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Abstract. Fires are a significant disturbance in Earth’s systems. Smoke aerosols emitted from fires can cause
environmental degradation and climatic perturbations, leading to exacerbated air pollution and posing hazards
to public health. However, research on the climatic and health impacts of fire emissions is severely limited by
the scarcity of air pollution data directly attributed to these emissions. Here, we develop a global daily fire-
sourced PM2.5 concentration ([PM2.5]) dataset at a spatial resolution of 0.25° for the period 2000–2023, using
the GEOS-Chem chemical transport model driven with two fire emission inventories, the Global Fire Emissions
Database version 4.1 with small fires (GFED4.1s) and the Quick Fire Emission Dataset version 2.5r1 (QFED2.5).
Simulated all-source [PM2.5] is bias-corrected using a machine learning algorithm, which incorporates ground
observations from over 9000 monitoring sites worldwide. Then the simulated ratios between fire-sourced and all-
source [PM2.5] at individual grids are applied to derive fire-sourced [PM2.5]. Globally, the average fire-sourced
[PM2.5] is estimated to be 2.04 µgm−3 with GFED4.1s and 3.96 µgm−3 with QFED2.5. Both datasets show
consistent spatial distributions with regional hotspots in central Africa and widespread decreasing trends over
most areas. While the mean levels of fire-sourced [PM2.5] are much higher at low latitudes, fire episodes in the
boreal regions can cause PM2.5 levels that are comparable to those of the tropics. This dataset, available at https:
//doi.org/10.5281/zenodo.15493914 (Hu et al., 2025a) and https://doi.org/10.5281/zenodo.15496596 (Hu et al.,
2025b), serves as a valuable tool for exploring the impacts of fire-related air pollutants on climate, ecosystems,
and public health, enabling accurate assessments and support for decision-making in environmental management
and policy.
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1 Introduction

Atmospheric particulate matter, typically PM2.5 with aerody-
namic diameters less than 2.5 µm, has significant impacts on
air quality, the climate system, and public health (Gu et al.,
2021; Salana et al., 2024; Xie et al., 2024). These fine par-
ticles originate from a variety of sources, of which biomass
burning from both natural wildfires and anthropogenic ac-
tivities makes substantial contributions (Burke et al., 2023;
Atuyambe et al., 2024; Connolly et al., 2024). Exposure
to elevated fire PM2.5 has been observed to increase mor-
tality rates for various diseases, particularly cardiovascular
and respiratory ailments (Chen et al., 2021). Additionally,
the increased temperatures associated with wildfire emis-
sions promote the likelihood of adverse health effects (Xu
et al., 2020). Furthermore, the heterogenous distribution of
fire PM2.5 concentrations ([PM2.5]) causes much higher pop-
ulation exposure for low-income countries (Xu et al., 2023).
Over the past few decades, the frequency and magnitude of
wildfire occurrences have escalated due to climate change
and extreme weather events (Ward et al., 2012; Zhu et al.,
2021; Melia et al., 2022; Hu et al., 2024). Hence, a com-
prehensive examination of the trends and influencing factors
related to fire PM2.5 is important for the development of ef-
fective environmental protection and health policies.

Currently, two principal approaches are used to estimate
fire-sourced [PM2.5] at large scales (Yue et al., 2024). The
first method derives the changes in air pollutants before and
after specific fire events using observational records. For ex-
ample, Roberts and Wooster (2021) used the Copernicus At-
mosphere Monitoring Service, a system integrating remote
sensing and ground-based observations, to estimate that fire
air pollutants result in approximately 750 000 deaths annu-
ally worldwide, with the highest mortality rates observed in
Asia and Africa. Burke et al. (2023) utilized both surface and
spaceborne PM2.5 measurements (from 2000 to 2022) and
found that wildfire smoke has stabilized or even reversed
the decreasing trends of [PM2.5] in most US states since
2016. Notably, these fire-induced increases are expected to
remain unregulated as the climate continues to warm. In ad-
dition to station and satellite observations, numerical model-
ing is a valuable tool for assessing [PM2.5] from fire emis-
sions. For instance, Chen et al. (2021) employed the GEOS-
Chem model to estimate daily [PM2.5] attributable to wild-
fires and revealed that short-term exposure to fire PM2.5 in-
creases mortality risks, especially all-cause, cardiovascular,
and respiratory deaths. Zhang et al. (2023) utilized an ad-
vanced model to assess daily [PM2.5] originating from both
fire and non-fire sources across various regions of the USA.
Their findings showed that fire smokes accounted for over
25 % of the daily PM2.5 levels recorded in the Air Quality
System of the Environmental Protection Agency (EPA) from
2007 to 2018, deteriorating US air quality, particularly along
the Pacific coast and in the southeast.

However, there are considerable discrepancies in mod-
eled concentrations of wildfire pollutants due to variations in
physicochemical processes, model resolutions, and meteoro-
logical forcings (Wolke et al., 2012; Markakis et al., 2015).
Moreover, differences in fire emission inventories can signif-
icantly influence the assessment of fire air pollutants. For ex-
ample, Desservettaz et al. (2022) used the chemical transport
model (CTM) GEOS-Chem and revealed that the Global Fire
Emissions Database version 4 with small fires (GFED4s) out-
performed other fire inventories in Australia. On the global
scale, Pan et al. (2020) used six fire emission inventories to
drive the GEOS-Chem model and found that simulations us-
ing the Quick Fire Emission Dataset (QFED) version 2.4
yielded the closest estimate of aerosol optical depth com-
pared to both site-level and satellite-based observations dur-
ing fire seasons. These studies revealed certain discrepancies
between fire inventories and suggested a need for compar-
ison between these inventories to improve the accuracy of
predicted fire air pollutants.

Due to inherent limitations in the CTMs and inventories,
there has been a growing utilization of machine learning
algorithms in recent years. These algorithms have proven
effective at reducing biases in model simulations, particu-
larly in regional analysis and prediction of wildfire pollu-
tant concentrations. For instance, Wei et al. (2019) devel-
oped a space–time random forest (RF) algorithm that inte-
grated satellite data, ground observations, and model out-
puts to estimate daily PM2.5 and black carbon concentra-
tions at 1 km resolution across the US during 2000–2020.
At the global scale, Xu et al. (2023) used the RF algorithm
to bias-correct the GEOS-Chem output so as to assess the
global daily [PM2.5] generated from wildfires during 2001–
2019. They improved the determination coefficient of sim-
ulated PM2.5 from 0.22 of the original GEOS-Chem model
to 0.75 with the RF adjustment. Their analyses showed that
approximately 2.18 billion people experienced at least 1 d of
severe pollution per year due to fire-emitted PM2.5, with an
average exposure of 9.9 d per person each year. However, due
to the high computational cost, most CTM simulations have
been performed at the regional scale or driven with a single
fire inventory, limiting the ability of machine learning meth-
ods to accurately constrain fire-related air pollutants at global
and long-term scales.

In this study, the GEOS-Chem model was employed to
create two global datasets of fire-sourced [PM2.5] corre-
sponding to the GFED4.1s and QFED2.5 emission invento-
ries. These model datasets were refined using the eXtreme
Gradient Boosting (XGBoost) machine learning approach in
combination with abundant in situ measurements from thou-
sands of monitoring stations. Subsequently, two sets of daily
fire PM2.5 data were generated with temporal coverage from
2000 to 2023 and a fine spatial resolution of 0.25°× 0.25°.
We aim to systematically compare [PM2.5] across different
regions, specifically focusing on the variations in PM2.5 lev-
els attributable to fire emissions.
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2 Data and methods

2.1 Observations of surface PM2.5 concentrations

We collected site-level measurements of [PM2.5] from a total
of ∼ 9000 monitoring stations in the world. The site number
varied year by year, with the maximum of 9541 in the year
2022. The data at 1822 sites in China for 2014–2023 were
obtained from the China National Environmental Monitor-
ing Center (CNEMC, http://www.cnemc.cn, last access: 21
May 2025). For the earlier years (2000–2013), we interpo-
lated the data-fusion product of Tracking Air Pollution (TAP,
http://tapdata.org.cn, last access: 21 May 2025) (Geng et al.,
2021; Xiao et al., 2021) to 1822 ground stations to align with
the CNEMC data. This TAP dataset has shown good con-
sistency with observed Chinese PM2.5 levels for 2015–2022
(Fig. S1 in the Supplement). In the United States, PM2.5 ob-
servations at 1198 sites for 2000–2023 were obtained from
the EPA (https://www.epa.gov, last access: 21 May 2025).
European PM2.5 data at 1687 sites in 2013–2023 were ob-
tained from the European Environment Agency (EEA, https:
//www.eea.europa.eu/en, last access: 21 May 2025), with
data before 2013 coming from the European Monitoring and
Evaluation Programme (EMEP, https://emep.int, last access:
21 May 2025). PM2.5 data for other countries at 4995 sites
were downloaded from OpenAQ (https://openaq.org, last ac-
cess: 21 May 2025) and the World’s Air Pollution: Real-
time Air Quality Index (https://waqi.info, last access: 21 May
2025), where the Air Quality Index (AQI) was converted into
PM2.5 following a standardized methodology (Benchrif et
al., 2021). All of the PM2.5 data, both daily and hourly, have
undergone rigorous quality checks with outliers removed
to ensure accuracy. Daily values were calculated from the
hourly data, and sites with fewer than 10 d data in a year
were excluded from the analysis. Finally, a total of 2 560 645
records were compiled for the model training and validation.

2.2 Auxiliary data

The auxiliary data utilized in this study are detailed in Ta-
ble S1 in the Supplement. Climatic data were downloaded
from the ECMWF Reanalysis v5 (ERA5, https://www.
ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5, last ac-
cess: 21 May 2025) with a spatial resolution of 0.25°×0.25°
at the hourly interval. Relative humidity was calculated us-
ing surface pressure, 2 m temperature, and a 2 m dew point,
based on the Clausius–Clapeyron equation (Pechony and
Shindell, 2009). These meteorological data were aggregated
to the daily timescale to be consistent with PM2.5 measure-
ments. Global land cover data from 2000 to 2023 were ob-
tained from MODIS Land Cover (https://modis-land.gsfc.
nasa.gov/landcover.html, last access: 21 May 2025), which
classifies 17 vegetation types according to the International
Geosphere-Biosphere Programme (IGBP).

2.3 GEOS-Chem model simulation

We used the GEOS-Chem (GC) model (version 12.0.0, https:
//geoschem.github.io, last access: 21 May 2025) to predict
the global [PM2.5] and isolate the contributions from fire
emissions. The model is a global three-dimensional CTM op-
erating at a horizontal resolution of 2° latitude by 2.5° lon-
gitude with 47 vertical layers extending from ground level to
the mesosphere (Yan et al., 2018; David et al., 2019; Lu et
al., 2019). The model incorporates MERRA-2 meteorologi-
cal inputs and implements a comprehensive chemical mecha-
nism covering HOx–NOx–VOC–O3–halogen–aerosol inter-
actions (Mao et al., 2013). Previous studies have extensively
demonstrated the effectiveness of GEOS-Chem in simulating
reasonable distributions of trace gases and aerosols at multi-
ple spatial and temporal scales (Xu et al., 2013; Breider et
al., 2014; Li et al., 2019).

Emissions from various sources, regions, and types are
processed using the Harvard–NASA Emissions Component
(HEMCO) module, which operates online and allows users
to specify the grid, apply scaling factors, and dynamically
integrate, overlay, and update emission inventories (Keller et
al., 2014). In our study, we incorporated two daily fire emis-
sion inventories within the HEMCO framework, including
GFED4.1s (abbreviated as GFED hereafter) and QFED2.5
(abbreviated as QFED hereafter), both of which range from
2000 to 2023 (last modified on 26 June 2024). All simulated
PM2.5 data at 2°× 2.5° from GEOS-Chem were downscaled
to 0.25°× 0.25° using the bilinear interpolation (Wei et al.,
2021). In addition, we estimated [PM2.5] unaffected by fires
by disabling the biomass combustion inventories in GEOS-
Chem.

2.4 The machine learning algorithm

We used the XGBoost machine learning algorithm to bias-
correct the simulated all-source [PM2.5]. XGBoost is based
on the principle of gradient tree boosting (GTB) algorithms,
which combine multiple imperfect decision trees (referred
to as base or weak learning trees) to create a more accu-
rate composite decision tree (Chen and Guestrin, 2016). XG-
Boost is designed for efficiency and speed and is capable of
building trees gradually and supporting customized objective
functions and evaluation metrics. These features make it par-
ticularly well-suited to various regression tasks. The primary
objective of this algorithm is to minimize loss functions, en-
hancing the model’s predictive accuracy. Notably, XGBoost
provides a robust and scalable solution that optimizes com-
putational speed and reduces memory usage when training
large-sample datasets (Li et al., 2020). The formula for pre-
diction is defined as follows:

Ŷ =

K∑
k=1

fk(X), (1)
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where Ŷ is the predicted daily [PM2.5]; X is the input variable
related to [PM2.5], which includes simulated [PM2.5] from
GEOS-Chem, meteorological fields, and land cover data (Ta-
ble S1). K is the number of decision trees used in the model,
and fk denotes the tree constructed to minimize the residuals
left by the (k− 1)th tree.

XGBoost implements early stopping strategies and regu-
larization techniques within the objective function to effec-
tively prevent overfitting. The kth iteration of the XGBoost
function (Rk) is defined as follows:

Rk
=

t∑
i=1

l
(
yi, ŷi

k
)
+

k∑
j=1

�(fj ), (2)

where t refers to the number of samples; yi represents the
actual value of the ith sample, and ŷi

k means the pre-
dicted value of the ith sample after k iterations. The func-
tion l(yi, ŷi

k) is a differentiable loss function used to mea-
sure the discrepancy between yi and ŷi

k . The regularization
term �(fj ) includes the complexity of the amount of the tree
fj , such as the number of nodes and the weights assigned
to each node (Ma et al., 2020). In addition, XGBoost em-
ploys a second-order Taylor expansion for the loss function,
enhancing the precision of the model’s error assessment and
consequently improving the accuracy of predictions (Wong
et al., 2021).

In this study, we used meteorological data, land cover in-
formation, and simulated all-source [PM2.5] from the GEOS-
Chem model (Table S1) to develop XGBoost models. These
gridded input data were interpolated to monitoring sites, and
the site-level PM2.5 measurements was used as the predic-
tand. Due to the substantial data volume, we trained the XG-
Boost model on a year-by-year basis using available mea-
surements and modeling data from the corresponding years.
For each year, 80 % of observational records were randomly
selected to train the XGBoost model, while the remaining
20 % were used as independent samples for validations. The
developed and validated machine learning models were then
used to derive global gridded [PM2.5], using meteorological
reanalyses, land cover data, and PM2.5 outputs from GEOS-
Chem models, at a resolution of 0.25°× 0.25° on a daily ba-
sis. We estimated fire-emitted [PM2.5] by applying the sim-
ulated fire-to-all ratio of [PM2.5] to the XGB-adjusted all-
source [PM2.5] following the same approach as Xu et al.
(2023):

[PM2.5]fire =
[PM2.5]

GC
all − [PM2.5]

GC
nofire

[PM2.5]
GC
all

×[PM2.5]
XGB
all . (3)

3 Results

3.1 Bias correction and validation of all-source [PM2.5]

Figure 1 shows the locations of the monitoring sites and the
corresponding [PM2.5] in 2022. High levels of PM2.5 are ob-
served in Asia, especially over India and East Asia, where

large anthropogenic emissions are located. The all-source
[PM2.5] predicted by the XGBoost model, which implements
GEOS-Chem simulations considering GFED fire emissions,
in general captures the observed spatial pattern with a de-
termination coefficient (R2) of 0.82, a root-mean-square er-
ror (RMSE) of 9.22 µgm−3, and a normalized mean bias
(NMB) of 0.71 %, respectively (Fig. 1b). Similarly, the XG-
Boost model demonstrates good performance when applied
to GEOS-Chem simulations driven with the QFED inventory,
as shown in Fig. S2 in the Supplement for the results of 2022.

Figure S3 in the Supplement presents the top 10 most cru-
cial features identified by the XGBoost model for predict-
ing all-source [PM2.5] using two different fire inventories in
2022. As expected, the data simulated by the GEOS-Chem
model consistently rank as the most important feature. This is
followed by meteorological variables such 10 m wind speed,
surface pressure, and boundary layer height, which have a
significant influence on [PM2.5] variations (Wei et al., 2019).
Although there are variations in the importance scores of
the top 10 features between the two inventories, it is evident
that meteorological data have a more pronounced impact on
[PM2.5] compared to land use data.

Following the same protocol, we developed machine
learning models using the XGBoost method for other years
as well. Each year’s model featured distinct parameteriza-
tion schemes, and we utilized a 10-fold cross-validation (CV)
method to verify the robustness of these models. The statis-
tical indicators, including the CV score R2, overall R2, and
RMSE for the XGBoost procedures over 24 years, are dis-
played in Fig. S4 in the Supplement. The R2 of CV remained
above 0.85 throughout the study period, demonstrating that
the XGBoost model effectively bias-corrected the predicted
all-source PM2.5 with reasonable spatial coverage and tem-
poral stability. It should be noted that the R2 gradually de-
creased after 2012, likely due to the rapid growth in data vol-
ume, which may have weakened the correlations (Perry and
Dickson, 2018).

3.2 Development and validation of fire-sourced [PM2.5]

We compare the all-source [PM2.5] with ([PM2.5]
XGB
all ) and

without ([PM2.5]
GC
all ) the XGBoost adjustment. Averaged for

24 years, the original simulations exhibit high [PM2.5] in
northern Africa, India, and East Asia and relatively high val-
ues in the eastern US and central Europe (Fig. 2a). With
the bias correction, those hotspots are either weakened or
shrink (Fig. 2c). Specifically, [PM2.5] decreases by 28.8 %
in northern Africa, 12.3 % in India, 41.7 % in East Asia,
27.5 % in the eastern US, and 35.5 % in central Europe (Ta-
ble 1). In contrast, the adjusted [PM2.5] tends to increase
over regions with limited anthropogenic perturbations, such
as boreal forest, the Tibetan Plateau, or the Australian desert
(Fig. 2e). Such discrepancies suggest that the GEOS-Chem
model generally underestimates pollution levels in pristine
regions (Protonotariou et al., 2010; Kim et al., 2015) and
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Figure 1. Observed PM2.5 concentrations and their comparisons with predictions made by the XGBoost model. Panel (a) presents the annual
mean PM2.5 concentrations ([PM2.5], µgm−3) at 9541 monitoring sites in 2022. Panel (b) shows daily PM2.5 concentrations predicted by
the GEOS-Chem model, adjusted using the XGBoost approach and compared with validation subsets of observations in 2022. The GEOS-
Chem simulations incorporate emissions from both anthropogenic sources and the Global Fire Emissions Database version 4.1s. The colors
in panel (b) represent the data frequency, and the red dashed line indicates the linear regression. Validation metrics, including the sample size
(N , 20 % of the total number of observational records), regression equation, determination coefficient (R2), root-mean-square error (RMSE),
and normalized mean bias (NMB), are provided. GEOS-Chem simulations using the QFED inventory for 2022 are shown in Fig. S2.

overestimates them in areas with dense pollution (Lei et al.,
2021). Similar changes in [PM2.5] are found for the simu-
lations using QFED (Fig. 2b, d, and f) fire inventories. It
is worth noting that changes in [PM2.5] varied significantly
over some regions in the different fire inventories. For exam-
ple, the bias-corrected [PM2.5] decreases by 19.2 % in India
and 33.6 % in the eastern US with QFED (Table 1), which
is much larger than those with GFED, suggesting that differ-
ences in fire inventories result in certain discrepancies in the
regional [PM2.5].

We derive fire-sourced [PM2.5] using Eq. (3) and validate
it for typical fire events during 2018–2022 (Fig. 3). Fire car-
bon emissions from GFED are used to pinpoint the accurate
fire locations for these events (Table S2 in the Supplement).
The fire-affected sites are determined if their back trajec-
tories cross the fire locations within 3 d after their occur-
rence. For example, 55 sites in Canada exhibited an abrupt
enhancement of [PM2.5] of more than 5 times the ordinary
level around 15 August 2023. The back trajectory of these
sites aligned with the large fire emissions on the western
coast during 13–15 August (Fig. S5 in the Supplement). Sim-
ilarly, 94 sites along the eastern coast of Australia were af-
fected by the fire plume transport during 8–10 December
2019 (Fig. S6 in the Supplement). Averaged for these 12
events, the correlation coefficient (R) of [PM2.5] between
the observations and simulations increases from 0.16± 0.37
without fire emissions to 0.58± 0.29 with fire emissions.
The NMB is improved from −53.17 %± 25.50 % without
fire emissions to 10.68 %± 24.96 % with fire emissions dur-
ing the corresponding fire periods. A similar improvement
in [PM2.5] is achieved with the QFED emission inventory
for these fire events (Fig. S7 in the Supplement). We fur-
ther compare the fire-sourced [PM2.5] data with the estimates

by Childs et al. (2022) in the US. (Fig. 4). Our estimates
show reasonable performance, with a correlation coefficient
of 0.68 (0.6) and a RMSE of 2.79 (2.71) µgm−3 using the
GFED (QFED) inventory. However, the fire-sourced [PM2.5]
form GFED is overall lower than that of Childs et al. (2022)
by −55.04 %.

The probability density distributions of fire-sourced
[PM2.5] from the two inventories show notable differences
(Fig. S8 in the Supplement). During 2000–2023, the fire-
sourced [PM2.5] from QFED is more than twice that from
GFED below the 75th percentile, indicating that QFED
predicts significantly higher [PM2.5] for low to moder-
ate fire events. However, this difference decreases above
the 90th percentile and becomes particularly constrained at
the 99th percentile, where the fire-sourced [PM2.5] from
GFED is 79.29 % that from QFED. This suggests that, while
both inventories yield comparable estimates for extreme fire
episodes, GFED systematically underestimates emissions
from smaller fires. This underestimation persists despite im-
provements in GFED’s representation of small fires through
additional implementations (Van Der Werf et al., 2017). Con-
sequently, validations in the US reveal substantially low val-
ues with GFED relative to previous estimates (Fig. 4), a bias
that is alleviated in QFED for small to moderate fires (Fig. S9
in the Supplement). Although both inventories perform com-
parably during high-emission events (Figs. 3 and S7), their
estimates remain much lower than those of Childs et al.
(2022) at the highest levels of fire-sourced [PM2.5] (Fig. S9).
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Figure 2. Annual mean all-source [PM2.5] for 2000–2023 from the original GEOS-Chem simulations at 0.25°× 0.25° resolution derived
using the (a) GFED and (b) QFED inventories, as well as (c, d) bias-corrected estimations using the XGBoost approach at the same resolution.
The difference between the original and bias-corrected [PM2.5] is shown in panels (e) and (f).

Table 1. Mean PM2.5 before and after bias correction in selected regions averaged for 2000–2023.

EUS CE NAF IN EA

GFED GC 14.38± 3.39 24.74± 3.67 45.97± 16.46 33.73± 16.36 68.68± 33.41
XGB 10.42± 2.16 15.94± 3.33 32.74± 8.08 29.59± 8.07 40.08± 16.73
Difference 3.96± 3.13 8.79± 3.85 13.22± 10.33 4.14± 10.54 28.61± 20.14

QFED GC 16.55± 3.44 23.56± 3.25 47.56± 15.82 35.60± 16.30 70.57± 32.36
XGB 10.99± 2.58 16.10± 3.20 27.09± 7.20 28.78± 7.07 39.00± 16.95
Difference 5.56± 3.38 7.46± 3.81 20.47± 10.57 6.82± 12.90 31.57± 19.79

3.3 Spatiotemporal variations of fire-sourced [PM2.5]

We examine the spatiotemporal variations of fire-sourced
[PM2.5] derived from the GFED inventory (Figs. 5 and S10
in the Supplement). Averaged for 2000–2023, fire-sourced
[PM2.5] shows strong spatial heterogeneity, with the high-
est concentrations in central Africa (CAF) and secondary
hotspots in South America (SA), Southeast Asia (SEA),
North America (NA), and Siberia (SB). An upward trend in

fire-related [PM2.5] is found in Siberia and North America,
while most other regions show downward trends (Fig. 5b).
Predictions using the QFED inventory indicate a much higher
long-term average fire-related [PM2.5] compared to GFED
(Table 2), particularly in the Middle East, western Siberia,
and eastern South America (Fig. 5c and e). The decreas-
ing trend in fire-sourced [PM2.5] predicted by QFED is even
more pronounced than that predicted by GFED in fire-prone
regions such as western Siberia, South America, and Aus-
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Figure 3. Comparisons of [PM2.5] between observations (blue) and estimations with (red) and without (black) fire emissions for 12 in-
cidences during 2018–2022. The estimations are performed using the GEOS-Chem model driven with fire emissions from the GFED in-
ventory and bias-corrected with the XGBoost approach. The blue boxes (representing multiple sites) or points (representing single sites)
on the map indicate the locations of air quality monitoring sites affected by nearby fire plumes. The sources of these fire episodes were
determined using Lagrangian back-trajectory analysis as shown in Figs. S5 and S6. The observed and estimated [PM2.5] values at all
of the sites averaged for fire periods are shown in each panel. These fire events were sourced from the Global Disaster Data Platform
(https://www.gddat.cn/newGlobalWeb, last access: 21 May 2025), which provides fire locations and the approximate start and end dates as
shown in Table S2.

tralia (Fig. 5d). In contrast, a positive trend is predicted by
QFED in eastern China and Europe, where wildfires are typ-
ically limited due to the dense population (Bistinas et al.,
2014; Knorr et al., 2014).

These differences in fire-sourced [PM2.5] are mainly
due to the discrepancies in fire inventories. In global fire-
prone regions, organic carbon (OC) emissions from fires are
51.08 %–65.18 % lower in the GFED inventory compared to
the QFED inventory (Fig. 6a). Consequently, the global av-
erage fire-sourced [PM2.5] is estimated at 2.04 µgm−3 with
GFED, nearly half of the 3.96 µgm−3 estimated with QFED

(Table 2). Moreover, fire emission trends in QFED tend to be
more negative or less positive than in GFED (Fig. 6b), lead-
ing to stronger negative trends in fire-sourced [PM2.5] de-
rived from QFED (Fig. 6d). For both inventories, simulated
fire-sourced [PM2.5] trends are more negative than the corre-
sponding emission trends, likely due to climatic or chemical
conditions that enhance pollutant removal. For example, in
North America, increased atmospheric oxidant levels (e.g.,
increased OH and O3) and changes in boundary layer height
over the past 2 decades may have offset rising fire emissions
by accelerating aerosol aging and modifying vertical mix-
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Figure 4. Comparison of fire-sourced PM2.5 (µgm−3) estimated using the (a) GFED and (b) QFED inventories with smoke PM2.5 observed
by Childs et al. (2022) at 100 156 polygons in the US during 2016–2019. Validation metrics of N , the regression equation, R2, RMSE, and
NMB are calculated.

Table 2. The mean fire-induced [PM2.5] in selected regions averaged for 2000–2023.

NA SA CAF SB SEA Global

GFED 1.53± 0.99 3.72± 2.43 5.31± 4.28 1.87± 1.08 3.25± 1.72 2.04± 2.33
QFED 2.84± 1.30 6.81± 2.77 7.25± 4.99 4.43± 1.65 3.88± 1.62 3.96± 3.01

ing (Heilman et al., 2014; Zhou et al., 2019). In Siberia, the
positive trend in GFED emissions is not fully reflected in fire-
sourced [PM2.5], likely due to concurrent increases in rainfall
and deposition efficiency that enhance particulate scavenging
(Konovalov et al., 2024).

On a long-term mean basis, fire-related [PM2.5] is sig-
nificantly higher in the tropics than in boreal regions
(Fig. 5), primarily due to the high fire emissions in central
Africa (Fig. 6). However, during extreme events, fire-sourced
[PM2.5] can reach comparable levels at both low and high
latitudes (Fig. 7). For instance, an unprecedented fire event
over Canada in 2023 resulted in a regional hotspot exceeding
30 µgm−3, surpassing the maximum value of∼ 20 µgm−3 in
central Africa. Similarly, the extreme Siberian fires in 2019
significantly elevated local [PM2.5] and resulted in air pol-
lution levels comparable to those in South America. From
2000 to 2023, the ratio of the maximum to mean fire-sourced
[PM2.5] peaked at values exceeding 4 around 60° in both
hemispheres, gradually decreasing to 2 at lower latitudes
(Fig. 7a). In the vast tropical areas, fires are primarily driven
by anthropogenic activities (Ward et al., 2018; Marques et
al., 2021), leading to relatively stable emissions from year to
year. In contrast, most biomass burning in boreal regions is
caused by wildfires, which are less inhibited by human ac-
tivities. These uncontrolled fire episodes, combined with the
huge carbon storage in boreal forests, result in tremendous
emissions in specific years, significantly affecting air qual-
ity, the climate system, and ecosystem functions at high lat-

itudes in the Northern Hemisphere. It is worth noting that
fire-sourced [PM2.5] shows lower extreme values in QFED
(Fig. S11 in the Supplement) compared to those in GFED
(Fig. 7) over Canada, though the mean fire-sourced [PM2.5]
is much higher when associated with the former inventory
(Fig. 6).

Extreme fire episodes pose significant threats to public
health. The percentage of days and land grids with fire-
sourced [PM2.5] exceeding the World Health Organization’s
air quality standard of 15 µgm3 showed a global decreasing
trend of −0.03 %yr−1 (Fig. 8a). Regionally, an increase of
0.04 %yr−1 was found in North America that was driven by
the 2023 Canadian fire episode, though this change was not
statistically significant. In other regions, the exposure risk
to high levels of fire PM2.5 declines, with the most notable
being −0.22 %yr−1 in South America and −0.13 %yr−1

in Africa. While extreme fire-sourced [PM2.5] decreased in
general, a turning point occurred in 2017, with more pro-
nounced fire events thereafter. To better understand recent
trends, we examined changes in fire-sourced [PM2.5] dur-
ing the past few years. Relative to 2000–2019, fire-sourced
[PM2.5] decreases across nearly all latitudes from 2020 to
2023 for both inventories (Fig. 9). Regionally, hotspots of in-
creased fire-sourced [PM2.5] could be found in North Amer-
ica, due to the 2023 Canadian fires, and in the Amazon,
due to the 2022 Brazilian fires. Additionally, fire-sourced
[PM2.5] levels increased in central Africa, northern India, and
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Figure 5. Long-term (a) mean and (b) trend of fire-sourced [PM2.5] (µgm−3) derived using the GFED inventory for 2000–2023. The box
regions in panel (a) indicate areas used to compare differences between the two inventories. Panels (c) and (d) display the same information
as panels (a) and (b) but for fire-sourced [PM2.5] from the QFED inventory. The differences in fire-sourced [PM2.5] (1[PM2.5]) between
the two inventories are presented for the long-term (e) mean and (f) trend during 2000–2023. Green slashes indicate areas with significant
(p < 0.05) changes. The p values of these trends are shown in Fig. S10.

the Indo-China Peninsula, where human-induced agricultural
burning is prevalent (Van Der Werf et al., 2017).

4 Data availability

The derived daily fire-sourced [PM2.5] for 2000–2023
is available at https://doi.org/10.5281/zenodo.15493914 for
GFED (Hu et al., 2025a) and https://doi.org/10.5281/zenodo.
15496596 for QFED (Hu et al., 2025b).

5 Conclusions and discussion

We developed a global high-resolution dataset of fire-sourced
PM2.5 concentrations for the period 2000–2023, using a
chemical transport model driven with two fire inventories.
A machine learning algorithm was applied to correct biases

in the simulated [PM2.5] from the GEOS-Chem model and to
enhance the spatial resolution of the data product. Validations
demonstrated its high accuracy in capturing the all-source
[PM2.5] across more than 9000 global sites and the fire-
sourced [PM2.5] for typical fire events. Though with some
discrepancies, the fire-sourced [PM2.5] from the two inven-
tories displayed a consistent spatial pattern, with high levels
of fire-related air pollution in the tropics and relatively lower
concentrations at the middle to high latitudes. They also ex-
hibited significant global declines in fire-sourced [PM2.5]
over time, with the most pronounced decreases occurring in
the tropical regions. In contrast, fire episodes in boreal re-
gions led to stronger enhancement of [PM2.5] compared to
those in the tropics due to the larger fuel loads of northern
forests and the uncontrolled scale of fires in these areas.
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Figure 6. The mean (a) and trend (b) of OC emissions in highly fire-prone regions indicated by the GFED (red) and QFED (blue) inventories.
Panels (c) and (d) display the fire-sourced [PM2.5] predicted using these two inventories. The error bars represent 1 standard deviation for
the year-to-year variations, and an asterisk denotes areas with significant (p < 0.05) trends. The domain of the labeled regions is shown in
Fig. 5a.

Figure 7. The global maximum of fire-sourced [PM2.5] (µgm−3) from 2000 to 2023 derived using the GFED inventory, along with the fire-
sourced [PM2.5] during years of high wildfire emissions in the various regions. For each grid on the global map, the maximum fire-sourced
[PM2.5] during 2000–2023 is shown. The ratios between the zonal maximum and mean values are shown on the right side. For the three
regions, the numbers before the parentheses represent the mean fire-sourced [PM2.5] averaged for the affected countries or regions in that
specific year.
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Figure 8. Annual percentage of days and land grids with fire-
sourced [PM2.5] exceeding 15 µgm3 in (a) Global, (b) Asia,
(c) North America, (d) Africa, (e) South America, and (f) Oceania
for 2000–2023. The average estimates from GFED and QFED are
shown as bold lines, with shadings indicating their range. Regional
trends are displayed in the top right of each panel, with an asterisk
denoting significant (p < 0.05) changes.

Recent advancements in ground monitoring networks and
satellite observation systems have led to the development of
high-resolution, long-term benchmark datasets for air pollu-
tants (Gui et al., 2020; Song et al., 2022; Xiao et al., 2022;
Wang et al., 2023; Wei et al., 2023). However, these datasets
typically retrieve total amounts of PM2.5 without isolating

Figure 9. Differences in the estimated fire-sourced PM2.5 (µgm−3)
between 2020–2023 and 2000–2019 derived using the (a) GFED
and (b) QFED inventories. The zonal averages and 1 standard devi-
ation are shown on the right side.

the concentrations specifically caused by fire events. To ac-
curately derive the fire-related [PM2.5], it is crucial to firstly
estimate PM2.5 concentrations that are unaffected by fires.
Some studies have identified fire-affected sites using satellite
imagery and then obtained non-fire PM2.5 either by taking
the median [PM2.5] during non-fire seasons or by using data
at nearby sites outside the influence of fire plumes (O’Dell
et al., 2019; Delp and Singer, 2020; Burke et al., 2023). This
approach, however, depends heavily on the accuracy of high-
frequency fire tracking systems to correctly identify fire peri-
ods and affected areas. Additionally, it may introduce biases
due to not accounting for baseline [PM2.5] differences across
various locations or periods. In our study, we performed sen-
sitivity experiments using a CTM, where fire emissions were
selectively activated or deactivated. This allowed us to more
accurately quantify the changes in [PM2.5] attributable to fire
emissions. Furthermore, we employed machine learning ad-
justments to minimize biases inherent in chemical models,
thereby improving the accuracy and resolution of the derived
fire-related [PM2.5].

We employed a similar approach to Xu et al. (2023) but
incorporated new datasets and perspectives. First, we used
global observed PM2.5 concentrations from 9541 monitoring
sites, significantly more than the 5661 stations used in Xu et
al. (2023). The expansion of ground-based stations, particu-
larly in fire-prone regions such as Africa and South Amer-
ica, strengthens the foundation of model training and data
validation. Second, we applied two different fire emission
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inventories. Comparisons showed that fire-sourced [PM2.5]
estimates from these inventories were consistent during ex-
treme fire episodes (Figs. 3 and S7). However, for low to
moderate fire emissions, fire-sourced [PM2.5] from GFED
was much lower than that from QFED (Fig. S8), suggest-
ing that global population exposure to fire-related air pollu-
tion may have been underestimated in Xu et al. (2023) due
to the application of GFED. Third, we extended the end-
ing simulation year from 2019 to 2023, capturing an addi-
tional 4 years that included unprecedent fire events, such as
the 2023 Canadian fires and the 2022 Brazilian fires. These
events provide valuable data for assessing population expo-
sure and the associated health impacts. Fourth, we found a
global decreasing trend in fire-sourced [PM2.5] during 2000–
2023, which contrasts with the increasing trend reported in
Xu et al. (2023). This discrepancy may stem from differences
in machine learning approaches (random forest vs. XGBoost
in this study), pollution definitions (population-weighted vs.
non-weighted), and observational datasets. Despite these dif-
ferences, both studies identified a turning point in 2017, after
which global fire-sourced [PM2.5] began to increase, with the
most pronounced rise observed in boreal regions.

The two datasets derived from the different inventories
showed discrepancies in both the long-term mean and trend
of fire-sourced [PM2.5] (Fig. 5). In general, fire-related
[PM2.5] is much higher when using the QFED inventory
compared to GFED, but the long-term trend is more neg-
ative with QFED. As expected, these discrepancies can be
attributed to differences in the underlying fire emission in-
ventories (Fig. 6), which stem from variations in their esti-
mation methods, data sources, and emission factors (Kaiser
et al., 2012; Larkin et al., 2014; Jin et al., 2023). For exam-
ple, QFED adjusts emission factors based on aerosol optical
depth from MODIS (Petrenko et al., 2012; Li et al., 2022),
resulting in significantly higher emissions in some regions
compared to GFED. In contrast, GFED relies on burning
pixels and changes in surface reflectance identified during
satellite overpasses under relatively cloud-free conditions,
which may lead to underestimation of burned areas, espe-
cially for some small fires (Pan et al., 2020). Further valida-
tions showed that all-source [PM2.5] using GFED yielded an
R value of 0.58± 0.29 and an NMB of 10.68 %± 24.96 %
averaged for the 12 fire episodes (Fig. 3). Slightly improved
statistical metrics were achieved using QFED, with an R

value of 0.63± 0.26 and an NMB of 6.56 %± 27.61 % for
the same events (Fig. S7). However, these differences are
too minor to conclusively determine which dataset provides a
better estimate of fire-sourced [PM2.5]. Fire-sourced [PM2.5]
is generally lower in GFED compared to QFED; exceptions
exist, such as the 2023 Canadian fires, in which the fire-
sourced [PM2.5] from GFED (Fig. 7) was significantly higher
than that from QFED (Fig. S11). Therefore, we recommend
using the average of the fire-sourced [PM2.5] from both in-
ventories to indicate the mean state while using their differ-

ence as the range of uncertainties associated with fire-related
air pollutants.

There are some uncertainties and limitations in our study.
First, the PM2.5 observations used for machine learning lack
broad spatial coverage. Although we gathered data from
thousands of monitoring sites worldwide, most of them are
located at the middle to high latitudes of the Northern Hemi-
sphere. PM2.5 records are still limited in the fire-prone re-
gions, such as central Africa, which are usually wildland
areas far away from populated regions. This uneven distri-
bution of monitoring sites may introduce some biases into
the derived all-source [PM2.5] estimates and the subsequent
contributions by fire emissions. Second, we used only one
machine learning method for data training. In the prelimi-
nary stages, we compared the effectiveness of three different
machine learning approaches in correcting biases in simu-
lated [PM2.5]. We found that the XGBoost algorithm outper-
formed the other two methods, random forest and deep neu-
ral networks, showing better statistical metrics against ob-
servations (not shown). Although we chose XGBoost for the
final analyses, further investigation into results from other
machine learning algorithms is warranted to reduce uncer-
tainties inherent in data-driven methods. Third, biases in the
[PM2.5] simulated by the GC model may significantly af-
fect the accuracy of machine learning. Predicting air pollu-
tants involves uncertainties due to variations in meteorolog-
ical forcing, chemical and physical schemes, and initial and
boundary conditions. For example, Qiu et al. (2024) found
that the GC model significantly overestimated [PM2.5] dur-
ing extreme wildfire events in 2020 over the western US.
In contrast, our derived fire-sourced [PM2.5], using the same
GFED inventory, is much lower than the estimates of Childs
et al. (2022) for low to median fire events (Fig. 4). These
findings suggest that incorporating more validated fire inven-
tories and/or chemical models is necessary to better quantify
the uncertainties in derived air pollutant concentrations.

Despite the limitations mentioned, our study presents a
significant advancement in the development of global daily
fire-sourced [PM2.5] datasets, featuring the most up-to-date
fine spatial resolution and covering the longest time period
available. By integrating a chemical model with a machine
learning approach, we have effectively isolated the impact of
fire emissions on ground-level [PM2.5] while also addressing
and reducing modeling biases. This methodology allows for
a more accurate representation of fire-related air pollution.
Furthermore, we provide results derived from two different
emission inventories, offering a comparison that highlights
the uncertainties associated with varying emission estimates.
The dataset we have constructed is not only a novel contri-
bution to the field but also holds significant value for future
research. It can serve as a critical input for studies examin-
ing the climatic, ecological, and epidemiological impacts of
air pollutants from global fires. The insights gained from this
dataset can inform policy decisions, improve public health
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strategies, and enhance our understanding of the broader en-
vironmental effects of wildfire emissions.

Supplement. The supplement related to this article is available
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