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Abstract. Lead (Pb) and its isotopes are powerful tools for studying the pathways of Pb pollution from land to
sea and, simultaneously, investigating biogeochemical processes in the ocean. However, the scarcity and sparsity
of in situ measurements of Pb concentrations and isotope compositions do not allow for a comprehensive under-
standing of Pb pollution pathways and biogeochemical cycling on a global scale. Here, we present three machine
learning models developed to map seawater Pb concentrations and isotope compositions, leveraging the global
GEOTRACES dataset as well as historical data. The models use climatologies of oceanographic and atmospheric
variables as features from which to predict Pb concentrations, 206Pb/207Pb, and 208Pb/207Pb. Using SHapley
Additive exPlanations (SHAP), we found that seawater temperature, atmospheric dust, atmospheric black car-
bon, and salinity are the most important features for predicting Pb concentrations. Dissolved oxygen concen-
tration, salinity, temperature, and atmospheric dust are the most important features for predicting 206Pb/207Pb,
atmospheric black carbon and dust, seawater temperature, and surface chlorophyll a for 208Pb/207Pb. In line
with observations, our model outputs show that (i) the surface Indian Ocean has the highest levels of pollution,
(ii) pollution from previous decades is sinking in the North Atlantic and Pacific oceans, and (iii) waters charac-
terised by highly anthropogenic Pb isotope fingerprints are spreading from the Southern Ocean throughout the
Southern Hemisphere at intermediate depths. By analysing the uncertainty associated with our maps, we iden-
tified the Southern Ocean as the key area to prioritise in future sampling campaigns. Our datasets, models, and
their outputs, in the forms of Pb concentrations, 206Pb/207Pb climatologies, and 208Pb/207Pb climatologies, are
made freely available to the community by Olivelli et al. (2024a; https://doi.org/10.5281/zenodo.14261154) and
Olivelli (2025; https://doi.org/10.5281/zenodo.15355008).

1 Introduction

The low concentrations at which lead (Pb) is present in the
ocean (on the order of parts per trillion) and the ubiquity
of Pb contamination during sampling and sample processing
did not allow for successful measurements of seawater Pb
concentration and isotope composition until the late 1970s
(Schaule and Patterson, 1981, 1983). Indeed, since the early
1900s, human activities have caused an increase in Pb con-

centrations in the environment, both on land and in the ocean,
which has altered the background levels and the biogeochem-
ical cycling of Pb (Boyle et al., 2014; Nriagu, 1979; Nriagu
and Pacyna, 1988; Pacyna and Pacyna, 2001).

This increase in Pb concentrations has been accompanied
by a shift in the Pb isotope compositions of seawater, reflect-
ing the predominance of anthropogenically sourced Pb over
naturally sourced Pb (Boyle et al., 2014). In fact, the rela-
tive abundances of stable Pb isotopes (204Pb, 206Pb, 207Pb,
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and 208Pb), expressed as ratios such as 206Pb/207Pb and
208Pb/207Pb, can be used to identify and quantify the con-
tributions of the different sources of Pb (Reuer and Weiss,
2002).

In the years and decades that followed the first successful
measurements of Pb and its isotopes in seawater, sampling
efforts mainly concentrated on the North Atlantic Ocean
(Alleman et al., 1999; Boyle et al., 1986; Helmers et al.,
1991; Pohl et al., 1993; Shen and Boyle, 1988; Sherrell et
al., 1992; Véron et al., 1994, 1998, 1999). This basin, sur-
rounded by the early developed economies of North America
and western Europe, initially saw a sharp increase in pollu-
tion followed by a decrease thanks to environmental policies
that phased out and banned the use of leaded petrol starting
from the 1970s (Bridgestock et al., 2016; Weiss et al., 2003).

A major breakthrough in the understanding of the marine
biogeochemistry and pollution of Pb on a global scale came
with the GEOTRACES international marine geochemistry
programme, which has run since 2006 and includes Pb con-
centrations and isotope compositions as key parameters of
interest for measurement on all of its cruise sections (GEO-
TRACES Planning Group, 2006). However, despite these
great efforts, the majority of the world’s oceans remain un-
sampled for Pb concentrations and isotope compositions, es-
pecially in the Southern Hemisphere (Fig. 1).

In this context, modelling studies represent a powerful tool
for expanding our knowledge of the distribution and biogeo-
chemical cycle of Pb, complementary to in situ observations.
While deterministic models require a good understanding of
the processes at play in the biogeochemical cycle of Pb, ma-
chine learning (ML) models do not require such prior knowl-
edge as they are data-driven (Glover et al., 2011). There-
fore, the latter can be regarded as a computationally efficient
way of investigating the distribution of Pb and its isotopes in
the global ocean without the need to explicitly parameterise
causal relationships derived from fundamental knowledge of
the biogeochemical cycle of Pb.

In recent years, ML algorithms have been employed to in-
vestigate several topics within chemical oceanography, in-
cluding the distribution and cycling of tracers, such as iron
(Huang et al., 2022), zinc (Roshan et al., 2018), copper
(Roshan et al., 2020), barium (Mete et al., 2023), iodide
(Sherwen et al., 2019), and nitrogen isotopes (Rafter et al.,
2019). A thorough overview of the use and potential of ML
in the ocean sciences is provided in Sonnewald et al. (2021).

In this study, we leverage the growing GEOTRACES
dataset, in combination with climatologies of several oceano-
graphic and atmospheric variables, to map the distribution
of Pb and its isotopes in the global ocean using the ML
XGBoost (eXtreme Gradient Boosting) regression algorithm.
With this approach, we aim (i) to produce three-dimensional
global maps of Pb concentrations and isotope compositions
(206Pb/207Pb and 208Pb/207Pb) for use as a benchmark for
future levels of pollution and (ii) to identify areas where
to concentrate sampling efforts in the upcoming years and

decades by analysing the uncertainty of our model outputs.
We make the resulting data products available to the commu-
nity in the form of mean global climatologies and envisage
updates to the models’ outputs as new observations become
available.

2 Materials and methods

Regression ML models require training on existing observa-
tions of a target variable (to be predicted by the model) along-
side a number of features (i.e. ancillary variables) in order to
make accurate predictions. Therefore, three different datasets
were compiled to develop three separate ML models to map
the global distribution of Pb concentrations, 206Pb/207Pb,
and 208Pb/207Pb, respectively. Each dataset includes infor-
mation on 14 geographical, oceanographic, and atmospheric
features (Table 1) and a target variable (either Pb concentra-
tion, 206Pb/207Pb, or 208Pb/207Pb). The features included in
the datasets were chosen due to their proven predictive power
in other ML studies focusing on ocean chemistry (Huang et
al., 2022; Mete et al., 2023; Roshan et al., 2018, 2020; Sher-
wen et al., 2019) and their likely connection to the biogeo-
chemical cycle of Pb.

The three datasets and models were built following the
same procedure explained in Sect. 2.1 and 2.2. All data
preparation, modelling, and analyses were done in Python
3.11.5 in a Linux operating system.

2.1 Data sources

2.1.1 Pb concentrations and isotope compositions

Observations of seawater dissolved and total dissolv-
able Pb concentrations, 206Pb/207Pb, and 208Pb/207Pb in-
cluded in the GEOTRACES Intermediate Data Product
2021v2 (IDP2021v2; GEOTRACES Intermediate Data Prod-
uct Group, 2023) form the basis of this study. Only GEO-
TRACES IDP2021v2 data with a quality control flag equal
to 1 (equivalent to good data) were included in our Pb con-
centration, 206Pb/207Pb, and 208Pb/207Pb datasets. Of these
good data points, eight samples from the southern sector of
the Indian Ocean and the Southern Ocean were not included
in the Pb concentration dataset as they had unusually high
values compared to those collected at the surrounding loca-
tions. Additionally, one sample from the Arctic Ocean was
not included in our dataset as it had a negative Pb concentra-
tion (−0.05 pmol kg−1).

Additional data were included in our dataset to increase
the number of observations that were available; these en-
compass published (Chen et al., 2023b; Chien et al., 2017;
Lanning et al., 2023; Olivelli et al., 2023, 2024b) and unpub-
lished studies (from the MAGIC laboratories at Imperial Col-
lege London). As previous studies have shown that dissolved
and total dissolvable Pb concentrations and isotope compo-
sitions are comparable in the open ocean (Bridgestock et al.,
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Figure 1. Geographical distribution of all samples in the Pb concentration (a), 206Pb/207Pb (c), and 208Pb/207Pb (e) datasets. Panels (a),
(c), and (e) include all samples from the top 100 m. Panels (b), (d), and (f) represent the frequency distribution of sampling depths for panels
(a), (c), and (e), respectively.

2018; Olivelli et al., 2023, 2024b; Schlosser et al., 2019),
data for dissolved and total dissolvable Pb concentrations,
206Pb/207Pb, and 208Pb/207Pb were pooled together for the
purpose of this work.

2.1.2 Oceanographic and atmospheric features

Global gridded climatologies of seawater temperature, salin-
ity, density anomalies (σ0), nitrate, phosphate, silicate, oxy-
gen, apparent oxygen utilisation (AOU), and mixed layer
depth (MLD) were obtained from the World Ocean Atlas
2018 product (WOA18; Garcia et al., 2019). The WOA18

has a 1°× 1° spatial resolution and 102 depth levels (spaced
every 5 m between 0 and 100 m, every 25 m between 100 and
500 m, every 50 m between 500 and 2000 m, and every 100 m
between 2000 and 5500 m). Chlorophyll-a concentrations in
the surface ocean were obtained from the Copernicus Ma-
rine Service Global Ocean Biogeochemistry Hindcast prod-
uct (0.25°× 0.25° spatial resolution) as monthly averages for
the period between January 2005 and December 2017 and
averaged over the entire period to create a climatology.

Dust aerosol optical depth (AOD) and black carbon AOD
were included as most Pb enters the ocean via atmospheric
transport. Dust was found to be an important source of nat-
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Table 1. List of the features used for dataset compilation and model development for Pb concentrations, 206Pb/207Pb, and 208Pb/207Pb.

Feature name Data source Spatial resolution Temporal resolution

Geographical features

Latitude [° N]d Sampling information
Longitude [° E]d Sampling information
Depth [m] Sampling information
Distance from bottom depth [m] Derived from sampling information

Oceanographic features

Temperature [°C] World Ocean Atlas 2018 1°× 1° Climatology, 01/2005–12/2017
Salinity World Ocean Atlas 2018 1°× 1° Climatology, 01/2005–12/2017
Dissolved nitrate [µmol kg−1] World Ocean Atlas 2018 1°× 1° Climatology, all available data (1955–2017)
Dissolved phosphate [µmol kg−1] World Ocean Atlas 2018 1°× 1° Climatology, all available data (1955–2017)
Dissolved silicate [µmol kg−1] World Ocean Atlas 2018 1°× 1° Climatology, all available data (1955–2017)
Density anomaly (σ0) [kg m−3] World Ocean Atlas 2018 1°× 1° Climatology, 01/2005–12/2017
Dissolved oxygen [µmol kg−1] World Ocean Atlas 2018 1°× 1° Climatology, all available data (1955–2017)
Apparent oxygen utilisation [µmol kg−1] World Ocean Atlas 2018 1°× 1° Climatology, all available data (1955–2017)
Mixed layer depth [m] World Ocean Atlas 2018 1°× 1° Climatology, 01/2005–12/2017
Chlorophyll a [mg m−3] CMEMSa 0.25°× 0.25° Monthly, 01/2005–12/2017 (transformed into climatology)

Atmospheric features

Black carbon AODb CAMSc 0.75°× 0.75° Monthly, 01/2005–12/2017 (transformed into climatology)
Dust AODb CAMSc 0.75°× 0.75° Monthly, 01/2005–12/2017 (transformed into climatology)

a Copernicus Marine Environment Monitoring Service. b Aerosol optical depth. c Copernicus Atmosphere Monitoring Service. d Variables used for dataset compilation and
initial versions of the models but dropped for the final models (see more in Sect. S1 in the Supplement).

ural Pb in the surface ocean in several regions, including the
Atlantic Ocean (Bridgestock et al., 2016; Olivelli et al., 2023)
and the Red Sea (Benaltabet et al., 2020). Black carbon,
on the other hand, was chosen as an indicator of Pb emis-
sions from industrial and high-temperature activities, which
are known sources of anthropogenic Pb in the environment
(Nriagu and Pacyna, 1988; Pacyna and Pacyna, 2001). Data
for the years between January 2005 and December 2017
were obtained from CAMS global reanalysis (ECMWF At-
mospheric Composition Reanalysis 4; EAC4) monthly aver-
aged fields with a 0.75°× 0.75° spatial resolution, and they
were averaged over the whole period to obtain a climatology.

2.1.3 Data handling and dataset preparation

The WOA18 grid was chosen as a reference for all feature
and target variables in this study. Therefore, Pb concentra-
tion, 206Pb/207Pb, 208Pb/207Pb, chlorophyll a, dust AOD,
and black carbon AOD values, which were either obtained as
point observations or gridded at higher resolution, were re-
gridded according to it. Lead data were binned to the 1°× 1°
grid cell the samples were collected in and assigned to the
depth level closest to the depth at which the samples were
collected. All samples collected at depths lower than 5500 m
were discarded, as 5500 m is the deepest depth level consid-
ered in the WOA18. The distance from the bottom depth was
calculated as the difference between the bottom depth value
reported for the sampling station and the WOA18 depth level
to which the observation was assigned. Chlorophyll a, dust

AOD, and black carbon AOD were re-gridded by assigning
each 1°× 1° grid cell the feature value of the respective prod-
uct cell located closest to the centre of the WOA18 gridded
cell.

All samples in each 1°× 1° column were given the same
dust AOD, black carbon AOD, surface chlorophyll a, and
mixed layer depth values, regardless of their depths. This
was done to assess whether characteristics of the surface
ocean have an important impact throughout the water col-
umn. These features represent atmospheric inputs (dust AOD
and black carbon AOD), surface primary production as a
proxy for sinking particulate matter in the water column (sur-
face chlorophyll a), and the thickness of the ocean layer that
is directly influenced by the atmosphere (mixed layer depth).

In total, the Pb concentration dataset includes 9920 obser-
vations, the 206Pb/207Pb dataset 2014, and the 208Pb/207Pb
dataset 2010 (Fig. 1). In the WOA18 grid, 9920 observations
cover ∼ 0.3 % of the total gridded ocean volume, while 2014
and 2010 cover ∼ 0.06 %.

In the initial phase of model development, latitude and lon-
gitude were included as features and deconvoluted in a three-
dimensional coordinate system to allow for continuity (Gre-
gor et al., 2017; Huang et al., 2022). However, when includ-
ing coordinates as features, the global maps of Pb concen-
trations and isotope compositions showed unrealistic spatial
artefacts (see Sect. S1). For this reason, coordinates were ex-
cluded as features for further model development and are not
included in the results presented here.
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2.2 Model development and validation

The XGBoost non-linear regression algorithm (Chen and
Guestrin, 2016) was chosen to develop three separate mod-
els for Pb concentrations, 206Pb/207Pb, and 208Pb/207Pb. In-
deed, evidence shows that tree-based models consistently
outperform deep-learning models in tabular-style datasets
(Grinsztajn et al., 2022). Moreover, in recent years, XGBoost
has been proven to perform well in a variety of applications,
from finance to medicine and including the Earth sciences
(Biass et al., 2022; Xie et al., 2024; Ye et al., 2023). XG-
Boost is an ensemble algorithm that consists of individual
decision trees built in a sequential manner. In brief, each
successive tree aims to reduce the errors perpetrated by its
predecessor. The final prediction made by the model equals
the weighted sum of the predictions made by all trees in
the ensemble. XGBoost was preferred to the random forest
algorithm because the sequential building of trees in XG-
Boost allows the algorithm to focus on poorly understood
fields and because random forest is more prone to overfit-
ting than XGBoost. Moreover, the random forest algorithm
was found to perform worse than XGBoost for the Pb con-
centration and 208Pb/207Pb models and comparably for the
206Pb/207Pb model (Sect. S2).

In addition to performing well in a variety of applications,
tree-based models offer a higher level of interpretability com-
pared to deep-learning and linear models (Lundberg et al.,
2020). Of the different approaches that have been used to
explain predictions of XGBoost models, SHapley Additive
exPlanations (SHAP) has stood out in recent years as a uni-
fied approach to explain local predictions and gain a global
understanding of a model’s structure (Lundberg et al., 2020;
Lundberg and Lee, 2017; Molnar, 2022).

The SHAP approach is based on game theory (i.e. features
are considered to be players that contribute to a prediction)
and allows us to interpret the importance of each feature of a
given prediction by calculating the marginal contribution of
each feature across all possible permutations. For each sam-
ple, a positive (negative) SHAP value indicates that a specific
feature contributes towards increasing (decreasing) the final
predicted value. Additionally, features with a larger mean ab-
solute SHAP value are considered to contribute more to a
given prediction compared to features with smaller mean ab-
solute SHAP values.

In recent years, several studies in the Earth sciences have
used SHAP values to interpret predictions made by tree-
based and deep-learning models, providing insightful find-
ings on atmospheric pollution (Hou et al., 2022; Qin et al.,
2022; Stirnberg et al., 2021), ocean dynamics (Clare et al.,
2022), and vegetation vulnerability (Biass et al., 2022). Here,
we used the TreeExplainer method from the shap library in
Python (Lundberg et al., 2020; Lundberg and Lee, 2017) to
compute SHAP values and evaluate the contribution of each
feature to predicted Pb concentrations, 206Pb/207Pb, and
208Pb/207Pb. Interactions between features, which are de-

fined as additional combined feature effects after accounting
for individual feature effects, were calculated using SHAP
interaction values.

The first step of model development consisted of with-
holding a cruise transect in the Atlantic Ocean from the Pb
concentration, 206Pb/207Pb, and 208Pb/207Pb datasets. This
group of withheld samples, identified as the “geographic test
set” (Fig. S1), included 216 samples for the Pb concentration
model and 26 samples for the Pb isotope ratio models and
was used to mimic areas of the ocean where in situ samples
have never been collected and assess the ability of the model
to generalise to these. The remainder of each of the three
datasets was split into a training test consisting of 80 % of
the data and a randomly selected test set consisting of 20 %
of the data.

To identify the best model architectures, hyperparame-
ters were tuned using 5-fold cross-validation on the train-
ing set using the grid search method. Cross-validation is a
technique that allows us to evaluate the performance of a
machine learning model during the hyperparameter tuning
phase. It consists of splitting the training dataset into a spec-
ified number of subsets (k, in this case equal to 5) and us-
ing k− 1 subsets for training and 1 subset for testing. The
training and testing process is repeated k times (i.e. k-fold
cross-validation), and the performance of each hyperparam-
eter configuration is calculated by averaging the scores ob-
tained for each fold. Hyperparameters are a set of parameters
that control the learning process of a ML model and are tuned
to obtain the most optimal model performance. The grid
search method consists of specifying a set of possible values
for each hyperparameter and subsequently training and test-
ing the models built with each unique combination of hyper-
parameter values. The hyperparameters tuned for our Pb con-
centrations, 206Pb/207Pb, and 208Pb/207Pb include the num-
ber of decision trees built and boosted (“n_estimators”), the
rate at which the model learns information (“learning_rate”),
the maximum number of split nodes in a tree (“max_depth”),
the minimum number of samples a node must represent in or-
der to be split further (“min_child_weight”), the percentage
of features used to construct each tree (“colsample_bytree”),
and the L1 and L2 regularisation terms (“reg_alpha” and
“reg_lambda”, respectively). The two regularisation terms,
L1 and L2, were only tuned for the Pb isotope ratio mod-
els in order to reduce the computational costs of hyperpa-
rameter tuning for the Pb concentration model, which was
built using a much larger dataset than the 206Pb/207Pb and
208Pb/207Pb models. As the target variables of the three mod-
els (Pb concentrations, 206Pb/207Pb, and 208Pb/207Pb) were
not uniformly distributed, a least-squares loss function was
chosen as the preferred method for model optimisation, as
squaring the error penalises the model more when the size of
the error increases.

Different performance metrics were used to assess model
performance during cross-validation and testing on the ge-
ographic and random test sets. These include the root
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mean square error (RMSE), mean average percentage error
(MAPE), and coefficient of determination (R2) and are cal-
culated as follows:

RMSE=

√√√√1
n

n∑
i=1

(yo− yp)2, (1)

MAPE= 100
1
n

n∑
i=1

∣∣∣∣yo− yp

yo

∣∣∣∣ , (2)

R2
= 1−

n∑
i=1

(yo− yp)2

n∑
i=1

(yo− y)2
, (3)

where n is the number of samples; yo and yp are the observed
and predicted values, respectively; and y is the mean of the
observed values.

Root mean square error was chosen as the primary evalua-
tion metric for the two isotope ratio models. Indeed, RMSE is
reported in the same unit as the target variables (in this case
unitless), which makes it more intuitive to interpret the re-
sults. On the other hand, MAPE was chosen as the preferred
metric with which to evaluate the performance of the Pb con-
centration models. This was done as Pb concentrations in the
dataset vary between 0.10 and 95.00 pmol kg−1, with an av-
erage value of 17.33± 13.05 (1 SD, n= 9920). While MAPE
might be harder to interpret, as it is reported as a percentage
rather than an absolute value with the same unit of measure-
ment as the target variable, minimising the percentage error
ensures that basins and locations where Pb concentrations are
low are not overlooked by the model.

3 Results and discussion

3.1 Model development and performance

During hyperparameter tuning, we assessed model config-
urations by changing hyperparameter grid spacing and in-
creasing granularity to get as close as possible to the best
combination achievable. In the final phase of the tuning, 1280
different configurations were assessed for Pb concentrations,
with 11 520 for both 206Pb/207Pb and 208Pb/207Pb. The hy-
perparameter space explored and the best hyperparameters
identified for each of the three models are reported in Table 2.
The variations in MAPE and RMSE values for different com-
binations of hyperparameters are visible in Fig. S2.

The mean MAPE values of the Pb concentration mod-
els calculated on the cross-validation set, random test set,
and geographic test set were 22.7± 2.2 %, 20.7± 1.5 %, and
19.5± 4.1 % (n= 1280, 2 SD), respectively. The 10 best hy-
perparameter configurations for the Pb concentration model
shared the same learning rate (0.01) and number of columns
subsampled by each tree (0.7). The maximum differences in
MAPE values between these 10 models were 0.05 % in the

cross-validation set, 0.17 % in the random test set, and 0.82 %
in the geographic test set.

The 206Pb/207Pb models had mean RMSE values of
0.008± 0.004 (cross-validation), 0.007± 0.003 (random test
set), and 0.006± 0.002 (geographic test set; n= 11 520,
2 SD). The 20 best-performing hyperparameter configura-
tions shared the same learning rate (0.01), L1 regularisa-
tion (0), and number of columns subsampled by each tree
(0.7). These models have maximum differences in RMSE
values of 0.000024 in the cross-validation set, 0.000194 in
the random test set, and 0.000298 in the geographic test
set. Lastly, the 208Pb/207Pb models had mean RMSE values
of 0.007± 0.003 (cross-validation), 0.007± 0.003 (random
test set), and 0.008± 0.003 (geographic test set; n= 11 520,
2 SD). The five best hyperparameter configurations have the
same learning rate (0.01), number of columns subsampled
by each tree (0.5), and L1 regularisation (0). The maximum
differences in RMSE values between these models were
0.000003 in the cross-validation set, 0.000046 in the random
test set, and 0.000069 in the geographic test set.

Overall, given the very comparable performances of the
best hyperparameter configurations in the cross-validation
set, random test set, and geographic test set for each of the
three models described above, we built the final Pb con-
centration, 206Pb/207Pb, and 208Pb/207Pb models using the
hyperparameter configuration that performed best in cross-
validation.

The predictive performance of the final models was as-
sessed on both the random and geographic test sets and is
reported in Table 3. For all three models, the agreement be-
tween observed and predicted values (R2 score) is higher for
the random test set than for the geographic test set. However,
MAPE and RMSE are not always better for the random test
set than for the geographic one, indicating that the model is
able to generalise well without drastically reducing its per-
formance. Indeed, the Pb concentration model has a lower
MAPE for the geographic test set (18.3 %) than for the ran-
dom one (20.2 %), and the 206Pb/207Pb model has a lower
RMSE for the geographic set (0.005) than for the random
test set (0.006).

Model performance on the random test set was also as-
sessed by splitting the data between ocean basins to identify
which areas are better reproduced by the models (Fig. 2). The
Pb concentration model achieves the highestR2 in the Pacific
Ocean (0.93) and the lowest MAPE in the Atlantic Ocean
(14 %). The model fitting of Indian Ocean observations is
overall very good (R2

= 0.84). However, the MAPE is rela-
tively high at 33 %, mostly due to a poor performance on data
between 25 and 65 pmol kg−1. Lastly, the two high-latitude
basins have the worst R2 values (Arctic Ocean: 0.49; South-
ern Ocean: 0.58) and high MAPE values (Arctic Ocean:
37 %; Southern Ocean: 29 %), due to the presence of out-
liers as well as a high density of low-concentration values
(i.e. MAPE is higher for a given difference between mod-
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Table 2. Hyperparameter space explored for the XGBoost regression models. Bold values identify the combination of hyperparameters that
returned the best model performance.

Hyperparameter Pb concentration 206Pb/207Pb 208Pb/207Pb

learning_rate 0.01 0.05 0.1 0.3 0.01 0.05 0.1 0.01 0.05 0.1
n_estimators 1200 1300 1400 1500 1600 1100 1200 1300 1400 1500 700 800 900 1000 1100
max_depth 12 14 16 18 4 6 8 10 16 18 20 22
colsample_bytree 0.5 0.7 0.9 1 0.5 0.7 0.9 1 0.5 0.7 0.9 1
min_child_weight 6 8 10 12 6 8 10 12 12 14 16 18
reg_alpha 0 0.1 1 0 0.1 1
reg_lambda 0 0.1 1 10 6 8 10 12

Table 3. Performance of the best Pb concentration, 206Pb/207Pb, and 208Pb/207Pb models.

Target variable Random test set Geographic test set (Atlantic Ocean)

n R2 RMSE MAPE [%] n R2 RMSE MAPE [%]

[Pb] 1941 0.87 4.84 pmol kg−1 20.2 216 0.82 5.06 pmol kg−1 18.3
206Pb/207Pb 398 0.80 0.006 0.3 26 0.77 0.005 0.3
208Pb/207Pb 397 0.71 0.006 0.1 26 0.52 0.006 0.2

elled and actual values when observation values are closer to
zero).

The Pb isotope ratio models perform worst in the
Arctic Ocean (206Pb/207Pb: R2

= 0.52, RMSE= 0.010;
208Pb/207Pb: R2

= 0.55, RMSE= 0.011) and show dis-
crepant performances in the Atlantic, Pacific, Indian,
and Southern oceans. The 206Pb/207Pb model performs
best in the two basins, with the lowest number of
samples in the random test, i.e. the Southern Ocean
(R2
= 0.93, RMSE= 0.004) and Indian Ocean (R2

= 0.87,
RMSE= 0.004). Samples from the Pacific Ocean are re-
produced well (R2

= 0.80, RMSE= 0.004), while the per-
formance in the Atlantic Ocean is poorer (R2

= 0.59,
RMSE= 0.006). Lastly, for the 208Pb/207Pb model, the
Indian Ocean is the basin with the best performance
(R2
= 0.89, RMSE= 0.003), followed by the Atlantic

Ocean (R2
= 0.74, RMSE= 0.004) and the Pacific Ocean

(R2
= 0.57, RMSE 0.005).

3.2 Model explanation

SHAP values were calculated for all samples in the Pb con-
centration, 206Pb/207Pb, and 208Pb/207Pb datasets to max-
imise the interpretability of the models. In the next subsec-
tions, the four most important features of each model, as well
as their interaction terms, are explained.

3.2.1 Pb concentrations

Temperature, dust AOD, black carbon AOD, and salinity are
the most important features of the Pb concentration model
(Table 4, Fig. 3). For temperature values above 5.8 °C, SHAP
values are consistently positive, with warmer waters having a

larger impact on predicted Pb concentrations (Fig. 3a). Black
carbon AOD has the largest interaction with temperature,
showing positive SHAP values in areas where both features
are high. Taken together, these results suggest that surface
and intermediate waters at low and middle latitudes (where
black carbon AOD is highest) are associated with higher pre-
dictions of Pb concentrations. An exception to this trend is
observed for samples with low temperatures and extremely
low black carbon AOD, which have unexpectedly positive
SHAP values for temperature (Fig. 3a). Analogously, SHAP
values for black carbon AOD are positive for the lowest black
carbon AOD values (< 0.001; Fig. 3c). The positive impact
of extremely low black carbon concentrations in the atmo-
sphere cannot be explained by a physicochemical process, as
one would expect lower values of black carbon AOD to lead
to lower Pb concentrations in the ocean. However, the pos-
itive SHAP values for temperature and black carbon AOD
can be explained by the presence of samples with high Pb
concentrations in the Southern Ocean (Fig. 1a), where black
carbon AOD is lowest and seawater temperatures are below
5.0 °C (Figs. S3 and S4). Further evidence supporting the
positive impact of the lowest black carbon AOD values on
Pb concentrations in the Southern Ocean can be found in the
interaction between black carbon AOD and salinity that is
observed for salinity SHAP values (Fig. 3d). Indeed, this in-
teraction indicates positive SHAP values for extremely low
black carbon AOD and salinities around 34.0± 0.2 (Fig. S5),
which are characteristics of the higher latitudes of the South-
ern Hemisphere.

SHAP values are consistently positive for dust AOD val-
ues above 0.003 (Fig. 3b), and they show an interesting inter-
action with distance from bottom depth, which is especially
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Figure 2. Basin-wise model performances assessed on all samples from each basin in the random test set. Top row: Pb concentration; middle
row: 206Pb/207Pb; bottom row: 208Pb/207Pb.

visible for larger values of dust AOD (> 0.05). Indeed, as all
grid cells at the same location were assigned the same dust
AOD value throughout the water column, the interaction be-
tween dust AOD and distance from the bottom depth shows
that samples more distant from the seafloor (i.e. closer to the
surface) have higher SHAP values than their deeper coun-
terparts (Fig. 3b). This finding agrees with observations of
higher Pb concentrations at the surface ocean due to atmo-
spheric deposition (Duce et al., 1991; Patterson and Settle,
1987), thereby suggesting that the model has learned from
the data the key process of atmospheric Pb sourcing to the
ocean.

3.2.2 Pb isotope compositions

Seawater oxygen concentration, salinity, temperature, and
dust AOD are the four most important features for the
206Pb/207Pb model (Table 4; Fig. 4). Oxygen concentra-
tion values below 220 µmol kg−1 have SHAP values be-

tween −0.004 and 0, and a sharp transition to positive
SHAP values can be observed at oxygen concentrations of
∼ 240 µmol kg−1 (Fig. 4a). The strong interaction between
oxygen and nitrate concentrations suggests that areas of high
dissolved oxygen and low nitrate concentrations, such as the
Arctic and North Atlantic oceans (Figs. S6 and S7), have a
large positive impact on the predicted 206Pb/207Pb.

SHAP values for salinity show an increasing trend as the
latter varies between 32.5 and 37.0 (Fig. 4b). This is espe-
cially visible for surface and intermediate waters with densi-
ties (σ0) between 25 and 35 kg m−3, indicating that the model
learned well from the observations, which show higher Pb
concentrations at shallower depths and a general decrease in
Pb concentration values from tropical and subtropical to po-
lar latitudes (Fig. 1a). SHAP values for temperature show
a decreasing trend as waters get warmer (Fig. 4c). Inter-
estingly, and expectedly from a theoretical perspective, this
trend is reversed for density, which is the fifth-most impor-
tant feature of the model and shows increasing SHAP val-
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Figure 3. SHAP values for temperature (a), dust AOD (b), black carbon AOD (c), and salinity (d) for the Pb concentration model. The
colour of the dots represents the value of the feature that has the highest interaction (reported on the right-hand side of each plot). The y-axis
values differ between the panels.

Figure 4. SHAP values for oxygen (a), salinity (b), temperature (c), and dust AOD (d – on a logarithmic scale) for the 206Pb/207Pb model.
The colour of the dots represents the value of the feature that has the highest interaction (reported on the right-hand-side of each plot). The
y axis values differ between the panels.
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Table 4. SHAP importance values for all features included in the Pb concentration and 206Pb/207Pb and 208Pb/207Pb models. Bold values
indicate the four most important features for each model.

Feature name Pb concentration 206Pb/207Pb 208Pb/207Pb

Importance Rank Importance Rank Importance Rank

Apparent oxygen utilisation [µmol kg−1] 0.22 14 0.00033 14 0.00025 14
Black carbon AOD 2.01 3 0.00141 6 0.00185 1
Bottom distance [m] 0.49 11 0.00074 10 0.00091 5
Chlorophyll a [mg m−3] 0.63 9 0.00070 11 0.00097 4
Density [kg m−3] 0.76 5 0.00144 5 0.00064 10
Depth [m] 0.68 8 0.00086 7 0.00073 8
Dust AOD 2.84 2 0.00154 4 0.00114 2
Mixed layer depth [m] 0.71 7 0.00074 9 0.00079 6
Nitrate [µmol kg−1] 0.41 13 0.00034 13 0.00048 13
Oxygen [µmol kg−1] 0.46 12 0.00191 1 0.00078 7
Phosphate [µmol kg−1] 0.56 10 0.00064 12 0.00049 12
Salinity 0.99 4 0.00170 2 0.00057 11
Silicate [µmol kg−1] 0.74 6 0.00083 8 0.00069 9
Temperature [°C] 3.19 1 0.00155 3 0.00102 3

ues as waters become denser (Fig. S8). Both temperature and
density also show a clear interaction with salinity, which can
be explained by the fact that temperature and salinity are the
two conservative parameters that contribute to seawater den-
sity. Overall, the SHAP values of and interactions between
these three variables agree with the general view of Pb iso-
tope ratios as tracers of water mass movements and ocean
ventilation (Bridgestock et al., 2018; Frank, 2002; Hender-
son and Maier-Reimer, 2002).

Dust AOD shows a more variable distribution of SHAP
values, which is better visualised on a logarithmic scale
(Fig. 4d). Strongly positive SHAP values (up to 0.009) are
visible for dust AODs lower than 0.004, followed by a rapid
decrease to strongly negative SHAP values (up to −0.007)
for dust AODs between 0.004 and 0.007. As dust AOD in-
creases further, SHAP values first show a decreasing trend
for dust AODs up to 0.12, whilst they increase afterwards
(Fig. 4d).

Perhaps surprisingly, given the generally observed correla-
tion between the 206Pb/207Pb and 208Pb/207Pb isotope ratios
(Boyle et al., 2012; GEOTRACES Intermediate Data Product
Group, 2023), the most important features for 208Pb/207Pb
(Fig. 5) do not closely match those of 206Pb/207Pb (Fig. 4).
In fact, the four most important features for the 208Pb/207Pb
model include black carbon AOD, dust AOD, seawater tem-
perature, and surface chlorophyll-a concentration (Table 4;
Fig. 5). Black carbon AOD has mostly positive SHAP val-
ues for feature values above 0.0045 and is negative other-
wise (Fig. 5a). It has the strongest interaction with surface
chlorophyll a and vice versa. Moreover, SHAP values for
chlorophyll a are mostly negative for the lowest chlorophyll-
a concentrations and range between 0.003 and −0.002 for
chlorophyll-a concentrations above 0.13 mg m−3 (Fig. 5d).

The interaction between these two features, however, does
not show a clear pattern and cannot be interpreted intuitively,
as both high and low chlorophyll-a concentrations have high
and low SHAP values for black carbon AOD and vice versa
(Fig. 5a and d). SHAP values of dust AOD (Fig. 5b) show
a similar pattern to the 206Pb/207Pb model, with lower dust
AOD values having both the highest and lowest SHAP val-
ues. The interaction between dust AOD and black carbon
AOD suggests that, when both features are low, dust AOD
has a strong positive impact on the predicted 208Pb/207Pb.
By contrast, when dust AOD is low and black carbon AOD
is higher than 0.004, dust AOD contributes to reducing pre-
dicted 208Pb/207Pb values (Fig. 5b). Lastly, SHAP values for
temperature also show a similar decreasing trend to those of
the 206Pb/207Pb model and have a strong interaction with
dissolved nitrate concentrations (Fig. 5c). This interaction in-
dicates that warmer waters with low nitrate content, such as
those in tropical and subtropical areas (Figs. S4 and S7), are
associated with a reduction in predicted 208Pb/207Pb values.

3.2.3 SHAP model explanations and current
understanding of marine Pb cycling

SHAP explanations for the Pb concentration, 206Pb/207Pb,
and 208Pb/207Pb models align well with the current under-
standing of marine biogeochemical cycling of Pb with re-
spect to the oceanographic predictors identified as the most
important features of the three models. This indicates that
the models are able to identify the key oceanographic pat-
terns and processes that drive the distribution of Pb and its
isotopes on a global scale. However, some regional explana-
tions of dust and black carbon AODs for the Pb concentration
and isotope composition models appear to contradict the the-
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Figure 5. SHAP values for black carbon AOD (a), dust AOD (b – on a logarithmic scale), temperature (c), and surface chlorophyll a (d) for
the 208Pb/207Pb model. The colour of the dots represents the value of the feature that has the highest interaction (reported on the right-hand
side of each plot). The y-axis values differ between the panels.

oretical intuition that dust and black carbon are sources of
Pb for the ocean, with Pb isotope compositions broadly re-
flecting those of natural and anthropogenic land sources, re-
spectively. In particular, the high SHAP values obtained for
extremely low black carbon AODs in the Pb concentration
model disagree with the hypothesis that low black carbon
concentrations in the atmosphere should result in lower Pb
concentrations in the ocean. Analogously, the highly positive
SHAP values obtained for extremely low values of dust AOD
for the 206Pb/207Pb and 208Pb/207Pb models and the con-
sistently positive SHAP values obtained for relatively high
black carbon AODs for the 208Pb/207Pb model do not match
the intuition that dust should contribute to shifting the Pb iso-
tope composition of seawater toward more natural values and
black carbon toward more anthropogenic ones.

Possible explanations for the partial mismatch between ex-
pected and obtained local SHAP values are provided in the
following, but these will need validation through new cam-
paigns at sea and further studies of the Pb isotope compo-
sitions of dust and black carbon sources in the atmosphere,
such as the one by Nizam et al. (2020). A first explanation
is that dust and black carbon are not the only sources of
Pb in the global ocean, and this might have important im-
plications at the regional scale. An example is the Southern
Ocean, where ice melting and runoff could contribute sig-
nificantly to the marine Pb budget of the area. Another pos-
sibility is that global climatologies of dust AOD and black
carbon AOD do not capture the regional and temporal vari-

ability of the Pb isotope compositions of natural and an-
thropogenic Pb sources in the environment. Moreover, black
carbon is emitted not only by fossil fuel consumption but
also by forest fires and coal combustion. In detail, radiocar-
bon measurements show that the relative contributions from
biomass and fossil fuel combustion to the composition of
Asian black carbon can vary on a regional scale, where fossil
fuel is the predominant source of black carbon on the Ti-
betan Plateau but biomass burning predominates for western
India and the Maldives (Gustafsson et al., 2009; Li et al.,
2016). As such, regional variations in the relative contribu-
tions of different atmospheric black carbon sources are ex-
pected to be associated with variations in the Pb isotope sig-
natures associated with these black carbon emissions. There-
fore, while the global climatologies of dust AOD and black
carbon AOD used as model predictors are currently the best
available proxies for atmospheric sources of Pb, they might
not fully encompass the complexity of Pb sources in the en-
vironment, resulting in locally counter-intuitive SHAP expla-
nations for the three models.

3.3 Global maps of Pb concentrations and isotope
compositions in seawater

Global reconstructions of Pb concentrations, 206Pb/207Pb,
and 208Pb/207Pb were made for each grid cell in the WOA18
using the same structure and ancillary features used for
model development (Sect. 2.1).
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Figure 6 shows the global distribution of Pb concentra-
tions, 206Pb/207Pb, and 208Pb/207Pb at four depth levels (10,
1000, 2500, and 4000 m), arbitrarily chosen to represent sur-
face, intermediate, deep, and bottom waters, respectively.
These maps provide the first global-scale estimates of Pb
concentrations and isotopes and can be used to further un-
derstand the dynamics and mechanisms that govern the large-
scale distribution of Pb.

3.3.1 Pb concentrations

Lead concentrations vary between 2.05 and 77.65 pmol kg−1.
Generally, the concentrations are higher at the surface and
show a decreasing trend with depth (Fig. 6a). The main ex-
ception to this trend is visible at intermediate and deep depths
in the North Atlantic Ocean, where mapped Pb concentra-
tions at 1000 and 2500 m are higher than at 10 m (Fig. 6a).
However, subsurface maxima in Pb concentrations are also
visible between 70 and 500 m in the North Pacific, in line
with recent observations (Chan et al., 2024; Jiang et al., 2025;
Wu et al., 2010; Zheng et al., 2019; Zurbrick et al., 2017).
Both the general trend and the exceptions of the North At-
lantic and, to a lesser extent, the North Pacific are in line
with the expected distribution of Pb concentrations. Indeed,
the majority of the Pb is sourced to the ocean via atmo-
spheric wet deposition and then sinks towards the bottom,
aided by particulate matter (Duce et al., 1991; Patterson and
Settle, 1987). Therefore, high Pb concentrations are expected
for the surface ocean, with the values decreasing with depth.
However, extensive historical pollution from leaded petrol in
North America and Europe (Kelly et al., 2009) led to high Pb
concentrations in North Atlantic Ocean surface waters be-
tween the 1950s and 1980s. Lead concentrations eventually
decreased due to environmental policies that phased out and
banned leaded petrol, and Pb pollution in surface waters has
decreased steadily since 1975 (Boyle et al., 2014; Bridge-
stock et al., 2016; Kelly et al., 2009). Therefore, the rela-
tively high Pb concentrations in intermediate and deep wa-
ters reflect the sinking of elemental Pb pollution from earlier
decades (Fig. 6a), in agreement with observations (Fig. 1a;
Noble et al., 2015).

Mapped surface water Pb concentrations are highest in the
Indian Ocean (average [Pb]= 32.0± 14.2 pmol kg−1, 1 SD)
and in the North Pacific (33.6± 11.3 pmol kg−1, 1 SD), in
line with recent observations from the two basins (Chen et
al., 2023b; Echegoyen et al., 2014; Lanning et al., 2023). The
North Pacific also shows high mapped Pb concentrations at
depths of up to 1000 m (Fig. 6a), with subsurface maxima of
[Pb] of up to 70 pmol kg−1. These features can be reconciled
with pollution from previous decades (Lanning et al., 2023;
Wu et al., 2010), like in the North Atlantic, and subduction of
mode and intermediate waters from their areas of formation
in the north-western Pacific (Jiang et al., 2021).

Relatively high Pb concentrations are furthermore found
at the surface level near South and Central America, west-

ern Africa, and Southeast Asia. Except for samples collected
close to the coast in the South Atlantic Ocean, these areas
have never been sampled before, and the high concentrations
predicted by the model cannot be verified directly. However,
the distribution of the predictor features shows that these are
all areas with high seawater temperatures and relatively high
black carbon and dust AODs (Figs. S4, S3, and S9). There-
fore, following the model’s interpretation with SHAP values
(Sect. 3.2.1), these features must contribute greatly to the
high predictions made by the model.

Lastly, the polar regions are characterised by the lowest
Pb concentrations throughout the water column, with average
Pb concentrations of 9.0± 3.1 pmol kg−1 (1 SD) for the Arc-
tic Ocean and 11.9± 3.6 pmol kg−1 (1 SD) for the Southern
Ocean. Additionally, both polar oceans have the least vari-
able Pb concentrations with depth (Fig. S11), which denotes
them as the areas of the global ocean that are least affected
by anthropogenic pollution.

3.3.2 Pb isotope compositions

Global maps of 206Pb/207Pb and 208Pb/207Pb ratios show
similar patterns at the four different depth levels that are anal-
ysed (Fig. 6b, c). Globally, 206Pb/207Pb ratios vary between
1.144 and 1.200, and 208Pb/207Pb ratios vary between 2.420
and 2.479. Generally, lower 206Pb/207Pb and 208Pb/207Pb
values are associated with Pb sourced from anthropogenic
activities, while higher values reflect natural sources of Pb
(Bollhöfer and Rosman, 2000, 2001). However, the exact iso-
tope composition of natural and anthropogenic Pb varies be-
tween sources and basins, and there is no single reference
value that is valid on a global scale due to the short residence
time of Pb in seawater and the heterogeneity of global Pb
sources. Recent work has, furthermore, shown that reversible
scavenging can affect and modify the advected Pb isotope
signature in areas of high suspended particulate matter (Lan-
ning et al., 2023; Olivelli et al., 2024b). However, histori-
cally, Pb isotopes have been regarded as tracers of water mass
movements and ventilation in the North Atlantic Ocean (e.g.
Véron et al., 1998, 1999). We therefore additionally assessed
the distribution of 206Pb/207Pb and 208Pb/207Pb across dif-
ferent ranges of the potential density anomaly (σθ ; Figs. 6
and S12).

The median 206Pb/207Pb value is highest for the Arc-
tic Ocean (1.186) and lowest for the Indian Ocean (1.165;
Fig. 7). The median values for the North and South Pacific,
South Atlantic, and Southern oceans are very similar, vary-
ing between 1.168 and 1.171, while the North Atlantic Ocean
has a higher median 206Pb/207Pb of 1.180. Additionally, the
Arctic Ocean shows the smallest difference between the first
and third quartiles, indicating that Pb isotope compositions
are rather constant throughout the geographical domain and
the water column, while the Southern Ocean has the most
variable distribution (Fig. 6).
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Figure 6. Global maps of reconstructed Pb concentrations (a), 206Pb/207Pb (b), and 208Pb/207Pb (c). The four panels represent different
depth levels (10, 1000, 2500, and 4000 m), with the white patches corresponding to the seafloor. The filled circles with white edges represent
true data values for comparison with the modelled values in the background.
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Figure 7. Violin plots of the 206Pb/207Pb distributions in the different ocean basins (top left panel) and within each basin at different
potential density ranges. The white dashed line in each violin plot represents the median value, while the dotted lines represent the lower and
upper quartiles (Q1 and Q3, respectively).

In the surface layer (10 m), the lowest 206Pb/207Pb and
208Pb/207Pb values are observed in the northern Indian
Ocean, while the Arctic Ocean has the highest 206Pb/207Pb
values and coastal areas around North America and the
Arctic Ocean and eastern Pacific Ocean have the highest
208Pb/207Pb values (Fig. 6b, c). Additionally, the distribu-
tions of both isotope ratios show the presence of low values
(206Pb/207Pb: 1.148–1.160; 208Pb/207Pb: 2.420–2.437) at a
depth of 1000 m with a core at the location of the Subantarc-
tic Front (∼ 48° S), expanding horizontally to all basins in
the Southern Hemisphere and vertically to the deep layer
(2500 m). Low 206Pb/207Pb and 208Pb/207Pb values at in-
termediate depths have been observed in the Indian (Lee et
al., 2015), South Atlantic (Olivelli et al., 2024b), and South-
ern oceans off the coast of Tasmania (GEOTRACES cruise
GS01; unpublished data from the MAGIC group at Impe-
rial College London). Historically, anthropogenic emissions
from Australia, New Zealand, Chile, and South Africa have
recorded the lowest Pb isotope ratios and are mostly asso-
ciated with the use of broken-hill-type leaded petrol (with
206Pb/207Pb and 208Pb/207Pb as low as 1.060 and 2.328, re-
spectively; Bollhöfer and Rosman, 2000). Our maps, there-
fore, suggest that Antarctic Intermediate Water (AAIW),
which sinks to depths at latitudes between 50 and 60° S
across the Southern Ocean, in the eastern South Pacific
Ocean, and near the Drake Passage, has the greatest anthro-
pogenic signature of all of the non-surface water masses con-

sidered (Fig. 6b, c). Further evidence for the highly anthro-
pogenic signature of AAIW can be found by analysing the
distribution of Pb isotope compositions across density lay-
ers. Indeed, AAIW, which has a potential density anomaly
between 27.0 and 27.4 kg m−3, corresponds to the layer with
the lowest median 206Pb/207Pb in the South Pacific, South
Atlantic, and Indian Ocean (Fig. 7). As leaded petrol was
phased out in the abovementioned countries and their neigh-
bours, before the time of sampling on GEOTRACES cruises,
the widespread anthropogenic signature observed at 1000 m
in the Southern Hemisphere either reflects persisting pollu-
tion from previous decades that was deposited in the South-
ern Ocean and is transported northward or the remobilisa-
tion of previously deposited Pb on land and subsequent at-
mospheric deposition in the formation areas of AAIW.

In the North Pacific, North Atlantic, and Southern oceans,
the median 206Pb/207Pb and 208Pb/207Pb values increase
with depth and potential density ranges (Figs. 6b, c and 7).
By contrast, in the South Atlantic, Indian, and, to a lesser
extent, South Pacific oceans, a decrease in 206Pb/207Pb val-
ues can be observed between surface and intermediate water
masses, generally followed by an increase as water masses
become denser (Fig. 7). The mapped distributions of Pb iso-
tope compositions, taken together with those of Pb concen-
trations, therefore indicate that the deepest and densest wa-
ter masses are least affected by anthropogenic pollution on a
global scale, as they have the lowest Pb concentrations and
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highest 206Pb/207Pb and 208Pb/207Pb ratios. On the other
hand, surface and intermediate waters are most affected by
pollution, which is discernible (i) in the Northern Hemi-
sphere from Pb concentration data and to some extent from
Pb isotope compositions, although natural and anthropogenic
sources affecting those basins have a relatively small dif-
ference in Pb isotope fingerprints, and (ii) in the Southern
Hemisphere and northern Indian Ocean from the low ratios
of 206Pb/207Pb and 208Pb/207Pb.

3.4 Uncertainty quantification

Three different sources of uncertainty were identified for our
model outputs and are described and, where possible, quan-
tified in this section. The first source of uncertainty relates to
the observed values of Pb concentrations and isotope compo-
sitions, the second to the ancillary variables used as features
in the models, and the third to the random split of the data
into a training set and a test set.

All observations of Pb concentrations, 206Pb/207Pb ratios,
and 208Pb/207Pb ratios are characterised by a fundamental
level of uncertainty associated with measuring Pb and its
isotopes in seawater. While the GEOTRACES programme
ensures data quality of the highest standard through a thor-
ough process of intercalibration, it cannot eliminate uncer-
tainty that is intrinsic to sample processing and analysis. In
the case of Pb concentrations, individual sample uncertain-
ties arising from replicate measurements generally range be-
tween 0.1 % and 80 %, and on average they are around 10 %
to 25 % (relative 1 SD; e.g. Boyle et al., 2020; Echegoyen
et al., 2014). Inter-laboratory uncertainties arising from the
use of different sample processing methodologies and instru-
mentations and assessed on intercalibration samples, how-
ever, typically show better reproducibility. In fact, the relative
standard deviation of the North Atlantic GEOTRACES and
SAFe reference samples is between 3.5 % and 9.4 % (1 SD;
GEOTRACES, 2009, 2013). For Pb isotope compositions,
individual sample uncertainties, assessed either as replicate
measurements of the sample itself or extrapolated from repli-
cate measurements of the NIST 981 standard reference ma-
terial, are generally around 0.2–0.5 ‰ for both 206Pb/207Pb
and 208Pb/207Pb (e.g. Boyle et al., 2020; Bridgestock et al.,
2016). Inter-laboratory calibration exercises of Pb isotope
composition measurements of seawater have returned uncer-
tainties ranging between 0.1 ‰ and 3.5 ‰ for both isotope
ratios considered (Boyle et al., 2012). So, if we consider
the MAPE to be a reflection of the uncertainty associated
with the models’ predictions, predicted values of Pb con-
centration have an uncertainty (20.2 % random test set and
18.3 % geographic test set; Table 3) that falls within the av-
erage values for replicate measurements (10 %–25 %). Sim-
ilarly, the uncertainty associated with predicted 206Pb/207Pb
and 208Pb/207Pb values (MAPE: 1.0 ‰–3.0 ‰; Table 3) falls
within the range observed for inter-laboratory calibration.

Pooling together dissolved and total dissolvable Pb con-
centration and isotope composition data creates an additional
layer of uncertainty. Our choice is backed by the evidence
that, in the open ocean, dissolved and total dissolvable Pb
data are comparable (Bridgestock et al., 2018; Olivelli et al.,
2023, 2024b; Schlosser et al., 2019). However, this might not
be the case in estuaries and coastal areas, where boundary
exchange and isotopic re-equilibration are believed to play
an important role in determining the observed Pb concentra-
tions and isotope compositions (Chen et al., 2016, 2023a).
Therefore, new observations, particularly from coastal areas
and other sparsely sampled locations, would provide valu-
able data for the validation of our modelling results. The
uncertainty associated with the models’ features cannot be
quantified directly and contributes to the models’ MAPE val-
ues, but it is nevertheless expected to be small and not create
systematic bias. Indeed, the data products used in this study,
i.e. WOA18 for oceanographic variables, CMEMS’s Global
Ocean Biogeochemistry Hindcast product for chlorophyll a,
and CAMS’s ECMWF Atmospheric Composition Reanaly-
sis 4 for black carbon AOD and dust AOD, are all subjected
to stringent quality control.

Lastly, to quantify the uncertainty arising from the ran-
dom splitting of the data into a training set and a test set, the
best Pb concentration, 206Pb/207Pb, and 208Pb/207Pb model
architectures were initiated with 100 different random train–
test splits while keeping the hyperparameters constant. The
means and standard deviations of the model ensemble pre-
dictions for the global maps of Pb concentrations and isotope
compositions were used to calculate the coefficients of varia-
tion for the mapped Pb distributions (Fig. 8). The coefficient
of variation was calculated as the ratio between the average
value of each cell across the 100 different ensemble members
and the associated standard deviation. For both Pb concentra-
tions and isotope compositions, the coefficients of variation
are highest in the Arctic and Southern oceans, especially in
the surface and intermediate layers (Fig. 8). Both the Arc-
tic and Southern oceans are characterised by the lowest Pb
concentrations observed, and therefore any variability in the
outputs of the ensemble would cause a larger coefficient of
variation as the mean concentrations are low. However, the
spatial variability in the observed Pb concentrations in the
Southern Ocean is much larger than in the Arctic Ocean. In-
deed, high concentrations are found at the surface and in the
water column near the Antarctic Peninsula, likely caused by
glacial meltwater inputs, while much lower values are visi-
ble in the Indian and Australian sectors. Therefore, the dif-
ferent splits between the training and test sets lead to much
more variable model outputs for the Southern Ocean than for
its Arctic counterpart. The high latitudes are also the areas
with the largest coefficients of variation for 206Pb/207Pb and
208Pb/207Pb, arguably because of the significant presence of
both anthropogenic and natural Pb. Based on the variability
of the outputs of the three model ensembles, it can be ar-
gued that at-sea sampling efforts should focus on the South-
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Figure 8. Coefficients of variation for reconstructed Pb concentration (a), 206Pb/207Pb (b), and 208Pb/207Pb (c) values. As in Fig. 4, the
different panels represent different depth levels (10, 1000, 2500, and 4000 m) and the white patches correspond to seafloor locations. Please
note that the colour scales differ for the three panels.
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ern Ocean to obtain a clearer understanding of the distribu-
tion and cycling of Pb and its isotopes in that area and to
reduce the uncertainty associated with our modelled outputs.

4 Model and data applications

More than 20 years ago, Henderson and Maier-Reimer
(2002) used a general circulation model to investigate the
natural marine cycle of Pb and its isotopes. As these au-
thors did not consider inputs from anthropogenic activities,
here we present the first study that provides global maps of
the distribution of Pb concentrations and 206Pb/207Pb and
208Pb/207Pb ratios.

In addition to providing a detailed demonstration of the
applicability of machine learning to marine (isotope) geo-
chemistry, the new models and their outputs can be used to
(i) benchmark future levels of pollution, (ii) inform sampling
strategies and campaigns, and (iii) compare outputs from dif-
ferent models, whether process-based or data-driven. Lead
concentration and isotope composition data from our 12-year
climatologies provide useful information on the levels of ma-
rine pollution in terms of both sources and spatial extent.
This insight can be used to assess the impact of human activ-
ities and any potential environmental policies implemented
in the future. Both the mapped distributions and their associ-
ated uncertainties can be used by the community to support
any process-oriented or large-scale sampling campaigns. In
particular, the great uncertainty associated with Pb concen-
trations in the Southern Ocean and the widespread distri-
bution of low 206Pb/207Pb and 208Pb/207Pb values at inter-
mediate depths throughout the Southern Hemisphere suggest
that these areas should be prioritised in the future. Lastly, the
1°× 1° data products developed will provide a useful and ro-
bust comparison for any global and regional modelling stud-
ies that attempt to parameterise and reproduce the processes
driving the biogeochemical cycle of Pb, which still requires
future work.

5 Code and data availability

All scripts generated to build the Pb concentration,
206Pb/207Pb, and 208Pb/207Pb datasets and the cor-
responding models are available in Olivelli (2025;
https://doi.org/10.5281/zenodo.15355008). The gridded
climatologies of Pb concentrations, 206Pb/207Pb, and
208Pb/207Pb, as well as the results of the model ensemble
for uncertainty calculations, are available in Olivelli et
al. (2024a, https://doi.org/10.5281/zenodo.14261154).

6 Conclusion

We successfully generated global climatologies of Pb con-
centrations, 206Pb/207Pb ratios, and 208Pb/207Pb ratios us-
ing the non-linear regression algorithm XGBoost, trained

and tested on high-quality Pb data collected as part of the
GEOTRACES programme. We found that Pb concentrations
are highest in the surface layer of the Indian and North Pa-
cific oceans and at intermediate depths in the North At-
lantic Ocean, and they are lowest in the Arctic Ocean. The
206Pb/207Pb and 208Pb/207Pb ratios are lowest in the sur-
face Indian Ocean and at intermediate depths in the Southern
Hemisphere, and they are highest throughout the water col-
umn in the Arctic Ocean. Taken together, the distributions of
Pb concentrations, 206Pb/207Pb ratios, and 208Pb/207Pb ra-
tios indicate that (i) the surface Indian Ocean has the highest
levels of pollution, (ii) pollution from previous decades is
sinking in the North Atlantic and Pacific oceans, and (iii) a
highly anthropogenic fingerprint originating in the South-
ern Ocean is spreading at intermediate depths throughout
the Southern Hemisphere with AAIW. The lower model per-
formance and higher uncertainty associated with reconstruc-
tions of the Southern Ocean suggest that this is a key area
when prioritising future sampling campaigns to expand our
understanding of biogeochemical processes that drive the
distribution and cycling of Pb and its isotopes in the ocean.
More broadly, our approach demonstrates the applicability
of machine learning to marine (isotope) geochemistry, even
when data are scarce and very sparse, as with Pb isotope
compositions. Lastly, our model output will provide a useful
benchmark for future levels of pollution and a valuable com-
parison for process-based models that aim to improve un-
derstanding of the biogeochemical processes governing the
marine cycling of Pb.
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