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Abstract. The continuous development of remote sensing techniques provides ample opportunities for high-
resolution land-cover mapping. Although global 10 m land-cover products have made considerable progress over
past few years, their simple classification system makes it difficult to meet the needs of diverse applications. In
this work, we propose a hierarchical land-cover mapping framework to produce a novel global 10 m land-cover
dataset with a fine classification system (called GLC_FCS10) using Sentinel-1 and Sentinel-2 time-series obser-
vations in 2023. First, the globally distributed training samples are hierarchically obtained from multisource prior
products after applying a series of refinements. Then, a combination of hierarchical land-cover mapping, local
adaptive modeling, and multisource features is used to produce land-cover maps for each 5 x 5 geographical tile.
Next, using 56 121 globally distributed validation samples and a third-party validation dataset (LCMAP_Val),
the GLC_FCSI10 is assessed. The GLC_FCS10 achieves an overall accuracy of 83.16 % and a « coefficient
of 0.789 globally and an overall accuracy of 85.09 % in the United States. Meanwhile, comparisons with five
released 10 or 30 m land-cover products also demonstrate that GLC_FCS10 has higher accuracy and captures
more diverse land-cover information than three of the released global 10 m land-cover products. In summary, the
novel GLC_FCS10 land-cover maps can provide important support for high-resolution land-cover-related re-
search and applications. The GLC_FCS10 can be freely accessed via https://doi.org/10.5281/zenodo.14729665
(Liu and Zhang, 2025).
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1 Introduction

Land-cover information is a vital component of global cli-
mate change research and plays an important role in cli-
mate change mitigation, biodiversity protection, and global
food security (Foley et al., 2005; Liu et al., 2021). With ad-
vancements in satellite techniques and computational and
storage capabilities, global land-cover mapping has made
substantial progress. A series of global land-cover products,
ranging from 1km to 10m resolutions, has been continu-
ously released (Giri et al., 2013; Liu et al., 2021). Recently,
Wang et al. (2023) reviewed the characteristics of global
land-cover products and found that land-cover mapping has
evolved from coarse to high spatial resolution. Currently,
four global 10 m land-cover products are available, including
FROM_GLC10 (Gong et al., 2019), ESRI LC (Karra et al.,
2021), European Space Agency (ESA) WorldCover (Buch-
horn et al., 2020), and Dynamic World (Brown et al., 2022).
However, all of these products use a simple classification sys-
tem, which limits their applicability for specific and fine ap-
plications (Zhang et al., 2021). Meanwhile, the work of Zhao
et al. (2023) explained that FROM_GLC10, ESRI LC, and
ESA WorldCover have relatively low consistency and accu-
racy. Thus, developing an accurate global 10 m land-cover
dataset with a fine classification system is still necessary.
The diversity of land-cover types depends on the train-
ing samples, and there are two options to generate a glob-
ally distributed training pool — visual interpretation and auto-
mated derivation from prior products (Zhang and Roy, 2017,
Zhang et al., 2021). Visual interpretation means that experts
or volunteers interpreted the land-cover information through
high-resolution imagery, Google Earth Streetview photos,
or other auxiliary datasets. For example, the training sam-
ples in FROM_GLC10 were derived from expert interpre-
tations and contained approximately 93 000 sites worldwide
(Gong et al., 2013), and the ESA WorldCover used 20 trained
experts to collect approximately 141000 training locations
from the Geo-Wiki engagement platform (Buchhorn et al.,
2020). Obviously, training sites from the “visual interpre-
tation” option can ensure high quality (Ban et al., 2015);
however, the problems of cost and time are not to be ig-
nored. The diversity of the land-cover classification system
also relies on the experts’ prior knowledge. The “automated
derivation from prior products” option generates the training
sites from prior land-cover datasets after taking some refine-
ments or validations (Radoux et al., 2014; Zhang et al., 2021,
2024c). For example, the training areas in the GLC_FCS30
were collected from a combination of time-series MCD43A4
surface reflectance data and CCI_LC land-cover products
after using some spatiotemporal purification methods, and
these automatically derived training samples supported high-
accuracy land-cover mapping with an overall accuracy of
82.5 % (Zhang et al., 2021). The automated option enables
more efficient collection of globally confident training sam-
ples; however, the classification errors of prior land-cover
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products were also easier to transfer into the derived train-
ing samples (Zhang and Roy, 2017). Therefore, it is critical
to avoid transferring error into the training samples.

Another great challenge in global land-cover mapping lies
in the choice of suitable methodologies. Currently, the vast
majority of global land-cover mapping ignores the complex-
ity and sparsity of various land-cover types and completes a
mapping project with a single classification model (Friedl et
al., 2010; Gong et al., 2013), which leads to considerable un-
certainties in sparse (e.g., impervious surfaces) or complex
(e.g., wetlands and shrubland) land-cover types (Karra et al.,
2021; Zhang et al., 2021; Zhao et al., 2023). Several mea-
sures were taken to improve the performance of large-area
land-cover mapping, such as local adaptive modeling (De-
fourny et al., 2018; Li et al., 2023; Zhang and Roy, 2017;
Zhang et al., 2021), hierarchical land-cover mapping (Chen
et al., 2015; Sulla-Menashe et al., 2019), or integration of
multisource datasets (Yu et al., 2014; Zhang et al., 2020).

Specifically, the local adaptive modeling first split study
area into many local areas and further trained correspond-
ing classification models within each local region to improve
the ability to capture regional characteristics. Zhang and
Roy (2017) found that local adaptive modeling had higher
accuracy than single global land-cover modeling; however, it
also needs enough training samples to support regional mod-
eling. Hierarchical land-cover mapping divides the land sur-
face into various land-cover layers, and some complicated
land-cover layers may need to be treated independently. Tak-
ing wetlands as an example, most global land-cover products
perform poorly on wetlands because of their varied spec-
tral characteristics and complicated spatiotemporal features
(Buchhorn et al., 2020; Gong et al., 2019; Zhang et al.,
2021). The GlobeLand30 achieved 74.87 % accuracy with
wetlands because this land-cover type was treated indepen-
dently (Chen et al., 2015). Hierarchical land-cover mapping
gives more attention to complicated land-cover types by im-
porting more prior knowledge (Chen et al., 2015) or adding
sufficient high-confidence training samples (Zhang et al.,
2023Db). Lastly, a lot of previous work has demonstrated the
integration of multisource datasets, such as optical imagery
(Landsat and Sentinel-2) and Sentinel-1 synthetic-aperture
radar (SAR) data, to improve the identification of impervious
surfaces (Zhang et al., 2020), wetlands (Zhang et al., 2023b),
forests (Tang et al., 2023), or croplands (Blickensdorfer et
al., 2022; Sun et al., 2024).

The free access to Sentinel imagery and to the powerful
cloud computation platform provides ample opportunity for
global land-cover mapping at 10 m. In this work, we devel-
oped an accurate and novel global 10 m land-cover prod-
uct (GLC_FCS10) containing 30 fine land-cover types from
Sentinel-1 and Sentinel-2 time-series imagery. To achieve
this goal, we propose the following: (1) to implement a hier-
archical land-cover mapping framework to decrease the un-
certainties of impervious surfaces and wetlands, (2) to com-
bine the prior multisource land-cover datasets and the metric
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centroid to automatically generate a globally distributed and
high-confidence 10 m training pool, (3) to integrate Sentinel-
2 optical and Sentinel-1 SAR time-series data for producing
the new GLC_FCS10 on the GEE platform, and (4) to com-
prehensively compare the developed GLC_FCS10 with sev-
eral previous products.

2 Datasets

2.1 Satellite imagery

All available Sentinel-2 surface reflectance imagery in 2023
was atmospherically corrected using the Sen2Cor tool, and
the corrected images were then stored on the GEE (Google
Earth Engine) platform. These imagery contains 12 spectral
bands from visible to shortwave infrared and has a revisiting
period of 5d (Berger et al., 2012; Radeloff et al., 2024). In
this work, the four 10 m visible and near-infrared bands and
six 20 m red edges and shortwave infrared bands were used,
while the two 60 m bands of aerosols and water vapor were
excluded to minimize atmospheric effects. The six 20 m re-
flectance imagery bands were resampled to 10 m using the
bilinear resampling method (Berger et al., 2012). Any poor-
quality pixels, including clouds and shadows, were masked
using the quality control band (QA60) and the cloud proba-
bility product.

Sentinel-1 has a dual-polarization (VV and VH) C-band
SAR instrument with a revisiting period of 6 d after launch-
ing of Sentinel-1B (Torres et al., 2012). In this work, all
Sentinel-1 imagery in 2023 was obtained through the GEE
platform, which has been preprocessed through radiomet-
ric calibration, thermal noise removal, and terrain correction,
and their resolution 5m x 20m was further resampled into
10m x 10 m using the Sentinel-1 Toolbox when the Sentinel-
1 images were archived on the GEE platform.

Some previous work has demonstrated that topographical
data can provide auxiliary and useful information in land-
cover mapping (Zhang et al., 2023b); currently, a global 10 m
digital elevation model (DEM) is not yet available. In this
work, we used the 30 m ASTER GDEM, which has a low
vertical error of 0.7 m (Tachikawa et al., 2011), to obtain
the elevation, slope, and aspect after bilinear resampling to
10m x 10m.

2.2 Prior land-cover products
2.2.1 Impervious surface products

Impervious surfaces are characterized by sparse spatial
distribution and complicated spectral and spatial hetero-
geneities; thus, impervious surface mapping should be
treated independently. Its training samples are generated
from five previous products: (1) the Global 30 m Impervi-
ous Surface Dynamic (GISD30) dataset, developed with the
combination of spectral generalization and sample migration
during 1985-2020 with the interval of 5 years, achieves a
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fulfilling accuracy of 90.1 % (Zhang et al., 2022). (2) The
Global Impervious Surface Area (GISA 2.0) dataset, pro-
duced by considering the inconsistency among four exist-
ing products, is an annual time-series of impervious surface
maps during 1985-2018 with an F; score of 0.935 (Huang
et al., 2022). (3) The 10 m impervious surface layer in ESA
WorldCover dataset was generated by the supervision classi-
fication from Sentinel-1 and Sentinel-2 time-series imagery
(Zanaga et al., 2021). It was demonstrated to achieve the
great performance on impervious surfaces with a producer’s
accuracy of 82.99 % (Zhao et al., 2023). (4) The impervi-
ous surface layer in ESRI Land Cover is developed from
Sentinel-2 time-series imagery and deep learning (Karra et
al., 2021), and it achieves a high producer’s accuracy of
88.42 % (Zhao et al., 2023). (5) The global urban boundary
(GUB) dataset is generated by a combination of a cellular au-
tomata algorithm and a morphological approach and shows
a good agreement with the results from human interpretation
(Li et al., 2020).

2.2.2 Wetland products

Because almost all global land-cover products have large un-
certainties in wetland identification (Zhang et al., 2023b),
wetlands should also be treated as an independent land-
cover type. The wetland training samples were also de-
rived from three existing wetland thematic products: (1) the
GWL_FCS30D is an annual global wetland product con-
taining eight wetland subcategories (five inland and three
coastal wetland subcategories) and achieves an overall accu-
racy of 86.95 4 0.44 % (Zhang et al., 2024b). (2) The NWI
(National Wetland Inventory) is a national wetland thematic
product covering the whole United States and containing
eight wetland subcategories (Wilen and Bates, 1995). (3) The
GMW (Global Mangrove Watch) and GSM10 (global tidal
marsh dataset) provide the spatial patterns of mangroves and
salt marshes with an overall accuracy of 87.4 % and 85 %
(Bunting et al., 2022; Worthington et al., 2024), and the
GTF30 (Global tidal flat products), generated by the combi-
nation of a new low-tide spectral index and multisource clas-
sification method, achieved the overall accuracy of 90.34 %
and covered the period 2000-2022 (Zhang et al., 2023a).

2.2.3 GLC_FCS30D land-cover dynamic products

Except for wetlands and impervious surfaces, training sam-
ples for the remaining non-wetland natural land-cover types
are generated from the GLC_FCS30D dataset. It was devel-
oped from the combination of a continuous change detec-
tion algorithm with an adaptive updating strategy and had
80.88 % (£0.27 %) accuracy covering the period of 1985-
2022 with 35 fine land-cover subcategories. The dataset has
high temporal stability in the European Union and the United
States (Zhang et al., 2024c). In this work, we leverage this
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Table 1. The characteristics of prior land-cover products.

X. Zhang et al.: GLC_FCS10

Category Dataset name Resolution  Year Coverage Reference

Impervious surface ~ GISD30 30 1985-2020 Global Zhang et al. (2022)
GISA 2.0 30  1985-2019  Global Huang et al. (2022)
Imp-ESA_LC 10 2021 Global Zanaga et al. (2021)
Imp-ESRI_LC 10 2023 Global Karra et al. (2021)
GUB - 2020 Global Li et al. (2020)

Wetland GWL_FCS30D 30 2000-2022  Global Zhang et al. (2024b)
National Wetland Inventory 30 2019 United States ~ Wilen and Bates (1995)
Global Mangrove Watch 30 1996-2020 Global Bunting et al. (2022)
Global tidal flat products 30  2000-2022  Global Zhang et al. (2023a)
Global tidal marsh dataset 10 2020 Global Worthington et al. (2024)

Land cover GLC_FCS30D 30 1985-2022  Global Zhang et al. (2024c)
Global oil palm dataset 30 1990-2021  Global Descals et al. (2024)
Global plantation map 30 1982-2020 Global Du et al. (2022)

dynamic product to generate confident training samples for
non-wetland natural land covers, as described in the Sect. 3.1.

2.2.4 Tree-cover cropland datasets

It is noteworthy that the tree-cover cropland was only
mapped in certain regions rather than globally in the
GLC_FCS30D (Zhang et al., 2021; Zhang et al., 2024c);
thus, global oil palm and plantation datasets are also used to
identify tree-cover cropland. The global oil palm dataset is a
time series covering 1990-2020 and exceeds 91 % accuracy
for industrial plantations and 71 % accuracy for smallholders
(Descals et al., 2024). A global plantation map was generated
by combining some prior global plantation products and the
LandTrendr method and has an F; score of 86.83 % with a
tolerance of +5 years (Du et al., 2022).

3 Methodology

To achieve high quality with detailed categorizations in
global 10 m land-cover mapping, a hierarchical land-cover
mapping methodology has been proposed. It leverages mul-
tisource prior land-cover products and time-series satellite
observations and gives more attention to impervious surfaces
and wetlands by importing more prior knowledge and adding
sufficient high-confidence training samples. Notably, the rea-
sons why we separated impervious surfaces and wetlands
from other land-cover types include the following: (1) im-
pervious surfaces are structurally different from natural land
covers (Huang et al., 2022; Zhang et al., 2022); (2) wet-
lands are a highly zonal land-cover type (concentrating in
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low-lying areas) with extremely complex spectra and hetero-
geneities due to changes in phenology and water levels (Mao
etal., 2020; Zhang et al., 2023b); and (3) some previous stud-
ies emphasized that taking additional measures (e.g., import-
ing more prior knowledge, thematic mapping strategy, and
so on) was an effective means of improving the accuracy of
wetlands and impervious surfaces (Gong et al., 2020; Zhang
et al., 2023b). Figure 1 presents a flowchart of the proposed
method, which involves four procedures: generating hierar-
chical and globally distributed training samples from prior
products, compositing multisource and multitemporal train-
ing features from time-series Sentinel 1 and 2 imagery, hier-
archical land-cover mapping using local adaptive classifica-
tions, and accuracy assessment and cross-comparisons.

3.1 The description of the classification system

In this work, we develop a novel global 10m land-cover
dataset with a fine classification system (FCS). Table 2
presents the main characteristics of this FCS and its cor-
respondence with the basic classification system. It con-
tains 30 fine land-cover types and emphasizes the forest-
and wetland-related subcategories, which are further subdi-
vided into 10 and 7 subcategories, respectively. The diver-
sity of this fine classification system results from importing
the GWL_FCS30D (Zhang et al., 2024b) and GLC_FCS30D
(Zhang et al., 2024c) products. It should be noted that the
detailed descriptions about each fine land-cover type can be
found in Table S1 in the Supplement.
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GLC_FCS10: a novel global 10m land-cover map with fine classification system in 2023

Figure 1. The flowchart of the proposed method for hierarchical land-cover mapping.

3.2 Generating hierarchical training samples

To ensure quality in global 10 m land-cover mapping, land
surfaces are hierarchically divided into impervious surface,
wetland, and non-wetland natural land-cover types. Their
corresponding training samples also need to be generated in-
dependently. Because training sample quality greatly affects
land-cover mapping performance (Foody and Arora, 2010;
Zhang and Roy, 2017), generating confident and globally dis-
tributed training samples is a prerequisite for generating the
GLC_FCS10.

3.2.1 Training areas of impervious surfaces

Regarding the training samples of impervious surfaces, we
combine four prior global 10m or 30m impervious sur-
face products (GISA 2.0, GISD30, Imp-ESA_LC, and Imp-
ESRI_LC) and one urban boundary dataset (GUB) to au-
tomatically generate the training samples. Specifically, be-
cause the previous studies have demonstrated high accu-
racies of three impervious surface products (Huang et al.,
2022; Zanaga et al., 2021; Zhang et al., 2022) and a high
producer’s accuracy of Imp-ESRI_LC (Zhao et al., 2023),
the areas marked as impervious surfaces by all four prod-
ucts (GISD30-2020, GISA2.0-2019, Imp-ESA_LC-2021,
and Imp-ESRI_LC-2023) are selected as candidate areas
for generating the training samples (TrainCanArea_imp) in
Eq. (1).
TrainCanAreajmp = GISD30 N GISA2.0
N (Imp-ESALC) N (Imp-ESRI_LC) €))
Afterward, we further consider the uneven distribution of
rural and urban impervious surfaces as well as their spec-
tral variability. If random sampling is used to obtain train-

ing samples from the TrainCanArea_imp, rural impervious
surfaces are underrepresented due to their sparse distribu-
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tion; thus, the GUB urban boundary dataset for 2020 is fur-
ther used to divide the TrainCanArea_imp into urban (Train-
CanArea_urban) and rural areas (TrainCanArea_rural).

Beyond the confident impervious surface areas, it is
equally important to identify high-quality natural land-cover
types (Zhang et al., 2024a). To avoid confusion between
natural land-cover types and impervious surfaces, the max-
imum impervious surface boundary (MaxBound_imp) is also
generated. The training samples for natural land-cover types
should be located outside of the MaxBound_imp; i.e., some
inner-city areas, easily misclassified or confused with imper-
vious surfaces, will be excluded because Imp-ESRI_LC ex-
hibits extensive patches of the impervious surface and lacks
spatial details (Wang et al., 2024; Xu et al., 2024b). To de-
termine MaxBound_imp, the union of the four products is
applied as

MaxBoundimp = GISD30 U GISA2.0 U (Imp-ESA ¢
U (Imp-ESRI_LC). )

3.2.2 Training areas of wetland

In this work, wetlands are divided into four inland subcate-
gories (swamp, marsh, river/lake flats, and saline) and three
coastal wetland subcategories (mangrove, salt marsh, and
tidal flats in Table 2). Because coastal wetlands have a more
pronounced zonation, the global coastal wetland mapping
has made great progress, while the work of global inland
wetland mapping is still sparse (Wang et al., 2023). Thus, the
generation of wetland training candidate areas further distin-
guishes between inland and coastal wetlands.

The time-series GWL_FCS30D wetland product covering
the period of 2000-2022 is used to derive the inland wet-
land training candidate areas (Zhang et al., 2024b). Because
temporally stable areas achieve higher accuracy (Yang and
Huang, 2021), a temporally stable analysis is applied to the
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Table 2. The characteristics of the fine classification system in the GLC_FCS10.

Basic classification system  Detailed validation system

Fine classification system

Cropland Rainfed cropland Herbaceous rainfed cropland
Tree- or shrub-covered rainfed cropland
(e.g., orchard, oil palm)
Irrigated cropland Irrigated cropland
Forest Evergreen broadleaved forest Closed evergreen broadleaved forest
Open evergreen broadleaved forest
Deciduous broadleaved forest Closed deciduous broadleaved forest
Open deciduous broadleaved forest
Evergreen needleleaved forest Closed evergreen needleleaved forest
Open evergreen needleleaved forest
Deciduous needleleaved forest Closed deciduous needleleaved forest
Open deciduous needleleaved forest
Mixed-leaf forest Closed mixed-leaf forest
Open mixed-leaf forest
Shrubland Shrubland Evergreen shrubland
Deciduous shrubland
Grassland Grassland Grassland
Tundra Tundra Lichens and mosses
Wetland Wetland Swamp
Marsh

Lake/river flat

Saline

Mangrove forest

Salt marsh

Tidal flat

Impervious surfaces Impervious surfaces

Urban impervious surfaces

Rural impervious surfaces

Bare areas Sparse vegetation Sparse vegetation
Bare areas Bare areas
Water Water Water

Permanent ice and snow

Permanent ice and snow

Permanent ice and snow

GWL_FCS30D, and only those stable areas where wetland
subcategories do not change during 2000-2022 are retained
(yielding the training area, TrainCanArea_Inwet). Then, be-
cause adjacent land-cover areas are more likely to suffer from
the higher misclassifications (Radoux et al., 2014) and from
the impact of the satellite geolocation error (Zhang and Roy,
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2017), a spatial filter with a local window of 3 pixels x 3 pix-
els is applied to TrainCanArea_Inwet to retain spatially ho-
mogeneous areas as the training areas. Further, the integra-
tion of multiple wetland products can further improve sam-
ple quality, but there are few high-quality wetland products
that have been publicly shared. In this study, only the Na-

https://doi.org/10.5194/essd-17-4039-2025
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tional Wetland Inventory for 2019 is imported to optimize the
swamp and marsh land-cover types in TrainCanArea_Inwet
over the United States because the National Wetland Inven-
tory does not identify river/lake flats or saline subcategories.
Namely, the areas identified as swamp and marsh in Train-
CanArea_Inwet and the National Wetland Inventory are re-
tained.

As for the three coastal wetland subcategories, their
training areas are generated from the combination of
GWL_FCS30D and three coastal wetland products (GMW,
GTF30, and GSM10 in Table 1). We identify temporally
stable coastal wetland areas from GWL_FCS30D, GMW,
and GTF30 through time-series analysis and label them
GWL_stable, GMW_stable, and GTF_stable. Then, we in-
tersect GWL_stable with GMW _stable to generate man-
grove forest training areas and intersect GWL_stable with
GTF_stable to generate tidal flat training areas. Next, as
the GSM10 only provides salt marsh maps in 2020, the
salt marsh training areas are selected as the intersection be-
tween GWL_stable and GSM10. The mangrove forest, tidal
flat, and salt marsh training areas are grouped as Train-
CanArea_Cowet.

Last, the maximum wetland boundary (MaxBoundye;) is
also necessary for the subsequent identification of training ar-
eas for non-wetland natural land-cover types. MaxBoundy.
is determined as the union of the five global wetland prod-
ucts:

MaxBoundye = GWL_FCS30D U NWIU GMW
UGTF30 U GSM10. 3)

3.2.3 Training areas of non-wetland natural land covers

Many previous studies have emphasized that these spa-
tiotemporally stable areas always performed at a higher map-
ping accuracy (Zhang and Roy, 2017; Zhang et al., 2024c).
In this work, the time-series global 30 m land-cover dynamic
product (GLC_FCS30D), covering the period 1985-2022,
is used. Specifically, three measures are taken to identify
spatiotemporally stable areas of non-wetland natural land-
cover types from GLC_FCS30D: (1) a time-series consis-
tency analysis is applied to the GLC_FCS30D, and only
stable areas during 1985-2022 will be retained as Train-
CanArea_NLCs. (2) The MaxBoundjmp and MaxBoundyyet
are imported to mask the TrainCanArea_NLCs; i.e., the train-
ing areas for non-wetland natural land-cover types should be
located outside of MaxBoundj,p and MaxBoundye. The aim
of this step is to minimize confusion between non-wetland
natural land-cover types and these two land-cover types.
(3) A morphological erosion filter with a local window of
3 pixels x 3 pixels is used to find the spatially homogeneous
areas for non-wetland natural land-cover types. In addition, it
should be noted that the TrainCanArea_NLCs represents the
stable areas during 1985-2022, and there is still a 1-year in-
terval with the land-cover mapping year in 2023. Fortunately,
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the ongoing updating of GLC_FCS30D is still in progress.
The land-cover change masks during 2022-2023 have been
finished, which are used to guarantee the temporal consis-
tency between prior land-cover products with the training ar-
eas.

As mentioned in Sect. 2.2.4, the training areas for
tree-cover cropland (oil palm, orchards, etc.) from the
GLC_FCS30D do not cover the globe. These cropland train-
ing areas are therefore divided into herbaceous rainfed crop-
land and tree- or shrub-cover cropland. Because the global
oil palm and global plantation datasets provide the plantation
years of oil palm and orchards at 30 m, we overlap the train-
ing areas of rainfed cropland, oil palm, and orchard planta-
tion from the global plantation dataset to extract the training
areas for tree-cover cropland. Then, to minimize error, the
tree-cover cropland training areas are further filtered using a
local window of 3 pixels x 3 pixels to ensure spatial homo-
geneity of tree-cover cropland training areas.

3.2.4 Generating a globally distributed training pool
from stratified sampling

Although we take a series of measures to ensure
training area quality (including TrainCanArea_urban,
TrainCanArea_rural, TrainCanArea_Inwet, Train-
CanArea_Cowet, and TrainCanArea_NLCs), how to
generate training samples from the training areas needs to
address the following two aspects.

First, the distribution and balance of training samples
greatly affect the subsequent land-cover classification (Ghor-
banian et al., 2020; Jin et al., 2014; Mellor et al., 2015; Pel-
letier et al., 2017; Zhu et al., 2016). There are two options
to allocate the sample distribution: equal or area-fraction al-
location (Zhang et al., 2021). Equal distribution means that
all land-cover types have the same number of training sam-
ples; i.e., the sample sizes of sparse land covers will be aug-
mented, while those of the abundant land covers will be sup-
pressed. In contrast, area-fraction distribution allocates the
sample size according to the land-cover area of each type;
that is, abundant land covers have larger sample sizes, while
sparse land-cover types have smaller sample sizes (Zhu et al.,
2016). Because impervious surfaces and wetlands are sparser
than natural land-cover types and are independently gener-
ated, equal-distribution allocation is suitable to enhance the
training samples’ ability to characterize these two land-cover
types. As for the non-wetland natural land covers, the area-
fraction allocation is more appropriate for the non-wetland
natural land-cover types because we want to optimize results
for all non-wetland natural land-cover types rather than a sin-
gle land-cover type. Meanwhile, to avoid sample size imbal-
ance in the area-fraction allocation, maximum and minimum
sample sizes of 8000 and 600 pixels are chosen for the abun-
dant and sparse land-cover types, respectively (suggested by
the work of Zhu et al., 2016).
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Second, most high-quality training samples (except for
those for impervious surfaces) are derived from the 30m
training areas, so there is also a need to reduce the 30m
training samples to 10 m samples to achieve a global 10 m
land-cover map. In this work, the “metric centroid” method
is adopted, which had been used to downscale 500 m training
samples from MCD12Q1 to 30 m in the work of Zhang and
Roy (2017). Specifically, as each 30 m pixel corresponds to
3 x 3 10m pixels, we first find the centroid from these nine
pixels as Peenmroid through spectral averaging, and then the
point with the smallest absolute distance with Peeptroid Was
chosen as the optimal downscaled 10 m sample point (Eq. 4).

I—9 Pp;
)chentmid = 52/’:17}’ (4)

where pp, is the spectrum value of composited Sentinel-2
training features (see Sect. 3.3) at pixel P;. If more than one
point in the nine pixels has the same minimum absolute dis-
tance, then we pick randomly from among them.

Pi = (|pPi _chemroid

3.3 Compositing multisourced training features

In addition to high-confidence training samples, how to
generate these multisource training features is also impor-
tant (Dong et al., 2015; Jin et al., 2023; Yang and Huang,
2021). In this work, we composite multitemporal optical
and SAR information from Sentinel-1 and Sentinel-2 time-
series observations. First, because of the overlapping or-
bits of the satellites and the effects of clouds and shad-
ows, there are substantial differences in the clear-sky obser-
vations in different regions. Compositing methods help to
obtain dimensionally consistent spectral-phenological fea-
tures. The percentile-based statistical multitemporal com-
positing method attracts attention because of its robustness,
efficiency, and simplicity (Azzari and Lobell, 2017). The ba-
sic principle of this method is to rearrange intra-annual time-
series reflectance according to mathematical magnitude and
take the corresponding quartiles to reflect the phenological
variation of the time series and suppress the noise inter-
ference such as clouds and shadows (Hansen et al., 2014).
Many previous studies have demonstrated the percentile-
based method shows great ability to flexibly balance noise
removal and signal retention; that is, it can efficiently capture
the phenological variations with less prior knowledge and is
also robust to the residual cloud and shadows (Hansen et al.,
2014; Zhang and Roy, 2017). Thus, in this study, Sentinel-2
time-series images are composited into the 10th, 30th, 50th,
70th, and 90th percentiles for their 10 optical bands from vis-
ible to shortwave infrared and three typical indexes (NDVI,
NDWI, and LSWI in Eq. 5) using the percentile-based com-
positing method. The 10th and 90th percentiles are selected
to represent the poles of time-series variations and also sup-
press the effects of residual cloud and shadow, and the other
three percentiles can partly reflect the phenological varia-
tions (Xie et al., 2020). Meanwhile, another major advantage
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of 10 m Sentinel-2 imagery is that it provides clearer textu-
ral features, so we generate time-series texture features from
the five percentiles in the NIR bands using the gray-level co-
occurrence matrix. Only the texture features in the NIR band
are extracted to avoid redundancy because of the texture sim-
ilarity within different spectral bands (Rodriguez-Galiano et
al., 2012).

PNIR — Pr
PNIR + 0Or

PNIR — PSWIR1

PNIR + PSWIRI
Pgreen — PSWIRI

Pgreen T PSWIR1

NDVI = , LSWI=

and NBWI = 5)
where pgreen, Or, ONIR> and pswir1 are the spectral bands of
green, red, NIR, and SWIRI1 in the Sentinel-2 imagery.

Then, because SAR signals are sensitive to changes in sur-
face water dynamics and spatial structure, it is also neces-
sary to extract multitemporal SAR features from Sentinel-1
imagery (Bullock et al., 2022; Dabrowska-Zielinska et al.,
2018; Zhang et al., 2020). The percentile-based composited
method is also used to capture the time-series variabilities
of VV and VH at the 10th, 30th, 50th, 70th, and 90th per-
centiles. In summary, a total of 10 SAR features are compos-
ited from Sentinel-1 time-series observations.

Afterward, because some land-cover types are character-
ized by important topographic distribution (e.g., permanent
snow and ice are clustered in high-elevation areas, and crop-
lands and impervious surfaces are usually located in these flat
areas), the topographical variables (slope, aspect, and eleva-
tion), generated from the resampled ASTER GDEM dataset,
are collected into the multisourced training features. It should
be noted that some 5 x 5 geographical tiles do not have suffi-
cient Sentinel-1 observational data in 2023 since Sentinel-
1B was retired in 2022; the corresponding tiles use only
Sentinel-2 and topographic data.

3.4 Hierarchical land-cover mapping

A major advantage of hierarchical land-cover mapping is the
ability to improve the characterization of complex land cov-
ers with independent models; the major flowchart is illus-
trated in Fig. 2. In this work, we first separate global land-
cover types into impervious surfaces and natural land-cover
types, then identify the wetlands from among the natural land
covers, and finally classify the remaining non-wetland natu-
ral land-cover types into 20 land-cover subcategories.

3.4.1 The separation of impervious surfaces and natural
surfaces

To separate impervious surfaces and natural surfaces, we rely
on the globally distributed training samples (Sect. 3.2.4) and
the combination of multitemporal optical and SAR features.
Specifically, this is because we divide impervious surfaces
training samples into rural and urban samples and design the
equal distribution to enhance the training samples’ ability to

https://doi.org/10.5194/essd-17-4039-2025



X. Zhang et al.: GLC_FCS10

4047

- - - ]
Multisourced and multitemporal composited | |
features |

Level 1: Impervious surface mapping models

L7

Y

Impervious surface maps:

Natural land-cover type maps

»  Urban impervious surface maps

l

* Rural impervious surface maps

Level 2: Inland and coastal wetland classification models

+ g

*  Mangrove forest, Salt marsh, Tidal flat

v
Wetland maps: Non-wetland natural land-cover type
*  Swamp, Marsh, Lake/river flat, Saline Aps

+

The maps of non-wetland natural covers:

*  The remaining 21 fine land cover types

Level 3: Non-wetland natural covers
classification models

L 2
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Figure 2. The detailed flowchart of the hierarchical land-cover mapping algorithm by integrating globally distributed training samples and

multisourced composited features.

characterize impervious surfaces. The ratio of urban samples,
rural samples, and natural surfaces is 1:1:1 for each 5 x 5
geographical tile. Meanwhile, in terms of the sample size of
each class, some previous studies have quantified the rela-
tionship between sample size and mapping accuracy (Foody,
2009; Li et al., 2014), and suggested a minimum size of
600 and maximum size of 8000 for these sparse and abun-
dant land-cover types (Zhu et al., 2016). In this study, after
considering the trade-off between sample representativeness
with mapping efficiency, the sample size of each class was
selected as 5000, which was also consistent with the work
of Zhang et al. (2022) in monitoring the impervious surface
dynamics.

Then, we split the globe into 984 5 x 5 geographical tiles
(approximately 556 km x 556 km on the Equator, illustrated
in Fig. S1 in the Supplement), because some studies empha-
sized that the local adaptive modeling usually achieves bet-
ter mapping accuracy than single land-cover global model-
ing (Zhang et al., 2021), and previous studies of Zhang and
Roy (2017) and Zhang et al. (2019) have explained that the
training samples of sparse land-cover types in a small geo-
graphical grid were usually missed or greatly sparse. Thus,
after balancing the training sample volume, mapping accu-
racy, and the limitation of GEE platform, the local mod-
eling tile size of 5 x 5, similar to the studies of Zhang et
al. (2021, 2024c), was used. When building the training
model for each 5 x 5 geographical tile, we also import train-
ing samples within their spatial neighborhood of 3 x 3 tiles
to ensure spatial consistency over the adjacent tiles. Since
the MaxBoundimp (Eq. 2) provides the maximum potential
areas of impervious surfaces because of the overestimation
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problem of Imp-ESRI_LC (Wang et al., 2024; Xu et al.,
2024b), all identified impervious surfaces should be within
the MaxBoundimp. Afterward, we can produce 984 instances
of 5 x5 impervious surface and natural land-cover maps
using the local adaptive modeling strategy. In addition, al-
though we divide the training samples into urban and rural
samples, there is serious confusion between urban and ru-
ral areas in the classification maps because they share simi-
lar spectral and SAR characteristics. We therefore consider
the two subcategories to be inseparable at the classifica-
tion stage. Correspondingly, inspired by the work of Li et
al. (2020), who used the cellular automata and morphologi-
cal approaches to accurately capture urban boundaries, this
method is also applied in this work to distinguish urban and
rural impervious surfaces.

Notably, in terms of the selection of classifier at the lo-
cal adaptive modeling, the random forest classification model
(including the later Sect. 3.4.2 and 3.4.3) is used. The ran-
dom forest has some advantages over other traditional clas-
sifiers, such as managing high-dimensional data more effi-
ciently, having higher mapping robustness, being insensitive
to parameter settings, and avoiding overfitting problems ef-
fectively (Belgiu and Dragut, 2016; Breiman, 2001). In terms
of its parameter settings, the random forest only has two ad-
justable parameters, and the variations of these two parame-
ters have little effect on the performance of the random forest
model (Du et al., 2015; Gislason et al., 2006); thus, the de-
fault parameter settings are applied to train the random forest
models on the GEE platform.
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3.4.2 The separation of wetland and non-wetland
natural land-cover types

In terms of how to identify the fine wetland subcategories
from natural land covers, we use the stratified wetland map-
ping algorithm to independently distinguish coastal wetlands
and inland wetlands. Wetlands are divided into four inland
and three coastal wetland subcategories (in Table 2), and
equal-distribution sampling is used to enhance the training
samples’ ability to characterize wetlands. Additionally, some
non-wetland land-cover types also reflected similar spectral
characteristics with the wetlands; for example, the swamp
and the forest/shrubland shared similar vegetation spectra
during the peak growth period, while the marsh and crop-
land/grassland exhibited characteristics of herbaceous vege-
tation, and the river flats also performed the spectral char-
acteristics of bare land during the dry seasons (Zhang et
al., 2023b). Thus, the approximate ratio of inland wetlands,
coastal wetlands, and non-wetlands (including water body,
forest/shrubland, cropland/grassland, bare land, and others)
is 4 :3:5 in areas where they coexist. Then, because coastal
wetlands have a more pronounced zonation, we can obtain
their maximum coverage through the union of some previ-
ous coastal wetland products, as in Eq. (6).

MaxBoundces_wet = GWL_FCS30D_Coastal U GMW
UGTF30U GSMI10 (6)

When building the wetland random forest classification
models for each 5 x 5 geographical tile, we first train the
coastal wetland classification model using the coastal wet-
land and non-wetland training samples within their spatial
neighborhood of 3 x 3 tiles and combine multisourced train-
ing features to identify the spatial distribution of coastal wet-
lands within the MaxBoundcyet; i.€., all coastal wetland pix-
els should be within the MaxBoundcye;. Otherwise, they
would be corrected.

Afterwards, the inland wetland and non-wetland training
samples are used to train another random forest classification
model, and the remaining areas are further classified as four
inland wetland subcategories and non-wetland natural land-
cover types using the inland wetland classification model.

3.4.3 Mapping of non-wetland natural land-cover types

After classifying the impervious surface and wetlands using
the hierarchical land-cover mapping, we now need to classify
the remaining non-wetland natural land-cover types. Like the
previous mapping processes, the local adaptive random for-
est models are trained for each 5 x 5 geographical tile using
the corresponding training samples within the spatial neigh-
borhood of 3 x 3 tiles. The non-wetland natural land-cover
types are classified through a combination of trained random
forest models and multisource training features. Lastly, af-
ter overlapping the hierarchical maps for impervious surface,
wetland, and non-wetland natural land-cover types, we can
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obtain 10 m land-cover maps with a fine classification sys-
tem.

3.5 Accuracy assessment and cross-comparison

To comprehensively assess the performance of our devel-
oped GLC_FCS10 products, a globally distributed validation
dataset and one third-party validation dataset are collected
to quantify the accuracy metrics. First, the global validation
dataset, guided by the work of Zhao et al. (2023), is collected
through stratified random sampling and visual interpretation
from high-resolution remote sensing imagery in 2023. Fig-
ure 3 illustrates the spatial distribution of the global valida-
tion dataset; it contains 56 121 globally distributed valida-
tion points and covers 16 land-cover types. Next, the Land
Cover Monitoring, Assessment, and Projection Collection
(LCMAP) validation dataset (called LCMAP_Val), as a na-
tional third-party validation dataset, contains 16 082 nation-
ally distributed validation points for 1985-2021 (Stehman et
al., 2021). In this work, the LCMAP_Val in 2021 is also up-
dated to 2023 through visual interpretation. Afterward, the
confusion matrix and four accuracy metrics are calculated:
the overall accuracy (O.A.), k coefficient (measuring the
comprehensive performance), the producer accuracy (P.A.),
and the user accuracy (U.A.), which measure the commis-
sion and omission errors for each land-cover type to quantify
the accuracy of GLC_FCS10 (Foody and Arora, 2010; Liu et
al., 2007; Nelson et al., 2021).

In addition, to qualitatively investigate the performance
of GLC_FCS10, three global 10m land-cover products
(ESRI_LC (Karra et al., 2021), ESA WorldCover (Zanaga et
al., 2021), and FROM_GLC10 (Gong et al., 2019)) and one
30 m land-cover product (GLC_FCS30 (Zhang et al., 2021))
are collected as comparative products. None of these five data
products have been updated to 2023. Their latest available
data will be collected for our comparative analysis.

4 Results and discussions

4.1 Overview of the GLC_FCS10 map

Figure 4 illustrates the spatial distribution of the
GLC_FCS10 land-cover map with 30 fine land-cover
types in 2023. Overall, it accurately characterizes global
land-cover patterns: forests are concentrated in tropical
rainforest regions and cold temperate forest zones in the
Northern Hemisphere; cropland is found in low-lying plains
areas such as the North China Plain, Central Plains of
the United States, and in central Eurasia; and bare land
and grassland are distributed in arid and semiarid areas.
Meanwhile, because a characteristic of the GLC_FCS10 is
its diverse classification system, we can see that broadleaved
forests are found in low- and medium-altitude regions, while
needleleaved forests are distributed in cold temperate zones
as well as in high-altitude areas.
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Figure 3. The spatial distribution of global validation samples containing 16 land-cover types in 2023.
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4.2 Accuracy assessment
4.2.1 Global-scale accuracy assessment

Table 3 presents the confusion matrix between GLC_FCS10
and the 56 121 globally distributed validation points for 10
major land-cover types (corresponding to the basic classi-
fication system in Table 2). Overall, GLC_FCS10 achieves
an O.A. of 83.16 % and a « coefficient of 0.789. For spe-
cific land-cover types, permanent snow and ice, water bod-
ies, forest, impervious surfaces, and cropland perform the
best, with the corresponding U.A. and P.A. values being ap-
proximately or exceeding 90 %. Their high accuracies stem
from the distinct spectral properties inherent to water bod-
ies and permanent ice and snow, the abundant coverage of
cropland and forest, and hierarchical land-cover mapping for
impervious surfaces. However, shrubland, grassland, tundra,
and wetlands suffer obvious misclassifications, in which the
shrubland has the lowest U.A. of 67.04 % and wetland has
the lowest P.A. of 53.69 %. There is considerable confusion
between shrubland, grassland, and bare areas because they
share similar spectral characteristics and coexist in arid and
semiarid areas. Wetlands have the lowest P.A. due to the con-
fusion between wetlands, water bodies, forest, and grassland.
Wetlands have complicated and heterogeneous spectral and
temporal variations; thus, the swamp subcategory is easily
confused with forest, and the marsh subcategory shares spec-
tral characteristics with grasslands (Zhang et al., 2023b).

To intuitively understand the spatial distribution of the
GLC_FCS10 accuracy metrics, Fig. 5 presents the spatial
variations of O.A. and the « coefficient among 30 climate
zones from Koppen climate classification system. There is
high consistency in the O.A. and « coefficient within the spa-
tial patterns; i.e., some climatic transition zones, land-cover
heterogeneity zones, cloud-contaminated tropical zones, and
small subdivisions tend to have lower accuracy (below 80 %).
Conversely, some homogeneous zones (such as Greenland
and the Sahara) and forest- or cropland-rich zones (such as
the east-central United States, central Eurasia, and East Asia)
achieve a high O.A. and a k coefficient.

Table 4 further analyzes the confusion matrix between
GLC_FCS10 and the global validation dataset with 16 land-
cover types (refining the forest and cropland subcategories).
Under this fine validation system, the GLC_FCS10 achieves
an O.A. of 76.45 % and a « coefficient of 0.736, which are
reduced by 6.71 % and 0.053, respectively, from the metrics
in Table 3. This reduction is due to confusion between the
finer land-cover subcategories; e.g., forests have a U.A. value
of 91.02 % in Table 3, but when broken down into five for-
est subcategories the average U.A. value drops to 68.52 %.
Taking mixed forest as an example, it has a low accuracy of
only 44.17 %, of which the proportions misclassified as ever-
green broadleaved forest (EBF), deciduous broadleaved for-
est (DBF), evergreen needleleaved forest (ENF), and decidu-
ous needleleaved forest (DNF) are 5.34 %, 7.77 %, 27.18 %,
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and 5.83 %, respectively. Higher likelihoods of confusion ex-
ist for closely related land-cover subcategories; e.g., the high-
est proportion of misclassification in EBF is in DBF, and
rainfed cropland is easily misclassified as irrigated cropland,
shrubland, or grassland. Previous research also demonstrated
that considerable misclassifications occur between similar
land-cover types (Homer et al., 2020; Wickham et al., 2021;
Zhang et al., 2021; Zhang et al., 2024c).

4.2.2 National-scale accuracy analysis using the
LCMAP_Val datasets

Table 5 presents the confusion matrix for GLC_FCS10 based
on the LCMAP_Val validation points over the United States.
It should be noted that the LCMAP_Val dataset only con-
tains eight land-cover types and merges shrubland and grass-
land into one mosaicked land-cover type (grass/shrub). The
GLC_FCS10 achieves an O.A. of 85.09 % and a « coeffi-
cient of 0.804 using these 16 082 national validation points.
Regarding the U.A. and P.A., the cropland, forest, water, and
grass/shrub land-cover types achieve balanced U.A. and P.A.
values approximately or exceeding 80 %. In contrast, devel-
oped land has the lowest U.A. of 54.26 % with a high P.A.
of 98.85 %, mainly because of the difference in definitions of
developed land and impervious surfaces. The LCMAP_Val
definition of developed land is broad enough to classify
inner-city greenery as developed land as well (Xian et al.,
2022), which is considered a vegetation land-cover type in
the GLC_FCS10. Barren land has the lowest P.A. value of
31.93 %, indicating a high omission error of 68.07 %. Most
of these misclassifications came from the confusion between
barren land and grass/shrub land-cover types. It is notewor-
thy that the grass/shrub shares similar spectral characteristics
with barren, and both of them co-exist in arid regions of the
western United States. Thus, it is usually difficult to distin-
guish between the two with high accuracy.

Figure 6 illustrates the spatial distribution of O.A. and «
coefficient values among different Koppen climate zones us-
ing the LCMAP_Val validation points over the United States.
There is notable consistency between O.A. and « coefficient
in terms of the spatial patterns; i.e., the GLC_FCS10 con-
siderably outperforms in the Western United States and in
the Eastern United States and has an optimal « coefficient of
more than 0.8 in the Northeastern United States. Combined
with the climatic distribution, it performs relatively poorly in
the arid and semi-arid zones of the Midwestern United States,
mainly attributed to the difficulty in distinguishing between
shrubs, grasses, and bare land within the region.

4.3 Cross-comparisons with previous land-cover
products

Table 6 gives quantitative comparisons among GLC_FCS10
and four public global 10 or 30 m land-cover products us-
ing the LCMAP_Val dataset. The GLC_FCS10 achieves the
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Table 3. The confusion matrix between GLC_FCS10 and the globally distributed validation dataset for 10 major land-cover types.

Crop Forest Shrub Grass Tundra Wetland Impervious Barren Water Ice—snow Total U.A.

Crop 8442 339 588 768 0 53 39 46 9 0 10284 82.09
Forest 161 18342 1191 189 0 250 2 12 4 0 20151 91.02
Shrub 190 701 4091 922 12 72 4 109 1 0 6102 67.04
Grass 673 255 275 5817 33 170 7 391 4 1 7626  76.28
Tundra 0 25 78 153 805 2 0 61 0 0 1124 71.62
Wetland 10 74 136 100 14 946 1 23 30 0 1334 7091
Impervious 20 6 11 28 0 1 902 5 0 0 973  92.70
Barren 66 5 187 544 24 29 6 3882 3 13 4759  81.57
Water 2 6 9 4 0 239 1 25 2328 0 2614 89.06
Ice—snow 0 1 1 33 0 0 0 5 1 1113 1154  96.45
Total 9564 19754 6567 8558 888 1762 962 4559 2380 1127 56121
PA. 88.27 9285 6230 67.97 90.65 53.69 93.76 85.15 97.82 98.76
O.A. 83.16
Kappa 0.789
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Figure 5. (a) Regional O.A. and (b) « coefficient of the GLC_FCS10 land-cover map among various K&ppen climate zones (http:
/lkoeppen-geiger.vu-wien.ac.at/, last access: 11 August 2025) using the globally distributed validation points.
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Table 4. The confusion matrix between GLC_FCS10 and the globally distributed validation dataset for 16 land-cover types.

RCP ICP EBF DBF ENF DNF MF SHB GRS LMS SPV  WET IMP BAL WTR SNW Total U.A.
RCP 7575 302 134 137 21 13 6 574 746 0 10 24 31 35 6 0 9614 78.79
ICP 121 444 19 7 2 0 0 14 22 0 1 29 8 0 3 0 670  66.27
EBF 138 0 7263 842 289 59 48 429 70 0 0 140 1 1 2 0 9282 78.25
DBF 21 1 375 3955 235 149 61 482 52 0 0 40 0 1 0 0 5372 73.62
ENF 0 0 191 129 2535 533 11 138 28 0 0 51 1 3 1 0 3621 70.01
DNF 1 0 0 77 122 1278 4 127 37 0 1 16 0 6 1 0 1670 76.53
MF 0 0 11 16 56 12 91 15 2 0 0 3 0 0 0 0 206 44.17
SHB 184 6 60 440 52 140 9 4091 922 12 40 72 4 69 1 0 6102  67.04
GRS 654 19 24 109 21 98 3 275 5817 33 232 170 7 159 4 1 7626  76.28
LMS 0 0 0 6 1 18 0 78 153 805 18 2 0 43 0 0 1124 71.62
SPV 40 3 0 2 1 2 0 0 0 11 266 6 1 0 1 3 336 79.17
WET 8 2 29 9 9 27 0 136 100 14 12 946 1 11 30 0 1334 7091
IMP 14 6 4 1 0 1 0 11 28 0 0 1 902 5 0 0 973 92.70
BAL 20 3 0 0 0 0 0 187 544 13 118 23 5 3498 2 10 4423 79.09
WTR 2 0 1 1 1 1 2 9 4 0 0 239 1 25 2328 0 2614 89.06
SNW 0 0 0 1 0 0 0 1 33 0 0 0 0 5 1 1113 1154 96.45
Total 8778 786 8111 5732 3345 2331 235 6567 8558 888 698 1762 962 3861 2380 1127 56121
PA. 86.30 5649 89.55 69.00 75.78 5483 3872 6230 6797 90.65 3811 53.69 9376 90.60 97.82 98.76
O.A. 76.45
Kappa 0.736

Note: RCP — rainfed cropland, ICP — irrigated cropland, EBF — evergreen broadleaved forest, DBF — deciduous broadleaved forest, ENF — evergreen needleleaved forest, DNF — deciduous needleleaved forest, MF — mixed
forest, SHB — shrubland, GRS — grassland, LMS — lichens and mosses, SPV — sparse vegetation, WET — wetland, IMP — impervious surface, BAL — bare areas, WTR — water body, SNW — permanent ice and snow.

Table 5. The confusion matrix between GLC_FCS10 and the LCMAP_Val dataset.

Cropland Forest Grass/shrub ~ Wetland Impervious Barren Water Ice & snow Total U.A.
Cropland 3445 28 393 6 0 9 2 0 3883 88.72
Forest 7 4621 133 92 0 0 2 0 4855 95.18
Grass/shrub 368 358 3440 21 1 272 1 0 4461 77.11
Wetland 37 260 30 522 1 0 5 0 855 61.05
Developed 44 69 164 3 344 9 1 0 634 54.26
Barren 1 0 0 10 0 137 1 0 149 91.95
Water 0 2 1 63 2 1 1173 0 1242 94.44
Ice & snow 0 0 0 0 0 1 0 2 3 66.67
Total 3902 5338 4161 717 348 429 1185 2 16082
PA. 88.29  86.57 82.67 72.80 98.85 3193 98.99 100.00
O.A. 85.09
Kappa 0.804

highest O.A. of 85.09 % and a « coefficient of 0.804, fol-
lowed by the ESA WorldCover (82.34 % and 0.760) and
ESRI_LC (82.10 % and 0.754), while the GLC_FCS30 and
FROM_GLCI10 have relatively inferior performance, below
80 %. Specifically, in terms of the P.A., U.A., and F] score,
we can find that (1) all five products achieve superior per-
formance for water with corresponding P.A., U.A., and F
score values of more than 90 %. (2) The GLC_FCS10 and
ESA WorldCover have advantages over other products for
cropland and forest (with F; scores exceeding 85 %). The
ESRI_LC Fj scores for cropland, forest, and grass/shrub ex-
ceed 80%. (3) All five products faced challenges for wet-
lands and barren land due to their complicated spectral char-
acteristics. Taking wetlands as an example, the GLC_FCS10
achieves the highest Fj score of 66.63 %, with most other
products below 50 %. The FROM_GLCI10 has the lowest Fj
score of 7.58 %. (4) As stated in Sect. 4.2.2, the difference
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in definitions for developed land and impervious surfaces
means that all land-cover products have lower U.A. than P.A.
values for developed land; i.e., they cannot identify inner-city
greenery as impervious surfaces.

Figure 7 compares GLC_FCS10 with ESA WorldCover,
ESRI_LC, GLC_FCS30, and FROM_GLC10 on the east
coast of the United States. Overall, there is the highest con-
sistency between GLC_FCS10 and actual land-cover situa-
tions; i.e., wetlands are predominantly found in low-lying
river valleys and along the coast and with a cross-section
of forests and cropland due to the undulating topography.
Conversely, ESA WorldCover has the largest forest area be-
cause some swamps or woody wetlands are labeled as forests
(Fig. 7R1 is an enlargement showing an example). ESA
WorldCover also has the smallest impervious surface area be-
cause some is misclassified as forest (Fig. 7R2 is an enlarge-
ment showing an example). Thus, ESA WorldCover has low

https://doi.org/10.5194/essd-17-4039-2025
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Figure 6. The spatial distributions of (a) O.A. and (b) « coefficient using the LCMAP_Val validation points over the United States among

various K&ppen climate zones.

U.A. values of 13.78 % and 35.49 % for wetland and devel-
oped land, respectively (Table 6). ESRI_LC has the largest
impervious surface area and also identifies some swamps as
forest, so it has the lowest P.A. value of 74.38 % for devel-
oped land. ESRI_LC overestimates impervious surfaces and
has obvious omission errors for swamps. FROM_GLC10 has
the lowest wetland area: some swamps are classified as for-
est, and herbaceous wetlands are labeled as water, so it has
the lowest U.A. value of 4.02 % for wetlands in Table 6. Last,
GLC_FCS30 also has omission errors for wetlands (the red
rectangle on GLC_FCS30) and lacks spatial details for some
small objects (such as small rivers in Fig. 7R1).

Figure 8 presents comparisons for the model reaches
of the Yangtze River, China. Overall, all land-cover prod-
ucts accurately capture the regional spatial patterns, and
GLC_FCS10 and GLC_FCS30 have advantages with the di-
versity of land-cover types over the other three products.
Specifically, Fig. 8R1 illustrates cross-comparisons for the
megacity of Wuhan. ESA WorldCover underestimates and
has the lowest impervious surface area, ESRI_LC overes-
timates and has the highest impervious surface area, and
FROM_GLCI10 misclassifies some impervious surfaces as
grassland (Huang et al., 2022). Based on the former compar-
ison and previous work (Huang et al., 2022), the ESA World-
Cover underestimates these low-density impervious surfaces,
the ESRI_LC suffers the overestimation problem on the im-
pervious surfaces, and FROM_GLC10 suffers some misclas-
sification between impervious surfaces and grassland. Fig-
ure 8R2 shows comparisons over the Poyang Lake wetlands.
ESA WorldCover captures most marsh wetlands but misses
these lake/flooded flats, while ESRI_LC, FROM_GLCI10,
and GLC_FCS30 have serious omission errors for these wet-
lands. ESRI_LC misclassifies some marsh wetlands as grass-
land. Lastly, Fig. 8R3 illustrates comparisons for mountain-
ous areas, the ESRI_LC still overestimates impervious sur-
faces, and GLC_FCS30 misses some small impervious sur-
face objects (roads) due to spatial resolution constraints.

Since land-cover mapping usually has great challenges in
the tropical areas due to frequent contaminations of clouds
and shadows, Fig. 9 further shows comparisons for the is-
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land of Borneo, Indonesia. It is noteworthy that the region
has experienced extensive deforestation and oil palm cultiva-
tion over the past few decades (Descals et al., 2024). Over-
all, the GLC_FCS10, GLC_FCS30, and FROM_GLC10 can
capture the spatial patterns of oil palms because they iden-
tify oil palms as cropland, while ESA WorldCover and
ESRI_LC tend to treat oil palms as forest. Specifically, in
the enlargement areas of Fig. 9R1, we can see more reg-
ular oil palm plantations due to human activities, while
FROM_GLC10 and GLC_FCS30 might overestimate these
oil palm croplands. Then, as for the local region R2, which
contains swamp, mangrove, and oil palms, the ESRI_LC and
FROM_GLC have serious omission errors in mangroves and
swamps, while ESA WorldCover still cannot identify these
swamp wetlands and oil palms, and GLC_FCS30 is con-
sistent with GLC_FCSI10 in capturing the wetlands and oil
palms.

4.4 The feasibility and benefits of the proposed method
for large-area land-cover mapping

4.4.1 The feasibility and advantages of globally derived

training samples

A principal difficulty in land-cover mapping is obtaining
high-quality training samples (Li et al., 2023; Zhang et al.,
2021). In this work, we integrate prior multisource global
land-cover products to generate globally distributed training
samples. To ensure the confidence of these derived train-
ing samples and minimize the classification errors of each
prior product, we took the following actions: (1) spatiotem-
poral consistency checking was used to find homogeneous
and stable areas. (2) The intersection of multiple land-cover
products minimized the influence of classification errors in
each product. (3) A morphological erosion filter was applied
to reduce the impact of edge-mixing effects. The accuracy
assessment partly demonstrates the reliability of these de-
rived training samples; i.e., GLC_FCS10 achieves satisfac-
tory accuracy metrics and outperforms several other land-
cover products. Due to the large volume of these globally dis-
tributed training samples, we selected approximately 10000
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Table 6. Comparisons among GLC_FCS10 and four other comparative products using the LCMAP_Val dataset.

Cropland  Forest Grass/shrub Wetland Developed Barren Water Snow  O.A. Kappa

GLC_FCS10 U.A. 88.72  95.18 77.11 61.05 5426 9195 9444 66.67
PA. 88.29  86.57 82.67 72.80 98.85 31.93 9899 100.0 85.09  0.804
F 88.50  90.67 79.79 66.41 70.06 4740 96.66 80.00

FROM_GLC10 U.A. 71.14  87.13 73.70 4.02 41.64 9050 96.03 100.0
PA. 89.17 8242 73.47 66.00 85.31 9.30 9834 50.00 74310653
Fp 79.14 8471 73.58 7.58 55.96 16.87 97.17 66.67

ESA WorldCover U.A. 86.14 9451 80.69 13.78 3549  93.85 9741 100.0
PA. 93.09  82.00 85.15 88.28 97.20 1438 98.93  75.00 82.34  0.760
F 89.48  87.81 82.86 23.84 52.00 2494 98.16 85.71

ESRI_LC U.A. 90.02  82.84 84.98 10.15 69.36  56.52 97.69 100.0
PA. 80.65 83.05 81.86 69.72 74.38 38.72 9848 25.00 82.10 0754
Fp 85.08 8294 83.39 17.72 71.78 4596  98.08 40.00

GLC_FCS30 U.A. 85.78  88.85 75.29 37.68 38.10 7349 90.79 100.0
PA. 77.39  74.69 84.47 56.09 91.70  20.08 98.14 75.00 7776 0.699
F 81.37 81.16 79.62 45.08 53.83 31.54 9432 8571

Natural imagery GLC_FCS10 ESRI LC FROM_GLC10

ESA WorldCover GLC_FCS30

R2 (A8 : e £2 A I . Y = Y

=1 Herbaceous rainfed cropland [T Open deciduous broadleaved forest 5 Open mixed forest Wl Swamp Tidalflat

"1 Tree or shrub covered rainfed cropland M Closed evergreen needle-leaved forest MM Evergreen shrubland 58 Marsh B Urban impervious surfaces
[ Irrigated cropland B Open evergreen needle-leaved forest WM Deciduous shrubland Wl Flooded flat WB Rural impervious surfaces
Wl Closed evergreen broadleaved forest WM Closed deciduous needle-leaved forest "] Grassland B Saline [1Bare areas

W Open evergreen broadleaved forest B Open deciduous needle-leaved forest [ Lichens and mosses Wl Mangrove W Water body

B Closed deciduous broadleaved forest WM Closed mixed forest [ ) Sparse vegetation Salt marsh || Permanent ice and snow

Figure 7. Comparisons among GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 on the east coast of the
United States. Images in the first column are false-color composited from Sentinel-2 time-series imagery.
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Figure 8. Comparisons among GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 for the middle reaches
of the Yangtze River, China. Images are derived from Sentinel-2 imagery using false-color compositing. The color maps of all land-cover
products are the same as in Fig. 6.
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Figure 9. Comparisons between GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLCI10 for the island of Borneo,
Indonesia. Images are derived from Sentinel-2 imagery in 2023, and the color map is the same as in Fig. 7.
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derived samples from the training sample pool in Sect. 3.2.4.
Upon meticulous inspection, we determined that these cho-
sen samples attained an overall accuracy (O.A.) of 92.18 %,
with certain uncertainties existing for shrubland and grass-
land. This result was in accordance with the earlier analysis
presented in Table 3.

Moreover, it is still uncertain whether this small number
of erroneous training samples could impact the performance
of land-cover mapping. Figure 10 illustrates the quantita-
tive relationship between the erroneous training samples and
the O.A. and « coefficients for the basic classification sys-
tem. Initially, O.A. and the k coefficient remain stable as the
number of erroneous training samples increases. However, a
significant decline occurs when the proportion of erroneous
samples exceeds 30 %. This indicates that the trained ran-
dom forest model is robust to the erroneous training samples
as long as their proportion remains below 30 %. In this work,
if the fraction of erroneous samples was kept below 30 %, the
difference in O.A. is approximately 2 %, and the decrease in
the « coefficient is approximately 3 %. Gong et al. (2024)
also demonstrated that a small number of incorrect samples
(approximately 20 %) did not affect the land-cover classifi-
cation accuracy.

4.4.2 The advantages of hierarchical land-cover
mapping strategy

One of the novelties of this study is the adoption of the hierar-
chical land-cover mapping strategy. The accuracy assessment
in Table 3 indicates that impervious surfaces have a high
U.A. value of 92.70 % and P.A. value of 93.76 %. The wet-
land U.A. and P.A. values are 70.91 % and 53.69 %, which
were superior to those of the other land-cover products in Ta-
ble 6 and the cross-comparisons in Figs. 7-9. To intuitively
understand the advantage of the hierarchical land-cover map-
ping strategy, a comparative experiment (ComExp) has been
designed using the training samples from area—fraction allo-
cation (explained in the Sect. 3.2.4) in Fig. 11; i.e., the im-
pervious surfaces and wetlands are not classified separately
in the middle reaches of the Yangtze River (the compara-
tive site in Fig. 7). Overall, the ComExp is consistent with
the GLC_FCS10 spatial patterns and shows some variations
in the details. Specifically, in Fig. 10R1, the ComExp mis-
classifies some marsh wetlands as herbaceous rainfed crop-
land; i.e., some lake flats (red rectangles in Fig. 11R1) can-
not be comprehensively captured when compared with the
GLC_FCS10. Figure 10R2 gives the comparisons on the im-
pervious surface areas. We can find that the ComExp has
lower impervious surface areas because it misclassifies some
bright impervious surfaces as bare areas and some residential
areas as vegetated land. In summary, the hierarchical land-
cover mapping strategy can increase the ability to character-
ize specific land-cover types. Similarly, the work of Sulla-
Menashe et al. (2019) also used hierarchical mapping to

Earth Syst. Sci. Data, 17, 4039-4062, 2025

X. Zhang et al.: GLC_FCS10

generate annual global land-cover types for MCD12Q1 and
demonstrated its better performance.

4.5 The limitations and prospects

By combining a globally distributed training sample pool
and the hierarchical land-cover mapping strategy, a novel
GLC_FCS10 product containing 30 category-detailed land-
cover types has been produced. GLC_FCS10 achieves more
accurate performance than several previous products in quan-
titative and qualitative comparisons (Sect. 4.2 and 4.3). How-
ever, there are still some limitations or uncertainties regard-
ing the proposed method and the developed products, which
will be addressed in our ongoing studies. First, although we
combined hierarchical land-cover mapping and multisource
satellite observations to improve the recognition of compli-
cated land-cover types (impervious surfaces and wetlands),
it can be found that the accuracy metrics of shrubland, grass-
land, and wetland still have substantial room for improve-
ment. Recently, some efforts have shown that incorporating
both climatic and landform factors can enhance the discrimi-
nation of grassland areas (Parente et al., 2024), and the com-
bination of lidar (light detection and ranging) and optical in-
formation increases the separability of shrubland and forest
(Prosek and Simov4, 2019). Thus, one of the further studies
will combine multisource information to enhance the abil-
ity to recognize more complex land-cover types. Meanwhile,
although the combination of Sentinel-1 and Sentinel-2 time
series can minimize the effect of clouds and shadows, some
high cloud-contaminated areas might be still affected; i.e.,
mosaic seams may be visible in these special areas. Many
previous studies have demonstrated that the harmonization
of Landsat and Sentinel-2 can increase the likelihood of clear
observations (Claverie et al., 2018), and the advances of deep
learning models also improve the land-cover mapping perfor-
mance on these cloudy areas (Xu et al., 2024a). Thus, how to
make full use of the Landsat imagery and deep learning tech-
niques to further improve the quality of GLC_FCS10 in the
persistent cloudy areas will be one of the future studies.

We collected a globally distributed validation dataset and
one third-party validation dataset (LCMAP_Val) for the pur-
pose of quantifying the performance of the GLC_FCS10.
However, the accuracy metrics of GLC_FCS10 for the fine
classification system (containing 30 land-cover types) is still
unknown. Actually, some previous studies have emphasized
that collecting a large-area validation dataset is quite chal-
lenging (Morales et al., 2023; Tsendbazar et al., 2021; Xu et
al., 2020), especially as this study also needed to focus on
30 fine land-cover types. Fortunately, over the past decades,
many previous studies have collected high-quality validation
points at global or regional scale (d’ Andrimont et al., 2021;
Lietal., 2017; Stanimirova et al., 2023; Stehman et al., 2012;
Zhao et al., 2023). Making full use of these prior knowledge
bases to refine the globally distributed validation points into
30 fine land-cover types will be another focus for ongoing
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Figure 11. A comparative experiment on whether to adopt the hierarchical land-cover mapping strategy over the middle reaches of the
Yangtze River. Images are composited from Sentinel-2 imagery, and the enlargement came from © Google Earth. The color map is the same

asin Fig. 7.

work. In addition, to objectively understand the accuracy per-
formance of GLC_FCS10, we introduced the LCMAP_Val
third-party validation dataset, but the differences in the def-
inition of the classification system still affect the accuracy
metrics, such as the higher P.A. and the lower U.A. for the
impervious surfaces in Table 5. Therefore, one of the ongoing
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studies would take some measures (e.g., semantic similarity;
Gao et al., 2020) for more comprehensively and objectively
assessing the third-party accuracy metrics of GLC_FCS10.
Lastly, in order to maximize the utilization of training
samples distributed worldwide and strengthen the classifica-
tion modeling capacity for capturing regional characteristics,

Earth Syst. Sci. Data, 17, 4039-4062, 2025
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the local adaptive modeling strategy (Sect. 3.4) was applied
in each 5 x 5 geographical tile; i.e., the global land-cover
maps were produced as 984 independent local adaptive mod-
els. There may be a slight spatial discontinuity in some lo-
cal land-cover maps between neighboring areas even though
we introduced spatial neighborhood information into the re-
gional modeling. Thus, further work will take some measures
to join global and regional sample modeling to enhance the
spatial continuity of global land-cover maps.

5 Data availability

In this study, the new GLC_FCS10 land-cover
dataset with the fine classification system in 2023
was uploaded to the Zenodo platform and can be
visually  visited at  https://zhangxiao-glcproj.users.
earthengine.app/view/glcfcs102023maps (last ac-
cess: 11 August 2025), and it is freely accessible at
https://doi.org/10.5281/zenodo.14729665 (Liu and Zhang,
2025). To facilitate the use of this dataset, the global
GLC_FCS10 dataset has been stored with a total of 984 in-
dependent 5 x 5 geographical tiles. The tile names are in the
following format: “GLC_FCS10_2023_E/W***N/S##”, in
which the “***” and “##” illustrate coordinates of longitude
and latitude in the upper-left corner of the tile data.

As the collection of global validation dataset is labor-
intensive and time-consuming, our globally distributed val-
idation dataset in 2023 will be available upon reasonable re-
quest.

6 Conclusions

The continuous improvement of satellite techniques and
computational capability provides ample opportunity for
high-resolution global land-cover mapping. In this work,
we proposed a framework that leverages prior multisource
land-cover products, hierarchical land-cover mapping, and
local adaptive classification to generate a novel GLC_FCS10
global land-cover product containing 30 fine land-cover
types in 2023 from Sentinel-1 and Sentinel-2 time-series
imagery on the GEE platform. The GLC_FCS10 was val-
idated to achieve an O.A. of 83.16% and a « coefficient
of 0.789 using 56 121 globally distributed validation points
and achieved an O.A. of 85.09% in the United States
using a third-party validation dataset. Furthermore, cross-
comparisons with several public global high-resolution land-
cover products also demonstrated that GLC_FCS10 had ad-
vantages in the diversity of land-cover types and captur-
ing spatial details. Therefore, the GLC_FCS10 is a novel
global 10 m land-cover product with high accuracy and a fine
classification system. It can provide vital support for high-
resolution land-cover applications.
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