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Abstract. Global change has substantially shifted vegetation phenology, with important implications in the
carbon and water cycles of terrestrial ecosystems. Various vegetation phenology datasets have been developed
using remote sensing data. However, the significant uncertainties in these datasets limit our understanding of
ecosystem dynamics in terms of phenology. It is therefore crucial to generate a reliable large-scale vegetation
phenology dataset, by fusing various existing vegetation phenology datasets, to provide a comprehensive and
accurate estimation of vegetation phenology with a fine spatiotemporal resolution. In this study, we merged four
widely used vegetation phenology datasets to generate a new dataset using the reliability ensemble averaging
(REA) fusion method. The new dataset has a spatial resolution of 0.05° and covers the period from 1982 to 2020,
with geographic coverage extending above 30° N in the Northern Hemisphere. The evaluation using ground-
based phenocam data from 280 sites indicated that the accuracy of the newly merged dataset was substantially
improved compared to the four original datasets. The start and end of the growing season (SOS and EOS) in the
newly merged dataset showed the highest correlation with ground-based phenocam observations, compared to
the original datasets (0.84 and 0.71, respectively) and accuracy in terms of the root mean square error (RMSE)
between phenocam data and merged datasets (12 and 17 d, respectively). Using the new dataset, we found that
the SOS is occurring approximately 0.19 d earlier per year (p < 0.01), while the end of the growing season is
occurring 0.18 d later per year (p < 0.01) over the period 1982-2020 across regions north of 30° N. This dataset
offers a unique and novel source of vegetation phenology data for global ecology studies.

This study uses multiple phenology datasets, including the MCDI12Q2 dataset (Friedl et al.,
2022, https://doi.org/10.5067/MODIS/MCD12Q2.061), the VIP dataset (Didan and Barreto, 2016,
https://doi.org/10.5067/MEaSUREs/VIP/VIPPHEN_NDVI.004), the GIMMS NDVI3g dataset (Wang et
al., 2019, http://data.globalecology.unh.edu/data/GIMMS_NDVI3g_Phenology/), the GIMMS NDVI4g dataset
(Chen and Fu, 2024, https://doi.org/10.5281/zenodo.11136967), the PhenoCam dataset (Richardson et al.,
2018, https://doi.org/10.3334/ORNLDAAC/1674), the Internet Nature Information System of Japan (Ministry
of the Environment of Japan, 2024, http://www.sizenken.biodic.go.jp), the Phenological Eyes Network (PEN,
2024, http://www.pheno-eye.org), and the MCD12Q1 land use dataset (Friedl and Sulla-Menashe, 2022,
https://doi.org/10.5067/MODIS/MCD12Q1.061). The REA phenology dataset developed in this study is
available at https://doi.org/10.5281/zenodo.15165681 (Cui and Fu, 2024).
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1 Introduction

Global change has notably altered the timing of vegetation
phenology (Ettinger et al., 2020; Zhang et al., 2022), lead-
ing to important impacts on the carbon and water cycles
of terrestrial ecosystems (Pefiuelas et al., 2009; Piao et al.,
2019; Richardson et al., 2012; Zhou, 2022). Various veg-
etation phenology datasets using remote sensing data have
been produced, but inconsistencies and uncertainties arise
when comparing these datasets with ground-based phenolog-
ical observations and there is large variation in spatiotempo-
ral resolution (Peng et al., 2017). Therefore, there is an urgent
need to develop a highly reliable vegetation phenology prod-
uct to improve our understanding of vegetation phenology
dynamics, and to facilitate subsequent research on terrestrial
ecosystem responses to climate change.

Ground-based phenological records are commonly used
in vegetation phenology studies (Fu et al., 2014; Geng et
al., 2020; Sparks and Carey, 1995; Zhou et al., 2020). For
example, phenocams, a near-surface remote sensing tool,
have been operational for more than 20 years (Richardson
et al., 2018a). Although ground-based observations provide
high accuracy in terms of phenology dynamics, they are lim-
ited to certain locations, resulting in sparse spatial cover-
age. In contrast, phenology datasets based on remote sens-
ing data can cover large areas, providing comprehensive
and continuous monitoring of vegetation phenology across
landscapes, regions, or even continents. Additionally, remote
sensing datasets and phenocam data are processed using stan-
dardized methods that ensure consistency and comparability
across different locations and periods. However, phenology
datasets based on remote sensing data do have certain lim-
itations. Owing to differences in revisit cycles among satel-
lites, together with sensor characteristics, sun-sensor geom-
etry, and atmospheric conditions during imaging, substantial
bias exists among the derived phenology datasets. For ex-
ample, differences of > 50d in the start of the growing sea-
son (SOS) have been reported among different phenology
datasets based on remote sensing data (Peng et al., 2017,
Zhou et al., 2020). Additionally, substantial variations in
the trends of vegetation phenology exist. For example, a re-
cent study reported that the SOS was delayed by 0.17 d yr~!
when based on the Global Inventory Modeling and Mapping
Studies-3rd Generation (GIMMS 3g) dataset, whereas the
SOS was advanced by 0.58 d yr~! when based on the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) dataset
in the Northern Hemisphere during 2000-2015 (Zhang et al.,
2020). Previous studies found that different vegetation phe-
nology datasets have advantages and disadvantages in differ-
ent regions and over different periods (Fensholt and Proud,
2012; Zhang et al., 2020). The MODIS phenology prod-
uct for the United States shows a stronger correlation with
ground observations compared to the AVHRR (Advanced
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Very High-Resolution Radiometer) phenology product (Peng
et al., 2017), while the VIPPHEN (Making Earth System
Data Records for Use in Research Environments Vegetation
Index and Phenology) data have fewer missing values than
the MODIS phenology product. For estimates obtained us-
ing different extraction methods, such as varying algorithms
or approaches for extracting the SOS and EOS (end of the
growing season) from the same satellite data, the discrepan-
cies can exceed one month (White et al., 2009). Additionally,
the NDVI (normalized difference vegetation index) is a com-
monly used remote sensing indicator for assessing vegetation
cover and health. It is derived from reflectance data in the red
and near-infrared bands and is closely related to aboveground
net primary productivity (Myneni et al., 1995; Pettorelli et
al., 2005). The NDVI threshold required for phenology ex-
traction varies across different biomes due to differences in
vegetation types, growth patterns, and environmental condi-
tions, which affect how NDVI values correspond to pheno-
logical events such as the SOS and EOS (Reed et al., 1994).
Because it is difficult to determine the optimal dataset from
the various phenology datasets, producing a merged dataset
using a method that selects the most suitable dataset for dif-
ferent times and locations from all input datasets is essen-
tial for providing a comprehensive and accurate estimation of
vegetation phenology with high spatiotemporal resolution.

Remote sensing vegetation phenology typically reflects
key transition dates in the vegetation growth cycle, such as
the SOS and EOS, using various vegetation indices such as
the NDVI and EVI (enhanced vegetation index) to assess
vegetation conditions (Cong et al., 2012; Piao et al., 2019).
Ideally, phenological dates extracted using different meth-
ods (thresholds, derivatives, smoothing functions, and fitted
models) should accurately capture changes in actual physio-
logical conditions (De Beurs and Henebry, 2010). However,
in existing phenology datasets, there is often no “best” def-
inition of these transition dates (White et al., 2009). The ef-
fectiveness of different extraction methods can vary across
regions and periods, and may not always perfectly reflect
true vegetation conditions (Cong et al., 2013; De Beurs and
Henebry, 2010). For instance, in high-latitude areas, mean-
ingful observations are relatively sparse. If the smoothing
method removes too much information, it may reduce the
ability to extract phenological signals that accurately reflect
surface dynamics (Wang et al., 2015). Therefore, integrating
multiple datasets based on their reliability, rather than rely-
ing on a single dataset or using a simple averaging method,
is a more robust approach. Our study stresses the value of
integrating different datasets, and that phenology results can
be improved by applying the REA method, which assigns
weights based on dataset reliability. This method can reduce
uncertainties and provide a more accurate representation of
phenological dynamics across different spatial and temporal
scales.
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Data fusion methods generally include unmixing-based,
weight-function-based, and Bayesian-based approaches
(Gevaert and Garcia-Haro, 2015; Piao et al., 2019). In
vegetation phenology studies, fusion methods based on
raw remote sensing data, such as the Spatial and Temporal
Adaptive Reflectance Fusion Model (Gao et al., 2006) and
the Enhanced Spatial and Temporal Adaptive Reflectance
Fusion Model (Zhu et al., 2010), are often influenced by
vegetation types, growth conditions, and methodological
assumptions (Sisheber et al., 2022). These methods are
typically applied to specific regions, and their performance
can be affected by nonlinear spectral mixing, where the
reflectance of vegetation endmembers (the pure spectral
signatures of distinct land cover types) changes nonlinearly,
and the spectral response of a single pixel is no longer a
simple linear combination of the endmember spectra (Ma
et al., 2015). The nonlinear combination of the ground
feature can degrade the accuracy of vegetation phenology
extraction. Unlike these approaches, the reliability ensemble
averaging (REA) method is not based on the assumption of
linear reflectance changes. Instead, it directly merges annual
phenology products based on their reliability. Compared
to traditional data fusion methods, the REA method shows
clear advantages in simplicity and computational efficiency
(Lu et al., 2021), while explicitly accounting for dataset
reliability, in contrast to simple averaging methods that
assume equal reliability across datasets. The simple aver-
aging method treats all datasets equally by calculating the
mean value across different vegetation phenology datasets,
despite their uncertainties varying across time and space (Lu
et al., 2021; Wang et al., 2019), which leads to potential
inaccuracies in the result. The REA method considers the
temporal consistency of vegetation phenology data and
uses the voting principle, whereby the final REA result
is generated by assigning different weights to the input
data sources based on their agreement (Giorgi and Mearns,
2002). This provides convergence while preserving spatial
differences, making it suitable for multi-source data fusion.

In this study, we merged four widely used vegetation phe-
nology datasets to generate a new dataset using the REA
fusion method. The spatial resolution of the new dataset is
0.05°, with a temporal scale spanning 1982-2020, and it
covers regions north of the 30° N latitude. The new dataset
was evaluated using data from the ground-based phenocam
dataset from 280 sites over the period 2000-2018, which pro-
vided 1410 site—year combinations. We further explored the
phenological trends in the spring and autumn vegetation phe-
nology using the merged dataset. The new vegetation phe-
nology dataset could be used in further studies on the impact
of energy and carbon—water cycles within terrestrial ecosys-
tems, together with analyses of their responses and feedbacks
to global climate change (Piao et al., 2009, 2019; Tang et al.,
2016).
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2 Data and method

2.1 Phenology dataset

Four satellite-based vegetation phenology products were
used to create a merged dataset, and the ground-based pheno-
cam dataset was used for validation. The four satellite-based
vegetation phenology products included (1) the MCD12Q2
(Moderate Resolution Imaging Spectroradiometer (MODIS)
Land Cover Dynamics data product) phenology dataset,
which was extracted from the MODIS Land Cover Dynam-
ics Version 6.1 derived by Friedl et al. (2022); (2) the VIP
(Making Earth System Data Records for Use in Research
Environments Vegetation Index and Phenology) dataset de-
rived by Didan and Barreto (2016); (3) the GIM_3g (GIMMS
(Global Inventory Modeling and Mapping Studies) NDVI
3rd Generation) based phenology dataset derived by Wang
et al. (2019); and (4) the GIM_4g (GIMMS (Global Inven-
tory Modeling and Mapping Studies) NDVI 4th Generation)
based phenology dataset derived by Chen and Fu (2024).
These phenological data products were obtained from open
sources and used to merge a new set of phenological prod-
ucts. The time span and the spatial resolution of each vegeta-
tion phenology dataset are listed in Table 1. The merged data
used in this paper were clipped into regions above 30° in the
Northern Hemisphere to ensure that the region was covered
by the four datasets.

2.1.1 MCD12Q2 phenology dataset

The MCD12Q2 product was derived using data from the
MODIS sensor on board the Terra and Aqua satellites. The
MCD12Q2 land cover dynamic product v6.1 provides a
global surface phenology dataset with a 500 m spatial res-
olution for the period 2001-2020. The vegetation phenology
data were extracted from the Nadir Bidirectional Adjusted
Reflectance 2-band Enhanced Vegetation Index (EVI2) us-
ing the threshold method (Gray et al., 2019). The threshold
method defines the growing state of the vegetation as the
time when the vegetation index reaches a certain percent-
age of the annual amplitude and reflects a specific vegetation
physiological growth stage (the schematic diagram is shown
in Fig. S1 in the Supplement). The amplitude is calculated
as the difference between the maximum and minimum val-
ues of the EVI2 time series during the entire growing sea-
son. The MCD12Q2 phenology dataset includes greenup and
dormancy (equivalent to SOS and EOS in this study, respec-
tively). Greenup (dormancy) is defined as the date when the
EVI2 time series first (last) crosses 15 % of the segment EVI2
amplitude (Gray et al., 2019). The time series data were fit-
ted by a penalized cubic smoothing spline. This dataset can
be found at https://doi.org/10.5067/MODIS/MCD12Q2.061
(Friedl et al., 2022).
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Table 1. List of data sources.
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Name Abbreviations Sensor Spatial Time span Reference
resolution
MODIS MCDI12Q2 MODIS 500 m 2001-2020 Friedl et al.
MCD12Q2 (2022)
MEaSUREs VIP AVHRR& 0.05° 1982-2015 Didan and
VIPPHEN MODIS Barreto (2016)
GIMMS GIM_3g AVHRR 1/12° 1999-2014 Wang et al.
NDVI3g (2019)
GIMMS GIM_4g AVHRR 1/12° 1982-2020 Chen and Fu
NDVI4g (2024)

2.1.2 VIP phenology dataset

The VIP phenology dataset was generated using data from
the NASA Making Earth System Data Records for Use in
Research Environments (MEaSURESs) and the AVHRR over
the period 1981-1999, together with MODIS/Terra MODO09
surface reflectance data over the period 2000-2014 (Didan
et al., 2018). The VIP dataset includes the SOS and EOS,
which were also extracted using the threshold method. The
filtering method, which uses confidence intervals and an
operational continuity algorithm, was applied to reconstruct
the time series curves. The start (end) of the season is
defined using the modified Half-Max method (White et
al., 2009) as the date when the NDVI time series first
(last) crosses 35 % of the growing-season NDVI amplitude.
This dataset is organized in a geographic gridded format
with a spatial resolution of 0.05°. This dataset can be found at

https://doi.org/10.5067/MEaSUREs/VIP/VIPPHEN_NDVI.004

(Didan and Barreto, 2016).

2.1.3 GIM_3g phenology dataset

The GIMMS NDVI 3g-based phenology dataset (GIM_3g)
has a spatial resolution of 1/12° and covers the period
1999-2014 (Wang et al., 2019). A double logistic func-
tion was applied to fit the NDVI curve and the thresh-
old method was used to extract phenological dates, includ-
ing the SOS and EOS. This product provides phenology
data for the Northern Hemisphere, and it uses the date
when the NDVI first (last) crosses 20 % of the segment
NDVI amplitude as the SOS (EOS). This dataset can be
accessed at http://data.globalecology.unh.edu/data/GIMMS _
NDVI3g_Phenology/ (last access: 13 May 2024) (Wang et
al., 2019).

2.1.4 GIM_4g phenology dataset

The GIM_4g dataset, based on the GIMMS NDVI 4¢g dataset
acquired by the AVHRR sensors, has a spatial resolu-
tion of 1/12° and a temporal scale spanning 1982-2020.

Earth Syst. Sci. Data, 17, 4005-4022, 2025

Two steps were adopted in the process to extract pheno-
logical dates. First, the NDVI time series data were fit-
ted and smoothed using five fitting methods: the HANTS-
Maximum, Spline-Midpoint, Gaussian-Midpoint, Timesat-
SG, and Polyfit-Maximum methods. Second, the thresh-
old method was used to extract phenological dates, using
the date when the NDVI first (last) crosses 20 % (50 %)
of the segment NDVI amplitude as the SOS (EOS) (Chen
et al., 2024; Chen and Fu, 2024). The average spring
(SOS) and autumn (EOS) phenological dates were pro-
duced by averaging the results obtained from the five fit-
ting methods. The GIM_4g phenology dataset is available
at https://doi.org/10.5281/zenodo.11136967 (Chen and Fu,
2024).

2.1.5 Camera-based phenology dataset

A ground-based phenocam dataset, with phenological dates
extracted from camera-derived images with high spatial reso-
lution and reliable accuracy, was used to validate the merged
dataset. The phenocam dataset comprised three datasets. The
first dataset, the PhenoCam Dataset v2.0 (Richardson et al.,
2018b; Seyednasrollah et al., 2019a, b), included data derived
from conventional visible-wavelength automated digital
camera imagery through the PhenoCam Network (Richard-
son et al., 2018a) over the period 2000-2018 and across
393 sites in various ecosystems. For detailed information,
please refer to https://doi.org/10.3334/ORNLDAAC/1674
(Richardson et al., 2018) and https://phenocam.nau.edu/
webcam/ (last access: 21 May 2024). It comprised all typ-
ical vegetation types including deciduous broadleaf, decid-
uous needleleaf, evergreen broadleaf, evergreen needleleaf,
grassland, mixed vegetation, shrubland, tundra, and wetland
ecosystems, mainly in regions of Europe and North Amer-
ica (Moon et al., 2021; Ruan et al., 2023). A spline inter-
polation method was applied to the PhenoCam data to ex-
tract transition dates for each region of interest (ROI) using
the green chromatic coordinate (GCC), a measure of green-
ness intensity derived from digital imagery (Sonnentag et al.,

https://doi.org/10.5194/essd-17-4005-2025
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2012) in the PhenoCam Dataset v2.0. We used the date when
the GCC first (last) crosses 25 % of the GCC amplitude as
the SOS and EOS. The second phenocam dataset is from
the Japan Internet Nature Information System digital camera
data (http://www.sizenken.biodic.go.jp/, last access: 12 May
2024) acquired over the period 2002-2009. Ide and Oguma
(2010) provided greenup dates for two phenocam sites with
the ROI defined at the species-level scale. The vegetation
types included in their data comprised wetland and mixed
deciduous forest. The date of greenup each year was esti-
mated as the day of year (DOY) corresponding to the max-
imum rate of increase in the 2G-RBi index. This is calcu-
lated as the maximum of the second derivative of the GCC
time series (the maximum of the second derivative of GCC)
The third dataset consisted of phenology data for deciduous
broadleaf forests in Japan (Inoue et al., 2014), supported by
the Phenological Eyes Network (http://www.pheno-eye.org/,
last access: 13 May 2024), which is a network of ground-
based observatories for long-term automatic observation of
vegetation dynamics established in 2003 (Nasahara and Na-
gai, 2015). The SOS and EOS was defined as the first day
when 20 % of leaves had flushed and the first day when 80 %
of leaves had fallen in the given ROI, respectively. For this
study, we excluded 26 sites that only provided one type of
transition date (either SOS or EOS) and removed 90 sites
where none of the 4 remote sensing datasets provided valid
phenology estimates. These excluded sites were primarily
located in cropland-dominated areas or regions with sparse
vegetation, where the low spatial resolution of remote sens-
ing data limited the reliable detection of phenological tran-
sitions. We then selected phenocam data from 280 sites over
the period 2000-2018, resulting in 1410 site—year combina-
tions.

2.1.6 Land cover dataset

To avoid the impact of human activities and non-vegetated ar-
eas on data quality, areas of cropland, cropland/natural veg-
etation mosaics, permanent snow and ice, barren land, and
water bodies were removed based on a land cover dataset ob-
tained by a supervised classification of MODIS reflectance
data (Sulla-Menashe and Friedl, 2018). The land cover data
generated based on the Annual International Geosphere—
Biosphere Programme classification schemes are avail-
able from https://doi.org/10.5067/MODIS/MCD12Q1.061
(Friedl and Sulla-Menashe, 2022).

2.2 Ensemble method for estimating phenological dates

2.2.1 Reliability ensemble averaging method

The weighting method was applied to obtain more accu-
rate SOS and EOS dates from the four vegetation phenol-
ogy datasets. The weight assigned to each product was based
on the interannual variability of each phenology dataset, as
well as the degree of consistency and offset among the four
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datasets. Importantly, these weights can vary over time to re-
flect changes in dataset reliability and performance (Giorgi
and Mearns, 2002). The consistency is measured as the dif-
ference between each input dataset and the mean value of
the four datasets, and the offset is measured as the differ-
ence between the REA result and each input dataset. These
values are iteratively calculated during the process of deter-
mining the final weight coefficients. There are discrepancies
in the spatial coverage among the four phenology datasets,
and missing data in specific regions for some of the datasets.
The ensemble method can fill in missing data accurately,
thereby producing a phenology dataset with high accuracy
and spatially continuous coverage. Furthermore, the process
of merging the phenology datasets does not depend on simple
averaging; instead, it is based on the uncertainty (calculated
using the merged result and the differences between the REA
result and the remote sensing phenology datasets) among the
products, which produces data that are more reliable than
those obtained using the simple averaging method, and can
circumvent the effects of outliers (Giorgi and Mearns, 2002).

The REA method, based on the “voting principle” (where
the REA result is generated by assigning different weights
to the input data sources), produces data that align with the
majority of input phenology products at the pixel level. This
approach assumes that most data values at each pixel are ac-
curate, while outliers are down-weighted or excluded. It pro-
vides a dataset with high reliability by relying on the tem-
poral consistency of each pixel among the input products,
and by minimizing the influence of outliers during the merg-
ing process (Giorgi and Mearns, 2002). The REA method
has been applied to generate datasets for multiple elemen-
tal fields, e.g., temperature, evapotranspiration, and precipi-
tation (Giorgi and Mearns, 2002; Lu et al., 2021; Xu et al.,
2010). In this study, the REA method was used to integrate
both the SOS and the EOS from the four phenology datasets.

The REA method gives different weights to the various
datasets involved in the process of data merging and then ob-
tains the desired result using the following function:

Zi R; APhe;
Zi R;
where APhe represents the phenology result, APhe; repre-
sents the different datasets involved in the process, A denotes

the REA process, and R; represents the model reliability fac-
tor, which is defined as follows:

Re=[(Re )" x (Rp,)"]7]

_ GPhe " EPhe ! [m] (2)
abs (Bphe,i) abs (Dpne, ;)

where Rp ; measures the bias of the data compared with that
of the average data (the higher the bias, the lower the reliabil-
ity of the dataset), and Rp ; represents the convergence cri-
terion of the data (the larger the distance between the dataset

APhe = A (APhe) = (1)

Earth Syst. Sci. Data, 17, 4005-4022, 2025
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and the newly generated REA data, the poorer the conver-
gence; several iterations are required to reach convergence).
The values of Rg; and Rp ; will be set to 1 when Bppe,; and
Dppe,; are less than eppe, which means the deviation of the
dataset is within the limit of natural variation.

Bphe.; = APhe; — Phe (3)
DPhe,i = APhe,- — APhe (4)
éppe = max (MA (Dppe)) — min(MA (Dppe)) - &)

Eq. (3) explains the derivation of Bppe ;: it is defined by
the difference between the input dataset and the mean value
of the four datasets. Eq. (4) explains the arithmetic process
of Dppe i, which is measured by the difference between the
REA result and each input dataset. In Eq. (5), eppe 1S mea-
sured by the natural variability in phenology, which is calcu-
lated by estimating the difference between the maximum and
minimum values of the multiyear moving averages following
the linear detrending of the observed long-term series data,
and works with Bppe; and Dppe,; jointly to assign weights
to each dataset. Natural variability changes from region to
region: in Eqgs. (1) and (6), eppe cancels out under the condi-
tion that both Bppe ; and Dpye ; are greater than eppe. This is
based on the assumption that more stringent criteria for con-
sistency and deviation are required to increase reliability in
regions characterized by lower natural variability.

1
M. - 272
Sphe = A(APhei—APhe) ]

1

B - 2
Y. R; (APhel- - APhe)

= (6)
ZiRi

APhe, = APhe + S ppe, (7a)

APhe_ = APhe — 5 Aphe. (7b)

In Eq. (6), dppe is the uncertainty range calculated using R;
and the difference between the REA result and the datasets
(a higher value of §pp. means larger differences between the
REA result and the original phenology datasets). The up-
per and lower uncertainty limits are measured by APhe and
8 APhes respectively, in Egs. (7a) and (7b).

If an individual data point shows significant discrepancies
compared to others, potentially caused by improper extrac-
tion methods in that region, the Bppe ; and Dpype ; will extract
this variance and incorporate it, along with the natural vari-
ability eppe of the region, into the weight distribution process.
If the natural variability of that region is low, then the weight
is assigned to a smaller value, and if the natural variability of
the region is large, the weight is assigned by both the natural
variability and the deviations.

To evaluate the robustness of the REA method, we used
a sensitivity analysis to confirm its reliability, considering
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the influence of different time spans and dataset combina-
tion choices on the fusion results. In the sensitivity analysis
of the time span, we performed fusion experiments using two
subsets (2001-2005 and 2006-2010) and compared them to
the full 2001-2010 period, and the differences in the fusion
results were analyzed. In the sensitivity analysis of the selec-
tion of different dataset combinations on the fusion results,
we selected three dataset combinations for the fusion experi-
ment and analyzed the influence of data selection on the fu-
sion results. Each group included two datasets selected from
the four used in the full REA fusion. These combinations
were chosen to assess how different data sources influence
the final REA results.

2.2.2 Evaluation criteria

In this study, the metrics of the root mean square error
(RMSE), bias, correlation coefficient (), unbiased RMSE
(UbRMSE), and coefficient of variation (CV) were used for
data evaluation:

B \/ > (Phe; — Ref;)?
n b

RMSE ®)
" (Phe; — Ref;

bias = 2=i=1¢ — ) ©)

= Z?zl (Phe,' —m) (Ref,' - m) (10)

JE0 (Phe; — Phe)’ /S, (Ref; — Rel)?

UbRMSE = v RMSE? — bias?, (11)
1 & —

SD= |+ > (Phe; —Phe)”, (12)

i=1

Cv= ‘;P—: (13)

(&

where n represents the number of site years, Phe; repre-
sents the corresponding vegetation phenological indicator
(SOS and EOS) at a given point, Ref; represents data from
a phenology camera, oppe represents the standard deviation
of Phe;, and Phe and Ref represent the average of Phe; and
Ref;, respectively.

The RMSE is calculated as the square root of the aver-
age of the squares of the residuals, which penalizes larger
errors than smaller ones and provides an estimate of the mag-
nitude of errors between the remote sensing estimated value
and phenocam datasets. Bias is the average difference be-
tween the remote sensing estimated value and the phenocam
value, which helps in understanding whether the estimated
value is higher or lower than the phenocam value. The cor-
relation coefficient measures the linear relationship between
two variables. The UbRMSE measures the deviation between
two variables without systematic errors. The standard devia-
tion quantifies the variation of the dataset, which measures
the deviation between the data and the mean value.
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2.2.3 Mann—-Kendall trend test

The Mann—Kendall trend test is a nonparametric trend test
method, which has the characteristics of not being limited
by a specific distribution and a small number of outliers, and
can be used to detect the trend of time series data (Kendall,
1975). The Mann—Kendall test was applied to detect trends
in the SOS and EOS dates during 1982-2020 in the merged
dataset, as well as trends in the growing-season greenness
across different phenology datasets. The SOS/EOS trends
refer to the temporal change in the timing of phenological
events and the greenness trends refer to interannual variations
in vegetation greenness during the growing seasons. The ba-
sic Mann—Kendall test formulas are as follows:

n—1 n
S:Z Z sgn(X; — X;), (14)

i=1j=j+1
S—1
+/ Var(S) §>0
Ze = 0 S=0 (15)

S+1
~a S <0

where X; and X; are the phenological parameter values of
the ith year and the jth year of the pixel, respectively, n is
the length of the time series, sgn is the sign function, and §
is the test statistic. The null hypothesis Hy is as follows: the
time series data are n independent samples with identically
distributed random variables. Hy: for any i, j < n, andi # j,
the distribution of X;, Xy is different. If | Z| > Z; , , the time
series is considered to have a statistically signiﬁcailt change;
otherwise, any change is considered not statistically signifi-
cant. When Z > 0, the time series has an upward trend; when
Z < 0, it has a downward trend.

2.2.4 Growing-season greenness

Greenness is a widely used indicator of vegetation growth,
typically represented by NDVI (Myneni, 1997). The
growing-season greenness (GSG) is calculated as the mean
NDVI value within the growing season in this study, defined
by the period between the SOS and EOS:

GSG = mean (NDVI [Dategos, Dategos]) (16)

Dategos is the DOY value of the SOS data, and Dategps is
the DOY value of the EOS value. Mean denotes calculating
the mean NDVI value in the corresponding date range.

3 Results

3.1 Differences in the vegetation phenological dates
among the four datasets

Fig. 1 illustrates the spatial distribution of the multiyear
mean dates for both the SOS and the EOS above 30°N for
each of the four datasets. The mean SOS values for the
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MCD12Q2, VIP, GIM_3g, and GIM_4g datasets are DOY
120 (SD=324d), 125 (SD=43d), 132 (SD=17d), and 139
(SD =324d), respectively. Discrepancies among the datasets
are particularly notable in southwestern North America,
North Africa, the Qinghai-Tibet Plateau, and Mongolia.
Compared with the SOS, the EOS exhibits greater vari-
ability, and the mean EOS values for the MCD12Q2, VIP,
GIM_3g, and GIM_4g datasets are DOY 281 (SD=374d),
290 (SD=444d), 315 (SD=19d), and 287 (SD =53d), re-
spectively. Among the four datasets, the spatial distribu-
tions of the GIM_4g and VIP datasets are the most simi-
lar. In comparison with these two datasets, the MCD12Q2
dataset displays earlier EOS values in northern Europe, Cen-
tral Asia, North America, and the 45-60° N latitudinal belt
over Central Asia. Given the substantial differences among
these datasets, it is imperative to integrate these datasets into
a merged dataset with higher accuracy.

3.2 \Variation of weights and contributions of the four
datasets to the merged phenology dataset

The weight of each dataset, as determined by the REA
method, varies largely among years and specific locations.
The left panels of Fig. 2 illustrate the mean weight for
each dataset in each year over the period 1982-2020, with
the upper and lower sections representing the SOS and the
EOS, respectively. For the SOS, the overall weight of the
VIP dataset during 1982—-1998 surpasses that of the GIM_4g
dataset. The GIM_3g dataset is dominant during 1999-2014,
with weights exceeding 65 %. In 2015, the weighting of the
MCD12Q2 dataset is highest, at approximately 45 %, with
the weights of the other two datasets broadly similar. Dur-
ing 2016-2020, the weights of the MCD12Q2 and GIM_4g
datasets are 61 % and 39 %, respectively. The combinations
of data sources for the EOS data are similar to those for
the SOS data. Specifically, during 1982-1998, the weight
of the VIP dataset is approximately 65 %, with the GIM_4g
dataset accounting for the remaining 35 %. For 1999-2000,
the weighting of the GIM_3g dataset is approximately 10 %,
whereas that of the VIP dataset is the highest (approxi-
mately 55 %). Throughout the period 2001-2014, the weight-
ing of the VIP dataset is greatest (> 45 %), whereas that
of the GIM_3g dataset is low (< 10 %); the weighting of
the GIM_4g and MCD12Q2 datasets each account for over
20 %. During 20162020, the weights of the GIM_4g and
MCD12Q2 datasets are broadly equal, albeit with the weight-
ing of the GIM_4g dataset slightly exceeding that of the
MCD12Q2 dataset.

The latitudinal distribution of the mean weighting of the
datasets for the SOS and the EOS is shown in Figs. 2b and 2d,
respectively. For the SOS data, the zonal distribution of the
GIM_4g, VIP, and MCD12Q2 datasets is reasonably stable
within 30-75° N. The weight of the GIM_3g dataset is no-
tably higher between 50 and 70° N, primarily because of its
spatial distribution, and it shows notable fluctuations in high-
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Figure 1. Spatial distribution of the multiyear mean SOS and EOS dates from each phenology dataset: (a—d) multiyear mean SOS dates and
(e-h) multiyear mean EOS dates derived from the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively.

latitude areas. In contrast, the weighting of the EOS datasets
exhibits relatively smooth changes within 30-75° N. There
are marked fluctuations in the weighting of the GIM_4g and
VIP datasets in high-latitude areas above 75° N. The weight
of the GIM_4g dataset between 30 and 75° N fluctuates be-
fore stabilizing smoothly. Conversely, the weight of the VIP
dataset increases with the latitude, displaying a trend oppo-
site to that of the GIM_4g dataset. Additionally, the weight-
ing of both the MCD12Q2 and the GIM_3g datasets initially
increases and then decreases with the increasing latitude.
Fig. 3 shows the spatial distribution of the mean contribu-
tion of the four datasets to the merged SOS and EOS results,
calculated as the average weight for each pixel over the time
span for the corresponding dataset. For the SOS data, the
GIM_3g dataset exhibits the greatest contribution, followed
by similar contributions from the GIM_4g and VIP datasets;
the MCD12Q2 dataset has the smallest contribution. The
MCD12Q2 dataset has a greater contribution in high-latitude
areas near the Arctic Circle, but makes a smaller contribu-
tion in most other regions. The VIP dataset generally has a
greater contribution than that of the MCD12Q2 dataset, with
values ranging between 0 and 0.5 in 90 % of areas. The over-
all contribution of the GIM_3g dataset is reasonably uni-
form, averaging approximately 0.37. For the EOS data, the
VIP dataset has the greatest contribution, followed by the
GIM_4g dataset; the GIM_3g dataset has the smallest con-
tribution. The contribution of the MCD12Q2 dataset remains
relatively small, primarily distributed between 0 and 0.5. The
VIP dataset has a positive correlation with the latitude, with
approximately 4.7 % of areas of weights exceeding 0.8 in
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Central Asia and parts of East Asia, whereas the contribu-
tion of the GIM_3g dataset remains lower across the entire
region.

3.3 Merged phenology dataset using the REA method

Fig. 4 displays the merged mean SOS and EOS dates for the
period 1982-2020. For the SOS, a general pattern of increase
with the latitude is evident, albeit with a later occurrence of
the SOS in southwestern North America and on the Qinghai—
Tibet Plateau. The highest proportion of the SOS falls within
DOY 120-150 (38.2 %), followed by DOY 90-120 (23.1 %),
DOY 150-180 (21.23 %), and DOY 60-90 (11.1 %). Only a
small proportion (4.6 %) of areas are experiencing the SOS
later than DOY 180. The mean SOS obtained using the REA
method is DOY 129 (SD =28d). It demonstrates an over-
all increase in the EOS with the latitude, with fewer trends
observed in high-latitude areas above 60°N and the east-
ern parts of North America. The distribution of the EOS ap-
pears more uniform after the merging. Unlike the SOS dates,
which exhibit greater variability, the EOS dates are more
consistent, predominantly occurring within DOY 270-330
(80.0 %). The mean EOS is DOY 284 (SD =20d). The in-
terannual variability in most regions for both the SOS and
the EOS data is minimal; however, notable variations are ob-
served in areas such as southwestern North America, Spain,
Portugal, North Africa, West Asia, and Mongolia, consistent
with the earlier analysis of data sources (Fu et al., 2014; Liu
et al., 2016; Piao et al., 2006, 2015).

The mean uncertainty range of the merged SOS and EOS
dates, calculated using Eq. (6), is presented in Fig. 4. This
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Figure 2. (a, ¢) The weights of the four phenology datasets during 1982-2020 and (b, d) latitudinal differences for (a, b) the SOS and (c,
d) the EOS. For panels (b) and (d), the latitudinal weights are the mean values of each dataset over their respective time spans. The four
datasets comprise the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets (for the full names, see Table 1).

range was determined using the REA method over the pe-
riod from 1982 to 2020. The mean uncertainty range of the
SOS (EOS) dates is below 10d in more than 96 % (94 %)
of regions, with less than 4 % (5 %) of regions exhibiting a
mean uncertainty range exceeding 10 or 15d (Figs. 4b and
4e). The mean uncertainty range of SOS dates shows a neg-
ative correlation with the latitude, whereas this trend is not
evident in the EOS dates. In Figs. 4c and 4f, the CV of the
uncertainty in the SOS and EOS dates from 1982 to 2020
is analyzed. More than 56 % (73 %) of regions exhibit a CV
below 1, 31 % (18 %) of regions have a CV between 1 and
1.5, and only 13 % (8 %) of regions show a CV higher than
1.5. No evident correlation is observed between the CV and
latitude changes.

The phenocam dataset was used to evaluate each of the
four vegetation datasets and the merged dataset. The verifica-
tion results of the SOS and EOS data indicate that the merged
data produced using the REA method has the best perfor-
mance (Fig. 5). Specifically, the RMSE for the SOS and the
EOS is 12 and 17d, respectively. The correlation between
the SOS and phenocam results is notably high, at 0.84; for
the EOS, it is 0.71. An evaluation of the four satellite-based
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SOS products shows that the GIM_3g dataset has the high-
est correlation coefficient and the lowest RMSE among the
four datasets. However, it has more missing values spatially
and a shorter time span, leading to fewer points for verifica-
tion. The MCD12Q2 dataset has a correlation coefficient of
0.65 and an RMSE of 20 d, but its wider spatial coverage pro-
vides more points for verification. The GIM_4g dataset has
a lower correlation with the phenocam dataset owing to out-
liers, resulting in an RMSE of 29 d. Compared with the phe-
nocam dataset, the VIP dataset tends to estimate earlier SOS
dates than the other datasets, especially in areas where the
SOS occurs early in the season (DOY 100-140), leading to
a larger RMSE. And comparing with the simple average, the
REA-based SOS shows better performance in RMSE (REA
and average, 12 and 21 d, respectively (in Fig. S4)), CORR
(correlation coefficient) (REA and average, 0.84 and 0.65,
respectively), bias (REA and average, —1.5 and —9.7d, re-
spectively), and UbRMSE (REA and average, 12 and 18d,
respectively). The REA-based SOS dataset outperforms in
terms of all indicators, with the lowest RMSE, UbRMSE,
and standard deviation, together with the highest correlation

Earth Syst. Sci. Data, 17, 4005-4022, 2025
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Figure 3. Spatial distribution of the mean contribution of the four datasets to the merged SOS and EOS results. The mean SOS (a—d) and
EOS (e-h) weights are derived from the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets.

and lowest absolute bias, thereby demonstrating high consis-
tency with the phenocam dataset.

In the evaluation of the EOS, the MCD12Q2 dataset has
the best results among the four datasets, and except for the
REA result, it has the highest correlation coefficient and
the lowest RMSE. The GIM_4g dataset shows good per-
formance but tends to overestimate the EOS, with predicted
dates occurring later than observed, resulting in an RMSE of
43d. Both the VIP and the GIM_3g datasets also overesti-
mate the EOS due to their spatial and temporal distributions,
with RMSEs of 46 and 35 d, respectively. The REA-based
EOS also shows better performance compared to the simple
average of the original datasets in RMSE (REA and average,
17 and 32d, respectively), CORR (REA and average, 0.71
and 0.45, respectively), bias (REA and average, 1.0 and 8.0d,
respectively), and UbRMSE (REA and average, 17 and 314,
respectively). It is evident from Fig. 5 that the REA dataset
demonstrates the highest accuracy and best consistency with
the phenocam dataset, outperforming the four other datasets
in terms of all indicators, with the lowest RMSE, UbRMSE,
and standard deviation, together with the highest correlation
and lowest absolute bias.

We selected a long-term PhenoCam site (Morganmonroe)
from the PhenoCam Network to evaluate the merged dataset
across years at a single location. We have chosen a US Phe-
noCam site characterized by deciduous broadleaved forest,
with data from 2010-2020 for both the SOS and EOS. As
illustrated in the time series plot in Fig. S5, the consistency
between the REA results and PhenoCam data for both the
SOS and EOS is the highest when compared to the original

Earth Syst. Sci. Data, 17, 4005-4022, 2025

four individual datasets. Additionally, most vegetation phe-
nology products demonstrate higher consistency with phe-
nocam data for the SOS compared to the EOS.

3.4 Temporal trends of phenology based on the merged
dataset

It is evident from Fig. 6a that the SOS exhibits a significant
(p < 0.01) trend of advance (earlier dates in the SOS) over
the period 1982-2020, with a rate of advance of approxi-
mately 0.19 d yr~!. Fig. 6b presents the spatial distribution of
the SOS trends obtained using the Mann—Kendall test. Ap-
proximately 64.37 % of regions exhibit a trend of advance,
with 44.88 % exhibiting a significant (p < 0.05) trend, while
18.53 % of regions demonstrate a significant trend of delay
(later dates in the SOS).

Fig. 6¢ illustrates that the EOS exhibits a significant trend
of delay (later dates in the EOS) with a rate of 0.18d yr™!
(p < 0.01). It is evident from Fig. 6d that the proportion of
areas experiencing a delayed EOS in regions above 30°N
is 68.11 % (comprising 46.60 %; significant at p < 0.05),
consistent with the corresponding trend depicted in Fig. 6c¢.
Apart from the southwestern to northeastern regions of North
America, Europe, the Middle East, and certain high-latitude
areas in Asia, EOS delay is predominant.

Over the study area, 46.72 % of regions exhibit SOS ad-
vance and EOS delay, 17.73 % show SOS advance and EOS
advance, 21.42 % demonstrate SOS delay and EOS delay,
and 14.14 % show SOS delay and EOS advance.
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and its CV in (c) the merged SOS and (f) EOS dates.

4 Discussion and conclusions

4.1 Integrating multi-source phenology data and
addressing dataset discrepancies

This study integrates four widely used remote sensing phe-
nology datasets (VIP, GIM_4g, MCD12Q2, and GIM_3g)
using the reliability ensemble averaging (REA) method
to improve the consistency of SOS and EOS estimations.
Our analysis shows substantial discrepancies among these
datasets, consistent with previous findings that SOS esti-
mates can vary by 60d (White et al., 2009) or even exceed
100d (De Beurs and Henebry, 2010), depending on the ex-
traction method. We find the inconsistencies that arise from
both differences in data sources and variations in phenology
extraction methodologies by evaluating the spatial distribu-
tion of the multiyear mean SOS and EOS across datasets.
The REA method produces a more harmonized phenology
result by assigning different weights to each dataset based on
its reliability to mitigate discrepancies. The effectiveness of
this approach is demonstrated by the lower deviation of the
SOS and EOS estimates between merged results and pheno-
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cam datasets. As shown in Fig. 1, the differences in the SOS
and EOS among the four datasets across the Northern Hemi-
sphere reach approximately 15d on average, with some re-
gions exhibiting even larger discrepancies (more than 120 d).
These variations might be caused by factors such as sensor
characteristics, data preprocessing techniques, and phenolog-
ical extraction methods. For instance, similarities in spatial
distributions between the GIM_4g and VIP datasets likely
stem from their common use of AVHRR sensor data, whereas
their mean difference (14d) could be attributed to differ-
ences in time series reconstruction techniques. Differences
between GIM_4g and GIM_3g are primarily driven by dif-
ferent data fitting methodologies. The data smoothing tech-
niques aim to preserve vegetation dynamics while reducing
noise, but the optimal method is still unclear, as the appropri-
ate method depends on the specific biogeographical charac-
teristics of a given region (Hird and McDermid, 2009).
Additionally, phenology extraction methods exhibit vary-
ing effectiveness across different ecological regions (Reed,
2006). Evaluating dataset consistency with PhenoCam ob-
servations across different plant functional types (PFTs), we
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Figure 5. Scatterplots and radar charts of performance for each phenology dataset and the merged phenology dataset obtained using the
REA method. (a—f) SOS evaluation results of the GIM_4g, MCD12Q2, VIP, GIM_3g, average, and REA dataset, (m) radar chart of the SOS
evaluation results, (g-1) EOS evaluation results of the GIM_4g, MCD12Q2, VIP, GIM_3g, average, and REA dataset, and (n) radar chart of
the EOS evaluation results. Each point represents a site year in the figure. OBS indicates the ground-based phenocam phenological dates,
RMSE indicates the RMSE, UbRMSE indicates the unbiased RMSE, bias indicates the mean difference between the satellite-based results
and the ground-based verification results, SD indicates the standard deviation, and CORR indicates the correlation coefficient. The radar
chart is a graphical method used to display multivariate data in the form of a two-dimensional chart with axes starting from the same point.

find that dataset performance varies by PFT and time period.
For instance (in Fig. S2), VIP data show consistency with
PhenoCam observations in deciduous broadleaf forests in
2001, whereas GIM_3g outperforms other datasets in 2002.
And MCD12Q2 shows better agreement in evergreen needle-
leaf forests. These findings stress the challenges of integrat-
ing datasets with inherently different methodological foun-
dations.

We further evaluated the greening trend, which re-
flects the temporal change in the average vegetation green-
ness during the growing season, as indicated by NDVI
trends (Li et al., 2023). The greening trend estimated from
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VIP (—10.16 x 1074 yr_l) is lower than those from REA
(—1.14 x 10~*yr~!) and GIM_4g (3.55 x 10~*yr~!). The
proportion of areas showing greening trends is 25.22 %
(with 41.44 % significantly greening) for VIP, 68.49 % (with
38.32 % significantly greening) for GIM_4g, and 49.83 %
(with 56.83 % significantly greening) for REA. These sub-
stantial differences in greenness trends across datasets
(Fig. S3) highlight the necessity of an integrated approach
for robust phenology estimation.
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Figure 6. Temporal and spatial trends of the SOS and the EOS over the period 1982-2020 based on the merged dataset obtained using
the REA method. (a) Temporal trend of the SOS over the period 1982-2020, (b) spatial trend of the SOS over the period 1982-2020,
(c) temporal trend of the EOS over the period 1982-2020, (d) spatial trend of the EOS over the period 1982-2020. The shaded area in (a)
and (c) indicates uncertainty at 1 SD, red lines in (a) and (c) are the trend lines of the average SOS/EOS dates for each year, and black lines
are the average SOS/EOS date for each year. The abbreviations DS (significant delay), DN (non-significant delay), AS (significant advance),
and AN (non-significant advance) are used in the insets of panels (b) and (d).

4.2 Strengths, limitations, and sensitivity analysis of the
REA approach

Given the lack of consensus on the “best” approach for ex-
tracting phenological dates, our study highlights the value
of integrating multiple methodologies rather than relying on
a single dataset. The REA method improves phenology es-
timations by weighting datasets based on reliability rather
than assuming equal contributions, as in a simple arithmetic
average (Lu et al., 2021). The REA method considers the
temporal correlation of vegetation phenology data by em-
ploying a voting principle (Giorgi and Mearns, 2002), and
this approach facilitates convergence of data while retaining
differences of the spatial distribution, thereby offering ad-
vantages in multi-source data fusion over simple averaging.
Our results indicate that REA merged phenology results are
more consistent with PhenoCam observations than individ-
ual datasets and simple average results, demonstrating its po-
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tential to reduce biases between different datasets caused by
different extraction methods. However, while REA enhances
consistency, it does not fully eliminate methodological dis-
crepancies.

To evaluate the robustness of this approach, we conducted
sensitivity analyses using different dataset and time span
combinations. Our results (see Figs. S6 and S7) indicate that
the combination of different input datasets has a greater in-
fluence on fusion results than the length of the time series.
The average deviation of SOS/EOS dates between different
dataset combinations and the long-term fusion result using
all four datasets is 7.1 d, whereas the SOS and EOS variations
across different fusion time spans (e.g., 5-year vs. 10-year fu-
sion) are relatively minor (4.1 and 3.2 d; see Fig. S6). More-
over, fusion weights derived from shorter time series are
largely consistent with those obtained using the full dataset
(see Fig. S8). In the sensitivity analysis assessing the impact
of the fusion time span, the SOS results were more stable

Earth Syst. Sci. Data, 17, 4005-4022, 2025



4018

than the EOS, and the fusion results based on longer time se-
ries were more similar to the full-period REA fusion result
(1982-2020).

The effectiveness of data fusion depends on the comple-
mentarity and quality of input datasets. Our analysis sug-
gests that datasets incorporating more reliable sources could
produce improved fusion results. For example, GIM_3g SOS
demonstrate higher consistency with phenocam observations
(Fig. 5d); groups 2 and 3, which include GIM_3g SOS, ex-
hibit smaller deviations from the long-term REA fusion re-
sults than group 1. In contrast, the EOS estimates are more
stable across different dataset combinations. These results
show that multi-source data integration could help improve
accuracy. The similarity in weight distributions across dif-
ferent dataset combinations (Fig. S9) suggests that dataset
selection remains a critical factor influencing final estimates.
Incorporating additional high-quality datasets in future stud-
ies could further enhance accuracy and robustness.

4.3 Consistency of SOS and EOS trends across studies
and key influencing factors

Global climate change has significantly influenced vegeta-
tion phenology, with a general advancement in the SOS and
a delay in the EOS (Piao et al.,, 2019). Our REA-based
dataset estimates an SOS advancement of 0.19d per year
during 1982-2020 (p < 0.01), aligning with previous find-
ings, such as 1.4 + 0.6 d per decade for 1982-2011 (Wang et
al., 2015) and a 5.4d advance from 1982 to 2008 (Jeong et
al., 2011). Similarly, the EOS has been delayed at a rate of
0.18d per year (p < 0.01), consistent with prior estimates of
0.18 £0.38d per year for 1982-2011 (Liu et al., 2016) and
a 6.6d delay from 1982 to 2008 (Jeong et al., 2011). Devi-
ations between REA-based trends and those from individual
datasets (Blunden et al., 2023) suggest that variations in data
sources and study regions contribute to observed discrepan-
cies.

Differences in the SOS trends across studies arise from
multiple factors, including the study period, land cover
changes, spatial domain, environmental heterogeneity, and
methodological differences. Trend estimates are highly sen-
sitive to the selected time window, particularly at the start
and end years (Cong et al., 2013). Interannual and decadal
climate variability can further influence these trends, con-
tributing to discrepancies across studies. Land cover changes,
such as wildfires and deforestation (Jeong et al., 2011), can
influence the extraction result of phenology, then affect SOS
trends. Additionally, spatial differences in studies also in-
fluence the rate of trends in different studies, as phenol-
ogy is affected by vegetation type and climate sensitivity.
For instance, Jeong et al. (2011) analyzed temperate vege-
tation between 30-80° N (SOS advance of 0.2d per year),
and Wang et al. (2015) focused on 30-75° N (SOS advance
of 0.14£0.6d per year), excluding evergreen forests and
managed landscapes. Since phenology responds differently
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across species and locations (Maignan et al., 2008), varia-
tions in the study areas contribute to discrepancies. Photope-
riod constraints introduce additional latitudinal differences
in phenological responses to warming (Meng et al., 2021).
Moreover, precipitation and other environmental factors vary
spatially, further influencing SOS estimates.

Different methods of extracting phenology from remote
sensing data could introduce uncertainties between different
datasets (Cong et al., 2013; Jeong et al., 2011; White et al.,
2009). Differences in filling missing data and filtering meth-
ods can affect the continuity of the vegetation index time se-
ries, leading to discrepancies in phenology results. Reduc-
ing these inconsistencies among different datasets and pro-
ducing more harmonized data are primary motivations for
employing the REA method, which reduces uncertainties by
integrating datasets based on their reliability. Recognizing
these factors also explains the discrepancies in the SOS/EOS
trends and stresses the need for standardized methodologies
in phenological trend analyses.

5 Code and data availability

The code used to generate the REA phenology dataset is
openly available: https://doi.org/10.5281/zenodo.16419015
(Cui, 2025). The MCD12Q2 phenology dataset is avail-
able at https://doi.org/10.5067/MODIS/MCD12Q2.061
(Friedl et al., 2022); the VIP phenology dataset is
available  at  https://doi.org/10.5067/MEaSUREs/VIP/
VIPPHEN_NDVI.004 (Didan and Barreto, 2016); the
GIM_3g phenology dataset is available at http://data.
globalecology.unh.edu/data/GIMMS_NDVI3g_Phenology/
(Wang et al., 2019); the GIM_4g phenology dataset is
available  at  https://doi.org/10.5281/zenodo.11136967
(Chen and Fu, 2024); and the camera-based phenol-
ogy datasets are available from the ORNL DAAC
(https://doi.org/10.3334/ORNLDAAC/1674) (Richard-
son et al, 2018), the Internet Nature Information
System of Japan (http://www.sizenken.biodic.go.jp,
last access: 12 May 2024, Ministry of the Environ-
ment of Japan, 2024), and the Phenological Eyes Net-
work (http://www.pheno-eye.org, last access: 13 May
2024, PEN, 2024). The land use dataset is available at
https://doi.org/10.5067/MODIS/MCD12Q1.061 (Friedl and
Sulla-Menashe, 2022), and the REA phenology dataset is
available at https://doi.org/10.5281/zenodo.15165681 (Cui
and Fu, 2024).

6 Conclusion and perspective

Shifts in vegetation phenology affect ecosystem structure
(Kharouba et al., 2018; Yang and Rudolf, 2010), consequen-
tially affecting biodiversity (Renner and Zohner, 2018), ter-
restrial carbon and water cycles (Piao et al., 2020), and the
climate system (Green et al., 2017; Piao et al., 2020). The
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establishment of a comprehensive and reliable vegetation
phenology dataset is thus of critical importance. Our study
demonstrated that the REA method provides a robust ap-
proach for integrating multi-source phenology datasets and
produced a vegetation phenology dataset for regions above
30° in the Northern Hemisphere from 1982 to 2020. This
dataset could be used for subsequent analyses, such as exam-
ining vegetation phenology dynamics and their impacts on
the terrestrial carbon cycle and water balance, and provid-
ing climatic feedback for global vegetation dynamics model-
ing. Integrating more vegetation phenology datasets that con-
sider regional characteristics and refining the weight could
be done in a future study, which could improve the accuracy
and reliability of the merged phenology dataset. Addition-
ally, higher-resolution phenology datasets will also improve
the consistency between remote sensing phenology datasets
and ground-based results. High-resolution datasets will en-
hance our ability to assess phenological changes in hetero-
geneous landscapes and improve local-scale ecological mod-
eling, offering new opportunities to enhance the monitoring
and prediction of vegetation dynamics in response to envi-
ronmental change.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-4005-2025-supplement.
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