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80-309 Gdańsk, Poland

Correspondence: Adam Jaczewski (adam.jaczewski@imgw.pl)

Received: 23 September 2024 – Discussion started: 13 November 2024
Revised: 3 June 2025 – Accepted: 4 June 2025 – Published: 8 August 2025

Abstract. This paper presents a high-resolution gridded dataset of daily minimum (TN), mean (TG), and maxi-
mum (TX) near-surface air temperatures over Poland, covering the period from 1951 to 2020, with a spatial res-
olution of 1 km2. The PL1GD-T dataset was developed using radial basis functions (RBFs), which were applied
to quality-controlled observations from 347 ground weather stations at the Institute of Meteorology and Water
Management – National Research Institute. TG is calculated consistently using the same formula throughout the
entire period, and daily TN, TG, and TX fields are generated based on available daily records. Cross-validation
methods evaluated the gridding procedure on a monthly basis. The linear RBF was selected by hold-out cross-
validation (HO-CV) as the most suitable for the gridding procedure among other RBFs. The leave-one-out cross-
validation (LOO-CV) was performed to ensure the ability to reproduce the original characteristics variability. The
values of the scores averaged over all stations for individual months are in the range of 0.3–0.2, 0.3–0.2, and 0.1–
0.2 (K) for the bias; in the range of 1.23–1.46, 0.69–0.92, and 0.84–0.99 (K) for the root-mean-squared difference
(RMSD); and in range of 0.91–0.97, 0.98–0.99, and 0.98–0.99 for the correlation for TN, TG, and TX, respec-
tively. The RMSD is clearly altitude-dependent, increasing from lowland to mountainous regions. The dataset’s
scope and resolution allowed for the robust estimation of local climate variability characteristics and observed
trends. The availability of high-resolution datasets in both spatial and temporal contexts is essential for climate
change impact analysis on a smaller scale. This new dataset provides a quality-validated, high-resolution, and
open-access dataset that could be utilised by society, administrative bodies, or research institutions for climate-
related applications. The dataset is publicly available from the repository of the Institute of Meteorology and
Water Management – National Research Institute at https://doi.org/10.26491/imgw_repo/PL1GD-T (Jaczewski
et al., 2024).

1 Introduction

Contemporary climate change is one of the most signifi-
cant issues facing civilisation. It affects societies in many
ways, from direct physical impacts (droughts, floods, ex-
treme events like tornadoes, heatwaves, and wildfires) to
influencing the economies. We have no other way than to
adapt, but our measures strongly depend on the quality and
quantity of climate information we can acquire. Applica-
tions in research, natural resource management, and infras-

tructure planning typically require adequate spatial and tem-
poral resolution (often 30 years of climate normality), and
for a record of past climate change (historical time series),
you need long-term climate baseline data. The applicability
of such data lies in the availability of measurement data from
National Meteorological and Hydrological Services (NMHS)
networks and in the ability to assess climate change locally,
which is more important in the context of adaptation. Cli-
mate change impact analysis requires the availability of high-
resolution datasets in both spatial and temporal contexts.

Published by Copernicus Publications.

https://doi.org/10.26491/imgw_repo/PL1GD-T


3858 A. Jaczewski et al.: PL1GD-T: a high-resolution gridded daily air temperature dataset for Poland

This is especially crucial if the study is to be performed on a
smaller scale (administrative, physical–geographic). This as-
sumption is rarely met with the stations’ density operating in
NMHS. Thus, there is a clear need to prepare a quality, val-
idated dataset with open access at high temporal and spatial
scales.

During the 21st century, there were several attempts to
provide such data. The E-OBS gridded dataset is one of
the most used European daily databases (https://www.ecad.
eu/download/ensembles/download.php, last access: March
2025). However, the spatial resolution is relatively coarse
(0.1°×0.1° or 0.25°×0.25°; ca. 11 or 25 km2, respectively),
which in the latter case may be insufficient for analyses of
climatological conditions at small spatial scales. The present
version is 30.0e and was updated in March 2025. However, a
substantial advantage of this dataset is that it is derived from
in situ measurements. E-OBS is a daily gridded land-only
observational dataset over Europe. The blended time series
from the station network of the European Climate Assess-
ment & Dataset (ECA&D) project forms the basis for the
E-OBS gridded dataset. All station data are sourced directly
from the NMHS or other data-holding institutions. For many
countries, the number of stations is the complete national
network. Therefore, it is much more dense than the station
network routinely shared among NMHS (which is the basis
of other gridded datasets). The density of stations gradually
increases through collaborations with NMHS within Euro-
pean research contracts. The position of E-OBS is unique
in Europe because of the relatively high spatial horizontal
grid spacing, the daily resolution of the dataset, the provi-
sion of multiple variables, and the length of the dataset. Aside
from E-OBS, other European databases were produced at a
daily resolution. The set of gridded datasets covering Europe
is provided in Table 1. Usually, the data available comprise
mean and extreme daily temperatures.

As shown in Table 2, there is an extensive range of
methods used in the calculations, starting from the nearest-
neighbour (NN) approach through linear interpolation aided
with inverse distance weighting (IDW), distance weight-
ing interpolation, thin-plate splines, kriging, external drift
kriging, inverse distance weighting, optimal interpolation,
or combined methods. In most cases, the resolution rarely
reaches 1 km2 and is usually restricted to 5 km2 or larger.
In central Europe, there are few daily databases of meteo-
rological variables with a resolution higher than 5 km2 and
spanning at least 30 years, and only Swiss datasets are rou-
tinely updated (MeteoSwiss, 2025). This shows a need to
produce gridded datasets of essential thermal characteristics
on a daily scale covering the most extended possible period
and utilising all possible verified quality station data. Thus,
for the reasons stemming from the needs of potential end
users and the scientific community, it is crucial to make an
effort to provide such data for Poland.

The spatial resolution of most NMHS station networks is
limited, and in the case of Poland, it is ca. 50 km2 (depend-

ing on the relief). This is a severe impediment in the adapta-
tion or mitigation analyses, preventing the proper assessment
of climate variability. The increasing availability and appli-
cation of high-resolution regional climate models (RCMs),
including convection-permitting models (CPMs), necessitate
corresponding high-resolution observational datasets for ro-
bust evaluation and allow for more direct comparisons and
validation. The research aims to develop a gridded database
of daily mean, maximum, and minimum temperatures (here-
after denoted as TG, TX, and TN, respectively) with a spa-
tial resolution of 1 km2 (Jaczewski et al., 2024). The grid-
ding procedures involved the application of RBFs (radial ba-
sis functions) with several covariates, and the procedure’s re-
sults were the subject of thorough comparison with in situ
measurements to ensure the ability to reproduce the origi-
nal climate characteristics variability. The research outcome
in netCDF format database covers the 1951–2020 period,
thus comprising 70 years of systematic measurements in the
Polish NMHS network. The study’s main purpose is to pro-
vide a high-temporal-and-spatial-resolution climate dataset
for Poland, initially consisting of temperature variables. The
provided methodology is the basis for introducing subse-
quent variables available from the network to the following
versions of the dataset and will be improved by relying on
the gained experience.

2 Data and methods

2.1 Station data

Using a long series of meteorological data makes it possi-
ble to carry out analyses related to the impact of the vari-
ability of meteorological conditions over a selected area on
various sectors of human activity. Ensuring data quality is
crucial in this case. IMGW-PIB has taken steps to develop
complete information on the daily variability of thermal and
precipitation conditions in Poland since 1951. The analysis
and prepared data series include information on the daily val-
ues of the following meteorological variables: average daily
air temperature, maximum daily air temperature, and mini-
mum daily air temperature. The routine measurements from
SYNOP and CLIMAT stations are subject to formal checks
based on WMO standards (World Meteorological Organiza-
tion, 1993). On the other hand, WMO have justified differ-
ent methods of calculating the characteristics, particularly
the average daily air temperature. The methods varied in dif-
ferent periods and depended on the stations’ measurement
programme, which was different at synoptic and climatolog-
ical stations and is the main source of the series’ inhomo-
geneity. One method of calculating the average temperature
was necessary to compare data and ensure consistency across
the available range of stations in the whole period. The same
method was used to calculate the daily mean temperature
following the one used for the Polish climatological stations
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Table 1. Selected global and European air temperature gridded datasets with a high spatial and daily temporal resolution.

Citation/dataset Region Variable Interpolation method Period Spatial
resolution

E-OBS v. 31.0e
(Cornes et al., 2018)

Europe TG, TN, TX Monthly background fields from
thin-plate splines and daily fields from
the reduced-rank thin-plate spline

1950–present 0.1°× 0.1°

Krähenmann et
al. (2011)

Europe
(WMO region 6)

TN, TX Monthly background fields from block
kriging and interpolation of daily
anomalies from block kriging

2005–2008 5km× 5km

Ntegeka et al. (2014) Europe TG, TN, TX Inverse distance weighting 1990–2011 5km× 5km

Variables – TN: daily minimum temperature, TG: mean daily temperature, TX: maximum daily temperature.

since 1996:

TG=
T06+T18+TX+TN

4
, (1)

where T06 and T18 are measurements at 06:00 and
18:00 UTC, respectively; TX is the daily maximum temper-
ature, and TN is the daily minimum temperature. The day
for TX and TN readings begins at 18:00 UTC of the previ-
ous day. This way, consistent information was obtained on
the spatial variability of thermal conditions throughout the
country in the multiannual period. In this way, the so-called
uniform air temperature data were elaborated for 347 sta-
tions (Fig. 1). Additionally, this approach mitigated incon-
sistencies introduced by network automatisation since the
1990s. Mostly, interpolated gridded datasets developed for
climate applications rely on homogenised station series. The
homogenisation of daily series is more complicated than on
a monthly scale. The procedure must consider weather vari-
ability to incorporate stations’ metadata and support higher-
order adjustments. Existing homogenisation techniques re-
gard these issues, but their application to daily data is still
developing (Killick et al., 2022).

It should be noted that daily data availability varies from
1951 to 2020. A daily number of stations available for spatial
interpolation is presented in Fig. 2a. The number of stations
increased up to the late 1980s and early 1990s, resulting in a
maximum number of uniform data at 268 records. Since the
late 1990s, spatial coverage has degraded to only 119 loca-
tions. The number of stations by data availability is presented
in Fig. 2b. Nearly 80 stations allowed for more than 90 % of
records, and half of the locations overlapped for more than
half of the period. Neither possible degradation in temporal
consistency nor missing value filling was considered in this
study.

The station density in Poland is relatively low compared
to other European countries, reaching nearly one station per
1000 km2 in the year when the number of operating sta-
tions was the highest. Most stations are located in the low-
land area, which occupies most of the country. Meteorolog-
ical networks in mountainous regions across many countries

Figure 1. Orography and spatial distribution of meteorological sta-
tions in Poland with temperature time series in the 1951–2020 pe-
riod.

are often sparse, but this is not the case in Poland. The sta-
tion density in the Polish mountains, covering 0.23 % of the
country (area with altitude exceeding 1000 m a.s.l.), is rela-
tively high compared to the lowland and is occupied by 10
stations (Table 3), resulting in station density higher by an
order of magnitude in these regions. On the other hand, data
availability decreases with altitude from more than 56 % in
the lowlands to 42 % in the highest mountains on average.

2.2 Spatial interpolation

To interpolate the temperature data from the relatively sparse
meteorological stations across our area, we employed radial
basis functions (RBF). Referenced in Tables 1 and 2, the
temperature datasets of high spatial and temporal resolution
often use alternative interpolation methods, and RBFs have
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Figure 2. Number of daily records (a) and stations by data avail-
ability ranges (b).

Table 3. The data records statistics by altitude ranges (m a.s.l.). N :
number of stations,D: station density, OBS: percentage of available
records, A: percentage of country area occupied by grid points.

Altitude class N OBS (%) D (10−4 km2) A (%)

0–300 258 56.35 9.03 91.12
300–500 47 53.59 27.38 5.48
500–1000 32 45.51 32.12 3.18
> 1000 10 42.34 138.70 0.23

been successfully applied for interpolation station observa-
tional data in meteorology (Antal et al., 2021; Fathizad et
al., 2017; Piri, 2017; Ryu et al., 2024; Saaban et al., 2013;
Wang et al., 2014; Yang and Xing, 2021) or hydrology (Gao
et al., 2022; Wypych and Ustrnul, 2011). The RBF interpola-
tion models have also been used in agricultural applications
for prediction purposes (Rocha and Dias, 2018, 2019). RBF
interpolation method could be defined by Eq. (2):

F (r)=
∑m

j=1
αjϕ(rj ), (2)

where αj is the weights, ϕ(rj ) RBF function of the distance
rj between interpolation point to m sample points and r is
the Euclidean vector (coordinates) of the interpolation point.
Selecting the appropriate RBF function determines the accu-
racy of the interpolation. Different RBF functions were found
to be suitable for the interpolation of temperature data (Piri,
2017; Ryu et al., 2024; Saaban et al., 2013). In our study, six

RBFs were used and are given as follows:

Linear. ϕ(rj )= rj (3)

Cubic. ϕ(rj )= r3
j (4)

Thin-plate spline. ϕ(rj )= r2
j logrj (5)

Gaussian. ϕ(rj )= e
−

(
rj
β

)2

(6)

Multiquadric. ϕ(rj )=

√
1+

(
rj

β

)2

(7)

Inverse multiquadric. ϕ(rj )=
1√

1+
(
rj
β

)2
(8)

Here, β is the shape parameter. In the three-dimensional
space, the Euclidean distance is given by

rj =

√
(x− xj )2+ (y− yj )2+ (z− zj )2, (9)

where (x,y,z) represent the coordinates of interpolation
point. For a given dataset of m points, the interpolated n val-
ues are obtained by following the linear system of n equa-
tions:

F (xi,yi,zi)=
∑m

j=1
αjϕ(rj ), i ∈ {1. . .n}. (10)

In our case, m corresponds to the number of stations vary-
ing temporally according to daily data availability, x and y
correspond to geographical coordinates, and z is elevation.
Generally, the coordinates and elevation are treated as pre-
dictors, and more explanatory variables can be introduced
to the interpolation procedure. It is identified that the incor-
poration of elevation data as an auxiliary variable accounts
for orographic effects, mitigates the smoothing effect, and
improves the representation of gradients in daily gridded
datasets (Brinckmann et al., 2016; Delvaux et al., 2015; Frei,
2014). Choosing the optimal value of the shape parameter is
not a straightforward task (Fasshauer and Zhang, 2007). Of-
ten, this problem is paved over in the application studies, and
it should be assumed that the value has been chosen as the
mean distance between the nearest points (observational sta-
tions) as it is implemented in numerical tools as the default
option. We have used this value in the interpolation proce-
dure with Gaussian, multiquadric, and inverse multiquadric
functions. The shape parameter ranges from 15 to 22 km for
the daily maximum (268 stations) and minimum (81 stations)
number of data records, respectively.

2.3 Temporal and spatial reference of the dataset

The dataset consists of daily gridded TN, TG, and TX cov-
ering Polish territory at 1 km2 spatial resolution for 1951–
2020. The interpolation is in the grid projected in the PUWG
1992 (EPSG:2180) coordinate reference system. The eleva-
tion data originate from the digital terrain model (DTM) for
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Poland (DTM 100 m, 2023), corresponding to the digital el-
evation model (DEM). Given the data, simplify the interpo-
lation procedure as all three coordinates (x, y, and z) are in
the same units (meters). Additionally, we avoided topogra-
phy interpolation by defining the grid as every 10th x and
y coordinate of the 100m×100m DTM mesh and assigning
the average elevation values over the 1 km2 surrounding area.

3 Results

3.1 Validation

The most popular technique for validating interpolation tech-
niques is leave-one-out cross-validation (LOO-CV). It in-
volves using all except one point of observation data for in-
terpolation, and the remaining station is used for validation.
The main drawback of this method is relatively high com-
putational time as the procedure has to be repeated for every
station, which has to be removed from the whole dataset. An-
other cross-validation method, the hold-out technique (HO-
CV), is used to avoid long calculations. This method splits
the observation data into interpolation and validation sets.
Daily, 95 % of stations are randomly removed, and 5 % are
used for validation. The procedure is repeated every day. The
hold-out technique was chosen to select the RBF function,
and the LOO-CV technique was used to evaluate results with
the selected RBF function.

To evaluate the accuracy of the interpolated data, mean
error (ME), root-mean-square difference (RMSD), centred
RMSD (cRMSD), and Pearson’s correlation coefficient have
been used. The latter two metrics and standard deviations
have been presented through Taylor’s diagrams. The tables
with numeric results rounded to two decimal points were
provided, including differences between the 5th and 95th
percentiles. The observed data were compared to the near-
est interpolation grid point, and validation was performed
monthly. The following equations define the metrics:

Mean error (bias). ME=
1
N

∑N

n=1
(In−On) (11)

Root-mean-square difference.

RMSD=

√
1
N

∑N

n=1
(In−On)2 (12)

Centred root-mean-square difference.

cRMSD=

√
1
N

∑N

n=1
[(In− I )− (On−O)]2 (13)

Pearson’s correlation coefficient.

r =

1
N

∑N
n=1(In− I )(On−O)

σIσO
(14)

Here, I and O denote interpolated and observed values, N
is the number of observations, and σI and σO are standard
deviations of interpolated and observed values, respectively.

I and O are the means of interpolated and observed values,
respectively.

3.2 Hold-out cross-validation (HO-CV)

The validation process results are presented using Taylor di-
agrams, which provide a quick statistical summary of how
well the interpolated and observed data align. We show mean
values of correlations, centred root-mean-square differences,
and standard deviations for all RBF methods every month.
While a common approach is to normalise the differences
and standard deviations of interpolated data by the standard
deviations of observations, it may negatively impact the clar-
ity of the figures in our case. As the variability (SDs) of the
variables differ across seasons and variables, we can present
the results for all methods and temperatures in the exact fig-
ure.

The linear approach is undoubtedly the most accurate for
all months and variables (Fig. 3). Only for TX in April and
August do the values interpolated by the inverse multiquadric
RBF function agree similarly with observations. The mean
cRMSD for the linear RBF function is lower than 1 for TG
and TX, but for TN, it exceeds 1. This method also sustains
observed variability as the standard deviations of interpolated
and observed values are similar. Correlations exceed 0.95 for
all variables and months except TN from April to Septem-
ber. These results allowed us to proceed further only with the
linear method.

3.3 Leave-one-out cross-validation (LOO-CV)

LOO-CV has emerged as a widely used verification method-
ology for spatial interpolation techniques in meteorology and
climatology. In executing this method, the given station is re-
moved from the daily observation dataset, and the remain-
ing stations are used to construct the interpolated field. The
value at the grid nearest to the removed station is compared
to the observed value. The procedure is repeated for all sta-
tions and days in the analysed period, and the mean values
of the comparison metrics are presented in Taylor diagrams
(Fig. 4). The charts depict the level of agreement between the
observed and interpolated values. The results show that the
best agreement is achieved for TG in winter and spring, with
the lowest cRMSD and the highest correlation values. Al-
though the agreement for TX is slightly worse than the mean,
it is still relatively favourable overall, with the best agree-
ment seen in autumn. However, the interpolation methodol-
ogy performs worse in capturing the nuances of TN, with the
best agreement observed in winter. It is important to note that
the variability in all temperatures is preserved in the standard
deviation, with similar values between observed and interpo-
lated data.

Table 4 provides the set of quality metrics for RBF inter-
polation. Mean error (ME, a.k.a. bias) is minimal and, for all
variables, does not exceed 0.03 with minuscule interannual
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Figure 3. Taylor diagrams for HO-CV of spatial interpolation of TN, TG, and TX by different RBF functions. The colours correspond to the
variables in the following order: blue, green, and red. Filled circles on the x axis and dot-dashed minor arcs represent standard deviations of
observed values; dotted semicircles correspond to cRMSD values. The azimuthal position represents the correlation coefficient. The marker’s
shape describes the type of RBF used for interpolation. For a detailed explanation of the diagram’s principles, see Fig. 2 in Taylor (2001).
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Figure 4. Taylor diagrams for LOO-CV of spatial interpolation of TN, TG, and TX by linear RBF function. See Fig. 3 for more details.
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variability. TN is characterised by the highest RMSD, reach-
ing, on average, 1.29. The RMSD annual value for TG equals
0.75, whereas for TX, it is slightly higher (0.92). The highest
average annual value is recorded for TN (1.29). For all anal-
ysed variables, Pearson’s correlation coefficient is very high.
An annual course ranges from 0.94 (TN) to 0.98 (TG, TX).
Only in the case of TN is there a slight seasonal variability,
with the lowest values (0.91) in July and the highest (0.97) in
winter (December–January). RM (the ratio of means) is close
to 1 with a range of 0.99–1.01 for all months. RSD (the ratio
of standard deviation) is very high, nearing 1 for all variables,
pointing to slight variability underestimation. Slight seasonal
variability is observed for TN, and lower values are seen in
the summer. The difference in the values of the 5th and 95th
percentiles suggests a slight underestimation in the case of
Q95 and an overestimation for Q05. This pattern repeats for
all variables (TN, TG, and TX), with the highest differences
in average annual values recorded for TN.

Verification of RBF interpolation quality based on RM
for distinct altitude (m a.s.l.) classes confirms overall qual-
ity characteristics. A table is intentionally not shown as the
values for particular stations are in the range of 0.992–1.008,
resulting in 1.00 after rounding to two decimal places for all
months and altitude ranges.

The ratio of standard deviation (RSD) showed slight vari-
ance underestimation (Table 5), the highest being for TN at
500–1000 m in summer. The ratio for TN also experiences
the highest seasonal variability, where the smallest values
are seen in summer and the highest in winter. Surprisingly,
the cases of agreement close to perfect are seen most often at
> 1000 m.

4 Example applications of the datasets

4.1 Trend analysis

One of the most important features required from grid data,
which is to be used in climatological analysis and subse-
quently in the application of climate adaptation schemes,
is the ability to represent the trends of analysed variables.
Figure 5 presents the interannual course of trend coeffi-
cients for TG, TX, and TN at the nodes nearest to se-
lected stations. The locations represent the low-lying stations
(Hel, Łódź-Lublinek, Wrocław) and stations from mountain-
ous areas: Zakopane (∼ 900 m a.s.l.) and Kasprowy Wierch
(1984 m a.s.l.). There is a striking complete coherence of
trend coefficients for stations outside the mountainous areas,
where the values are virtually equal when comparing obser-
vational (OBS) and interpolated (RBF) data. More signifi-
cant discrepancies occur in the mountainous regions, but the
differences are within the range of 0.05 °C per 10 years. In
the case of Zakopane, there is a systematic difference in the
case of minimum temperature (TN) with slightly higher trend
coefficient values for observational data. This situation, but
to a much lower extent, is also visible in mean temperature

(TG). In the case of Kasprowy Wierch (a station which is
a mountain observatory and located in the terrain of highly
variable relief), the differences in trend coefficients present
themselves in the case of all analysed variables. For TX,
there is a bias with higher trend values for interpolated val-
ues, most visible in cold months (with the difference not ex-
ceeding 0.05 °C per 10 years, however). It is less evident for
TG, where greater bias is recorded for winter/cold months
(October–March), with much more minor differences for the
warm half of the year. Minimum temperature exhibits a re-
versing pattern with higher values of observed trends in the
warmer part of the year and reversed bias (RBF> OBS) dur-
ing cold months (October–March). It should be noted that
the significance of trends based on interpolated data follows
the results for observed trends. Exceptionally, non-significant
observable TX trends in January and February appear signif-
icant for interpolated data in Kasprowy Wierch. Conversely,
significant observable TN trends in November and Decem-
ber are non-significant in Zakopane based on interpolated
data. The above examples confirm the possibility of using
the RBF gridded data to analyse multiannual air temperature
variability in Poland, including even the areas of high relief
variability.

4.2 Extreme analysis

The daily temporal resolution of the dataset allows the possi-
bility of deriving multiple statistical characteristics with very
high spatial resolution and detailed analysis of the thermal
characteristics on the regional or even local scale (counties,
small cities, or villages). For example, Fig. 6 provides an
insight into the spatial variability of the TX 90th quantile
in Poland for two 30-year periods: 1951–1980 and 1991–
2020 in January and July. As expected in January, there is
a substantial shift in the values of TX. The overall range of
recorded values changes from −1.4 to 7.7 °C (1951–1980)
and from 1.1 to 10.6 °C (1991–2020), which indicates a
2.5 °C shift in the lower boundary and 2.9 °C in the upper
limit of the spatial distribution, indicating higher variability
in the maximum values of TX. The overall spatial pattern of
the TX 90th quantile remains relatively intact. However, the
shift is visible in the whole country. In July, the change in the
range of the TX 90th quantile also reaches 2 °C and is from
13.6 to 30.8 °C in the case of the first sub-period and from
15.6 to 32.9 °C for the second one. This is also clearly visi-
ble for nearly the whole country but less pronounced in the
mountains and the vicinity of the Baltic Sea.

Figure 7 presents a similar analysis, but in this case, it is
for the minimum temperature (TN) probabilistic character-
istics. Again, the comparison between selected 30-year pe-
riods shows a substantial change in the derived values con-
cordant with the observed trends in the TN values in central
Europe (Ustrnul et al., 2021). For January, the change in the
range of recorded values is 1.3 °C (an increase from −21.1
to −19.8 °C) in the case of the lower limit and 1.2 °C (an in-
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Table 4. Overall monthly validation measures (OBS vs. gridded).

Var Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TN ME 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
RMSD 1.46 1.45 1.31 1.40 1.44 1.38 1.37 1.41 1.39 1.38 1.23 1.32
cRMSD 1.43 1.39 1.25 1.28 1.32 1.26 1.24 1.25 1.27 1.30 1.18 1.28
Pearson 0.97 0.97 0.96 0.94 0.93 0.92 0.91 0.92 0.93 0.94 0.96 0.97
RM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RSD 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.96 0.96 0.97 0.98 0.98
Q95D −0.12 −0.06 −0.18 −0.17 −0.15 −0.14 −0.17 −0.22 −0.23 −0.13 −0.18 −0.13
Q05D 0.27 0.27 0.25 0.25 0.31 0.28 0.33 0.32 0.35 0.23 0.14 0.28

TG ME 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
RMSD 0.92 0.87 0.77 0.78 0.74 0.70 0.69 0.74 0.78 0.84 0.78 0.85
cRMSD 0.94 0.85 0.74 0.72 0.68 0.64 0.62 0.67 0.71 0.80 0.76 0.86
Pearson 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
RM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RSD 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
Q95D −0.10 −0.02 −0.04 −0.02 −0.04 −0.07 −0.07 −0.10 −0.02 −0.02 −0.11 −0.03
Q05D 0.20 0.14 0.14 0.10 0.06 0.04 0.10 0.12 0.06 0.16 0.08 0.07

TX ME 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02
RMSD 0.99 0.94 0.91 0.95 0.98 0.96 0.92 0.90 0.84 0.89 0.91 0.95
cRMSD 1.02 0.93 0.90 0.96 0.95 0.94 0.87 0.87 0.82 0.89 0.92 0.97
Pearson 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
RM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RSD 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Q95D −0.07 −0.06 −0.09 −0.05 −0.06 −0.11 −0.05 −0.08 −0.11 −0.14 −0.07 −0.11
Q05D 0.16 0.15 0.12 0.13 0.22 0.13 0.11 0.11 0.08 0.16 0.08 0.13

ME: mean error (K), RMSD: the root-mean-square difference (K), cRMSD: centred root-mean-square difference (K), Pearson: Pearson’s correlation coefficient, RM: the
ratio of means, RSD: the ratio of standard deviations, Q95D and Q05D: the difference in 95th and 5th between gridded and observed values (K).

Table 5. Overall monthly RSD values for station altitude classes.

Altitude class [m] Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(m a.s.l.)

TN 0–300 0.99 0.99 0.98 0.97 0.97 0.96 0.96 0.96 0.97 0.98 0.98 0.99
300–500 0.97 0.98 0.98 0.97 0.96 0.96 0.96 0.97 0.96 0.97 0.98 0.98
500–1000 0.98 0.97 0.95 0.95 0.94 0.95 0.93 0.93 0.95 0.96 0.96 0.98
> 1000 1.00 0.99 0.99 0.98 1.00 0.98 0.97 0.97 1.00 0.98 0.98 1.00

TG 0–300 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
300–500 0.98 0.99 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99
500–1000 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98
> 1000 0.98 0.97 0.98 0.99 0.99 0.98 0.98 0.97 0.98 0.96 0.97 0.98

TX 0–300 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
300–500 0.98 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
500–1000 0.98 0.99 0.99 0.97 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.98
> 1000 0.98 0.97 0.99 0.997 0.99 1.00 1.00 0.99 1.00 0.98 0.97 0.96

crease from−8.1 to−6.9 °C) for the upper limit. Also, in this
case, the overall observed change is characteristic for nearly
the entire country, except the Baltic Sea coast, where the pos-
itive change is less pronounced. In July, the overall change in
the range of values is +2.2 °C (for minimum) and +0.9 °C
(for maximum values).

Figure 8 and Table 6 provide an additional example of the
potential application of the dataset. In this case, we present
it for the whole country. Still, with the spatial resolution
of 1 km2, it is equally applicable for the counties or even
smaller areas desired by, for example, organisations prepar-
ing climate adaptation plans. The analysis presents the differ-
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Figure 5. Monthly trend coefficients (°C per 10 years) at selected stations for 1951–2020. Red dots: OBS, blue dots: RBF. The asterisks in
the corresponding colours indicate significant trends.

Figure 6. Spatial variability of the 90th quantile of TX in Poland for selected 30-year periods (1951–1980, a, c; 1991–2020, b, d) in
January (a, b) and July (c, d).
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Figure 7. Spatial variability of the 10th quantile of TN in Poland for selected 30-year periods (1951–1980, a, c; 1991–2020 b, d) in
January (a, b) and July (c, d).

Table 6. Essential field characteristics (mean, quantiles: 0.1, 0.5 and
0.9) of TX 90th and TN quantile differences (°C) averaged over the
country area between 1951–1980 and 1991–2020.

Variable Month Dataset Mean Q10 Q50 Q90

TX 90th Jan PL1GD-T 2.58 2.13 2.66 3.00
E-OBS 2.58 2.18 2.63 2.98

Jul PL1GD-T 1.75 1.31 1.76 2.15
E-OBS 1.75 1.30 1.75 2.17

TN 10th Jan PL1GD-T 2.45 1.65 2.45 3.28
E-OBS 2.46 1.64 2.46 3.31

Jul PL1GD-T 0.96 0.46 0.97 1.44
E-OBS 0.97 0.51 0.97 1.41

ences between the values of selected characteristics (in this
case, extremes: the 90th quantile of TX and 10th quantile
of TN) for selected 30-year periods: 2020–1991 and 1980–
1951. The map indicates the areas where the observed cli-
mate change (expressed as the difference in temperature’s
extreme characteristics) was the most pronounced and also
allows for a further insight into the spatial variability in cho-
sen metrics.

A further analysis of such fields provides additional con-
text. Table 6 shows the precise information on the area av-

erage change in the values of the abovementioned charac-
teristics, extended by comparison to the E-OBS dataset. The
analysis not only refers to the averages but, thanks to the cal-
culation of the percentiles provides information on the dis-
tribution of the shift magnitude in a given area. In this case,
providing the percentiles’ values cutting off the extreme 10 %
of grid point values. In the case of the PL1GD-T dataset, it
shows that the area average change for TX and TN quantiles
(10th and 90th, respectively) was relatively similar in Jan-
uary (ca. +2.5 °C) and much lower in July; however, in July,
this change was more pronounced for TX (+1.75 °C) than
TN (+0.96 °C) extremes. In the case of the TX 90th quan-
tile, 10 % of the analysed area experienced a shift of over
+3.00 °C in January. For June, this value is lower and equals
+2.15 °C. For the TN 10th quantile, 10 % of the area had
a shift more significant than +3.28 °C in January, whereas
in July, it was much lower (+1.44 °C). The lower quantile
(10th) of the TX 90th and TN 10th quantiles, showing the
threshold for the area experiencing less or equal values, also
indicates a more pronounced shift magnitude in January than
in July. It is worth noting that in the case of TX, in the 90th
quantile in January, only 10 % of the country experienced a
change lower than +2.13 °C (1.31 °C in July). In the case of
TN 10th quantile, this is only+0.46 °C in July and+1.65 °C
in January.
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Figure 8. January (a, c) and July (b, d) differences (°C) between the values of the TN 10th quantile (a, b) and the TX 90th quantile (c, d)
for the periods of 1991–2020 and 1980–1951.

5 Data availability

PL1GD-T – gridded dataset of the mean, minimum, and
maximum daily air temperature at the level of 2 m for the
area of Poland at a resolution of 1km× 1km – is publicly
available in the public repository of the Institute of Mete-
orology and Water Management – National Research Insti-
tute under the https://doi.org/10.26491/imgw_repo/PL1GD-
T (Jaczewski et al., 2024). The data are archived as netCDF
files in 10-year chunks for every variable separately. The
resulting datasets consist of fields with values rounded to
one decimal, with data values encoded as integers with
a scale factor of 0.1. It allowed the files’ size to be de-
creased by a factor of 2. The naming convention is vari-
able_startyear_endyear.nc with variable prefixes “tn”, “tg”,
and “tx” for minimum, mean, and maximum temperature, re-
spectively. The netCDF files comply with the CF-1.6 conven-
tion.

6 Summary and outlook

The paper presents a comprehensive study on developing
a high-resolution gridded dataset of daily air temperatures
at 2 m above the ground (minimum, mean, and maximum)
over Poland from 1951 to 2020 with a spatial resolution
of 1 km2. The dataset was created using quality-controlled
observations from ground weather stations. Hold-out cross-

validation was chosen to select appropriate radial basis
functions (RBFs) for interpolation. Leave-one-out cross-
validation assessed product quality on a seasonal, monthly,
and station basis. The findings indicate the best performance
for mean temperature in winter and spring, with high cor-
relation and low root-mean-square deviation. Although the
performance for maximum temperature is slightly below av-
erage, it still shows relatively good agreement, especially in
autumn. The method is less successful at accurately captur-
ing minimum temperature, with the best results seen in win-
ter. The analysis also confirms that the standard deviation of
temperatures, representing variability, is consistent between
observed and interpolated data. All variables have a bias that
does not exceed 0.03, with minimal interannual variability.
Pearson’s correlation coefficient is very high, ranging from
0.94 to 0.98. The difference between the 5th and 95th per-
centiles suggests a slight underestimation for Q95 and over-
estimation for Q05. There is a noticeable increase in seasonal
RMSD variability with altitude, with relatively small interan-
nual differences at a lower altitude and the greatest in the case
of the highest altitude class. Mean values are preserved, and
the interpolated data’s standard deviation is slightly lower.
Finally, we show an example of the application of the result-
ing gridded product in the field of climate change.

The validation results demonstrate the dataset’s accu-
racy and suitability for climatological applications. How-
ever, some limitations and potential areas for improvement
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have been identified. Notably, while computationally effi-
cient, the RBF interpolation method may smooth out ex-
tremes and underestimate spatial variability, particularly in
areas with complex terrain. Future work could explore re-
fining the RBF implementation to mitigate this, such as by
investigating adaptive shape parameters that vary spatially
based on station density or terrain complexity, employing
anisotropic RBFs to account for directional dependencies in
temperature variability or using an ensemble of RBF interpo-
lations with varying parameters to capture uncertainty in the
interpolation. Furthermore, while beyond the scope of this
study, future releases will include a measure of uncertainty
for all estimates, enhancing the dataset’s utility for users.
In addition, future work may consist of homogenising the
input station data. The availability of detailed station meta-
data (https://klimat.imgw.pl/pl/meta-dane/, last access: June
2025) will be crucial for applying appropriate homogeni-
sation techniques. Finally, given the dataset’s demonstrated
value, we envision transitioning to a quasi-routine produc-
tion system and incorporating other surface meteorological
variables, enabling regular updates and wider accessibility
for the climate research community and related applications.

This open-access dataset is crucial for climate change im-
pact studies on a smaller scale and can serve a wide range of
users, including researchers, administrative bodies, and so-
ciety. One important application of such a dataset is serv-
ing as reference data for bias correction of regional dynam-
ical downscaling results (e.g. EURO-CORDEX initiative) to
elaborate effective adaptation and mitigation strategies.
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Badawczy (grant no. FBW10/2023).

Review statement. This paper was edited by Graciela Raga and
reviewed by Roberto Serrano-Notivoli and one anonymous referee.

References

Antal, A., Guerreiro, P. M. P., and Cheval, S.: Comparison of spa-
tial interpolation methods for estimating the precipitation dis-
tribution in Portugal, Theor. Appl. Climatol., 145, 1193–1206,
https://doi.org/10.1007/s00704-021-03675-0, 2021.

Brinckmann, S., Krähenmann, S., and Bissolli, P.: High-
resolution daily gridded data sets of air temperature and
wind speed for Europe, Earth Syst. Sci. Data, 8, 491–516,
https://doi.org/10.5194/essd-8-491-2016, 2016.

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M.,
and Jones, P. D.: An Ensemble Version of the E-OBS Temper-
ature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123,
9391–9409, https://doi.org/10.1029/2017JD028200, 2018.

Delvaux, C., Journée, M., and Bertrand, C.: The FORBIO Cli-
mate data set for climate analyses, Adv. Sci. Res., 12, 103–109,
https://doi.org/10.5194/asr-12-103-2015, 2015.

DTM 100 m: Digital Terrain Model in the grid of 100 m,
https://dane.gov.pl/en/dataset/792/resource/30643, numeryczny-
model-terenu-o-interwale-siatki-co-najmniej-100m-usuga-
atom/table, last access: 24 May 2023.

Fasshauer, G. E. and Zhang, J. G.: On choosing “optimal” shape pa-
rameters for RBF approximation, Numer. Algorithms, 45, 345–
368, https://doi.org/10.1007/s11075-007-9072-8, 2007.

Fathizad, H., Mobin, M. H., Gholamnia, A., and Sodaiezadeh,
H.: Modeling and mapping of solar radiation using geosta-
tistical analysis methods in Iran, Arab. J. Geosci., 10, 391,
https://doi.org/10.1007/s12517-017-3130-x, 2017.

Frei, C.: Interpolation of temperature in a mountainous region using
nonlinear profiles and non-Euclidean distances, Int. J. Climatol.,
34, 1585–1605, https://doi.org/10.1002/joc.3786, 2014.

Gao, Y., Guo, J., Wang, J., and Lv, X.: Assessment of
Three-Dimensional Interpolation Method in Hydrologic Anal-
ysis in the East China Sea, J. Mar. Sci. Eng., 10, 877,
https://doi.org/10.3390/jmse10070877, 2022.

Hiebl, J. and Frei, C.: Daily temperature grids for Austria since
1961 – concept, creation and applicability, Theor. Appl. Clima-
tol., 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4,
2016.

Jaczewski, A., Marosz, M., and Miętus, M.: PL1GD-T – grid-
ded data of the mean, minimum and maximum daily air tem-
perature (2 m) for the Polish area at a resolution of 1km×
1km and the period 1951–2020, Data repository of IMGW-PIB,
https://doi.org/10.26491/imgw_repo/PL1GD-T, 2024.

Earth Syst. Sci. Data, 17, 3857–3871, 2025 https://doi.org/10.5194/essd-17-3857-2025

https://klimat.imgw.pl/pl/meta-dane/
https://doi.org/10.1007/s00704-021-03675-0
https://doi.org/10.5194/essd-8-491-2016
https://doi.org/10.1029/2017JD028200
https://doi.org/10.5194/asr-12-103-2015
https://dane.gov.pl/en/dataset/792/resource/30643,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100m-usuga-atom/table
https://dane.gov.pl/en/dataset/792/resource/30643,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100m-usuga-atom/table
https://dane.gov.pl/en/dataset/792/resource/30643,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100m-usuga-atom/table
https://dane.gov.pl/en/dataset/792/resource/30643,numeryczny-model-terenu-o-interwale-siatki-co-najmniej-100m-usuga-atom/table
https://doi.org/10.1007/s11075-007-9072-8
https://doi.org/10.1007/s12517-017-3130-x
https://doi.org/10.1002/joc.3786
https://doi.org/10.3390/jmse10070877
https://doi.org/10.1007/s00704-015-1411-4
https://doi.org/10.26491/imgw_repo/PL1GD-T


A. Jaczewski et al.: PL1GD-T: a high-resolution gridded daily air temperature dataset for Poland 3871

Killick, R. E., Jolliffe, I. T., and Willett, K. M.: Benchmark-
ing the performance of homogenization algorithms on syn-
thetic daily temperature data, Int. J. Climatol., 42, 3968–3986,
https://doi.org/10.1002/joc.7462, 2022.

Krähenmann, S., Bissolli, P., Rapp, J., and Ahrens, B.:
Spatial gridding of daily maximum and minimum tem-
peratures in Europe, Meteorol. Atmos. Phys., 114, 151,
https://doi.org/10.1007/s00703-011-0160-x, 2011.

Krähenmann, S., Walter, A., Brienen, S., Imbery, F., and
Matzarakis, A.: High-resolution grids of hourly meteorological
variables for Germany, Theor. Appl. Climatol., 131, 899–926,
https://doi.org/10.1007/s00704-016-2003-7, 2018.

Lussana, C., Tveito, O. E., and Uboldi, F.: Three-dimensional spa-
tial interpolation of 2 m temperature over Norway, Q. J. Roy. Me-
teor. Soc., 144, 344–364, https://doi.org/10.1002/qj.3208, 2018.

Lussana, C., Tveito, O. E., Dobler, A., and Tunheim, K.:
seNorge_2018, daily precipitation, and temperature datasets
over Norway, Earth Syst. Sci. Data, 11, 1531–1551,
https://doi.org/10.5194/essd-11-1531-2019, 2019.

Ntegeka, V., Salamon, P., Gomes, G., Sint, H., Lorini, V., Thie-
len, J., and Zambrano-Bigiarini, M.: EFAS-Meteo: a Euro-
pean daily high-resolution gridded meteorological data set
for 1990–2011, Publications Office of the European Union,
https://doi.org/10.2788/51262, 2014.
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