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Abstract. Due to their persistent widespread severe winds, derechos pose significant threats to human safety
and property, with impacts comparable to many tornadoes and hurricanes. Yet, automated detection of derechos
remains challenging due to the absence of spatiotemporally continuous observations and the complex crite-
ria employed to define the phenomenon. This study presents an objective derecho detection approach capable
of automatically identifying derechos through both observations and model results. The approach is grounded
in a physically based definition of derechos and integrates three algorithms: (1) the Python Flexible Object
Tracker (PyFLEXTRKR) algorithm to track mesoscale convective systems (MCSs), (2) a semantic segmenta-
tion convolutional neural network to identify bow echoes, and (3) a comprehensive classification algorithm to
detect derechos within MCS life cycles and distinguish derecho-producing from non-derecho-producing MCSs.
Using this approach, we developed a novel high-resolution (4 km and hourly) observational dataset of dere-
chos and accompanying derecho-producing MCSs over the United States east of the Rocky Mountains from
2004 to 2021. The dataset consists of two subsets based on different gust speed data sources and is analyzed
to document the climatology of derechos in the United States. On average, 12—15 derechos are identified per
year, aligning with previous estimations ( ~ 6-21 events annually). The spatial distribution and seasonal varia-
tion patterns are consistent with prior studies, showing peak occurrences in the Great Plains and the Midwest
during the warm season. Additionally, during the study period, derechos account for approximately 3.1 % of
measured damaging gusts (> 25.93ms™!) over the eastern United States. The dataset is publicly available at
https://doi.org/10.5281/zenodo.14835362 (Li et al., 2025).

lasted for over 10 h, with apparent bow echoes and extensive

A derecho is qualitatively defined as a widespread, long-
lived straight-line windstorm associated with a fast-moving
mesoscale convective system (MCS), and the latter is named
a derecho-producing MCS (DMCS). Figure 1 shows two of
the most destructive derechos and their accompanying DM-
CSs in the United States: the June 2012 North American
derecho and the August 2020 Midwest derecho. Both events
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damaging wind gusts (> 25.93ms™!; https://www.weather.
gov/mlb/wind_threat, last access: 8 April 2025). Due to the
persistent widespread damaging gusts, derechos can severely
damage property and threaten human lives, as exemplified
by the extensive power outages and more than 10 fatalities
caused by the two derechos. Ashley and Mote (2005) demon-
strated that derechos could be as hazardous as and were com-
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parable in impact to most hurricanes and tornadoes in the
United States between 1986 and 2003.

A reliable derecho dataset is foundational for understand-
ing the underlying physical mechanisms of derecho initiation
and development and their socioeconomic impacts. Johns
and Hirt (1987) developed the first derecho climatology in
the warm seasons of 1980—-1983 in the United States by quan-
titatively defining a derecho as a family of downburst clus-
ters produced by an extratropical MCS. Specifically, they re-
quired a derecho to satisfy the following six criteria.

1. There must be a concentrated area of reports with wind
damage or convective gusts > 25.7ms ™!, and the major
axis length of the area must be at least 400 km.

2. Those wind damage or convective gust reports must
show a pattern of chronological progression, as either
a singular swath or a series of swaths.

3. The concentrated area must have at least three reports
of either F; damage (32.7-50.3 m s7h (Fujita, 1971) or
convective gusts of at least 33.4ms™! separated by >
64 km.

4. At most, 3h can elapse between successive reports of
wind damage or gusts > 25.7ms ™!

5. The associated convective system must have tempo-
ral and spatial continuity in surface pressure and wind
fields.

6. If multiple swaths of wind damage or gust re-
ports > 25 7ms ! exist, they must be from the same
MCS event.

Since then, several other studies have developed derecho
climatologies during other periods using slightly differ-
ent criteria (Bentley and Mote, 1998; Evans and Doswell,
2001; Bentley and Sparks, 2003; Coniglio and Stensrud,
2004; Guastini and Bosart, 2016). For example, Bentley and
Mote (1998) removed the third requirement and reduced the
elapsed time in the fourth condition from no more than 3 h to
no more than 2 h in their derecho climatology from 1986 to
1996. In Coniglio and Stensrud (2004), the elapsed time was
further changed to no more than 2.5h, and gust reports of
at least 33 ms~! were used to separate derechos of different
intensities.

Although the aforementioned derecho datasets were gen-
erated using different criteria and during different periods
(Johns and Hirt, 1987; Bentley and Mote, 1998; Evans and
Doswell, 2001; Bentley and Sparks, 2003; Coniglio and
Stensrud, 2004; Guastini and Bosart, 2016), they showed
many similar derecho climatological characteristics in the
United States. For example, derechos occur more frequently
in the warm than cold seasons; the Great Plains, Midwest,
and Ohio Valley are regions most favorable for derecho de-
velopment, and few derechos occur in eastern and west-
ern coastal areas. Considering the inconsistent thresholds
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used in the above studies and the lack of physical mecha-
nisms in their derecho definitions, Corfidi et al. (2016) pro-
posed a stricter and more physically based derecho defini-
tion, which required the existence of sustained bow echoes
with mesoscale vortices or rear-inflow jets and a nearly con-
tinuous wind damage swath at least 100 km wide along most
of its extent and 650 km long. In addition, the wind damage
must occur after the convective system was organized into a
cold-pool-driven forward-propagating MCS. Most derechos
satisfying this definition would be classified as “progres-
sive” but not “serial”. A serial derecho typically originates
in strongly forced environments and develops from a mature
squall line with multiple embedded bow echoes. In contrast,
progressive derechos generally originate from small convec-
tive clusters that grow upscale into large organized forward-
propagating MCSs in synoptic environments with weak forc-
ing (Squitieri et al., 2023; Corfidi et al., 2016).

It is difficult to develop a derecho climatology using the
definition proposed by Corfidi et al. (2016) with current op-
erational measurements, as it involves the identification of
bow echoes, rear-inflow jets, and cold pools. However, rear-
inflow jets and cold pools are generally associated with bow
echoes (Weisman, 1993; Adams-Selin and Johnson, 2010).
Once long-lived bow echoes are found in an MCS, we can ex-
pect the simultaneous existence of rear-inflow jets and cold
pools. Nevertheless, identifying bow echoes, features typi-
cally identified visually from radar observations, is still chal-
lenging for large volumes of data, such as the 30+ years of
data in the National Oceanic and Atmospheric Administra-
tion (NOAA) Next Generation Weather Radar (NEXRAD)
archive, consisting of 159 radars. The manual examination
is time-consuming and sensitive to subjective biases. The
present study applies a semantic segmentation convolutional
neural network (CNN) to detect bow echoes automatically
from two-dimensional composite (column-maximum) reflec-
tivity (Zamax) data in the United States, which are then com-
bined with an MCS tracking dataset and surface gust speeds
to identify derechos using criteria adjusted from Corfidi et
al. (2016). After manual examination and validation, we pro-
duced a high-resolution observational derecho and DMCS
dataset for the United States east of the Rocky Mountains
from 2004 to 2021 at 4 km spatial and hourly temporal reso-
lution. The dataset comprises two subsets based on different
gust speed data sources: one uses gust speed measurements
from the global hourly Integrated Surface Database (ISD)
(NOAA/NCEI, 2001), and the other exploits gust speed re-
ports from the NOAA Storm Events Database (SED). As
the first derecho climatology that utilizes a machine learn-
ing technique following physically based criteria and covers
the recent decades, the dataset provides a reference for fu-
ture derecho research, enabling investigation of derecho ini-
tiation and development mechanisms, climatological impacts
of derechos on hazardous weather, and their potential dam-
age to infrastructure and property.
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Figure 1. Spatial evolutions of the (a, b) composite (column-maximum) radar reflectivity (Zgmax) signatures and (¢, d) surface gust speeds
(colored dots) of two DMCSs. The first column is for the DMCS associated with the June 2012 North American derecho, which occurred
on 29-30 June 2012, and the second column is for the DMCS that accompanied the August 2020 Midwest derecho, which occurred on
10-11 August 2020. Due to spatiotemporal overlapping, multiple Zgmax and gust speed values may exist for a given grid cell or weather
station, in which case only the corresponding maximums are shown in the figure. In (c) and (d), the dark-gray shading refers to DMCS cold
cloud coverage. The dot sizes in (c¢) and (d) are proportional to the gust speed magnitudes. Notably, gust speed in (c) and (d) is based on the
hourly maximum gust speed (gusthourly_max)> Which is the largest gust speed within 1 h if multiple gust speed measurements are available.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the MCS and gust speed datasets used to
generate the derecho dataset. Section 3 describes the machine
learning (i.e., semantic segmentation CNN) methodology to
detect bow echoes, including sampling, training, and evalua-
tion. Section 4 explains our derecho identification criteria in
detail. Section 5 evaluates our derecho dataset through cross-
validation of the two subsets (ISD-based vs. SED-based) and
compares them with previous derecho estimations and the
observational data from the NOAA Storm Prediction Center
(SPC) for 2004 and 2005. Section 6 analyzes the derecho cli-
matological characteristics. Section 7 shows how to access
our derecho dataset, and the study is summarized in Sect. 8.

2 Source datasets

2.1 MCS dataset

Since previous MCS datasets only cover the period from
2004 to 2017 (Li et al., 2021; Feng et al., 2019), we use
an updated version of the Python Flexible Object Tracker
(PyFLEXTRKR) software (Feng et al., 2023), which ex-
ploits collocated radar signatures, satellite infrared bright-
ness temperature, and precipitation to identify robust MCS
events (Feng et al.,, 2019), to produce an updated 4 km
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and hourly MCS dataset for the United States east of the
Rocky Mountains from 2004 to 2021 (Feng, 2024). Several
hourly source datasets are used in the generation of the MCS
dataset, including the National Centers for Environmental
Prediction (NCEP)/the Climate Prediction Center (CPP) L3
4km Global Merged IR V1 brightness temperature dataset
(Janowiak et al., 2017), the three-dimensional Gridded
NEXRAD Radar (GridRad) dataset (Bowman and Homeyer,
2017), the NCEP Stage IV precipitation dataset (CDIAC-
S/EOL/NCAR/UCAR and CPC/NCEP/NWS/NOAA, 2000),
and melting level heights derived from ERAS (European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis v5) (Hersbach et al., 2023). The MCS definition cri-
teria are almost the same as those in Feng et al. (2019), such
as the cold cloud shield (CCS) area > 60 000 km?, the precip-
itation feature (PF, which is a continuous convective or strat-
iform area with surface rain rate > 2mmh~!) with a major
axis length > 100km, and the existence of 45 dBZ convec-
tive echoes, except that the duration requirement is lowered
to include those convective systems lasting for just 6 h. This
adjustment allows us to capture slightly shorter-lived MCSs
that may produce intense wind gusts but are missed in the
previous MCS datasets. Convective and stratiform radar echo
classification in PYFLEXTRKR follows the Storm Labeling
in 3D (SL3D) algorithm (Starzec et al., 2017), which uses
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horizontal texture and vertical structure of radar reflectiv-
ity from the GridRad product. Notably, the GridRad data are
available for each month from 2004 to 2017 but only between
April and August from 2018 to 2021. Since most derechos
occur in the warm season (Ashley and Mote, 2005; Coniglio
and Stensrud, 2004), missing the cold months between 2018
and 2021 does not affect our derecho climatological analyses
in Sect. 6. For brevity, we do not mention the missing cold
months between 2018 and 2021 in the following sections un-
less stated otherwise.

2.2 Surface gust speed datasets
2.2.1 ISD gust speed measurements

The ISD is developed by the NOAA National Centers for En-
vironmental Information (NCEI) in collaboration with sev-
eral other institutions. The ISD compiles global hourly and
synoptic surface observations from numerous sources (e.g.,
the Automated Surface Observing System and the Auto-
mated Weather Observing System) into a single common for-
mat and data model. Besides internal quality control proce-
dures conducted by the source datasets, the ISD applies addi-
tional quality control algorithms to process each observation
through a series of validity checks, extreme value checks, and
internal and external continuity checks (Smith et al., 2011).
This study uses ISD gust speed measurements passing all
quality control checks (NOAA/NCEI, 2018). Notably, there
may be multiple measurements at different times within 1 h
for some stations. To keep the sampling consistency across
different datasets used in the derecho identification, we cal-
culate gusthourly_max, Which is the largest gust speed of all
available measurements within 1h, for each observational
site, unless stated otherwise. A total of 4260 observational
sites provided gust speed measurements between 2004 and
2021 in the study domain, of which 3954 are over land and
the rest are over the ocean or lakes (Fig. S1 in the Supple-
ment). We have excluded one observational site (ISD station
ID: 726130-14755) in the northeastern United States, which
has an unrealistic number of damaging gust measurements
(more than 1000h) and is inconsistent with the surround-
ing sites. We note that, although we only use measurements
passing all the available quality control checks, spatial qual-
ity control is missing in the ISD (Smith et al., 2011). Fig-
ure S2a shows that some sites in the eastern United States
have apparently more damaging gust occurrences than their
surrounding sites, but the occurrence frequencies are less
than those stations around the Rocky Mountains. We do not
have enough evidence to exclude them from the study. The
quality of the ISD gust speed measurements will undoubt-
edly be a source of uncertainty for our derecho dataset. In
addition, only 420 ISD sites have continuous gust measure-
ments from 2004 to 2021, while the rest have gust measure-
ments only during part of the study period. The availability
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of ISD observational sites is another source of uncertainty
when identifying derechos.

2.2.2 SED gust speed reports

The SED is also maintained by the NOAA NCEI and serves
as NOAA’s official publication documenting storms and
other significant weather phenomena that are intense enough
to cause socioeconomic damage (NOAA/NCEI, 2025). The
National Weather Service (NWS) compiles storm data from
a wide range of sources beyond meteorological weather sta-
tions and submits them to NCEI. These sources include, but
are not limited to, local and federal law enforcement agen-
cies, government officials, Skywarn spotters, NWS damage
surveys, the insurance industry, newspaper clipping services,
media reports, private companies, and individuals. While the
NWS strives to use the best available information, some
data in the SED remain unverified due to time and resource
constraints. Consequently, the dataset suffers from inaccu-
racies, inconsistencies, and gaps (Santos, 2016). For exam-
ple, Ardon-Dryer et al. (2023) found that half of the “dust
storms” recorded in the SED had visibilities larger than 1 km,
indicating misclassification, while many actual dust storms
with visibilities of < 1km were missing from the dataset.
These issues were attributed in part to the diverse sources
contributing to the SED and the lack of systematic verifica-
tion and consistency checks. Considering these limitations,
particularly the fact that many strong (> 17.43ms~') and
damaging gust reports in the SED are estimated rather than
measured, the derecho and DMCS dataset developed from
SED in this study is published as a supplement to the dataset
derived from the ISD.

From the SED, we extract measured and estimated
gusts, along with their corresponding locations and times-
tamps, for the period from 2004 to 2021. The raw SED
files are available at https://www.ncei.noaa.gov/pub/data/
swdi/stormevents/csvfiles/ (last access: 27 August 2024)
(NOAA/NCEI, 2025). If a gust report is recorded as a seg-
ment containing both a start and end location with respective
timestamps, we process it as two independent reports: one at
the start location and time and another at the end location and
time. Although the accuracy of the SED gust speeds is not
guaranteed, the database provides significantly more strong
and damaging gust reports than the ISD due to its inclusion of
estimated gusts from various sources. Approximately 82 %
of SED gust reports from 2004 to 2021 are estimated, while
only 18 % are measured. However, it is important to note that
not all measured strong or damaging gusts are captured in
the SED. Given the distinct limitations of both the ISD and
SED datasets, we apply different threshold criteria for dere-
cho detection depending on the dataset used. These criteria
are described in detail in Sect. 4.

https://doi.org/10.5194/essd-17-3721-2025
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3 Machine learning identification of bow echoes

A bow echo is a bow-shaped pattern with high-reflectivity
values on a radar image, but its vague definition makes it
hard to identify bow echoes extensively and efficiently using
traditional methods. Instead, we train a semantic segmenta-
tion CNN to identify bow echoes automatically from two-
dimensional Zymax images by performing pixel-level label-
ing of the bow echo extent. Compared to the manual exami-
nation of radar images, machine learning can save a tremen-
dous amount of time and eliminate subjective bias.

3.1 Bow echo samples
3.1.1 Initial manual sampling

Our initial bow echo samples are generated based on
the named derechos on Wikipedia (https://en.wikipedia.org/
wiki/List_of_derecho_events; last access: 19 March 2023),
corresponding to 54 accompanying DMCSs in the MCS
dataset. We manually labeled times with apparent bow
echoes through visual inspection of hourly Zpymax associ-
ated with the tracked DMCSs. Each positive sample is a
384 x 384 px (~ 1536 km x 1536 km) Zymax image centered
at the corresponding DMCS with a bow echo embedded
(Fig. 2). The number of bow echo samples varies among dif-
ferent DMCSs, and 566 positive samples (with bow echoes)
are obtained in total. 5400 negative samples (generally with-
out bow echoes) are also randomly selected from the en-
tire 18 years of radar reflectivity data embedded in the MCS
dataset.

3.1.2 CNN-based selection of additional bow echo
samples

Our initial attempt at developing an automated bow echo
detection scheme was to train a classifier CNN — “Dense
Net” (Huang et al., 2019) — that ingests 384 x 384 px single-
channel Zymax images and outputs a single classification in-
dicating the presence of a bow echo. Dense Nets are notable
for their large number of skip connections (which create mul-
tiple paths for data to flow through the network without pass-
ing through every layer), and they can achieve comparable
performance to very large classifier CNNs with only a frac-
tion of the trainable parameters. Unfortunately, our manual
inspection finds that a Dense Net trained on the aforemen-
tioned initial samples has a very high false positive rate when
applied to the full radar dataset. Although this Dense Net
is unsuitable for deployment, the collection of new positive
samples it successfully identified allowed us to supplement
the list of known bow echoes and develop a more diverse
training set for the following segmentation model.

https://doi.org/10.5194/essd-17-3721-2025

3725

3.1.3 Pseudo-labeling

By combining the initial samples and the manually selected
true positives from the low-quality Dense Net model, we
built a semantic segmentation training dataset of 500 unique
bow echo snapshots and corresponding hand-drawn bow
echo masks. While 500 positive samples are relatively small
for a deep learning application, these samples have higher
diversity than the initial bow echoes generated from the
named derechos on Wikipedia because they are drawn from a
broader range of events, and, in general, semantic segmenta-
tion CNNs can be successfully trained with far fewer samples
than image classification CNNs (Bardis et al., 2020).

A relatively low-skill version of the semantic segmenta-
tion CNN is trained using the 500 hand-labeled radar im-
ages and then applied to the entire Zpmax dataset. We man-
ually review the bow echo masks produced by this segmen-
tation model and add some of the high-quality masks to a
new training dataset. We also collect some of its false pos-
itive masks as new negative samples in the new training
dataset. This is a semi-supervised learning approach known
as “pseudo-labeling” or “bootstrapping” (Van Engelen and
Hoos, 2020; Ouali et al., 2020) and is commonly applied
to semantic segmentation problems because of the high ex-
pense of hand-drawn labels (Peldez-Vegas et al., 2023). The
pseudo-labels and hand labels are combined into a final train-
ing dataset with 3677 samples, including 1699 bow echoes
and 1978 negative samples, which is used to train the much
more skillful semantic segmentation model in Sect. 3.2.

3.1.4 Data augmentation

To combat the limited training data further, we use sev-
eral data augmentation strategies when constructing train-
ing batches. During training, positive and negative samples
are selected with equal probability, and a batch size of 8 is
used. First, random salt and pepper noise is added to 10 %
of the pixels in each sample with a probability of 0.1 (i.e.,
it has a probability of 0.1 to add random noise to a pixel).
Second, weak random Gaussian noise with a standard de-
viation of 5dBZ is added to all the pixels in each sample
with a probability of 0.1. Third, samples are flipped in up-
down and left-right directions, each with a likelihood of 0.5.
Fourth, samples are rotated by 0, 90, 180, or 270°, each with
aprobability of 0.25. Fifth, samples are randomly shifted ver-
tically and horizontally by —5 to 5 px. Sixth, the brightness
of the sample image is adjusted by a random factor of —0.6
to 4+0.2, and the image contrast is randomly adjusted by —0.2
to 0.2. Seventh, the binary target bow echo masks are multi-
plied by 0.9, and random noise drawn from a uniform distri-
bution between 0 and 0.1 is added. This is known as “soft la-
bels”. Lastly, both positive and negative samples are blended
with randomly selected negative samples by taking the pixel-
wise maximum reflectivity values of the two samples with
a 0.5 likelihood. This last data augmentation is unusual but

Earth Syst. Sci. Data, 17, 3721-3740, 2025
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Figure 2. Four examples of bow echoes from the named derecho accompanying DMCSs. The color shading is for Zgmax. The subplot titles
indicate the bow echo occurrence times. For example, 20130613T04:00:00Z represents 04:00 UTC on 13 June 2013.

works well in our application because (a) reflectivity features
typically occupy only a fraction of the sample area, with
most pixels being echo-free, and (b) bow echoes are high-
reflectivity features. When the last data augmentation is ap-
plied to a positive sample, the resulting image will typically
still contain a bow echo that matches the target mask well.

3.2 Training of U-Net 3+ CNN

Our final semantic segmentation CNN model (Fig. 3) uses
the U-Net 3+ architecture (Huang et al., 2020). U-Net 3+ is
a modern variant of the U-Net architecture (Ronneberger et
al., 2015) and differs from the U-Net primarily in the addi-
tion of many more skip connections and its multi-resolution
loss, which computes loss on rescaled classification masks
generated from feature representations at various model lev-
els.

Earth Syst. Sci. Data, 17, 3721-3740, 2025

U-Net models were originally developed for the segmen-
tation of biomedical imagery but have been applied to image
segmentation problems in other fields and are broadly use-
ful for any image-to-image mapping tasks where the input
and target data are the same (or similar) size and shape and
merging multi-resolution information from the input data is
important. U-Net CNNs have been applied to a myriad of
problems in the atmospheric sciences, such as segmentation
(Galea et al., 2024; Kumler-Bonfanti et al., 2020), super-
resolution (Geiss and Hardin, 2020; White et al., 2024),
physics parameterization (Lagerquist et al., 2021), downscal-
ing (Sha et al., 2020), and weather forecasting (Weyn et al.,
2021). Perhaps most closely related to this study is Mounier
et al. (2022), who used a U-Net to detect bow echoes in
simulated radar reflectivity images from a forecast model. A
U-Net is an appropriate choice for the segmentation of bow
echoes because merging multi-resolution information is cru-
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Figure 3. A diagram of our semantic segmentation CNN architecture. The CNN inputs a 384 x 384 px radar image (Zgmax scaled to 0-255)
and outputs a bow echo mask of the same size. The blue rounded rectangles represent 3 x 3 convolutional layers, each followed by a batch
normalization layer and a leaky rectified linear unit (ReLU) activation function. The first number in each blue rounded rectangle indicates the
spatial size (for both the width and height) of the output tensor, and the second number represents the number of output channels. The solid
arrows indicate connections in a standard U-Net architecture, with the downward arrows corresponding to 2 x 2 max pooling and the upward
arrows corresponding to 2 x 2 bilinear upsampling operations. The dashed lines represent the skip connections introduced in the U-Net 3+
architecture. These skip connections use max pooling for spatial downsampling and bilinear interpolation for upsampling, followed by a
16-channel 3 x 3 convolutional layer with a linear activation. Layers with multiple inputs use channel-wise concatenation to combine those
inputs. During training, the output tensors from the layers in the upsampling branch (blue rounded rectangles with red boundaries) are scaled
to the output spatial resolution and passed through a 1-channel 1 x 1 convolutional layer with sigmoid activation. Training loss is computed

on all 6 of the resulting masks. At the inference time, only the mask outputted from the upper-rightmost layer is used.

cial for identifying these features. For example, bow echoes
have high reflectivity at the pixel scale, strong reflectivity
gradients in the transverse direction at the mid-scale (tens
of pixels), and the characteristic bow shape at the large scale
(hundreds of pixels).

Our U-Net 34+ CNN ingests 384 x 384 px Zpmax images
where Zpmax has been clipped to a 0-50dBZ range and
then linearly mapped to a range of 0-255. It is trained us-
ing binary cross-entropy loss (Bishop, 2006) on masks gen-
erated from its 384, 192, 96, 48, 24, and 12 px resolution
feature representations (Huang et al., 2020), though only the
full-resolution (384 x 384 px) output mask is used at infer-
ence time. A detailed diagram of the model architecture is
shown in Fig. 3. Notably, although the model is trained using
384 x 384 px samples, it is a fully convolutional model and
can process inputs of variable sizes.

We use the Adam optimizer (Kingma and Ba, 2014) with
the Keras default settings (Ketkar, 2017) and an initial learn-
ing rate of 0.001 for training. The U-Net 3+ CNN is first
trained for 60 epochs composed of 1000 randomly gener-
ated training batches of 8 samples each. Then, we decrease
the learning rate to 0.0001 and train the CNN for an ad-
ditional 20 epochs. The training duration is determined by
performing an initial 5 rounds of training with 5-fold cross-
validation and approximating the epoch numbers to reduce
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the learning rate and stop training when the mean intersec-
tion over union metric plateaus for the validation set. Instead
of random shuffling, the validation sets are separated from
the training dataset in temporally contiguous chunks to avoid
any overlap because, sometimes, multiple samples may be
drawn from different times of the same convective system.

3.3 Evaluation of the semantic segmentation CNN

We apply the trained U-Net 3+ CNN to the entire Zgmax
dataset and obtain potential bow echo masks over the United
States between 2004 and 2021 (Fig. 4). As a final post-
processing step, we ignore “bow echo” masks with less than
20px (~ 320 km?2), which are too small to be classified as
bow echoes.

Instead of validating our segmentation model at a pixel
scale, as we had done during the training stage, we prefer
evaluating its performance in detecting bulk bow echo fea-
tures. In other words, we care about whether the segmenta-
tion model can recognize the existence of bow echoes and
capture their rough locations. Minor spatial biases in bow
echo coverage do not much affect our derecho identifica-
tion described below, which contains various flexible crite-
ria to minimize their impacts, such as the buffer zone within
100 km of bow echoes. We also choose to validate the seg-
mentation CNN specifically using MCS events where high-
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Figure 4. Examples of the U-Net 34+ CNN-identified bow echoes
(purple contours) based on Zymax (color shading) at 05:00 UTC on
17 June 2014.

reflectivity features are present. Identifying low-reflectivity
and echo-free images as non-bow echoes is desirable for our
segmentation model but trivial and not of particular interest
for creating a derecho climatology.

To build a testing dataset, we randomly select 217 MCS-
associated Zpymax images in 2010 based on the following re-
quirements. Each image is from a different MCS event. The
images have variable sizes and contain the full spatial ex-
tents of the MCSs at the selected times; however, they must
be at least 192 x 192 px and cannot be drawn from a day that
also has a sample in the training dataset. Three of the au-
thors independently assessed the presence of bow echoes in
each image, the results of which are then compared to the
segmentation CNN (Table 1). Overall, the CNN model iden-
tifies 57 bow echoes, while human labelers 1, 2, and 3 iden-
tify 46, 76, and 66, respectively. The average human—human
agreement and F; scores are 82 % and 0.69, while the aver-
age human—CNN agreement and F scores are 82 % and 0.67
(Table 1). The test indicates that, on the one hand, the detec-
tion of bow echoes in radar images is prone to subjective
bias; on the other hand, the performance of the segmentation
CNN is comparable to that of a human in identifying bow
echoes. We emphasize that the CNN bow echo identification
is only one component in our following derecho detection
criteria, and the adverse impact of this uncertainty is miti-
gated by other constraints (e.g., almost continuous bow echo
existence and strong gusts in proximity with bow echoes).

We match the segmentation-CNN-detected bow echoes
with MCS events from the MCS dataset and identify those
MCS-associated bow echoes, which are used to identify dere-
chos in the following section. Figure 5 shows the spatial
distribution of MCS-associated bow echo occurrences from
2004 to 2021, which is similar to the MCS spatial distribu-
tion with more frequent occurrences in the Great Plains (Li
et al., 2021).

Earth Syst. Sci. Data, 17, 3721-3740, 2025
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Table 1. Evaluation of the performance of the segmentation CNN
in the bow echo identification.?

CNN Personl Person2 Person3

(57% (46) (76) (66)
CNN 84 % 79 % 83 %
Person1  0.66 77 % 88 %
Person2  0.66 0.59 81 %
Person3  0.70 0.77 0.70

4 The upper triangular part of the table (percentages) shows agreement
between two independent identifications

(agreemem = %), and the lower triangular part shows
Fy scores (Fl = %
ability to agree on positives when positives are a minority (Taha and
Hanbury, 2015). Here, TP denotes true positive, TN refers to true
negative, FP is false positive, and FN is false negative. Notably, for the
comparison between any two independent identifications, we consider
one “true” and evaluate the other against it (which set of classifications is
considered true does not impact these two metrics). b The number of
identified bow echoes from the 217 images.

), which is a better indication of the

4 Derecho identification

4.1 Derecho definition

As mentioned above, we adopted the derecho definition pro-
posed by Corfidi et al. (2016) but revised certain criteria
based on previous studies (Johns and Hirt, 1987; Bentley
and Mote, 1998) and dataset limitations to facilitate objec-
tive identification of derechos. Our final criteria are summa-
rized below, with detailed explanations provided afterward
(Fig. 6).

1. A derecho must be attached to an MCS from the MCS
dataset.

2. The derecho must persist for at least Sh, with a bow
echo present for at least 80 % of its lifetime. In addition,
gaps between successive bow echo occurrences cannot
exceed 2h. All bow echoes must belong to the same
bow echo series, as defined in the subsequent explana-
tion.

3. The derecho bow echo series must exhibit forward prop-
agation based on two modified criteria from Corfidi et
al. (2016):

— The acute angle between the averaged bow echo
orientation and the bow echo series’ propagation di-
rection must exceed 45° (Fig. 6).

— The propagation speed of the bow echo series must
be at least 30 % greater than the background mean
wind speed at 500 hPa, derived from ERAS data.
The methodology for calculating the averaged bow
echo orientation, the bow echo series’ propagation
direction and speed, and the background mean wind
speed is detailed in Appendix A.
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Figure 5. Spatial distribution of the number of MCS-associated bow echoes from 2004 to 2021. Here, we used bow echo masks produced
by the segmentation CNN and excluded bow echoes that did not overlap with MCS events. This figure excludes bow echoes from those
non-derecho-producing MCSs that overlap with tropical cyclones (TCs) from the International Best Track Archive for Climate Stewardship
(IBTrACS) Version 4 data over the North Atlantic basin (Knapp et al., 2010) following the approach of Feng et al. (2021).

4. Derecho-associated gust speed criteria vary based on
the gust speed source dataset.

— For ISD data, within 100km of the derecho-
accompanied bow echoes (termed the “derecho
area”), there must be at least 10 sites with strong
gusts (> 17.43m s~1) and at least 1 site with dam-
aging gusts (> 25.93ms™").

— For SED data, at least 10 locations must report
damaging gusts.

— The fraction of sites with strong/damaging gusts
(ISD) or damaging gusts (SED) must be > 20 %.

— Gaps between successive strong (ISD) or damaging
(SED) gust reports cannot exceed 2 h.

— The gust swath must be at least 650 km in length
and 100 km in width. Swath length and width cal-
culations are explained below.

4.2 Explanation of key criteria and adjustments

4.2.1 Criterion 1: MCS association

This is a straightforward requirement and a major advantage
of our approach. Due to the lack of a reliable MCS dataset,
previous studies often spent considerable effort identifying
spatiotemporally continuously propagating convective sys-
tems (Squitieri et al., 2023).
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t

1

!_-Projected swath

width 2 100 km
Averaged bow O

echo orientation ©

Projected swath
length 2 650 km

propagation direction

e Sites with strong (ISD) or
® damaging (SED) gust reports

Bow Echo Series

Figure 6. Schematic of the automated detection algorithm. Red and
pink objects represent bow echoes. At time 7, there are two bow
echoes belonging to different bow echo series due to their great dis-
tance from each other. In contrast, the two bow echoes at 73 are
from the same bow echo series since they are close to each other.
The pink bow echo at t, is far from the bow echoes at 7; and 3.
Therefore, they belong to different bow echo series. The sites (green
dots) with strong (for ISD) or damaging (for SED) gusts outside the
100 km buffer zone of the bow echo series (i.e., the derecho area)
are excluded from the strong (ISD) or damaging (SED) gust swath
calculation. The black arrow indicates the propagation direction of
the bow echo series, and the violet arrow indicates the averaged bow
echo orientation. Their acute angle must be >45° for a derecho. The
upper-right corner illustrates how the major and minor axis lengths
of the gust-fitted ellipse are projected onto another coordinate that
is parallel to the bow echo series’ propagation direction to calculate
gust swath length and width.
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4.2.2 Criterion 2: bow echo occurrence and series
definition

The 80 % bow echo occurrence threshold and the < 2 h lapse
time between consecutive bow echoes account for uncertain-
ties in the segmentation CNN identification process and the
diversity of MCS events.

A bow echo series was defined in two steps.

1. Spatial grouping. Within a given MCS, bow echoes oc-
curring in the same hour are categorized into separate
series if they are more than 100 km apart.

2. Temporal linking. Successive bow echoes (no more than
2h can elapse between their occurrences) are consid-
ered part of the same series if they are less than 200 km
apart, even if they were initially classified as separate
series.

Due to merging or splitting or the complex nature of some
convective systems, a bow echo at 1 h may be far from the
bow echoes right after or before that hour or another bow
echo during that hour (Fig. 6). In such a rare situation, these
bow echoes are unlikely to be caused by the same physi-
cal process and, therefore, do not belong to the same bow
echo series (Fig. 6). The above stepwise approach ensures
that bow echoes from different physical processes are not in-
correctly grouped.

4.2.3 Criterion 3: forward-propagation adjustment

We modify the Corfidi et al. (2016) criterion of “nearly or-
thogonal” to > 45° for the acute angle between the averaged
bow echo orientation and the bow echo series’ propagation
direction. This adjustment

— accounts for segmentation CNN uncertainties, particu-
larly in the propagation direction estimation, and

— reduces false exclusions caused by minor variations in
orientation.

4.2.4 Criterion 4: gust speed and swath calculation

The 20 % fraction threshold was introduced to exclude MCSs
potentially associated with extratropical cyclones, which of-
ten produce isolated strong or damaging gusts but weaker
gusts across most sites. It is noteworthy that this criterion is
primary applicable to ISD data, and its implementation for
SED data excludes only one MCS from being considered a
potential DMCS.

To determine the gust swath length and width, we did the
following:

1. We fit an ellipse around sites with strong (ISD) or dam-
aging (SED) gusts in the derecho area (Fig. 6).
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2. Since the ellipse may not align with the bow echo se-
ries’ propagation direction, we project its major and mi-
nor axes onto a new coordinate system based on the
bow echo propagation direction, as shown in the upper-
right corner of Fig. 6. The projected major or minor axis
length that is parallel to the bow echo propagation direc-
tion is the gust swath length, and the projected minor or
major axis length that is perpendicular to the propaga-
tion direction is the swath width. Notably, both major
and minor axis lengths can be projected parallelly and
perpendicularly. If a major axis length is projected par-
allelly, the minor axis length must be projected perpen-
dicularly, and vice versa. Thus, we obtain two pairs of
swath length and width measurements.

3. We consider the uncertainties in the bow echo propaga-
tion direction when conducting the projection. In detail,
we conduct projections iteratively by varying the prop-
agation direction values with an interval of 0.2° within
+10° of the initial calculated bow echo series’ propaga-

tion direction. Therefore, we obtain % + 1) x2 =202

pairs of swath length and width in total. As long as one
pair of swath length and width has a length > 650km
and a width > 100 km, Criterion 4 is satisfied.

If no derecho is identified for a given MCS using the above
definition criteria, we can relax the distance requirement
(100km) in Criterion 4 to be within 200 km of the derecho-
associated bow echoes that satisfy the condition that there is
no bow echo from the same bow echo series 1 h ago or later
during the derecho’s lifetime. If the bow echo is in the first
hour of the derecho’s lifetime and there are no bow echoes
for the corresponding MCS 1 h ago, we can also extend the
distance threshold to 200 km. This is similar to the bow echo
in the last hour of the derecho’s life cycle but without CNN-
identified bow echoes 1 h later. Notably, the distance exten-
sion is optional. For the bow echoes satisfying the above con-
ditions, the distance threshold can be either 100 or 200 km.
Using 100km is superior to using 200km until we find a
derecho if it exists. The distance extension is also intended
to minimize the impacts of the bow echo identification error.
If a bow echo is missed in the semantic segmentation pro-
cedure, extending the distance threshold can include strong
and damaging gusts associated with the missed bow echo,
thus slightly reducing the derecho detection error.

We emphasize that, in Criterion 4, our ISD gust speed cri-
teria are weaker than the SED gust speed criteria as well as
those of previous studies (Squitieri et al., 2023; Bentley and
Mote, 1998; Johns and Hirt, 1987), which also estimated the
gust swath based on SED damaging gusts. As mentioned in
Sect. 2.2.2, most SED gust reports are estimates, while ISD
provides gust measurements from weather stations. SED esti-
mates can capture potential damaging gust occurrences over
a much larger area, although with large uncertainties. In con-
trast, due to the limited coverage of observational sites, real-
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time ISD measurements may miss substantial damaging gust
occurrences in nearby regions. Therefore, we lower the gust
speed criteria to capture potential derechos when using ISD
measurements. This does not mean that the ISD-based dere-
chos are weaker than the SED-based ones or even not dere-
chos, as elaborated in Sect. 5.

4.3 Derecho detection results and post-processing

Using ISD gust measurements, the objective detection al-
gorithm identified 245 derechos and associated DMCSs be-
tween 2004 and 2021. A notable example is the June 2012
North American derecho (Fig. 7). Figure 7a displays the
CNNe-identified bow echoes of the DMCS, and Fig. 7b shows
the derecho area and associated gust speeds. As expected, the
derecho produced widespread strong gusts.

To further refine the ISD dataset, we manually reviewed all
detected derechos and DMCSs, removing 31 false detections
due to erroneous bow echo identification (Fig. S3). In addi-
tion, we examined 1099 MCS events that produced extensive
strong (> 10 observational sites) and damaging (> 1) gusts
over land areas with a strong and damaging gust swath (fit-
ted ellipse) of at least 650 x 100 km? (the ellipse’s major and
minor axis lengths). Our manual examination primarily fo-
cuses on bow echo identification errors but also slightly low-
ers the forward-propagating criteria thresholds for two po-
tential derechos. For those MCSs that are potential DMCSs
based on our visual inspection, we manually labeled their
bow echo occurrences that failed the segmentation identifi-
cation during potential derecho lifetimes (Fig. S4) and reran
the automated derecho detection algorithm. Finally, 60 ad-
ditional derechos were added, bringing the final total to 274
(245 - 31+ 60 =274).

Using the same procedures for SED gust reports, we iden-
tified 220 derechos.

5 Dataset evaluation and uncertainty

5.1 Evaluation against existing datasets

Between 2004 and 2021, our automated detection algorithm
identified 274 derechos (~ 15 per year) using ISD gust mea-
surements and 220 derechos (~ 12 per year) using SED gust
reports. These numbers fall within the range of previous esti-
mations (6.1-20.9 per year) based on a 400 km swath length
threshold and conventional derecho definitions, as introduced
in Sect. 1 (Squitieri et al., 2023; Johns and Hirt, 1987; Bent-
ley and Mote, 1998; Evans and Doswell, 2001; Guastini and
Bosart, 2016; Ashley and Mote, 2005). However, our derecho
counts are substantially higher than those reported by Corfidi
et al. (2016), who identified only 25 SED-based derechos
in the warm seasons of 2010-2014 using a 650km swath
length threshold. Our derecho numbers are also higher than
those from Squitieri et al. (2025b), who identified 70 SED-
based derechos during 2000-2022 based on the physically
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Table 2. Evaluation of our derecho dataset against the NOAA SPC
data in 2004 and 2005.

Year Year Sum

2004 2005
NOAA SPC 24 26 50
Captured by the ISD dataset 7 8 15
Captured by the SED dataset 10 9 19
Derechos in ISD but not in NOAA SPC 1 3 4
Derechos in SED but not in NOAA SPC 1 2 3
NOAA SPC events missed in the MCS dataset 2 3 5

based definition criteria from Corfidi et al. (2016) but with
much stricter gust requirements (e.g., at least five reports
of very damaging gusts (> 33.53ms~!)) for a 400 km long
gust swath (Squitieri et al., 2025a, b). The discrepancies
among the present study, Corfidi et al. (2016), and Squitieri
et al. (2025b) could be attributed to the different gust criteria
used in the derecho definitions but also likely stem from dif-
ferences in the methods used to calculate gust swath length
and width, the criteria for forward propagation, and the di-
verse observational source datasets used in the derecho de-
tection.

To further evaluate our dataset, we compare it against
the NOAA Storm Prediction Center (SPC) derecho
data from 2004 and 2005 (https://www.spc.noaa.gov/misc/
AbtDerechos/annualevents.htm, last access: 17 Novem-
ber 2023) (Table 2). This dataset provides detailed timings
and locations of derechos or convective windstorms of near-
derecho size, and it is the only available dataset that we
can use to evaluate our derecho dataset at the event scale.
However, it is important to note that the NOAA SPC data
do not explicitly distinguish between derechos and convec-
tive windstorms of near-derecho size, and they rely on the
conventional derecho definition, which can significantly in-
fluence derecho counts. Additionally, the NOAA SPC data
are based on SED gust reports and lack an underlying MCS
database.

The NOAA SPC dataset contains 50 derechos and near-
derecho size convective windstorms for 2004 and 2005, 15 of
which are detected by our algorithm using ISD gust measure-
ments. The number increases to 19 when using SED gust re-
ports. Five of the 50 events are entirely absent in our MCS
dataset, possibly because their associated MCSs moved too
rapidly to satisfy PYFLEXTRKR’s 50 % areal overlap crite-
rion using hourly satellite and NEXRAD datasets or because
they failed to meet other MCS requirements in PyFLEX-
TRKR (Feng et al., 2019). The remaining discrepancies arose
from factors such as an insufficient number of damaging gust
reports or bow echoes, too small a gust swath, or a lack of for-
ward propagation. Conversely, our detection algorithm iden-
tified several derechos (4 from ISD and 3 from SED) that are
not present in the NOAA SPC dataset. Overall, while most
derechos identified by our algorithm were captured in the
NOAA SPC data, our derecho counts were notably lower due

Earth Syst. Sci. Data, 17, 3721-3740, 2025
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Figure 7. (a) Spatial evolution of Ziymax (color shading) and CNN-identified bow echoes (purple contours) from the DMCS associated with
the June 2012 North American derecho. (b) Similar to (a) but for the derecho period. The derecho lasted from 17:00 UTC on 29 June to
06:00 UTC on 30 June 2012. The misty-rose shading in (b) corresponds to Zymax > 40 dBZ, while the gray shading refers to the derecho
area. Colored dots are the same as those in Fig. 1c, except only the derecho-associated gust measurements are shown.

to our stricter physically based derecho definition, which re-
duced the number of events classified as derechos compared
to conventional definitions.

Cross-validation between the ISD-based and SED-based
datasets further supports the robustness of our detection algo-
rithm (Fig. 8). A total of 172 derechos were detected by both
datasets, while 48 events were identified only in SED and
102 events are unique to ISD. Figure 8 also highlights dis-
crepancies between the two datasets, with more ISD-based
than SED-based derechos in 2008, 2010, 2014, 2015, 2019,
and 2020, while their counts remain similar in other years.
Despite these differences, the two datasets exhibit similar in-
terannual variability, with a temporal correlation coefficient
of 0.72. The general agreement between the two datasets sup-
ported our decision to use different gust speed thresholds for
ISD and SED in the detection algorithm. However, the ob-
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served discrepancies also underscored the critical role of the
source datasets in influencing detection results, highlighting
the need for more reliable gust speed observations.

5.2 Discussion on dataset uncertainty

Besides the uncertainties in gust speed observations, we ac-
knowledge additional sources of uncertainty affecting our
dataset.

5.2.1 Uncertainty from the MCS dataset

As noted in our evaluation against the NOAA SPC data,
uncertainties arose from the MCS dataset used in derecho
detection. The 50 % areal overlap threshold in PyFLEX-
TRKR, which links consecutive cold cloud shields (CCSs),
may fail to capture very fast-moving convective systems us-
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Figure 8. Bar chart of the annual derecho numbers from the ISD-
based and SED-based datasets from 2004 to 2021. Gray shading de-
notes derechos captured by both datasets, red shading refers to dere-
chos only identified when using ISD gust observations, and blue
shading represents SED-only derechos.

ing hourly satellite observations and NEXRAD data. Low-
ering this threshold would undoubtedly increase the number
of identified MCSs and derechos, but it could also introduce
false tracks that do not belong to the same storm system.
The 50 % threshold is widely used in various versions of the
FLEXTRKR algorithms (Li et al., 2021; Feng et al., 2023;
Feng et al., 2019) and other tracking algorithms based on
overlap (e.g., Whitehall et al., 2015). While we maintained
this threshold in our study, users should be aware of uncer-
tainties related to adjustable parameters (e.g., areal overlap
threshold, MCS duration, and major axis length) and limi-
tations in the observational datasets used by PyYFLEXTRKR
(Feng et al., 2019; Li et al., 2021).

5.2.2 Uncertainty from the bow echo identification

Another key uncertainty arose from the segmentation CNN
used to identify bow echoes. While our evaluation in Sect. 3.3
confirms high accuracy, we acknowledge that some derechos
may be missed, while some non-derechos may be falsely
classified as derechos due to the bow echo identification er-
rors. To mitigate this issue, we conducted extensive man-
ual verification of derecho and DMCS events, as well as of
other MCS events producing widespread strong gusts. How-
ever, the manual examination introduces subjective biases,
and completely eliminating bow echo identification uncer-
tainties remains challenging.

5.2.3 Uncertainty from derecho definition criteria

Our detection algorithm relied on several adjustable parame-
ters and methodological choices, all of which influenced the
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number of identified derechos. For example, to reduce the
ISD-based derecho count to the SED-based level, we had
to increase the ISD gust speed threshold in Criterion 4 in
Sect. 4.1 from 17.43 to 18.5ms™!; using the latter thresh-
old produced a derecho number of 229, 152 of which over-
lapped with the SED-based derecho dataset. However, when
we required at least five very damaging gust reports when us-
ing SED, the derecho count decreased substantially from 220
to 125, which is still larger than but much closer to the
estimates by Squitieri et al. (2025b) (70 derechos between
2000 and 2022). As the first climatological derecho dataset
to incorporate bow echoes and provide detailed event track-
ing, a full uncertainty assessment of all tunable parameters
is beyond the scope of this study. However, our sensitivity
tests indicated that changes to key parameters (e.g., reducing
the strong gust fraction threshold to 10 % or the number of
sites with strong gust reports to 5) do not substantially alter
the derecho spatial distribution or seasonal variation patterns
(see Sect. 6). Furthermore, our dataset was designed to be
flexible: we store all key parameters (e.g., gust swath length
and width and bow echo series’ propagation speed), allow-
ing users to apply stricter thresholds if needed to focus on
stronger derechos.

In summary, although our automated detection algorithm
employed a physically based derecho definition rather than
conventional definitions, our derecho counts were compara-
ble to or slightly lower than previous estimations, which was
expected given our stricter criteria. Cross-validation between
ISD-based and SED-based datasets supported the high qual-
ity of our derecho dataset and the reliability of our detec-
tion algorithm. However, users should be aware of the vari-
ous sources of uncertainty in the dataset generation, particu-
larly those related to gust speed observations, MCS tracking
criteria, bow echo identification, and the choice of derecho
definition parameters.

6 Derecho climatological characteristics

We primarily used the ISD-based derecho dataset to conduct
the following climatological analyses, unless stated other-
wise.

6.1 Annual statistics

Figure 8 displays the annual derecho numbers from 2004 to
2021. There is an apparent jump in the derecho number be-
fore (~ 10 derechos per year) and after 2007 (~ 15 derechos
per year), which may be partially related to the general in-
crease in the number of gust speed observational sites from
2004 to 2010 (Fig. S5). Figure 9 shows the spatial distribu-
tion of yearly averaged annual ISD-based derecho numbers
between 2004 and 2021. The central Great Plains has the
most frequent derecho occurrences, extending to Oklahoma
in the south, Iowa in the north, Kansas in the west, and Illi-
nois in the east. The areas with frequent derecho occurrences

Earth Syst. Sci. Data, 17, 3721-3740, 2025



3734

J. Li et al.: A derecho climatology (2004—2021) in the United States

yr

[
50°N — n
i . ) \
45°N ‘
; 35
y i - R 3
40°N — «
) i ‘
] B0 g 25
35°N - »
: ; 15
30°N — o o
1
O N
b 5
~ 05
I [ I I I I [
105°W  100°W  95°W  90°W  85°W  80°W  75°W

Figure 9. Spatial distribution of yearly averaged annual derecho numbers (ISD-based) over the United States east of the Rocky Mountains
between 2004 and 2021. Here, we use derecho areas as the derecho spatial coverage.

are generally consistent with previous studies (Coniglio and
Stensrud, 2004; Guastini and Bosart, 2016; Johns and Hirt,
1987; Ashley and Mote, 2005; Squitieri et al., 2025b), al-
though some differences are identified. For example, sev-
eral studies identified a remarkable northwest—southeast axis
with frequent derecho occurrences extending from southern
Minnesota to Ohio, which is observable but not apparent
in our spatial distribution (Johns and Hirt, 1987; Coniglio
and Stensrud, 2004; Guastini and Bosart, 2016; Squitieri et
al., 2025b). The differences can be caused by many fac-
tors, such as distinct derecho definitions and observational
datasets used in these studies. When we used SED gust re-
ports in derecho detection, the spatial distribution of derecho
counts showed a more noticeable northwest—southeast axis
but with lower derecho numbers than the ISD-based dataset
(Fig. S6).

6.2 Monthly statistics

Figure 10 displays the yearly averaged seasonal variations
in the derecho count, with remarkably more derechos in
the warm than cold seasons, a feature consistent between
ISD- and SED-based datasets and widely captured by pre-
vious studies (Ashley and Mote, 2005; Squitieri et al., 2023,
2025b; Bentley and Sparks, 2003). However, our dataset has
almost no derechos in the cold seasons, which is generally
not the case in previous studies except for that of Squitieri et
al. (2025b), which also used physically based criteria to de-
tect derechos. We thus attribute the absence of cold-season
derechos to our usage of a physically based derecho defini-
tion, which excludes many externally forced convective sys-
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Figure 10. Yearly averaged monthly variations in the derecho num-
bers between 2004 and 2021. The error bars denote standard devi-
ations. The gray color indicates ISD-based derechos, and the red
color indicates SED-based derechos.

tems (e.g., extratropical cyclones), which have been consid-
ered serial derechos in previous studies.

Figure 11 shows the spatial distributions of the monthly-
mean derecho counts based on ISD between 2004 and 2021.
On the one hand, many more derechos occur in the warm
than cold months. On the other hand, we find remarkable
shifts in the areas with the most frequent derecho occurrences
from April to August. The region with the most derechos
moves northward during the warm season. The northward
shifts resemble the MCS events (Li et al., 2021). We can
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R

Figure 11. Same as Fig. 9 but for yearly averaged monthly derecho numbers (ISD-based) over 2004-2021.

identify two axes with frequent derecho occurrences. One
is in the south—north direction along the Great Plains (e.g.,
June), and the other is in the west—east direction along the
northern Great Plains and Midwest (e.g., July). The axes may
represent two distinct types of progressive derechos associ-
ated with different large-scale meteorological patterns. The
SED-based dataset shows similar features but with far fewer
derechos in June (Fig. S7).

6.3 Wind damage characteristics

We examine the contributions of DMCSs and derechos to
ISD damaging gust reports in the United States within our
dataset from 2004 to 2021 (Figs. 12, S2, and S8). Notably,
damaging gust reports associated with a DMCS include those
from the corresponding derecho as well as those falling out-
side the derecho location or time window. Overall, MCSs ac-
count for about 15.6 % of all damaging gust reports, with
the vast majority occurring east of the Rocky Mountains. On

https://doi.org/10.5194/essd-17-3721-2025

average, DMCSs contribute 4.0 % and derechos contribute
3.1 % of all damaging gust occurrences. This indicates that
about one-quarter of the damaging gusts associated with
MCS events are linked to DMCSs, which is much higher
than the fraction (~ 3.5 %) of DMCSs in MCSs. This finding
aligns with the higher probabilities of extreme gusts in the
gust speed probability density function of DMCSs compared
to general MCSs, indicating that DMCSs are more likely to
produce extreme gusts than general MCSs (Fig. S9). Under-
standing the mechanisms behind their contrast will be a key
focus of a follow-up study. Additionally, approximately 75 %
of DMCS-associated damaging gusts occur during the dere-
cho period, reinforcing the validity of our derecho definition.
As expected, the highest contributions of derechos to dam-
aging gust reports are found in the Great Plains and Midwest
(Fig. 12).
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Figure 12. (a) The total numbers of damaging gust occurrences between 2004 and 2021 at ISD weather stations over the United States
east of the Rocky Mountains. (b) Relative contributions of MCS events to the damaging gust occurrences in (a). Panel (c) is the same as
panel (b) but for relative contributions of DMCSs. Panel (d) is the same as (c¢) but for derechos. Similar to Fig. 5, we exclude non-derecho-
producing MCS events overlapping with TCs in panel (b). The dot sizes are proportional to the corresponding values. Light-yellow shading
denotes an elevation greater than 1000 m; light-gray shading denotes an elevation between 400 and 1000 m; and smoke-white shading denotes
an elevation less than 400 m. The white background denotes oceans and lakes.

7 Data availability

The final ISD-based and SED-based derecho and DMCS
dataset, along with the corresponding user guide, is publicly
available at https://doi.org/10.5281/zenodo.14835362 (Li et
al., 2025). The dataset is stored in NetCDF-4 format and
compressed by year for easier access. The user guide pro-
vides a detailed description of the data files, ensuring that
users can effectively navigate and utilize the dataset.

For each pair of derecho and DMCS, the dataset includes
two visualization figures (one for the derecho and one for the
accompanying DMCS) illustrating the temporal evolutions
of Zymax, precipitation, wind speed, and gust speed through-
out their respective lifetimes (e.g., Figs. 13 and S10). These
figures offer users an immediate understanding of the basic
characteristics of each derecho and DMCS. The dataset also
contains all the derecho-associated gust speeds and various
parameter values used in the derecho definition. This allows

Earth Syst. Sci. Data, 17, 3721-3740, 2025

users to further categorize derechos by intensity or type, fol-
lowing approaches similar to Coniglio and Stensrud (2004).

For researchers interested in applying the segmen-
tation CNN for bow echo detection in different re-
gions or time periods or in leveraging the CNN-
identified bow echoes for other studies, we provide ac-
cess to the bow echo segmentation code and datasets
at https://doi.org/10.5281/zenodo.10822721 (Geiss et al.,
2024). This repository includes the trained CNN weights and
detailed usage instructions. Additionally, a video supplement
demonstrating the bow echo segmentation scheme is avail-
able at https://youtu.be/iHWY_OhaVUo (Geiss, 2024) and
is permanently archived in the above Zenodo repository.

8 Conclusions

This study presents a high-resolution (4 km and hourly) ob-
servational derecho dataset covering the United States east
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Figure 13. Similar to Fig. 1 but for the spatial evolutions of
(a) ZHmax, (b) total accumulated precipitation, (c) precipitation du-
ration, (d) mean precipitation intensity, (e) hourly maximum wind
speed, and (f) hourly maximum gust speed for an ISD-based DMCS
that occurred on 2—4 June 2015. In (e) and (f), the misty-rose shad-
ing corresponds to areas with Zymax > 40 dBZ and the dark-gray
shading refers to DMCS coverage with Zymax < 40dBZ. The fig-
ure title refers to the DMCS timing range.

of the Rocky Mountains from 2004 to 2021. We developed
the dataset using a combination of an MCS dataset generated
by PyFLEXTRKR, bow echoes identified by a semantic seg-
mentation CNN, hourly gust speed data from ISD or SED,
and physically based derecho identification criteria.

We evaluated the dataset and its potential uncertainties.
The final dataset identifies 274 derechos using ISD gust mea-
surements and 220 derechos using SED gust reports, with
most events occurring in the warm season (April-August).
Analyses indicate that derechos preferentially occur in the
Great Plains and Midwest, with regions of highest frequency
shifting northward from April to August. Derechos con-
tributed 3.1 % of ISD land-based damaging gusts over the
United States between 2004 and 2021. Additionally, approx-
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imately 20 % of MCS-associated damaging gusts were pro-
duced by derechos.

As the first derecho dataset that integrates machine-
learning-based bow echo identification, physically based def-
inition criteria, and two types of surface gust speed data, the
dataset serves as an independent reference for derecho clima-
tology, complementing previous studies. Beyond climatolog-
ical analyses, the dataset can be used to investigate derecho
initiation and development mechanisms, examine the envi-
ronmental conditions that promote derecho formation and in-
tensification, assess the impacts of derechos on human safety
and property, and select specific events for case studies or to
evaluate the numerical model simulations, thanks to its high
spatiotemporal resolution.

Lastly, we emphasize that the automated derecho detection
algorithm developed in this study is versatile and applicable
to both observations and model results. The algorithm can be
used to assess model performance and explore the impact of
various factors on derechos (Kaminski et al., 2025).

Appendix A

For each bow echo in the derecho bow echo series, we used
the formulas from the MATrix LABoratory (MATLAB) “re-
gionprops” function (https://github.com/SBU-BMI/nscale/
blob/master/original-matlab/features/regionprops.m, last ac-
cess: 28 January 2025) to calculate its orientation. Then we
applied the 3o rule to the orientations to remove outliers until
all the rest of the orientations lay within 3 standard deviations
of their mean. The mean is the average bow echo orientation.
Implementing the 30 rule aims to minimize the adverse im-
pact of the segmentation CNN identification uncertainties on
calculating the averaged bow echo orientation.

The bow echo series’ propagation direction and speed
were calculated as follows. Firstly, we computed the mov-
ing direction and speed between any two consecutive bow
echoes from the series. As exemplified in Fig. Al, we as-
sumed that the bow echo at time #; would move to the loca-
tion of bow echo #{ at time 7, if the bow echo shape remained
unchanged. The location of bow echo #; was determined by
its spatial correlation coefficient with bow echo #,, and the
location with the largest spatial correlation coefficient was
what we wanted. Since bow echoes #; and tl’ have the same
shape, it was straightforward to calculate the moving direc-
tion and speed between them, which were considered the
moving direction and speed between bow echoes #; and t,.
Compared to using the centroid points of bow echoes 71 and
1y, our approach can reduce the calculation bias when bow
echoes #; and 7, have distinct shapes and sizes. After we ob-
tained all the moving directions and speeds between any two
consecutive bow echoes, we applied the 1.5 x interquartile
range (IQR) rule to remove outliers, considering potential
CNN bow echo identification errors. Lastly, the median of
the remaining moving speed values was considered the bow
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Figure A1. Schematic of the bow echo moving direction and speed
calculation between two consecutive (¢; and tp) bow echoes. Bow
echo ti is the same as bow echo 71 but at a different location so
that the spatial correlation coefficient between bow echoes ti and
tp reaches the maximum. The moving direction and speed between
bow echoes #| and ti are considered the moving direction and speed
between bow echoes 71 and #,.

echo series’ propagation speed, while the average of the re-
maining move direction values was considered the bow echo
series’ propagation direction.

We used wind speeds at 500 hPa from ERAS to compute
the background mean wind speed. Considering the potential
spatiotemporal variability of 500 hPa winds, we only counted
wind speeds covered by bow echoes from the bow echo se-
ries during the corresponding period. In detail, at time #; dur-
ing the bow echo series period (#; — #,,), we only considered
winds at time #; that were covered by bow echoes from time
ti+1 to min(t; 43, t,). Here, we excluded the bow echo at time
t; to minimize the potential impact of the bow echo on the
background environment, while using up to 3h (¢;4+1 —t;43)
of bow echoes aims to reduce the potential spatial noise since
a bow echo is often too small. We averaged all wind speeds
obtained from the above procedure to derive the background
mean wind speed.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-3721-2025-supplement.
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