the 99.9th percentile as well as across
datasets. As expected, it further resembles the climatology of
large and organised convective systems (Roca and Fiolleau,
2020), with well characterised maxima in the North Amer-
ica Great Plains and in South America over Argentina. Oro-
graphic features can also be easily spotted. Over ocean, the
map recalls the link between intense extremes and hurricanes
as exemplified by the local maximum in the Philippines Sea,
Bay of Bengal, and Eastern Pacific. The boundary for the
inclusion or exclusion of infrared observations from geosta-
tionary satellites at 55° S shows in the Southern Ocean; see
also Fig. 8 and the related discussions in Sect. 5.2. Regions
poleward of 55° N/S, where the absence of geostationary IR
observations and the deficiencies of the PMW-derived pre-
cipitation rate estimates (cf. Sect. 5.1.2) prevent a correct es-

https://doi.org/10.5194/essd-17-4097-2025 Earth Syst. Sci. Data, 17, 4097–4124, 2025



4114 H. Konrad et al.: GIRAFE v1: a global climate data record for precipitation

Figure 11. Map of the 2002–2020 multi-year mean of the annual
99.9th percentile of GIRAFE v1 daily precipitation (mmd−1).

timation of the extremes, are likely not well represented in
GIRAFE v1, particularly in the Southern Hemisphere. Be-
yond this well-identified problem, the overall consistency of
this diagnostic gives confidence in the ability of GIRAFE v1
to characterise the geographical distribution of extreme pre-
cipitation.

5.5.2 Quantitative analysis

Over the tropical ocean, precipitation is tightly linked to low-
level moisture. In the case of extreme precipitation, it is pos-
sible to further quantify this sensitivity by using SST as a
proxy for moisture and simple scaling arguments (Muller
and Takayabu, 2020). Based on these theoretical consider-
ations, an increase in the extreme is expected with SST at a
rate of ∼ 6%− 7%K−1 following the Clausius–Clapeyron
equation. De Meyer and Roca (2021) used the OSTIA SST
(Good et al., 2020) and a data pooling technique to esti-
mate this scaling from the observed record. This method
has been replicated here. For each SST bin of 0.5 K, all the
corresponding wet-days (Pacc = 1mmd−1) precipitation are
pooled together. Note that the SST values are lagged by 48 h
to remove the cooling effect of the precipitation onto the
SST (De Meyer and Roca, 2021). A 5-year period of ran-
domly selected individual, i.e. not necessarily consecutive,
years within the 2007–2020 period is used for the data pool-
ing, and the 99.9th percentile is estimated from this distribu-
tion. Furthermore, a bootstrap of 50 members is constructed
using this method. The mean and standard deviation of the
50-member ensemble 99.9th percentile are finally computed.

Figure 12 shows the resulting sensitivity of the 99.9th per-
centile to the SST for GIRAFE v1 and other products used
above for comparison. Between 300.25 and 302.25 K, where
60 %–80 % of the data points fall, all the products exhibit a
linear regime, in agreement with previous studies (De Meyer

Figure 12. The 99.9th percentile of the daily distribution as a func-
tion of the 48 h-lagged underlying SST for several products, includ-
ing GIRAFE v1. The lines correspond to the 50-member ensemble
mean, and the shading represents the standard deviation. The verti-
cal lines delineate the central section of the distributions, represent-
ing the majority of the data (see main text).

and Roca, 2021). Over this “Clausius–Clapeyron” regime,
extreme precipitation ranges from 120 to 170 mmd−1, high-
lighting the difference in magnitude among the products,
which is smaller than that of a previous assessment based on
older products (Roca et al., 2021). GIRAFE v1 stands in the
middle, with the CMORPH v1 product being systematically
lower and the GPCP v3.2 and IMERG v7 products being
larger. As far as the scaling (the slope of the linear regime) is
concerned, the products show better agreement than for the
ensemble mean estimate of the 99.9th percentile. The scal-
ing is 5.57± 0.91%K−1 for GPCP v3.2, 5.77± 0.93%K−1

for GIRAFE v1, 6.38± 0.72%K−1 for CMORPH v1, and
7.44± 0.96%K−1 for IMERG v7, in good agreement with
the Clausius–Clapeyron rate. The small variance of the esti-
mate when bootstrapped over the 14-year period (< 1%K−1)
indicates a weak sensitivity to the selection of years, which in
turn implies a weak sensitivity to the configuration of the mi-
crowave constellation used in these products, in agreement
with data-denial experiments (Jucá Oliveira et al., 2022).
A discussion of the overall divergence of the datasets at
SST< 301K, in which GIRAFE v1 appears exceptional, can
be found in De Meyer and Roca (2021).

These diagnostics of extreme precipitation consolidate the
compliancy of GIRAFE v1 with climate science and moni-
toring objectives.
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5.6 Plausibility of the sampling uncertainty

In this section, the plausibility and usability of the GIRAFE
v1 sampling uncertainty is discussed in terms of (i) its agree-
ment with reference datasets within the given uncertain-
ties (“consistency”) and (ii) its overall distribution and gen-
eral asymptotic behaviour. The consistency with reference
datasets has been briefly covered in the validation against
AMMA-CATCH and EURADCLIM (Sect. 5.1). In general,
the FEBO of GIRAFE v1 and hence the consistency is larger
than that of other 1DD datasets, as these do not feature 1DD
uncertainty estimates; hence, they can only agree with the
reference datasets within the uncertainties of the latter and
not the mutual uncertainty as in the case of GIRAFE v1. Fig-
ure 13 shows the positive correlation of the GIRAFE v1 sam-
pling uncertainty and the absolute difference in collocated
GIRAFE v1 and EURADCLIM 1DD (Sect. 5.1.2). The sam-
pling uncertainty can hence, in principle, be used as a proxy
for the mismatch of GIRAFE v1 from ground-based refer-
ence observations. However, the relatively low overall level
of the GIRAFE v1 FEBO (60 % against AMMA-CATCH
and EURADCLIM in summer months; see Sect. 5.1) and
the prevalence of GIRAFE v1/EURADCLIM differences ex-
ceeding the GIRAFE v1 uncertainty (tilt towards the x axis
in Fig. 13) indicate that the sampling uncertainty represents
less than one sigma on average, i.e. underestimates the full
GIRAFE uncertainty. However, systematic shifts in the de-
tection of precipitation and related biases exist in the com-
parisons against both AMMA-CATCH and EURADCLIM
(high FAR coinciding with positive bias against AMMA-
CATCH (Sect. 5.1.1) and low POD coinciding with negative
bias against EURADCLIM (Sect. 5.1.2)). The underlying re-
trieval uncertainties cannot be covered by the GIRAFE v1
sampling uncertainty and explain at least parts of its above-
mentioned shortcomings.

The overall distribution and asymptotic behaviour of
the GIRAFE v1 sampling uncertainties are verified against
TAPEER v1.5 sampling uncertainties. The GIRAFE v1 un-
certainties are modelled after those of TAPEER, but the un-
derlying PMW databases differ between GIRAFE v1 and
TAPEER v1.5, so the values should not be expected to
be identical. Figure 14 shows the occurrence of 1DD data
points along the dimensions of the relative uncertainties in
GIRAFE v1 and TAPEER and of daily precipitation. GI-
RAFE v1 shares the asymptotic behaviour of TAPEER v1.5
for high 1DD precipitation values. In general, GIRAFE v1
has narrower distributions along the precipitation dimension
(x axis), especially over ocean. This likely stems from a gen-
eral tendency of GIRAFE v1 towards fewer occurrences of
high precipitation in GIRAFE v1, as documented by Konrad
et al. (2024). With TAPEER sampling uncertainties exten-
sively studied and validated against ground-based datasets
(Chambon et al., 2013; Gosset et al., 2018), the overall agree-
ment of GIRAFE v1 with TAPEER v1.5 underlines the plau-
sibility of the GIRAFE v1 sampling uncertainties.

Figure 13. Two-dimensional distribution (colour-coded) of abso-
lute deviations between collocated 1DD GIRAFE v1 and EURAD-
CLIM data (x axis) and the magnitude of the GIRAFE v1 sampling
uncertainty (y axis). Here, the data in 1DD grid cells identified as
snow-covered (Sects. 4.6 and 5.1.2) and with GIRAFE v1 daily pre-
cipitation of less than 1 mm have been discarded, i.e. the effect of
missed precipitation in GIRAFE v1 (Sect. 5.1.2) is suppressed here.
The red line shows the linear least-squares fit to the collocated data
points that underlie the distribution, indicating a positive correla-
tion.

6 Data availability

The data record DOI for GIRAFE v1 is
https://doi.org/10.5676/EUM_SAF_CM/GIRAFE/V001
(Niedorf et al., 2024a). Data and associated documentation
(scientific references, algorithm theoretical basis documents,
validation reports, and user manuals) are available at the
above dataset URL.

All intellectual property rights of the CM SAF GIRAFE v1
products belong to EUMETSAT. The use of these products is
granted to every interested user, free of charge. If you wish to
use these products, EUMETSAT’s copyright credit must be
shown by displaying the words “copyright (year) EUMET-
SAT” on each of the products used.

As explained in Sect. 4.3, unofficial variants of the GI-
RAFE v1 datasets with different start times for 1 d (06:00,
12:00, 18:00 UTC) exist and can be acquired through the
CM SAF user help desk. Likewise, CM SAF retains the
decorrelation scales (Sect. 4.4) as unofficial output for in-
terested expert users.

Feedback on GIRAFE v1 is appreciated by the authors and
can be submitted via the CM SAF user help desk.

PMW imager observations are used as input to the
HOAPS retrieval (Sect. 3.2.1). For instruments SSM/I
and SSMIS, the CM SAF SSMI(S) FCDR is available at
https://doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V004
(Fennig et al., 2022). Level-1 observations by TMI, AMSR-
E and GMI are downloaded from https://disc.gsfc.nasa.
gov/datacollection/TRMM_1B11_7.html (TRMM, 2011),
https://doi.org/10.5067/GPM/AMSRE/AQUA/1/07 (Berg,
2021), and https://doi.org/10.5067/GPM/GMI/GPM/1B/07
(GPM Science Team, 2022) and intercalibrated with and
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Figure 14. Two-dimensional histograms of the 1DD relative sampling uncertainties and the 1DD precipitation in GIRAFE v1 (a, b) and
TAPEER v1.5 (c, d) from all 1DD grid cells in 2012–2021 inside 30° N/S (TAPEER v1.5 coverage), for which the decorrelation scales were
not replaced by default values in GIRAFE v1 (see Sect. 4.4), separately for land (a, c) and ocean (b, d).

intercalibrated with the SSMI(S) FCDR as described by
Fennig (2022).

PMW sounder observations are used as input to the
PNPR-CLIM and PRPS retrievals (Sects. 3.2.2 and 3.2.1).
Observations by the instruments AMSU-B and MHS from
2002–2017 are available from the FIDUCEO archive
at https://doi.org.10.5285/a8e9f44965434f3b861eba
77688701ef (Hans et al., 2020). MHS Level-1
data from 2018 onwards are downloaded from
the NASA PPS archive at the following sources:
https://doi.org/10.5067/GPM/MHS/METOPA/1C/07 (Berg,
2022a), https://doi.org/10.5067/GPM/MHS/METOPB/1C/07
(Berg, 2022b), https://doi.org.10.5067/GPM/MHS/
METOPC/1C/07 (Berg, 2022c),
https://doi.org.10.5067/GPM/MHS/ NOAA18/1C/07
(Berg, 2022d), and https://doi.org.10.5067/GPM/MHS/
NOAA19/1C/07 (Berg, 2022e). ATMS Level-1 data
are downloaded from the NASA PPS archive at
https://doi.org/10.5067/GPM/ATMS/NOAA20/1C/07 (Berg,
2022f) and https://doi.org/10.5067/GPM/ATMS/NPP/1C/07
(Berg, 2022g). The precipitation rates obtained from
SAPHIR observations by the PRPS retrieval are available
at https://doi.org/10.5067/GPM/SAPHIR/MT1/PRPS/2A/06
(Kidd, 2019).

ERA5 data as ancillary input to PNPR-CLIM (Sect. 3.2.2)
and for constructing the SIF (Sect. 4.6) are available
at https://doi.org/10.24381/cds.f17050d7 (Hersbach et al.,

2023). Sea-ice, lake-ice, and SST information from the OS-
TIA product is available at https://doi.org/10.48670/moi-
00168 (Marine Data Store, 2025).

MEI v2 data used in the construction of the quantile map-
ping (Sect. 4.2) have been downloaded from https://psl.noaa.
gov/enso/mei/ (NOAA, 2025).

The precipitation datasets used for the quality assessment
in Sect. 5 are taken from https://doi.org/10.14768/06337394-
73A9-407C-9997-0E380DAC5598 (Roca et al., 2019b).
Exceptions are EURADCLIM (accessible through
https://doi.org/10.21944/1a54-gg96, Overeem et al., 2022)
and AMMA-CATCH (Lebel et al., 2009).

7 Conclusions

GIRAFE v1 is a new satellite-based CDR for precipitation,
available globally on 1DD and 1DM regular grids from 2002
to 2022. The implementation and generation were carried out
by CM SAF in response to the outcome of a dedicated work-
shop series. The methods for merging PMW and IR observa-
tions as presented in Sect. 4.3 are based on TAPEER (Cham-
bon et al., 2013). The derivation of precipitation rate esti-
mates from PMW observations (Sect. 3.2) is based on vari-
ous previous works (Andersson et al., 2010; Bagaglini et al.,
2021; Kidd et al., 2021).

In terms of product content, GIRAFE v1 stands out with
a dedicated and plausible sampling uncertainty, allowing a
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more robust quantitative analysis of precipitation at 1DD
scale. In terms of quality, GIRAFE v1 is able to reproduce
reference datasets similar to previously existing products, es-
pecially to those that are like GIRAFE v1 not adjusted to
ground-based data (Sects. 5.1 and 5.2). Among the (quasi-
)global products, GIRAFE v1 stands out in terms of homo-
geneity (Sect. 5.3) and stability (Sect. 5.4), at least partially
in response to the dedicated post-processing of PMW-based
precipitation rate estimates (Sect. 4.2). GIRAFE v1’s useful-
ness for analysing extreme precipitation has been shown in
Sect. 5.5. Overall, these analyses underline the compliancy
of GIRAFE v1 with requirements for usage in climate moni-
toring and climate sciences.

The primary uses of GIRAFE v1 include climate moni-
toring, climate analysis and services, water cycle research,
and climate model evaluation. It is valuable to a wide range
of users, including hydrometeorological services, research
institutions, universities, civil and environmental protection
agencies, insurance and reinsurance companies, United Na-
tions agencies, water management authorities, agriculture
and food production ministries, and transportation compa-
nies and authorities. These needs align with the WMO
Global Framework for Climate Services (GFCS) priority ar-
eas, which include agriculture and food security, disaster risk
reduction, health, and water availability.

The most apparent limitation of GIRAFE v1 is the low
POD of precipitation in mid-to-high latitudes in the presence
of surface snow or ice, inherited from the PMW-based pre-
cipitation estimates (Sects. 5.1 and 5.2). Interpretations of
GIRAFE v1 data in these situations should be carried out
carefully. A respective quality flag allows users to identify
potentially affected grid cells. Another limitation is the high
fraction of false precipitation during the rainy season in West
Africa (Sect. 5.1).

The number of available 1DD grid cells varies over time,
due to the constellation of PMW sensors in orbit, with more
gaps occurring at the start of the GIRAFE v1 time series. The
stability of the dataset is affected only to a small degree by
the lower amount of PMW-based observations (see Sects. 5.3
and 5.4 and the results by Jucá Oliveira et al., 2022).

CM SAF provides a framework for the continuous devel-
opment and operation of CDRs. Hence, the GIRAFE efforts
will continue, with an interim CDR (ICDR) that continues
the GIRAFE v1 time series from 2023 onwards. CM SAF
aims to operationally produce the GIRAFE v1 ICDR in 2025.
Subsequently, efforts will be dedicated to developments to-
wards an improved new version. The latter will address the
above-mentioned limitations of GIRAFE v1, the enhance-
ment of uncertainty estimation in addition to the infrared-
based sampling uncertainty, a redefinition of the areas in
which GIRAFE works in different ways (currently inside and
outside 55° N/S; see Sect. 4.3) and their associated settings
(thresholds, extent of local environments), and – using data
from qualified sensors – the extension forward and backward
in time. Wherever possible, the prioritisation of improve-

ments will be carried out in close coordination with users
during regular workshops. Interested readers are invited to
contact CM SAF.

Appendix A: Effect of quantile mapping

Here, we show the positive effect of the quantile mapping
procedure described in Sect. 4.2 on the final GIRAFE out-
put, exemplarily in the case of the precipitation rate estimates
by Megha-Tropiques SAPHIR PRPS (MT from here). The
original MT distribution sees more rates below 0.5 mmh−1

than the distribution of the target satellite METOP-A MHS
PNPR-CLIM (Fig. A1a; blue vs. black line). The unadjusted
MT observations in the PMW input stream introduce a strong
negative bias output compared to GIRAFE output without
MT observations ingested (Fig. A1b) because the lower ratio
of MT observations exceeding the GIRAFE detection thresh-
old of 0.5 mmh−1 implies fewer precipitation events are de-
tected in the IR observations (Sect. 4.3.1). MT observations
are available only from 2012 to 2020, so this situation leads
to a temporal instability (discontinuity) when MT enters and
leaves the constellation. Quantile mapping brings the MT
distribution very close to the target (Fig. A1a; red vs. black
line) from rates of about 0.3 mmh−1, i.e. the distributions are
aligned at the detection threshold of 0.5 mmh−1. The inclu-
sion of the mapped MT data in GIRAFE causes much smaller
deviations from the variant not using MT data than without
quantile mapping (Fig. A1c), and the structural negative bias
introduced by MT is mostly remedied. Differences remain
that might be linked to deviations in the diurnal sampling be-
tween MT and the target satellite or non-representativity of
the distributions towards the boundaries of the latitude/lon-
gitude bands.
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Figure A1. (a) Exemplary cumulative distributions for METOP-A MHS PNPR-CLIM (“target”; black) and Megha-Tropiques SAPHIR
PRPS (MT from here; “source”; blue) from instantaneous observations in June at latitudes inside 4° N/S over South American land. The
MT distribution after quantile mapping has been applied (“mapped”; red) is also shown. (b) Differences in GIRAFE daily accumulated
precipitation with and without MT instantaneous data averaged over June 2014. Here, quantile mapping has not been applied. (c) Same as
(b) but with quantile mapping applied. The lines delineate the latitude/longitude bands in which the cumulative distributions are collected.
Note that the results in (b) and (c) depend not only on the data forming the distributions shown in (a) but also on those in the other
latitude/longitude bands, depending on the location.

Appendix B: Data availability for the comparison
against EURADCLIM

Figure B1 illustrates the mutual availability of the datasets
in the comparison against EURADCLIM discussed in
Sect. 5.1.2. The comparison of CMORPH v1 RAW against
EURADCLIM is based on fewer grid cells because this
dataset ends in 2017. The comparison against GIRAFE v1
during summer months and when filtering out SIF-flagged
1DD grid cells is also based on fewer grid cells due to this
filtering. Zero availability, as illustrated by the grey areas in
Fig. B1, is mostly caused by the geographical restrictions
in the EURADCLIM dataset, except at the 60° N boundary,
where some of the quasi-global datasets are limited.

Figure B1. Number of days during the 2013–2020 period for
which 1DD grid cells are available over Europe in the comparison
of 1DD datasets against the ground-based radar dataset EURAD-
CLIM. Grey indicates zero availability.
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Appendix C: List of breakpoints in the various
datasets

Table C1 lists the breakpoints discussed in Sects. 5.3 and 5.4
for the respective settings and reference datasets. Note that
some breakpoints occur in times preceding the GIRAFE v1
CDR (2002).

Table C1. Breakpoints at monthly resolution detected by the PMF test, as shown by the vertical lines in Fig. 10 and discussed in Sects. 5.3
and 5.4. NA: not available because dataset is a respective reference dataset. Asterisks (*) indicate breakpoints that are confirmed by the SNH
test (bold vertical lines in Fig. 10).

Dataset Reference dataset 1
(RD1)

Time of breakpoint
w.r.t. RD1

Reference dataset 2
(RD2)

Time of breakpoint
w.r.t. RD2

Monthly totals within 50° N/S over ocean

GIRAFE v1 GPCP v3.2 None 3B42 v7 None

3B42 v7 GPCP v3.2 September 2005
December 2007
August 2010*

3B42 v7 NA

CMORPH v1 CRT GPCP v3.2 October 2007
October 2009

3B42 v7 July 2007*

September 2010*

ERA5 GPCP v3.2 None 3B42 v7 August 2004
December 2007*

September 2010*

GPCP v3.2 GPCP v3.2 NA 3B42 v7 September 2005
December 2007
August 2010*

IMERG v7 FC GPCP v3.2 None 3B42 v7 None

Monthly totals within 50° N/S over land

GIRAFE v1 CMORPH v1 CRT October 2020 GPCC FDD v2022 October 2002
December 2008*

June 2010
April 2018

3B42 v7 CMORPH v1 CRT July 2003
May 2004*

August 2006
October 2008*

September 2014*

GPCC FDD v2022 December 1998
October 2008*

February 2010
November 2013*

CMORPH v1 CRT CMORPH v1 CRT NA GPCC FDD v2022 October 2008*

ERA5 CMORPH v1 CRT None GPCC FDD v2022 December 1998*

October 2008*

May 2010
February 2020

GPCP v3.2 CMORPH v1 CRT October 2007*

January 2020
GPCC FDD v2022 October 2008*

June 2010*

December 2019

IMERG v7 FC CMORPH v1 CRT None GPCC FDD v2022 None

GPCC FDD v2022 CMORPH v1 CRT October 2008* GPCC FDD v2022 NA

99.9th percentile within 30° N/S over land and ocean

GIRAFE v1 GPCP v3.2 None 3B42 v7 None

3B42 v7 GPCP v3.2 None 3B42 v7 NA

CMORPH v1 CRT GPCP v3.2 May 2014* 3B42 v7 March 2000*

September 2014*

ERA5 GPCP v3.2 March 2014* 3B42 v7 September 2014*

GPCP v3.2 GPCP v3.2 NA 3B42 v7 None

IMERG v7 FC GPCP v3.2 July 2002
October 2018

3B42 v7 February 2009*

September 2014*
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