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Abstract. Accurate cropland mapping is essential for understanding agricultural dynamics in Africa and critical
for achieving Sustainable Development Goals (SDGs) such as Zero Hunger. Large-scale cropland mapping en-
counters several challenges, including the varying landscape characteristics of cropland across different regions,
extended cultivation periods, and limited availability of reference data. This study develops a 30 m resolution
African annual cropland distribution (namely AFCD) dataset spanning the years 2000 to 2022. To extract this
large-scale cropland distribution data, we employed random forest (RF) classification and continuous change-
detection (CCD) algorithms on the Google Earth Engine platform. Robust training samples were generated, and
a locally adaptive model was applied for cropland extraction. The final output consists of annual binary crop/non-
crop maps from 2000 to 2022. Independent validation samples from numerous third-party sources confirm that
the map’s accuracy is 0.86± 0.01. A comparison of the cropland area estimates from AFCD with those of the
Food and Agriculture Organization (FAO) for Africa yielded an R2 value of 0.86. According to our estimates,
Africa’s cropland expanded from 1.9435× 108 ha in 2000 to 2.1092× 108 ha in 2022, marking a net increase of
8.53 %. Prior to 2005, changes in Africa’s cropland area were gradual, but after 2006, there has been a marked
acceleration in cropland expansion. Despite this continued growth, Africa also experienced significant cropland
abandonment. By 2018, abandoned cropland accounted for 11.52 % of the total active cropland area. AFCD also
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avoided the misclassification of buildings, roads, and trees surrounding cropland common in existing products.
The study further highlights the unique advantage of AFCD in providing a dynamic annual cropland dataset at
30 m resolution for Africa. This dataset is a crucial resource for understanding the spatial–temporal dynamics of
cropland and can support policies on food security and sustainable land management. The cropland dataset is
available at https://doi.org/10.5281/zenodo.14920706 (Lou et al., 2025).

1 Introduction

According to the Food and Agriculture Organization (FAO),
croplands are of critical importance to global food sustain-
able development and poverty alleviation. The FAO’s State
of Food Security and Nutrition in the World (SOFI) report
highlights the fact that monitoring and managing agricultural
lands were crucial for achieving the UN’s Sustainable De-
velopment Goals (SDGs), particularly in addressing food se-
curity challenges and balancing agricultural production with
ecosystem services (FAO et al., 2024). Agricultural land di-
rectly or indirectly contributes to 90 % of global food calo-
ries (Cassidy et al., 2013). Beyond supplying food, cropland
plays a crucial role as a provider of various ecosystem ser-
vices (Pereira et al., 2018; Stephens et al., 2018), not only
mitigating climate change through carbon sequestration and
water and soil regulation (Lana-Renault et al., 2020), but also
influencing biodiversity (Traba and Morales, 2019). Emerg-
ing agricultural paradigms prioritize climate-smart cultiva-
tion practices (Xiao et al., 2024), rational land use policy-
making (Duan et al., 2021), and productivity enhancement
for smallholder farmers. The expansion and abandonment of
croplands have long been focal points of research as the ex-
tent, distribution, and characteristics of cropland often influ-
ence a region’s agricultural development pathways, food se-
curity, and poverty alleviation efforts (Jayne et al., 2014).

The SOFI report revealed that 20.4 % of Africa’s popu-
lation faces hunger, with one in five people being under-
nourished, severely hindering progress toward SDGs such
as No Poverty and Zero Hunger and sustainable agriculture–
ecosystem balance (FAO et al., 2024; Ibrahim et al., 2023).
While Africa has accounted for 34 % of global cropland ex-
pansion since 2000, driven by its perceived land abundance
(Searchinger et al., 2015; Schneider et al., 2024), this growth
has largely involved converting natural vegetation, causing
significant deforestation and habitat destruction (Crawford et
al., 2024; Kehoe et al., 2017). However, the economic and
ecological trade-offs of such expansion remain understud-
ied, necessitating nuanced land use assessments (Chamberlin
et al., 2014). Sub-Saharan Africa’s food systems, dominated
by small-scale farms (< 1 ha), grapple with stagnant yields
and rising imports (Fader et al., 2013; Giller et al., 2021),
while larger farms (> 1 ha) demonstrate higher productiv-
ity and food security through land consolidation (Nilsson,
2019). Yet unchecked agricultural intensification risks biodi-
versity and ecosystem stability (Adolph et al., 2023; Mano et

al., 2020), highlighting the urgent need to monitor cropland
dynamics. Detailed annual mapping of land use changes is
critical for guiding sustainable policies on food security, re-
source management, and environmental protection (Debonne
et al., 2021; Waldner et al., 2015), balancing Africa’s agricul-
tural needs with ecological preservation.

The rapid development of remote sensing technology has
enabled accurate cropland mapping through synergistic use
of multi-source satellite data. Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery offers unique advan-
tages for large-scale cropland extent monitoring (Xiong et
al., 2017a; Zhang et al., 2015, 2022), while higher-resolution
sensors aboard Landsat and Sentinel-2 satellites provide
precise boundary delineation capabilities. Global and re-
gional land use/cover change (LUCC) products, such as
MCD12Q1 (Friedl and Sulla-Menashe, 2022), ESA (2017),
GLC_FCS30D (Zhang et al., 2024b; Liu et al., 2023), and
ESA WorldCover (Zanaga et al., 2021, 2022), offer multi-
scale data support for studying cropland distribution in
Africa across a range of spatial resolutions (10–500 m). How-
ever, their accuracy is generally limited, and they exhibit
significant spatial inconsistencies (Cui et al., 2024; Song et
al., 2022). These discrepancies arise from the varying land
cover definitions, temporal gaps due to cloud cover interfer-
ence in remote sensing data, and highly fragmented nature
of African cropland landscapes (Xiong et al., 2017b). Spe-
cialized cropland products, such as the Landsat Global Crop-
land Extent (Potapov et al., 2022), GFSAD Landsat-Derived
Global Rainfed and Irrigated-Cropland Product (LGRIP)
(Teluguntla et al., 2023), GFSAD Global Cropland Extent
Product (GCEP) (Thenkabail et al., 2021), and Digital Earth
Africa (Burton et al., 2022), offer high spatial resolution
(ranging from 10 to 30 m), allowing for detailed landscape
characterization. However, their temporal coverage is often
limited to single years or sparse intervals, which significantly
restricts their ability to track rapid interannual changes in
African agricultural systems (Kerner et al., 2024).

Key processes, such as cropland expansion into natu-
ral ecosystems and cyclical abandonment patterns, remain
poorly understood and inadequately quantified due to these
temporal gaps. Current LUCC products are mainly based
on single- or multi-year remote sensing data combined with
expert-driven classification systems or machine learning al-
gorithms such as random forest (RF). However, challenges
such as the scarcity of ground validation samples and sig-
nificant surface heterogeneity in Africa hinder the improve-
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ment of classification accuracy. Notably, the successful ap-
plication of sample generation methods in crop recognition
(Hu et al., 2024; Zhang et al., 2024a) and coastal zone mon-
itoring (Zuo et al., 2025) demonstrates the potential of over-
coming data bottlenecks through innovative sample construc-
tion techniques. Therefore, there is an urgent need to develop
consensus label generation methods that integrate multiple
LUCC products (Kerner et al., 2024; Tubiello et al., 2023a).
By leveraging the strengths of existing cropland datasets, this
would enable the creation of high-temporal-resolution dy-
namic cropland maps for Africa. Furthermore, establishing
a unified cropland classification standard system could effec-
tively reduce spatial inconsistencies across existing products,
providing more accurate spatial information to support sus-
tainable agricultural development and food security decision-
making in Africa.

In summary, in recent decades, a lot of global or re-
gional cropland mapping and monitoring has made signifi-
cant progress. However, a 30 m annual cropland extent time
series product derived from change-detection algorithms is
still lacking. The aims of this study are (1) to construct lo-
cally optimal consensus crop/non-crop labels using LUC-
C/cropland extent products from 2000 to 2022, which will
serve as training samples; (2) to utilize the continuous
change-detection (CCD) algorithm and the full time series
of Landsat observations to generate the first African 30 m
annual cropland extent product that covers the period from
2000 to 2022, named AFCD; and (3) to quantitatively an-
alyze the performance of the AFCD product using multi-
source validation datasets.

2 Datasets

2.1 Previous LUCC and cropland datasets

To investigate the spatial distribution of Africa within the
study’s temporal scope, we amassed a comprehensive dataset
from Google Earth Engine (GEE) and its community plat-
form encompassing global or Africa-specific LUCC datasets
as well as cropland distribution, with a spatial resolution finer
than 500 m, spanning the period from 2000 to 2022 (as sum-
marized in Table 1). However, definitions of cropland and
other land use/cover types exhibit variations across differ-
ent datasets. In this context, both GLC_FCS30D and ESA
CCI-LC employ the FAO’s Land Cover Classification Sys-
tem (LCCS) (ESA, 2017; Zhang et al., 2024b). The LCCS
has been utilized to define diverse land cover types, demon-
strating both flexibility and effectiveness across various ge-
ographical contexts (Ahlqvist, 2008) while simultaneously
promoting interoperability for land cover data and facilitating
the scrutiny of classification processes (Herold et al., 2006).
ESRI 10 m Annual Land Cover, ESA WorldCover, and Dy-
namic World all employ a multi-tiered land cover classifi-
cation system, defining cropland as areas planted or sown
by humans with cereals, grasses, and other crops that can

be harvested within a year, excluding perennial woody crops
(Karra et al., 2021; Van De Kerchove et al., 2021; Brown
et al., 2022). Specialized cropland products define cropland
as areas used for growing annual or perennial crops (Bur-
ton et al., 2022; Potapov et al., 2022), including forage and
biofuel crops under both rainfed and irrigated systems (Telu-
guntla et al., 2023) and also consider land permanently used
for plantations, such as orchards and vineyards, as cropland
(Thenkabail et al., 2021).

2.2 Continuous Landsat imagery from 2000 to 2022

All available surface reflectance (SR) from Landsat imagery
(Level 2, Collection 2, Tier 1) spanning 2000 to 2022, includ-
ing Landsat 5, 7, 8, and 9, stored in the GEE computational
platform was collected to monitor the spatiotemporal dynam-
ics of cropland extent in Africa. To minimize the spectral dis-
crepancies among different Landsat sensors, calibration co-
efficients were applied to recalibrate the surface reflectance
data from Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) to align with the comparable standards
of Operational Land Imager (OLI) (Roy et al., 2016). Subse-
quently, the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS) and the Land Surface Reflectance
Code (LaSRC) algorithms were employed to perform atmo-
spheric correction on Landsat imagery and construct a high-
quality, continuous Landsat temporal dataset (Vermote and
Saleous, 2007; Vermote and Kotchenova, 2008). As shown
in Fig. 1a–e, the spatial distribution of valid Landsat ob-
servations over five time periods exhibits significant spa-
tiotemporal variability, which can directly affect the accu-
racy of cropland mapping. To mitigate this influence and en-
hance spatial consistency, we incorporated a cropland con-
sensus layer derived from six global LUCC/cropland prod-
ucts, where cropland agreement levels are categorized from
SA1 to SA6 (Fig. 1f) (Tubiello et al., 2023a, b). This consen-
sus informed the construction of a 2°× 2° grid framework,
delineated by red lines in Fig. 1f, with each grid cell serving
as the minimum classification unit for the cropland mapping
process.

2.3 Validation datasets

To comprehensively analyze the accuracy metrics of the
AFCD map, we collected two validation datasets: crop-
land samples across Africa in 2016 and 2019. Initially, we
utilized 3386 independent validation samples provided by
Kerner et al. (2024a) collected through field surveys and
visual interpretation across eight countries in sub-Saharan
Africa (shown as Fig. 2a; Kerner et al., 2024b). Addition-
ally, we utilized crowdsourced data provided by Laso Bayas
et al. (2017), collected via the Geo-Wiki platform, for valida-
tion (Fig. 2b). The dataset includes 35 866 cropland samples
collected globally through a crowdsourcing campaign on the
Geo-Wiki platform, with 7313 samples located in Africa
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Table 1. Description of map data products utilized in this study.

Dataset Year(s) Res.
(mpx−1)

Coverage Definition of cropland Cropland class no.

GLC_FCS30D 1985; 1990;
1995;
2000–2022

30 m Global Irrigated cropland, rainfed cropland,
herbaceous cover cropland, tree, or shrub
cover cropland (Zhang et al., 2024b).

10, 11, 12, 20

ESRI 10 m Annual
Land Cover

2017–2023 10 m Global Crops, human planted/plotted cereals,
grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of
structured land (Karra et al., 2021).

5

ESA WorldCover 2020; 2021 10 m Global Land covered with annual cropland that is
sowed/planted and harvestable at least once
within the 12 months after the
sowing/planting date. The annual cropland
produces a herbaceous cover and is
sometimes combined with some tree or
woody vegetation. Note that perennial
woody crops will be classified as the
appropriate tree cover or shrub land cover
type. Greenhouses are considered to be built
up (Zanaga et al., 2021, 2022).

40

Dynamic World 2015–now 10 m Global Estimated probability of complete coverage
by crops (Brown et al., 2022).

4

ESA CCI-LC 1992–2020 300 m Global Rainfed cropland, irrigated or post-flooding
cropland, and mosaic cropland
(> 50 %)/natural vegetation (tree, shrub,
herbaceous cover) (< 50 %) (ESA, 2017).

10, 20, 30

Digital Earth Africa
Cropland Extent

2019 10 m Continent Sowed/planted and harvestable at least once
within the 12 months after the
sowing/planting date (Burton et al., 2022).

1

GFSAD global
cropland maps

2015 30 m Global Rainfed cropland (cropland areas that are
purely dependent on direct precipitation),
irrigated cropland (cropland that had at least
one irrigation during the crop growing
period) (Thenkabail et al., 2021).

1, 2

GLAD Global
Cropland Maps

2003, 2007,
2011, 2015,
2019

30 m Global Land used for annual and perennial
herbaceous crops for human consumption,
forage (including hay), and biofuel.
Perennial woody crops, permanent pastures
and shifting cultivation are excluded from
the definition. The fallow length is limited
to 4 years for the cropland class (Potapov et
al., 2022).

1

Africa Cropland
Mask

2016 30 m Continent Agricultural annual standing croplands,
cropland fallows and permanent plantation
crops (Nabil et al., 2022).

1
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Figure 1. Temporal and spatial distribution of available Landsat imagery data over Africa and (a–e) and spatial distribution of cropland
derived from six global LUCC/cropland products (f). In (f), SA1–SA6 represent increasing cropland agreement levels (Tubiello et al.,
2023a, b).

(See, 2017). Each sample corresponds to a 300m× 300m
PROBA-V grid cell and records the proportion of cropland
within the frame based on visual interpretation by partici-
pants. To ensure data quality, a subset of samples was ran-
domly selected for secondary validation by three trained stu-
dents (provided as control samples). Samples with inconsis-
tent results among the student interpretations were excluded.
Additionally, experts further reviewed and validated the con-
trol samples to enhance the overall reliability of the dataset
(provided as expert samples) (Laso Bayas et al., 2017; See,
2017).

3 Methodology

As the framework shows in Fig. 3, we propose a land
cover change-detection-based approach that combines ma-
chine learning and the continuous change-detection (CCD)
algorithm for mapping annual cropland extent in Africa.
Therefore, we define the cropland as land used for annual
and perennial herbaceous crops for human consumption, for-
age (including hay), and biofuel. Perennial woody crops, per-
manent pastures, and crop rotations are excluded from the
definition. The identification of active cropland relies on sig-
nificant variations in vegetation signals within time series re-
mote sensing data over a 12-month period, indicating plant-
ing and harvesting activities. When periodic vegetation sig-

nals exhibit anomalies, we hypothesize that changes in crop-
ping patterns or systems may have occurred.

3.1 Generate training datasets

In the process of generating training data, we employed
a dual-window sliding-window strategy for the creation of
cropland and non-cropland training samples. Prior studies
have revealed that the distribution of training data (propor-
tional to area and equally distributed) and data balance signif-
icantly impact classification outcomes. Quantitative analyses
have demonstrated that the proportional allocation method
typically achieves higher overall accuracy compared to an
equally distributed approach (Jin et al., 2014; Zhu et al.,
2016). Specifically, our procedure for generating reference
samples is as follows:

– All annual and multi-year products were categorized
into five groups centered around the years 2000, 2005,
2010, 2015, and 2020, each group encompassing the
product from the respective center year plus or minus
2 years.

– Based on the cropland definitions and class label num-
bers in Table 1, each LUCC product was reclassified
into cropland and non-cropland (excluding categories
with significant discrepancies from other products). The
data were then resampled to the WGS84 coordinate sys-
tem with a spatial resolution of 0.0002875° (approxi-
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Figure 2. Spatial distribution of validation points for regional and time series.

Figure 3. Flowchart of this study for mapping African annual cropland extent spanning the years 2000 to 2022.

mately 30 m at the Equator). For multi-year products,
areas where various land cover types had not changed
were extracted; for single-year products, they were used
directly.

– A dual-window methodology was applied to assess bi-
nary image classification, requiring complete category
occupancy within a 150m×150m inner window for ho-
mogeneity and at least 80 % dominance in a 330m×
330m outer window, ensuring spatial stability of the
central pixel as a representative sample point.

– An evaluation was performed to ascertain the recog-
nition consistency of the central pixel’s classification
across various products.

– A hexagonal grid dataset with a resolution of 0.01° was
employed to randomly filter the generated excess sam-
ple points. Within each grid cell, a maximum of 10 sam-
ples of the same category with the highest recognition
level was retained.

Through the procedures, a total of five sets of sample
datasets were generated, each corresponding to the classifi-
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Figure 4. Schematic Diagram of Training sample dataset genera-
tion using a dual-window approach.

cation sample data for a central year and the 2 preceding and
following years.

3.2 Cropland mapping with classification methods

3.2.1 Original cropland mapping

The temporal scope for cropland extraction was extended
from 2000 to 2022. Utilizing multi-temporal Landsat surface
reflectance (SR) imagery is a primary method for preprocess-
ing in contemporary land use classification. This approach
mitigates the limitations of single-scene imagery by facilitat-
ing the extraction of seasonal changes on the Earth’s surface.
Consequently, two methods for temporal data synthesis have
been developed: seasonal composites (e.g., 16 d, monthly,
and seasonal composites) and metrics composites. The met-
rics composite method, introduced by Hansen et al. (2013),
captures phenological and land cover changes without requir-
ing assumptions or prior knowledge about seasonal timing,
making it globally applicable without location-specific mod-
ifications.

In this study, five spectral bands from Landsat, excluding
the blue band, were used along with four spectral indices:
enhanced vegetation index (EVI), soil-adjusted vegetation
index (SAVI), normalized difference water index (NDWI),
and normalized burn ratio (NBR). From these nine spec-
tral features, five percentiles (10th, 25th, 50th, 75th, and
90th) were calculated, resulting in a total of 45 spectral fea-
tures. Additionally, topographic parameters (elevation, slope,
and aspect) were derived from the global 30 m digital ele-
vation model (DEM) provided by ASTER GDEM. Texture
features (variance, homogeneity, contrast, dissimilarity, en-

tropy, and correlation) were generated from the gray-level
co-occurrence matrix based on the near-infrared (NIR) band,
yielding a total of 54 feature parameters for subsequent clas-
sification tasks.

For classifier selection, we utilized the
ee.Classifier.smileRandomForest() method available on
the GEE cloud platform. This algorithm determines pixel
class membership by adjusting two key parameters: the
number of decision trees (Ntree) and the number of predictor
variables (Mtry) at each node split, using a combination of
training samples and multivariate features. Previous studies
have shown that the classification accuracy of this algorithm
is not significantly affected by the specific parameter values
(Belgiu, 2016; Zhang et al., 2019). Therefore, Ntree was
set to the default value of 500, and Mtry was set to the
square root of the total number of input features. A separate
classifier was trained for each 2° grid (Fig. 1f) cell using the
random forest method, with training samples drawn from the
four neighboring grid cells surrounding the target grid unit.

3.2.2 Change detection by CCD algorithm and updating
changes

Changes in cropland are generally more complex than other
forms of land use changes, such as deforestation and ur-
ban expansion. These changes can be categorized as follows:
(1) acquisition of new agricultural land, achieved through
clearing forests or converting savannah regions into arable
land; (2) short-term fallowing, which involves temporarily
resting the land to restore soil fertility; (3) abandonment,
where agricultural land is left unused due to various factors;
and (4) urban replacement, where agricultural fields are pro-
gressively replaced by urban areas as a result of socioeco-
nomic development. In this study, the CCD algorithm (Zhu
and Woodcock, 2014) is applied to identify changes in crop-
land areas. This algorithm employs Fourier transform tech-
niques to model time series observations using trend terms
(to estimate trend changes) and harmonic terms (to describe
periodic changes) and then identifies potential land use dis-
ruptions when the time series reflectance data exhibit six con-
secutive outliers that significantly deviate from the model-
fitted curve (Zhu and Woodcock, 2014). This detection cri-
terion typically corresponds to substantial surface modifi-
cations, including but not limited to afforestation initiatives
(Decuyper et al., 2022), agricultural reclamation projects
(Chen et al., 2023), or spontaneous cropland abandonment,
thereby facilitating precise detection of changes in crop-
land regions. Specifically, the algorithm decomposes the time
series data into trend and periodic components using the
Fourier transform as shown in Eq. (1):

ρ̂(i, t)= a0,i + c1,i × t

+

n∑
k=1

(
ak,i × cos

(
2kπ
T
t

)
+ bk,i × sin

(
2kπ
T
t

))
, (1)
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where ρ̂(i, t) represents the estimated value at Julian day t
and band i. The parameter a0,i is the intercept term at band i,
reflecting the average level of the time series, while c1,i is the
linear trend coefficient, indicating the linear change over time
at that location. The summation

∑n
k=1 includes the harmonic

components, where n is the number of harmonics. The coef-
ficients ak,i and bk,i are the cosine and sine coefficients for
the kth harmonic, describing the amplitude and phase of pe-
riodic changes. The functions cos

( 2kπ
T
t
)

and sin
( 2kπ
T
t
)

are
the cosine and sine functions for the kth harmonic, with T
being the period length (default is 365.25) used to capture
periodic variations (Xian et al., 2022).

In this study, we utilize the JavaScript API
provided by the GEE platform, specifically the
ee.Algorithms.TemporalSegmentation.Ccdc() function,
to detect land use changes. This algorithm identifies change
points in land use by analyzing time series data. In this
study, we apply the CCD algorithm alongside continuous
Landsat imagery data to determine the stable time intervals
of agricultural land pixels and identify specific temporal
points of land use changes. This approach also enabled the
identification and correction of misclassifications occurring
during these stable periods by majority voting.

3.3 Accuracy assessment

The validation of the African cropland product involved three
complementary approaches. First, we evaluated the accuracy
of AFCD by comparing its national-scale area statistics with
official FAO reports and other existing cropland products, us-
ing R-square (R2, shown in Eq. 2) as the evaluation metric.
Second, we performed sample-based validation using multi-
ple independent datasets. Third, we performed spatial con-
sistency analysis by comparing our product with existing
remote-sensing-derived cropland maps.

R2
= 1−

∑
(yi − ŷi)2∑
(yi − yi)2 (2)

For the sample-based validation, we employed three distinct
strategies: (1) we reserved 30 % of consensus samples from
model training for internal validation of classification accu-
racy, (2) utilized the cropland/non-cropland samples from
sub-Saharan Africa compiled by Kerner et al. (2024) for in-
dependent accuracy assessment (as described in Sect. 2.3),
and (3) applied the global cropland sample dataset from Laso
Bayas et al. (2017) for sample-based area estimation vali-
dation (as described in Sect. 2.3). The first two validation
approaches employed four key accuracy metrics calculated

through confusion matrix analysis, as shown in Eq. (3):

PAk =
pkk

pk·
,

UAk =
pkk

p·k
,

OA=
∑m−1
k=0 pkk

N
,

F1k =
2 ·PAk ·UAk
PAk +UAk

,

Kappa=
N
∑m−1
k=0 pkk −

∑m−1
k=0 pk·p·k

N2−
∑m−1
k=0 pk·p·k

. (3)

For binary classification (cropland vs. non-cropland), we de-
fine the number of classes as m= 2, corresponding to class
labels 0 and 1. Let N be the total number of validation sam-
ples and pij denote the number of samples belonging to
class i but classified as class j , with pkk representing cor-
rectly classified cases. The marginal sums pk· =

∑
jpkj and

p·k =
∑
ipik correspond to row and column totals, respec-

tively.
For the Laso Bayas et al. (2017) dataset validation, we

calculated mean absolute error (MAE) by comparing our
mapped cropland area proportions against reference values
within 300m× 300m sample units. The MAE computation
is shown in Eq. (4):

MAE=
1
n

∑
|Am−Ar|, (4)

where Am denotes the mapped cropland proportion, Ar is the
reference proportion, and n is the sample count.

In addition, we evaluated the similarity of AFCD with
other multi-source remote sensing cropland extent maps
through comparative analysis. First, five representative agri-
cultural zones were selected as sample areas based on crop-
land intensification levels and spatial continuity character-
istics, including (1) contiguous irrigated agricultural zones,
(2) dispersed traditional rainfed agricultural areas, (3) moun-
tainous terrace farming systems, (4) semi-intensive agro-
pastoral transition areas, and (5) fragmented transitional
cropland regions. Within each sample area, 1500 validation
points were systematically collected, with similarity matrices
employed to compare our maps with other remote-sensing-
based land cover products (Phalke et al., 2020). From these
matrices, we computed standard accuracy metrics including
PA, UA, F1 score, and overall similarity (equivalent in cal-
culation to OA). It should be specifically noted that the com-
parative datasets (e.g., GLAD, as described in Sect. 2.1) ex-
hibit significant discrepancies in cropland definitions, spatial
resolution, mapping years, and classification methodologies.
To mitigate the impacts of these disparities during compari-
son, spatial resampling of our map products was occasionally
required along with temporal alignment using outputs from
identical reference years as comparator products.
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4 Results

4.1 Classification results

The outcomes of this study are an annual 30 m cropland ex-
tent map for Africa spanning 2000 to 2020 (Fig. 5), which
demonstrates strong performance in capturing cultivated ar-
eas across diverse agricultural landscapes. As illustrated in
Fig. 5, five representative regions were selected to evalu-
ate the AFCD’s capability in recognizing varying cropland
patterns under different agricultural conditions. The con-
tiguous irrigated agricultural zones in Egypt, characterized
by large, contiguous cropland due to intensive agriculture,
were easily identified (Fig. 5b). Similarly, the dispersed tra-
ditional rainfed agricultural areas in Senegal were accu-
rately captured (Fig. 5b). The mountainous terrace farm-
ing systems in Rwanda were also well mapped (Fig. 5b)
along with the semi-intensive agro-pastoral transition areas
in Kenya (Fig. 5b). Lastly, the fragmented transitional crop-
land regions in Sudan were correctly identified, showcasing
the AFCD’s capacity to detect various agricultural systems
across different landscapes.

4.2 Independent accuracy assessment of AFCD map

We performed a pixel-wise accuracy assessment of an-
nual cropland map based on the validation sample set. The
F1 score, OA, UA, PA, and kappa coefficient of annual
maps on average were 0.86± 0.01, 0.97± 0.01, 0.88± 0.07,
0.77± 0.07, and 0.93± 0.01, respectively. Spatially, map-
ping accuracy can vary across different tiles, likely due to
the sparse distribution of cropland. The overall classification
accuracy of the model exceeds 90 % across most regions, ex-
cept for central and southern Niger, where the accuracy is
lower. In most areas, the F1 scores are above 0.80 and both
omission and commission errors are lower than 0.2. For the
sample data provided by Kerner for eight countries in sub-
Saharan Africa, the sample collection year is 2019. Con-
sequently, we selected cropland extraction results from this
time frame for validation. The outcomes and comparisons
with other products are presented in Table 2. We primarily
utilized this sample to evaluate our product, while the accu-
racy metrics for other products were sourced from the study
by Kerner et al. (2024). Based on four evaluation metrics and
results from eight target countries, we compared the perfor-
mance of our product against that in other nations and the av-
erage level. Our cropland identification model performed ex-
ceptionally well in countries such as Kenya and Mali, achiev-
ing an accuracy of 0.96 and an F1 score of 0.92, indicating
a strong balance between precision and recall. However, the
model’s performance was relatively weaker in Zambia, Togo,
and Uganda, with accuracies of 0.82 and 0.78, respectively.

Secondly, we utilized the crowdsourced sample data pro-
vided by Laso Bayas et al. (2017) to extract the proportion
of cropland area within a 300m× 300m square around each

point. We then calculated the MAE between the extraction
results and visual interpretation, and the result indicated val-
ues of 15.07 %± 1.70 % for all samples, 10.78 %± 1.56 %
for control samples, and 31.45 %± 8.47 % for expert sam-
ples.

4.3 Comparison of cropland areas

The net cropland area for Africa has grown from an esti-
mated 1.9435× 108 ha in 2000 to 2.1092× 108 ha in 2022.
This estimate is in line with other remote-sensing-based esti-
mates although major differences exist. This study conducted
cross-validation between national-scale cultivated land area
estimations and statistical data from the FAO covering 50
African countries/regions (partial areas excluded due to
data gaps), demonstrating strong concordance (R2

= 0.83;
Fig. 6a). It should be specifically noted that our total crop-
land estimates exhibit a 10 %–24 % discrepancy range com-
pared with official FAO statistics. This divergence may orig-
inate from two principal factors: (1) FAO’s statistical frame-
work heavily relies on self-reported national data, inherently
constrained by inconsistent survey methodologies and update
delays (Fritz et al., 2015), and (2) the remote-sensing-based
classification and limited temporal consistency may lead to
the misclassification of intermittently fallowed croplands.
Comparative analysis with independent remote sensing prod-
ucts (GLAD and LGRIP) revealed three critical findings:
first, the 30 m resolution GLAD dataset showed optimal lin-
ear agreement with our estimates (intercept= 0.30× 103 ha,
R2
= 0.94; Fig. 6b). Second, the 100 m resolution LGRIP

dataset exhibited a larger intercept of 1.19× 103 ha (R2
=

0.86; Fig. 6c). Notably, the minimal area discrepancy be-
tween GLAD and our study (slope coefficient= 0.98± 0.03)
primarily stems from mutual adoption of 30 m resolution de-
tection criteria. However, the observed high consistency with
LGRIP (R2

= 0.86) mainly reflects mutual recognition of
dominant cropland types given LGRIP’s emphasis on rain-
fed/irrigated classifications (unaddressed in our study) and
Africa’s overwhelming predominance of rainfed cultivation
systems (FAO, 2020).

4.4 Map-to-map comparison results

The comparison of cropland maps derived from this study
with the cropland labels in GLAD2019 reveals a high level
of agreement across the entire study area, with an over-
all similarity of 87.7 %. Specifically, the producer’s crop-
land similarity was 85.2 % (corresponding to an omission
error of 14.8 %), while the user’s cropland similarity was
slightly higher at 86.9 % (resulting in a commission er-
ror of 13.1 %). Among the selected regions, Nigeria exhib-
ited the highest similarity at 94.6 % with an F1 score of
0.963. Senegal followed closely with an overall similarity of
94.4 % (F1 score= 0.858), while Rwanda showed the lowest
similarity at 76.7 % (F1 score= 0.766). Visual comparisons
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Figure 5. Cropland extent map of Africa in 2022 at 30 m resolution by the Africa Cropland Dynamic map (AFCD) project (a); visual
interpretation of cropland extent for selected African countries (b) and interannual variations in cropland areas across Africa during the 21st
century (c). Yellow color represents the cropland mask, and the background is the natural color composite high-resolution imagery available
in Google Earth Engine (© Google Earth 2025).

highlighted the successful identification of major irrigated
agricultural zones (such as in Egypt) and rainfed cultivation
areas (notably in Nigeria).

When compared with the 10 m African cropland product
from Digital Earth Africa (DEA) for 2019, the similarity in
Egypt was particularly high, with an overall similarity of
90.1 % (F1 score= 0.913). In this case, the producer’s crop-
land similarity was 86.5 % (omission error= 13.5%), while
the user’s cropland similarity reached 96.5 % (commission
error= 3.5%). The primary cause of discrepancies is the use
of Sentinel-2 10 m resolution imagery in the DEA product,
which improves boundary delineation between cropland and
adjacent land covers, reducing mixed-pixel effects. As a re-
sult, our AFCD product tends to show more omission er-
rors compared to DEA, while the commission errors remain
below 5 %, highlighting its strong performance in detecting
cropland areas.

A cross-comparison with the LGRIP30 global 30 m irri-
gated/rainfed cropland dataset (2015 vintage) in Nigeria’s
predominantly rainfed systems showed an overall similarity

of 89.7 % (F1 score= 0.932). The producer’s cropland sim-
ilarity was notably high at 95.8 % (omission error= 4.2%),
while the user’s cropland similarity was 88.4 % (commission
error= 11.6%). The discrepancy is mainly due to occasional
misclassifications in the LGRIP30 dataset, where buildings,
roads, and neighboring woodlands are sometimes incorrectly
labeled as cropland. Nevertheless, the spatial agreement be-
tween the AFCD and LGRIP30 datasets remains substantial,
with a similarity of nearly 90 %.

5 Discussion

5.1 Cropland dynamics in Africa

Based on the produced AFCD map, we calculated country-
level net changes in cropland area between 2000 and 2022,
and we plotted annual cropland area dynamics at the con-
tinental scale. Overall, Africa’s total cropland grew from
1.9435×108 ha in 2000 to 2.1092×108 ha in 2022 (Fig. 5c),
a net increase of 16.57×106 ha (8.53 %). In terms of tempo-
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Table 2. Performance metrics and associated standard errors for our results and other maps based on Kerner’s reference dataset. The highest
value in each row is formatted in bold typeface, while the second-highest value appears in italic.

Country Metric Our Result GFSAD GLAD Copernicus GlobCover ASAP Mean

Kenya Accuracy 0.96 ± 0.00 0.92± 0.01 0.95± 0.01 0.90± 0.01 0.76± 0.01 0.92± 0.01 0.91± 0.05
F1 0.66± 0.02 0.63± 0.14 0.75 ± 0.19 0.50± 0.18 0.29± 0.11 0.62± 0.17 0.55± 0.13
Precision (UA) 0.67± 0.03 0.47± 0.06 0.68 ± 0.07 0.38± 0.06 0.18± 0.03 0.48± 0.07 0.48± 0.16
Recall (PA) 0.64± 0.02 0.95 ± 0.03 0.83± 0.05 0.73± 0.07 0.74± 0.07 0.85± 0.05 0.73± 0.15

Malawi Accuracy 0.83± 0.00 0.77± 0.03 0.86 ± 0.03 0.84± 0.03 0.75± 0.03 0.77± 0.03 0.81± 0.04
F1 0.61± 0.01 0.63± 0.19 0.66± 0.24 0.67 ± 0.22 0.50± 0.23 0.63± 0.17 0.59± 0.14
Precision (UA) 0.55± 0.01 0.50± 0.07 0.71 ± 0.09 0.61± 0.08 0.43± 0.08 0.48± 0.07 0.58± 0.09
Recall (PA) 0.68± 0.03 0.85± 0.05 0.62± 0.07 0.74± 0.07 0.61± 0.08 0.92 ± 0.05 0.67± 0.23

Mali Accuracy 0.94± 0.01 0.91± 0.01 0.96 ± 0.01 0.93± 0.01 0.80± 0.01 0.95± 0.01 0.92± 0.05
F1 0.23± 0.07 0.15± 0.20 0.33 ± 0.29 0.18± 0.23 0.07± 0.08 0.21± 0.38 0.21± 0.14
Precision (UA) 0.16± 0.05 0.10± 0.05 0.23 ± 0.08 0.12± 0.06 0.04± 0.02 0.17± 0.11 0.14± 0.10
Recall (PA) 0.42± 0.13 0.37± 0.15 0.61 ± 0.16 0.37± 0.15 0.42± 0.16 0.27± 0.15 0.44± 0.25

Rwanda Accuracy 0.76± 0.00 0.74± 0.04 0.77 ± 0.04 0.77 ± 0.04 0.61± 0.05 0.71± 0.05 0.75± 0.07
F1 0.63± 0.01 0.73± 0.18 0.72± 0.18 0.75 ± 0.18 0.61± 0.18 0.74± 0.16 0.69± 0.11
Precision (UA) 0.82± 0.02 0.67± 0.07 0.84 ± 0.07 0.73± 0.07 0.53± 0.07 0.64± 0.07 0.77± 0.14
Recall (PA) 0.51± 0.01 0.79± 0.05 0.64± 0.05 0.78± 0.05 0.72± 0.05 0.88 ± 0.04 0.68± 0.17

Tanzania Accuracy 0.83± 0.01 0.88 ± 0.01 0.86± 0.01 0.86± 0.01 0.70± 0.01 0.83± 0.01 0.81± 0.06
F1 0.72± 0.02 0.76± 0.06 0.69± 0.05 0.72± 0.06 0.51± 0.06 0.65± 0.05 0.61± 0.16
Precision (UA) 0.89± 0.02 0.89± 0.02 0.95± 0.01 0.86± 0.02 0.60± 0.03 0.92± 0.02 0.87± 0.11
Recall (PA) 0.61± 0.02 0.67 ± 0.02 0.54± 0.02 0.61± 0.02 0.45± 0.02 0.50± 0.02 0.49± 0.16

Togo Accuracy 0.77± 0.01 0.77± 0.03 0.86 ± 0.03 0.78± 0.03 0.74± 0.03 0.69± 0.03 0.78± 0.06
F1 0.45± 0.03 0.64± 0.18 0.75 ± 0.15 0.63± 0.19 0.46± 0.20 0.49± 0.20 0.55± 0.20
Precision (UA) 0.68± 0.02 0.60± 0.07 0.88 ± 0.06 0.64± 0.07 0.56± 0.09 0.48± 0.07 0.70± 0.14
Recall (PA) 0.33± 0.03 0.68 ± 0.05 0.66± 0.05 0.62± 0.05 0.38± 0.05 0.51± 0.06 0.50± 0.22

Uganda Accuracy 0.86 ± 0.01 0.79± 0.02 0.84± 0.02 0.77± 0.02 0.57± 0.02 0.70± 0.02 0.78± 0.10
F1 0.53± 0.02 0.48± 0.21 0.57 ± 0.23 0.40± 0.20 0.31± 0.12 0.38± 0.16 0.44± 0.08
Precision (UA) 0.42± 0.02 0.35± 0.07 0.46 ± 0.08 0.29± 0.06 0.19± 0.04 0.25± 0.05 0.38± 0.15
Recall (PA) 0.72± 0.01 0.73± 0.07 0.76± 0.07 0.67± 0.09 0.80 ± 0.07 0.79± 0.07 0.66± 0.18

Zambia Accuracy 0.96± 0.00 0.94± 0.01 0.97 ± 0.01 0.94± 0.01 0.90± 0.01 0.91± 0.01 0.94± 0.03
F1 0.51± 0.06 0.60± 0.23 0.73± 0.27 0.58± 0.24 0.20± 0.23 0.45± 0.21 0.56± 0.15
Precision (UA) 0.47± 0.05 0.46± 0.09 0.68 ± 0.10 0.45± 0.09 0.15± 0.06 0.32± 0.07 0.49± 0.19
Recall (PA) 0.58± 0.08 0.85 ± 0.07 0.79± 0.08 0.80± 0.08 0.29± 0.10 0.78± 0.08 0.71± 0.17

Mean Accuracy 0.86± 0.01 0.84± 0.01 0.88 ± 0.01 0.85± 0.01 0.73± 0.01 0.81± 0.01 –
F1 0.54± 0.03 0.58± 0.05 0.65 ± 0.08 0.55± 0.06 0.37± 0.07 0.52± 0.09 –
Precision (UA) 0.58± 0.03 0.51± 0.02 0.68 ± 0.03 0.51± 0.02 0.34± 0.03 0.47± 0.03 –
Recall (PA) 0.56± 0.04 0.74 ± 0.04 0.68± 0.04 0.67± 0.04 0.55± 0.04 0.69± 0.04 –

ral changes, before 2005, the changes in arable land followed
a wave-like pattern with gradual fluctuations. However, after
2006, a sharp increase was observed (as shown in Fig. 5c). As
seen in Fig. 9, the overall arable land area in Africa shows
a spatial increasing trend. Countries such as the Demo-
cratic Republic of the Congo, Tanzania, and Mozambique
have seen increases of over 1.5× 106 ha, while most coun-
tries experienced an increase of less than 5× 105 ha (kha).
For example, in the Democratic Republic of the Congo,
1.53× 106 ha of land has been converted into arable land
since the 21st century. In contrast, a few countries, includ-

ing Zimbabwe (4.61×105 ha), South Sudan (8.87×104 ha),
and Libya (250 ha), have seen a decline in arable land area.
This trend is linked to factors such as the growth of the min-
ing industry in African nations, rural labor migration to min-
ing areas, or regional conflicts leading to the abandonment of
arable land.

From 2000 to 2022, Africa’s cropland area steadily in-
creased; however, the area of abandoned cropland also rose.
According to the FAO, cropland abandonment refers to for-
merly cultivated land that has not been used for agricultural
production for a period exceeding 5 consecutive years. By
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Figure 6. Comparison of AFCD with FAO statistical cropland area (a) and other LUCC/cropland products (b–f) (2000–2022). In (b)–(f),
blue dots and red squaresPl show the differences from FAO estimates for AFCD and other products, respectively. The purple line indicates
the linear fit between AFCD and each product.

2018, abandoned cropland accounted for 11.52 % (24.70×
106 ha) of active cropland. In 2022, the increase in poten-
tially abandoned cropland, projecting that abandoned crop-
land will constitute 13.31 % of active cropland. The aban-
donment of cropland is driven by a combination of natural
constraints, land degradation, demographic shifts, socioeco-
nomic factors, and institutional frameworks, which interact
across different spatial and temporal scales (Zumkehr and
Campbell, 2013). We quantitatively evaluated the spatiotem-
poral trends and primary drivers of cropland abandonment
in Africa (shown as Fig. 10). Countries situated between 23
and 39° E, including Egypt, Sudan, South Sudan, Uganda,
Malawi, and Zimbabwe, account for 50.1 % of the conti-
nent’s abandoned cropland. Nationally, we found that most
abandoned cropland remains unused for over 5 years. South
Africa and Sudan exhibit the highest reclamation rates, with
10 % of active cropland regenerated from previously aban-
doned areas, while most other nations have rates below 5 %.

Cropland abandonment is influenced by a myriad of ob-
jective factors, encompassing agricultural conditions and the
degree of regional development. Furthermore, economic cir-
cumstances, demographic shifts, and urban expansion also
significantly contribute to this phenomenon. A national-level
analysis of cropland abandonment across Africa offers a spa-
tial perspective on the magnitude of abandonment, simul-
taneously reflecting the alterations in socioeconomic vari-
ables that underlie this trend. The results revealed that coun-

tries such as Burundi, the Central African Republic, and
Ghana exhibit both low areas and ratios of cropland aban-
donment (< 5%). Conversely, nations like Algeria, Burkina
Faso, Mali, and Zambia consistently maintain higher levels
of cropland abandonment annually, with abandoned areas ex-
ceeding 25 % of active cropland. Furthermore, South Africa,
Nigeria, Zimbabwe, and Sudan demonstrate elevated aban-
donment levels, notably with Nigeria experiencing signifi-
cant abandonment around 2015.

Cropland, a heavily modified landscape within the
wildland–urban interface (WUI), is a critical source of car-
bon emissions due to agricultural biomass burning, which
substantially influences climate change (Mallet et al., 2024).
In Africa, rainfed cropland predominates over irrigated crop-
land. As a result, farming activities are concentrated in the
rainy season when water resources are abundant. During the
dry season, arid conditions and natural vegetation growth
create favorable conditions for wildfires driven by meteoro-
logical and fuel moisture dynamics. Studies indicate a global
rise in wildfire risk, with Africa’s WUI being the most af-
fected (Chen et al., 2024). However, wildfire detection using
MODIS sensors underestimates burned areas smaller than
100 ha by over 200 % due to limited spatial resolution (Ramo
et al., 2021). Agricultural fire management, commonly used
by African farmers to clear crop residues and reduce wildfire
risk during fallow periods (Laris et al., 2023; Ramo et al.,
2021), is often absent on abandoned cropland, significantly
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Figure 7. Visual comparison of cropland and non-cropland classification results from AFCD and Potapov et al. (2022) (glad) across multiple
African countries, and the background is the natural color composite high-resolution imagery available in Google Earth Engine (© Google
Earth 2025).

heightening wildfire risks. This study’s long-term mapping
of abandoned cropland in Africa offers a critical foundation
for future research on fire management and monitoring wild-
fire risks in these areas.

Finally, cropland extent mapping in Africa is particularly
challenging due to the complex crop-planting structures in
the region and the dynamic changes driven by climatic, envi-
ronmental, and socioeconomic factors. The long-term crop-
land data provided in this study is essential for understanding
the interannual variation of cropland in Africa and its rela-
tionship to environmental, climatic, land use, and policy in-
fluences.

5.2 The advantages of the AFCD map

This study presents an algorithm developed using Landsat
time series data (2000–2022) implemented in GEE with ran-
dom forest and CCD algorithms, producing a 30 m resolution
cropland extent map for Africa (Fig. 5). By integrating exist-

ing LUCC products with the CCD algorithm, we developed
a consistent cropland map for Africa. This approach mini-
mizes the impact of seasonal false changes, ensuring stable
and continuous identification of both active and abandoned
croplands. Our method achieved an overall classification ac-
curacy of 86 % based on an independent validation dataset.
Over the 22-year period, Africa experienced a net cropland
expansion of 16.57× 106 ha, representing nearly a 10 % in-
crease relative to the baseline levels at the start of the mil-
lennium. By comparing our product with other global and
regional LUCC or cropland extent (CE) products, we gain
valuable insights into its strengths and limitations.

Existing LUCC products, such as the ESRI 10 m An-
nual Land Cover, GLAD’s global cropland maps, and Glo-
beLand30, provide useful information; however, the AFCD
product distinguishes itself through longer temporal cov-
erage (2000–2022) and higher temporal frequency with
Landsat-based annual observations at 30 m resolution. This
enables a more extended temporal observation of agricul-
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Figure 8. Map-to-map comparison of cropland extent develop by AFCD and LGRIP30 in Egypt and Nigeria, and the background is the
natural color composite high-resolution imagery available in Google Earth Engine (© Google Earth 2025).

Figure 9. Cropland area changes in Africa between 2000 and 2022 and country-level cropland change patterns based on AFCD data.
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Figure 10. Spatial distribution of cropland abandonment in Africa, indicating the year abandonment began. It includes a summary of
abandoned cropland area and the ratio of abandoned to active cropland at 2° longitude and latitude intervals.

tural dynamics starting from the early 2000s. For exam-
ple, compared to GLAD’s quadrennial cropland extent prod-
uct – aligned with FAO’s 5-year abandoned land definition
– the AFCD product offers enhanced temporal resolution.
This improvement significantly boosts detection capabilities
for long-term land abandonment patterns. Additionally, the
AFCD map reduces misclassifications of roads and buildings
near cropland, a common issue in products like LGRIP.

When compared to other 30 m resolution products such
as GLAD, GCEP, and LGRIP, the AFCD product shows
good consistency in terms of total cropland area. However,
it tends to slightly underestimate cropland areas when com-
pared to higher-resolution products such as the 10 m resolu-
tion DEA or the 300 m resolution ESA CCI-LC. As shown in
Fig. 8, while AFCD preserves much of the object-level detail,
the 30 m resolution results in many mixed pixels, leading to
small cropland areas being overlooked, especially when sur-
rounded by vegetation.

A significant challenge in large-scale classification tasks
is acquiring high-quality reference training and testing data.
In this study, we generated a large number of sample data
points and performed training and classification based on a
grid approach. However, our training data relied on sample
points derived from the limited overlap of different products.
Cropland in sub-Saharan Africa is often fragmented, form-
ing mosaics with savannas, woodlands, and grasslands. As
a result, various products may identify the same pixel con-
taining cropland in different ways, leading to inconsistencies.
Regions with low classification consistency across products
are especially vulnerable to misclassification. Consequently,
we included these challenging samples with limited recogni-
tion in our training dataset. While this introduces some un-
certainty, it is a necessary trade-off to minimize the omission
of cropland as much as possible.

The AFCD product facilitates (1) continuous temporal
tracking of non-linear cropland system evolution, (2) pre-
cise identification of abandonment onset years and associ-
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ated trigger events, and (3) robust attribution analysis of cli-
mate and anthropogenic impacts on agricultural landscapes.
Serving as both a historical record of 21st-century crop-
land dynamics in Africa and a foundational dataset for fu-
ture abandonment studies, this product contributes signifi-
cantly to continental food security initiatives, hunger miti-
gation strategies, and sustainable land management efforts.

Cropland mapping is a complex and dynamic process
marked by gradual or abrupt changes in land cover due to
human activities. Previous studies have employed soft clas-
sification approaches alongside the LandTrendr algorithm to
track cropland change trajectories (Dara et al., 2018; Xie et
al., 2024). However, these methods rely heavily on the ac-
curacy of cropland probability distribution maps, which can
be affected by seasonal variations in image quality and dif-
ficulties in determining classification thresholds. Addition-
ally, most research has focused on developed regions like Eu-
rope, China, and the United States, leaving cropland change
mapping in Africa, a region with diverse climates and com-
plex land cover, a major challenge. The AFCD map pro-
vides more reliable information for cross-regional and cross-
national comparisons and assessments. Such granular data
are essential for understanding cropland transitions and guid-
ing agricultural management practices in Africa.

5.3 The limitations and prospects of the AFCD map

Our study acknowledges several limitations in terms of
methodology and data. First, while we track cropland dy-
namics annually, we do not account for intra-annual varia-
tions in crops, such as differences in crop calendars or plant-
ing intensities. As a result, our approach may not effectively
capture perennial crops or multi-cropping systems. Second,
we map the general extent of cropland without distinguishing
between specific types, which is crucial when assessing crop
yields or cropland’s responses to climate and anthropogenic
factors. Future research will likely benefit from incorporat-
ing advanced techniques for high-resolution crop type map-
ping. Third, while AFCD performs above the average ac-
curacy level for similar products in Africa, several factors
contribute to its limitations. In terms of temporal accuracy,
AFCD shows relatively lower precision in the early 21st cen-
tury, mainly due to limited data availability for creating con-
sensus label samples in the early 2000s, but also due to un-
even coverage of Landsat 5 data. Spatially, mapping accuracy
varies by region, with relatively higher errors in countries
near the Gulf of Guinea and in east Africa. This is due to local
climate conditions and fragmented agricultural landscapes,
which have long presented challenges for accurate cropland
identification. Recent studies have highlighted the significant
discrepancies in cropland mapping across Africa (Kerner et
al., 2024; Tubiello et al., 2023a). Additionally, the quality of
Landsat data (e.g., unmasked cloud cover) and the sensitiv-
ity of the Continuous Change Detection and Classification
(CCDC) parameters have further impacted the mapping re-

sults. To improve cropland classification accuracy in these
regions, future work should focus on comprehensive surveys
and tailored strategies. Finally, it is important to note that the
datasets used to generate consensus crop/non-crop samples
define cropland differently, which may introduce noise and
errors in our results. For instance, GLAD includes perennial
herbaceous plants, while GFSAD may encompass plantation
lands such as those cultivated with fruits, coffee, and tea. By
relying on consistency across products, our consensus label-
ing process partially excludes these areas. Lastly, although
we assume that land cover types should not change between
breakpoints identified by CCDC, significant breaks caused
by human activities can alter the classification of cropland’s
duration of use. This can lead to overestimation or underesti-
mation of cropland areas in certain regions in different years
within the AFCD dataset.

6 Data availability

The developed AFCD map dataset can be freely accessed via
https://doi.org/10.5281/zenodo.14920706 (Lou et al., 2025).
To help users to navigate this dataset, it is saved as 23 inde-
pendent files. Each file is named “AFCD_YYYY.tif”, where
YYYY is the year of cropland map. The AFCD map contains
23 maps for time steps from 2000 to 2022 updated annually.
In each TIFF file, a value of 1 indicates cropland area.

7 Conclusions

Cropland dynamics serve as a fundamental driver of hu-
man modification and adaptation to natural environments
while also constituting one of the ultimate objectives in
Earth observation research. Conducting large-scale and long-
term cropland monitoring across Africa remains a significant
challenge, particularly given the continent’s complex agro-
ecological conditions and persistent data limitations. This
study generates an annual map of cropland extent at a 30 m
resolution for Africa (namely AFCD) utilizing Landsat-5,
Landsat-7, and Landsat-8 data spanning from 2002 to 2022.
It highlights the efficacy of mapping croplands over exten-
sive areas by employing high-resolution satellite data pro-
cessed through pixel-based RF algorithms and CCD algo-
rithms on GEE. The research introduced a novel method-
ology for sample generation, incorporating crop and non-
crop samples from previous LUCC and cropland extent prod-
ucts, alongside RF and CCD algorithms, to produce annual
maps of cropland extent in Africa. An independent accuracy
assessment revealed an overall map accuracy of 0.86. By
2022, Africa’s cropland expanded from with a net increase of
8.53 %. The high spatial and temporal resolution of the maps
enabled detailed capture of cropland change across Africa,
helping to uncover the impact of cropland on the climate,
improve food security, and develop sustainable land manage-
ment practices.
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