Supplement of Earth Syst. Sci. Data, 17, 3741–3756, 2025 https://doi.org/10.5194/essd-17-3741-2025-supplement © Author(s) 2025. CC BY 4.0 License. ## Supplement of ## Global high-resolution fire-sourced $PM_{2.5}$ concentrations for 2000–2023 Yonghang Hu et al. Correspondence to: Xu Yue (yuexu@nuist.edu.cn) The copyright of individual parts of the supplement might differ from the article licence. **Figure S1.** Comparison of observed and interpolated PM_{2.5} concentrations ([PM_{2.5}]) in China from 2015 to 2022. Panel (a) displays annual mean [PM_{2.5}] (μg m⁻³) at 1822 monitoring sites. Panel (b) shows interpolated annual mean [PM_{2.5}] from Tracking Air Pollution (TAP) dataset. Panel (c) presents the difference between interpolated and observed values. Panel (d) compares annual mean [PM_{2.5}] at each site with observations, with colors indicating data frequency. Validation metrics, including sample size (N), regression equation, determination coefficient (R²), root-mean-square error (RMSE), and mean absolute error (MAE) are also provided. Figure S2. Same as Fig. 1b, but for GEOS-Chem simulations using the QFED inventory. **Figure S3.** Top 10 important features measured by F-score for the machine learning model, which was trained using GEOS-Chem simulations with fire emissions from (a) GFED and (b) QFED inventories in 2022, respectively. The full name of each feature is shown in Table S1. **Figure S4.** Statistical metrics of estimated [PM_{2.5}] from 2000 to 2023. Panel (a) shows the total number of sites and samples (N) used for machine learning training. Panel (b) presents the 10-fold cross-validation R² for each year, comparing estimations using different fire emission inventories, including GFED and QFED. Panels (c) and (d) display the year-to-year R² and RMSE between observed and estimated [PM_{2.5}] using these different fire emission inventories for independent validation samples. **Figure S5.** The 72-hour backward trajectories of Canadian sites ending on August 15th, 2018, generated using the NOAA HYSPLIT Trajectory Model. The horizontal and vertical trajectories are shown in (a) and the fire emissions of GFED inventory (units: g m⁻² yr⁻¹) averaged for August 13-15, 2018 are shown in (b). The pink box represents the range of sites in Canada. **Figure S6.** The same as Fig. S5 but for the backward trajectories of Australian sites ending on December 10th, 2019. **Figure S7.** The same as Fig. 3 but the estimated $[PM_{2.5}]$ is derived using QFED fire emission inventory. **Figure S8.** Comparison of daily fire-sourced $[PM_{2.5}]$ at different percentiles between simulations with GFED and QFED inventories. **Figure S9.** Boxplot of estimated GFED and QFED fire $PM_{2.5}$ v.s. Childs et al. (2022) estimated smoke $PM_{2.5}$ under various levels. **Figure S10.** The p values of long-term (a) trends in fire [PM_{2.5}] derived using the GFED inventory for 2000-2023. Panels (b) and (c) display the same information as (a), but for fire [PM_{2.5}] from QFED inventory and differences between QFED and GFED inventories. Figure S11. The same as Fig. 7 but with fire emissions from the QFED inventory. Table S1 Summary of the input for machine learning model | Variables | Descriptions | | |--------------|--|--| | GC GFED | Simulated [PM _{2.5}] by GEOS-Chem using GFED emissions | | | GC QFED | Simulated [PM _{2.5}] by GEOS-Chem using QFED emissions | | | BLH | Boundary layer height | | | Pc | Convective precipitation | | | Pls | Large scale precipitation | | | Pt | Total precipitation | | | T2M | 2m temperature | | | T2X | Maximum 2m temperature since previous post processing | | | T2N | Minimum 2m temperature since previous post processing | | | RH | Relative humidity | | | SP | Surface pressure | | | SRD | Surface solar radiation downwards | | | T500 | Temperature 500hPa | | | T850 | Temperature 850hPa | | | TCC | Total cloud cover | | | V10M | Wind speed at 10m | | | V500 | Wind speed at 500hpa | | | V850 | Wind speed at 850hpa | | | F_Water | The cover fraction of Water | | | F_ENF | The cover fraction of Evergreen Needleleaf Forest | | | F_EBF | The cover fraction of Evergreen Broadleaf Forest | | | F_DNF | The cover fraction of Deciduous Needleleaf Forest | | | F_DBF | The cover fraction of Deciduous Broadleaf Forest | | | F_Mforest | The cover fraction of Mixed Forests | | | F_Cshrub | The cover fraction of Closed Shrubland | | | F_Oshrub | The cover fraction of Open Shrubland | | | $F_Wsavanna$ | The cover fraction of Woody Savannas | | | F_savanna | The cover fraction of Savannas | | | F_grass | The cover fraction of Grasslands | | | F_Pwetland | The cover fraction of Permanent Wetlands | | | F_crop | The cover fraction of Croplands | | | F_urban | The cover fraction of Urban and Built-up | | | F_CVM | The cover fraction of Cropland/Natural Vegetation Mosaic | | | F_snow | The cover fraction of Snow and Ice | | | F_barren | The cover fraction of Barren or Sparsely Vegetated | | Table S2 Spatiotemporal information of wildfire episodes | Event | Region | Time | |-------------------|--------------------|-----------------| | 2018 Canada | British Columbia | 2018.7-2018.8 | | 2018 Greece | Athens | 2018.6-2018.8 | | 2019 Singapore | Sumatra | 2019.8-2019.11 | | 2019 Australia SE | New South Wales | 2019.10-2019.12 | | 2020 Ukrain | Chernobyl | 2020.3-2020.4 | | 2020 Russia | Siberia | 2020.8 | | 2020 Brazil | Sao Paulo | 2020.9-2020.10 | | 2021 Ivory Coast | Yamoussoukro | 2021.7-2021.9 | | 2021 South Africa | Limpopo | 2021.7-2021.10 | | 2022 Australia NW | Northern Territory | 2022.4-2022.9 | | 2022 Thailand | Lampang | 2022.4-2022.5 |