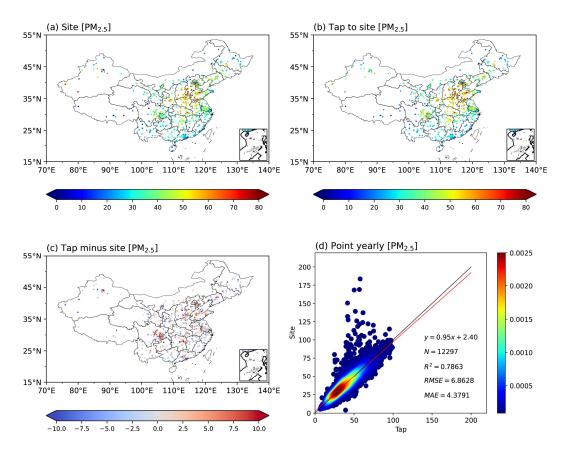
Supplement of Earth Syst. Sci. Data, 17, 3741–3756, 2025 https://doi.org/10.5194/essd-17-3741-2025-supplement © Author(s) 2025. CC BY 4.0 License.


Supplement of

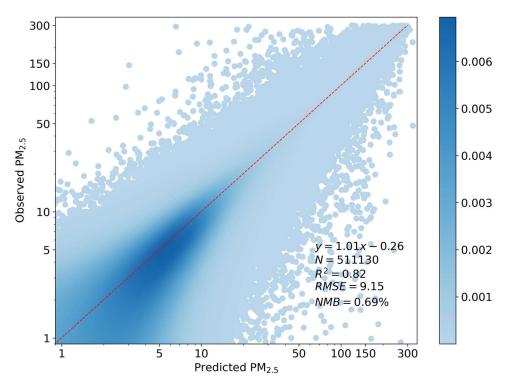
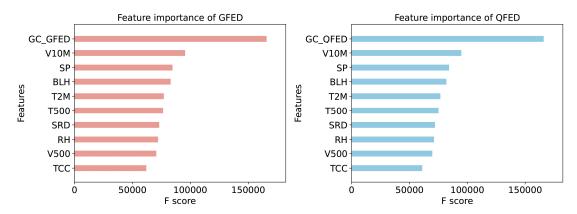
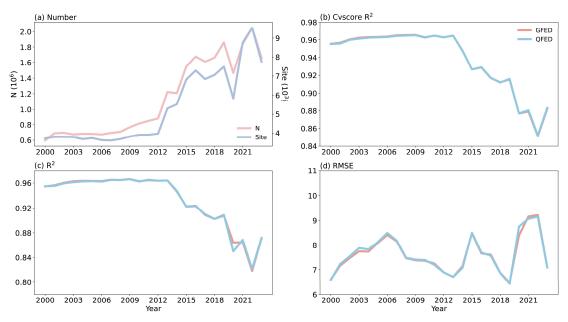
Global high-resolution fire-sourced $PM_{2.5}$ concentrations for 2000–2023

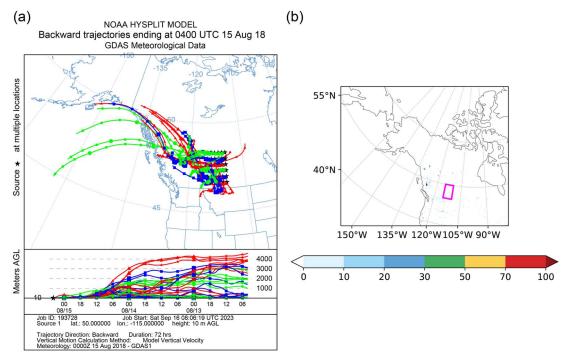
Yonghang Hu et al.

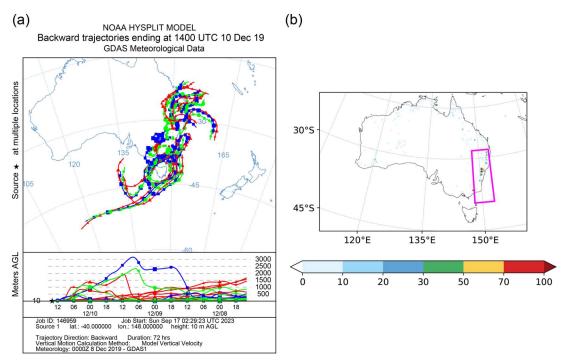
Correspondence to: Xu Yue (yuexu@nuist.edu.cn)

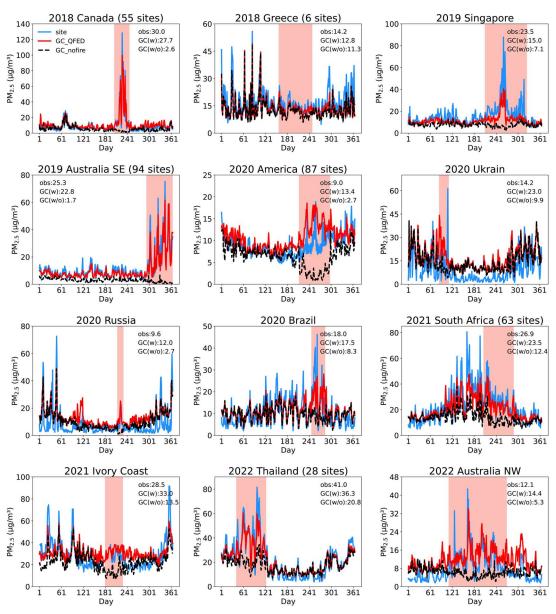
The copyright of individual parts of the supplement might differ from the article licence.

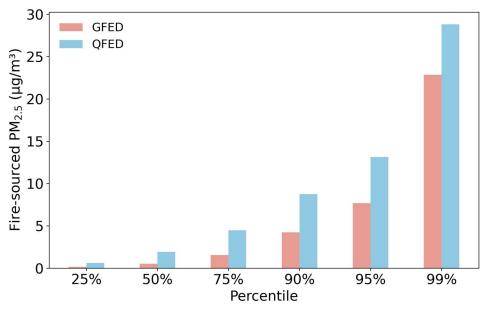
Figure S1. Comparison of observed and interpolated PM_{2.5} concentrations ([PM_{2.5}]) in China from 2015 to 2022. Panel (a) displays annual mean [PM_{2.5}] (μg m⁻³) at 1822 monitoring sites. Panel (b) shows interpolated annual mean [PM_{2.5}] from Tracking Air Pollution (TAP) dataset. Panel (c) presents the difference between interpolated and observed values. Panel (d) compares annual mean [PM_{2.5}] at each site with observations, with colors indicating data frequency. Validation metrics, including sample size (N), regression equation, determination coefficient (R²), root-mean-square error (RMSE), and mean absolute error (MAE) are also provided.

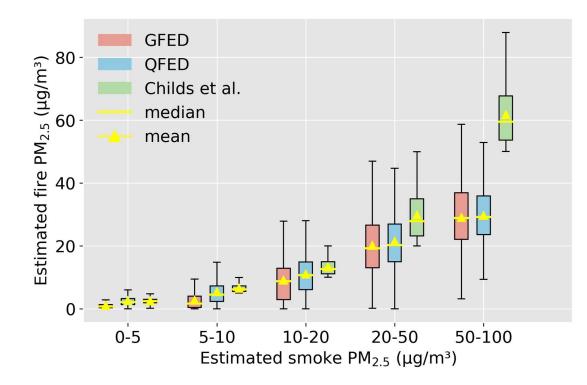





Figure S2. Same as Fig. 1b, but for GEOS-Chem simulations using the QFED inventory.


Figure S3. Top 10 important features measured by F-score for the machine learning model, which was trained using GEOS-Chem simulations with fire emissions from (a) GFED and (b) QFED inventories in 2022, respectively. The full name of each feature is shown in Table S1.


Figure S4. Statistical metrics of estimated [PM_{2.5}] from 2000 to 2023. Panel (a) shows the total number of sites and samples (N) used for machine learning training. Panel (b) presents the 10-fold cross-validation R² for each year, comparing estimations using different fire emission inventories, including GFED and QFED. Panels (c) and (d) display the year-to-year R² and RMSE between observed and estimated [PM_{2.5}] using these different fire emission inventories for independent validation samples.


Figure S5. The 72-hour backward trajectories of Canadian sites ending on August 15th, 2018, generated using the NOAA HYSPLIT Trajectory Model. The horizontal and vertical trajectories are shown in (a) and the fire emissions of GFED inventory (units: g m⁻² yr⁻¹) averaged for August 13-15, 2018 are shown in (b). The pink box represents the range of sites in Canada.


Figure S6. The same as Fig. S5 but for the backward trajectories of Australian sites ending on December 10th, 2019.

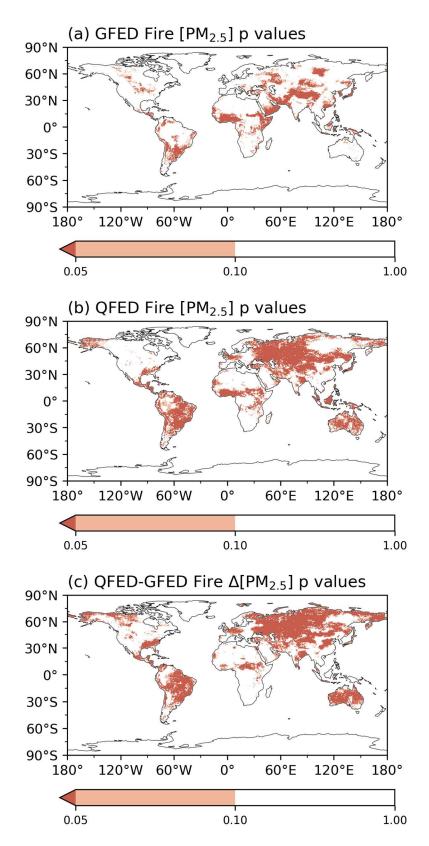

Figure S7. The same as Fig. 3 but the estimated $[PM_{2.5}]$ is derived using QFED fire emission inventory.

Figure S8. Comparison of daily fire-sourced $[PM_{2.5}]$ at different percentiles between simulations with GFED and QFED inventories.

Figure S9. Boxplot of estimated GFED and QFED fire $PM_{2.5}$ v.s. Childs et al. (2022) estimated smoke $PM_{2.5}$ under various levels.

Figure S10. The p values of long-term (a) trends in fire [PM_{2.5}] derived using the GFED inventory for 2000-2023. Panels (b) and (c) display the same information as (a), but for fire [PM_{2.5}] from QFED inventory and differences between QFED and GFED inventories.

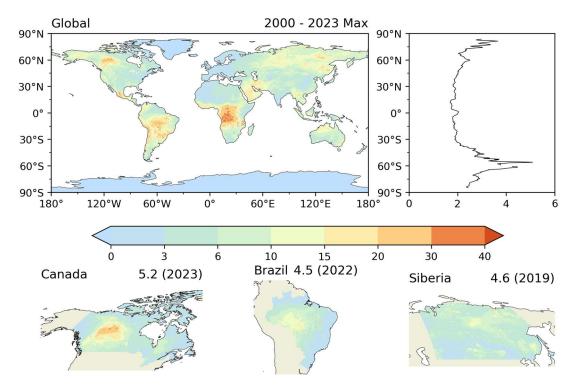


Figure S11. The same as Fig. 7 but with fire emissions from the QFED inventory.

Table S1 Summary of the input for machine learning model

Variables	Descriptions	
GC GFED	Simulated [PM _{2.5}] by GEOS-Chem using GFED emissions	
GC QFED	Simulated [PM _{2.5}] by GEOS-Chem using QFED emissions	
BLH	Boundary layer height	
Pc	Convective precipitation	
Pls	Large scale precipitation	
Pt	Total precipitation	
T2M	2m temperature	
T2X	Maximum 2m temperature since previous post processing	
T2N	Minimum 2m temperature since previous post processing	
RH	Relative humidity	
SP	Surface pressure	
SRD	Surface solar radiation downwards	
T500	Temperature 500hPa	
T850	Temperature 850hPa	
TCC	Total cloud cover	
V10M	Wind speed at 10m	
V500	Wind speed at 500hpa	
V850	Wind speed at 850hpa	
F_Water	The cover fraction of Water	
F_ENF	The cover fraction of Evergreen Needleleaf Forest	
F_EBF	The cover fraction of Evergreen Broadleaf Forest	
F_DNF	The cover fraction of Deciduous Needleleaf Forest	
F_DBF	The cover fraction of Deciduous Broadleaf Forest	
F_Mforest	The cover fraction of Mixed Forests	
F_Cshrub	The cover fraction of Closed Shrubland	
F_Oshrub	The cover fraction of Open Shrubland	
$F_Wsavanna$	The cover fraction of Woody Savannas	
F_savanna	The cover fraction of Savannas	
F_grass	The cover fraction of Grasslands	
F_Pwetland	The cover fraction of Permanent Wetlands	
F_crop	The cover fraction of Croplands	
F_urban	The cover fraction of Urban and Built-up	
F_CVM	The cover fraction of Cropland/Natural Vegetation Mosaic	
F_snow	The cover fraction of Snow and Ice	
F_barren	The cover fraction of Barren or Sparsely Vegetated	

Table S2 Spatiotemporal information of wildfire episodes

Event	Region	Time
2018 Canada	British Columbia	2018.7-2018.8
2018 Greece	Athens	2018.6-2018.8
2019 Singapore	Sumatra	2019.8-2019.11
2019 Australia SE	New South Wales	2019.10-2019.12
2020 Ukrain	Chernobyl	2020.3-2020.4
2020 Russia	Siberia	2020.8
2020 Brazil	Sao Paulo	2020.9-2020.10
2021 Ivory Coast	Yamoussoukro	2021.7-2021.9
2021 South Africa	Limpopo	2021.7-2021.10
2022 Australia NW	Northern Territory	2022.4-2022.9
2022 Thailand	Lampang	2022.4-2022.5