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Abstract. Recent years have seen a rapid surge in the use of light detection and ranging (lidar) technology
for characterizing the structure of ecosystems. Even though repeated airborne laser scanning (ALS) surveys
are becoming increasingly available across several European countries, so far, only a few studies have derived
data products of ecosystem structure at a national scale, possibly due to a lack of free and open-source tools
and the computational challenges involved in handling the large volumes of data. Nevertheless, high-resolution
data products of ecosystem structure generated from multi-temporal country-wide ALS datasets are urgently
needed if we are to integrate such information into biodiversity and ecosystem science. By employing a recently
developed, open-source, high-throughput workflow (named “Laserfarm”), we processed around 70 TB of raw
point clouds collected from four national ALS surveys of the Netherlands (AHN1–AHN4, 1996–2022). This
resulted in ∼ 59 GB raster layers in GeoTIFF format constituting ready-to-use multi-temporal data products of
ecosystem structure at a national scale. For each AHN (Actueel Hoogtebestand Nederland) dataset, we generated
25 lidar-derived vegetation metrics at 10 m spatial resolution, representing vegetation height, vegetation cover,
and vegetation structural variability, together with auxiliary data (∼ 12 GB) such as raster layers of point density;
pulse density; flight line timestamp information; terrain and surface elevation; and masks of water areas, roads,
buildings, power lines, and NA values (areas with no points available). The data enable an in-depth understand-
ing of ecosystem structure at a fine resolution across the Netherlands and provide opportunities for exploring
ecosystem structural dynamics over time. To illustrate the utility of these data products, we present ecologi-
cal use cases that monitor forest structural change and analyse vegetation structure differences across various
Natura 2000 habitat types, including dunes, marshes, grasslands, shrublands, and woodlands. The provided data
products and the employed workflow can facilitate a wide use and uptake of ecosystem structure information in
biodiversity and carbon modelling, conservation science, and ecosystem management. The full data products are
publicly available on Zenodo (https://doi.org/10.5281/zenodo.13940846, Shi et al., 2025a).

1 Introduction

Monitoring ecosystem structure is essential for sustainable
forest management (Lindenmayer et al., 2000), species dis-
tribution research (Jetz et al., 2019; Kissling et al., 2018),
dynamic ecosystem modelling (Kucharik et al., 2000), biodi-
versity monitoring (Noss, 1990), and the conservation and
restoration of terrestrial ecosystems (Ruiz-Jaén and Aide,

2005). As one of the classes of Essential Biodiversity Vari-
ables (EBVs) (Pereira et al., 2013), ecosystem structure pro-
vides detailed insights into both the vertical and horizon-
tal profiles of ecosystems, facilitating a deeper understand-
ing of the relationship between vegetation structure and ani-
mal ecology (Davies and Asner, 2014), forest attribute mod-
elling (Coops et al., 2021), and carbon and biomass dynamics
(Zhao et al., 2018; Dalponte et al., 2019). However, until a
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decade ago, the collection of vegetation structure data was
difficult and labour intensive, especially over large spatial
extents. Although previous studies have explored the use of
passive remote sensing technologies, such as high-resolution
satellite imagery and aerial photographs alongside field mea-
surements to obtain structural information (e.g. Wolter et al.,
2009; Lamonaca et al., 2008), these applications have largely
been confined to plot or local scales, with limited scalability
and uncertain transferability between different regions.

Over the past few decades, the advent of airborne laser
scanning has enabled precise and spatially contiguous mea-
surements of ecosystem structural properties such as high-
resolution topographic variation and accurate estimation of
vegetation height, cover, and canopy structure (Lefsky et
al., 2002). The lidar technology used in airborne laser scan-
ning (ALS) surveys generates discrete returns (point clouds)
and/or full-waveform signals by emitting laser pulses from
the sensor towards the target objects (e.g. ground, trees, and
buildings), recording the distance between the sensor and
the objects (“X”, “Y ”, “Z” coordinates), the amount of en-
ergy returned to the sensor (“intensity”), the sequence of re-
turns generated from one pulse (“return number” and “num-
ber of returns”), the time at which the objects were ob-
served (“GPS time”), and so on. Advances in sensor systems
and techniques also allow many countries to carry out ALS
campaigns over national or regional extents, producing fine-
scale ecosystem measurements across broad spatial extents
(Kissling et al., 2022; Assmann et al., 2022). ALS surveys
often generate massive amounts of data (e.g. point clouds
with a multi-terabyte data volume) which contain ecosystem
structural information that is essential for ecological and bio-
diversity research (Kissling et al., 2022; Koma et al., 2021b;
Bakx et al., 2019). Although tools and software for process-
ing large amounts of lidar data are becoming increasingly
available (Roussel et al., 2020; Isenburg, 2017; Meijer et
al., 2020; Kissling et al., 2022; Fischer et al., 2024), sig-
nificant challenges remain, including the need for specialist
expertise, extensive data storage, and substantial computa-
tional power (Assmann et al., 2022). Ultimately, ecologists,
foresters, biodiversity researchers, and land managers require
raster layers with vegetation structural information that can
be readily integrated into analytical workflows using soft-
ware that they are familiar with (e.g. GIS, R, Python). Such
raster layers, e.g. lidar-derived vegetation metrics, are often
generated by statistically aggregating the 3D point cloud in-
formation within spatial units such as voxels or 2D raster
cells (Meijer et al., 2020; Kissling et al., 2022; Fischer et
al., 2024). These lidar-derived vegetation metrics typically
capture three key dimensions of ecosystem structure: veg-
etation height (e.g. maximum vegetation height, vegetation
height at a certain percentile), vegetation cover (e.g. the den-
sity of vegetation at a given height layer), and vegetation
structural variability (e.g. the vertical or horizontal distri-
bution and variability of vegetation within a spatial unit)
(Kissling et al., 2023; Bakx et al., 2019). Providing high-

resolution (e.g. 10 m) ready-to-use lidar metrics and mak-
ing them accessible to the public are thus critical for mon-
itoring Essential Biodiversity Variables (EBVs) (Valbuena et
al., 2020), modelling species distributions (de Vries et al.,
2021; Koma et al., 2021b; Zellweger et al., 2013), and esti-
mating species diversity (Moeslund et al., 2019; Zellweger
et al., 2017; Aguirre-Gutiérrez et al., 2017) at a regional or
national scale.

Ecosystem structure is a three-dimensional phenomenon
with horizontal and vertical components that change over
time (Zenner and Hibbs, 2000). The increasing frequency of
ALS data acquisition offers a unique opportunity to monitor
ecological changes and ecosystem dynamics at fine spatial
and temporal scales. Several countries have been conduct-
ing repeated (sub-)national ALS surveys to obtain fine-scale
information on topography and forest ecosystems (Nilsson
et al., 2017). For example, the Dutch national ALS pro-
gramme (AHN, Actueel Hoogtebestand Nederland, https:
//www.ahn.nl/, last access: 24 July 2025) has been collect-
ing country-wide lidar data since 1996, providing four com-
plete ALS datasets (AHN1–AHN4), with an ongoing fifth
survey (AHN5), conducted at intervals of 3 to 5 years. In
Spain, under the PNOA-LiDAR project, two national ALS
campaigns took place during 2008–2015 (lidar first cover-
age) and during 2015–2021 (lidar second coverage), while
the third acquisition (lidar third coverage) started in 2023
and is planned to finish in 2025 (https://centrodedescargas.
cnig.es/CentroDescargas/modelos-digitales-elevaciones, last
access: 24 July 2025). While the primary goal of many ALS
campaigns is to produce terrain and surface elevation mod-
els, such as digital terrain models (DTMs) and digital surface
models (DSMs), the multi-temporal lidar datasets also cap-
ture detailed 3D characteristics of vegetation structure over
time, providing valuable information for evaluating changes
in biomass (Cao et al., 2016; Feng et al., 2024), forest struc-
ture (McCarley et al., 2017; Riofrío et al., 2022; Vepakomma
et al., 2011), and forest carbon stocks (Dalponte et al., 2019;
Zhao et al., 2018). Furthermore, these datasets are increas-
ingly being integrated with other remote sensing data, such
as satellite imageries from Landsat, Sentinel-2, and synthetic
aperture radar (SAR), to assess forest changes caused by dis-
turbances like wildfires (Li et al., 2023; Feng et al., 2024) and
to model aboveground biomass (Musthafa and Singh, 2022).
However, despite the growing availability of multi-temporal
ALS datasets, there is a noticeable lack of publicly available
data products, i.e. lidar-derived vegetation metrics, from na-
tional ALS surveys.

Several challenges emerge when generating accurate and
standardized data products from multi-temporal ALS data
(Valbuena et al., 2020). Over the last 3 decades, advances
in lidar sensors and associated technologies have led to im-
provements in point density, classification accuracy, and ad-
ditional attributes provided in each point (Riofrío et al.,
2022). However, these advancements also introduce com-
plexities into data harmonization. In addition to the chal-
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lenges associated with processing large datasets and high
computational costs (Meijer et al., 2020), discrepancies in
sensor technology and flight configurations across different
ALS surveys can hinder the generation of consistent data
products (Lin et al., 2022). For instance, the first Dutch na-
tional ALS campaign (AHN1, 1996–2003) had an average
point density ranging from 1 point per 16 m2 to 1 point m−2,
with no detailed point classification available. By contrast,
in the fourth campaign (AHN4, 2020–2022), the point den-
sity improved to 20–30 points m−2, with a detailed classifica-
tion code being provided for each point following the ASPRS
standard (ASPRS, 2019). These technological variations in-
evitably result in data products with varying quality and ac-
curacy, introducing uncertainties with regard to their usabil-
ity (Tompalski et al., 2021; Hopkinson et al., 2008). To un-
derstand ecosystem dynamics accurately, changes detected
from multi-temporal ALS datasets should reflect actual eco-
logical changes in the target of interest rather than differences
in data acquisition or quality (Riofrío et al., 2022). Identify-
ing the limitations and providing usage notes of derived data
products are important for users to interpret the data products
correctly and to apply them optimally in their analyses.

Here, we present a new set of multi-temporal data prod-
ucts of ecosystem structure derived from four national ALS
surveys of the Netherlands (AHN1–AHN4). The data prod-
ucts, with a spatial resolution of 10 m, include four sets of
25 lidar-derived vegetation metrics representing vegetation
height, vegetation cover, and vegetation structural variabil-
ity, aimed at supporting a wide range of ecological appli-
cations. In this paper, we (1) describe the ALS data col-
lection from AHN1–AHN4 and the employed “Laserfarm”
workflow used to generate the data products; (2) present the
detailed characteristics of the generated multi-temporal data
products (i.e. lidar-derived vegetation metrics as GeoTIFF
raster layers) and their known limitations and correspond-
ing usage notes; (3) provide auxiliary data (e.g. raster lay-
ers of point density, pulse density, flight line timestamp in-
formation, DTMs, DSMs, and mask layers of water areas,
roads, buildings, power lines, and NA values (areas with no
points available) to facilitate multi-temporal comparisons) to
facilitate multi-temporal comparisons; (4) demonstrate two
use cases for using the generated data products in ecological
applications; and (5) discuss the potential use of these data
products and recommendations for utilizing these data prod-
ucts in future research. Note that the AHN1 dataset has a
rather poor quality, which limits its use for ecological appli-
cations. To facilitate open science, we make the data prod-
ucts, employed workflow, Python script, and related doc-
umentation publicly available. We anticipate that this will
not only allow the upscaling of ecological and biodiver-
sity research but also benefit a broad range of scientists and
decision-makers who are interested in using ecosystem struc-
ture information for environmental monitoring and manage-
ment.

2 Raw data and processing workflow

2.1 Geography and ecology of the Netherlands

The Netherlands is situated in northwestern Europe
(52°22′ N, 4°53′ E), covering a total land area of 33 893 km2.
It has mostly flat coastal lowlands and reclaimed land (pold-
ers), with an average elevation of approximately 30 m above
sea level. The primary ecosystems in the Netherlands in-
clude agricultural land, dunes and beaches, forests, wetlands,
grasslands, and other (semi-)natural environments (Hein et
al., 2020). The Netherlands has a temperate maritime climate
with a continental influence, resulting in an average annual
precipitation of 854.7 mm and a mean temperature of 10.5°.

2.2 Four Dutch national ALS campaigns

The initial purpose of the AHN programme was to monitor
and manage water systems in the Netherlands. It is a col-
laboration between 26 regional water boards, provinces, and
Rijkswaterstaat (the executive directorate general for pub-
lic works and water management of the Dutch government),
with the aim of producing accurate digital elevation mod-
els of the Netherlands. To minimize the impact of foliage on
ground detection during the laser scanning, the AHN data
acquisition is performed in the winter period, from Decem-
ber to April. The first generation of the AHN programme
(AHN1) was conducted during 1996–2003, with a point den-
sity of 1 point per 1–16 m2, which largely depended on the
viability in the technology and the date of acquisition (Swart,
2010). Due to errors in the AHN1 data (e.g. inaccuracies in
the inertial navigation system, misalignment of overlapping
scanning strips, and the presence of artefacts), the data qual-
ity of AHN1 is rather poor, especially for areas covered by
vegetation (Brand et al., 2003). It is therefore limited in its
use for quantifying vegetation structure with high accuracy
and at fine (e.g. 10 m) resolutions. To support both water
and dike management, the second generation of the AHN
programme (AHN2) was started in 2007, with improved
specifications such as a higher point density (on average,
6–10 points m−2) and a higher planimetric or vertical accu-
racy (5–15 cm). It also required some raster data (i.e. DTMs
and DSMs) to be delivered, with grid cell sizes of 0.5 and
5 m. With the main aim of obtaining terrain surface infor-
mation, both the AHN1 and AHN2 datasets were delivered
in two separate parts: point clouds representing the terrain
(“gefilterde puntenwolk”) and point clouds representing non-
ground points, i.e. trees, buildings, bridges, and other objects
(“uitgefilterde puntenwolk”).

Benefitting from the advances in lidar sensors and re-
lated technologies, the third generation of the AHN pro-
gramme (AHN3) provided not only a higher density of point
clouds but also the storage of more information for each
point, such as point classification code, intensity values, and
number of returns (Table 1). Even though both AHN2 and
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Figure 1. Data acquisition times for AHN1–AHN4. Different colours indicate the different years of data collection for each dataset.

AHN3 were collected within a 6-year cycle (2007–2012 for
AHN2 and 2014–2019 for AHN3), the actual time difference
between AHN2 and AHN3 varies between 4–10 years de-
pending on the area of interest (Fig. 1). For the latest com-
pleted AHN survey (i.e. AHN4), the sampling was conducted

between 2020 and 2022 (3-year cycle), making the country-
wide dataset more quickly available for the whole of the
Netherlands. All four AHN datasets were provided in LAZ
format (i.e. version 1.2 for AHN1–AHN3 and version 1.4 for
AHN4) under the local Dutch coordinate system “RD_new”
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Table 1. Summary of raw point cloud characteristics collected by different AHN surveys (AHN1–AHN4). Some flight configurations are not
available, for instance, the type of sensor, the flight height, flight speed, and the scan angle, especially for the AHN1 dataset. NAP: normal
Amsterdam level.

Data characteristic AHN1 AHN2 AHN3 AHN4

Acquisition year 1996–2003 2007–2012 2014–2019 2020–2022

Acquisition season Leaf-off Leaf-off Leaf-off Leaf-off

Horizontal projection RD_new RD_new RD_new RD_new

Vertical projection NAP NAP NAP NAP

Point density (points m−2) 0.05–1 6–15 10–20 20–30

Scan angle (°) – ±30 ±35 ±35

Overlapping rate – 20 %–35 % 20 %–35 % 20 %–35 %

Point cloud format Laz (1.2) Laz (1.2) Laz (1.2) Laz (1.4)

Horizontal accuracy (cm) – 8–18 8–18 8–13

Vertical accuracy (cm) 5–35 5–15 5–15 5–10

Number of files 2720 60185 1367 1381

Data volume (compressed) 33.1 GB 986.7 GB 2564.8 GB 6408.6 GB

Attributes in each point X, Y , Z X, Y , Z X, Y , Z; intensity;
return number; number
of returns;
classification; scan
angle; point ID; GPS
time

X, Y , Z; intensity;
return number; number
of returns;
classification; scan
angle; point ID; GPS
time; amplitude;
reflectance; deviation

Classification uitgefilterd (0)
gefilterd (0)

uitgefilterd (0)
gefilterd (0)

unclassified (1)
ground (2)
building (6)
water (9)
reserved (26)

unclassified (1)
ground (2)
building (6)
water (9)
power line (14)
reserved (26)

Available additional layers – DSM, DTM DSM, DTM DSM, DTM

(EPSG: 28992, NAP: 5709). The datasets from AHN1 to
AHN4 show an increase in data volume and improved clas-
sification, as well as the storage of additional attributes for
each point (Table 1). An ongoing fifth ALS survey (AHN5)
started in 2023 (the first part of the data is available; see
https://www.ahn.nl/heel-westelijk-nederland-gereed, last ac-
cess: 24 July 2025), and the data acquisition will be com-
pleted in 2025.

2.3 Processing workflow

We employed the high-throughput workflow “Laser-
farm” (https://laserfarm.readthedocs.io/en/latest/, last access:
24 July 2025) to process the multi-temporal AHN datasets.
Laserfarm is an open-source workflow designed for process-
ing large amounts of lidar point cloud data into geospatial

data products of ecosystem structure (Kissling et al., 2022).
It builds on the feature extraction module of the open-source
“Laserchicken” software to compute lidar metrics (Meijer et
al., 2020). The Laserfarm workflow consists of four main
modules: (1) re-tiling, where the original LAZ files (cov-
ering 5 km× 6.5 km per tile) are re-tiled into 1 km× 1 km
LAZ files for an efficient, scalable, and distributed process-
ing; (2) normalization, where a DTM is constructed using the
lowest point within a given grid cell (1 m × 1 m), with ev-
ery point in the cell then being assigned a normalized height
with respect to the derived DTM height so that the influence
of terrain is removed from subsequent processing (note that
outliers with z values higher than 10 000 m were removed
from further processing); (3) feature extraction, where user-
defined features (e.g. lidar metrics such as the 95th percentile
of vegetation height and the skewness of vegetation height)
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are calculated at 10 m resolution using points within an in-
finite square cell (i.e. a 3D square column with a base area
of 10 m× 10 m and an infinite z value) (Meijer et al., 2020);
and (4) rasterization, where the extracted feature files (.PLY
files) are merged and exported as single-band GeoTIFF raster
files. Note that, in all four AHN datasets, vegetation points
are not classified separately based on the ASPRS standard.
Instead, they are assigned a classification value of 0 (“uit-
gefilterd”) in AHN1 and AHN2 and a value of 1 (“unclassi-
fied”) in AHN3 and AHN4. These classification values were
used as the vegetation class during the feature extraction. We
chose the Laserfarm workflow to process the four country-
wide AHN datasets because (1) it enables the efficient, scal-
able, and distributed processing of multi-terabyte lidar point
clouds at a national scale; (2) it is a free and open-source tool
implemented in Python and available in the form of Jupyter
Notebooks; and (3) it allows for the automated generation
of consistent and reproducible geospatial data products of
ecosystems structure from different ALS data.

Due to the different characteristics of each AHN dataset
(Table 1), several pre-processing steps were implemented be-
fore executing the main modules of the Laserfarm workflow
(Fig. 2). In particular, for the AHN1 and AHN2 datasets,
the step of “reclassification” was carried out before re-tiling
as both datasets only have “gefilterd” (ground) and “uitge-
filterd” (non-ground) files provided, and the raw classifi-
cation value was set to 0 (never classified) for all points.
We therefore reassigned a classification value of 2 to the
ground points (“gefilterd”) and a classification value of 0
to the non-ground points (“uitgefilterd”). These classifica-
tion values were later used for filtering the points during fea-
ture extraction. Note that there is no publicly available in-
formation on the methods and/or algorithms used in the pre-
classification, and it is therefore difficult to assess the accu-
racy of the pre-classification of the AHN datasets. However,
a preliminary assessment of the terrain-filtering process in
the Dutch coastal dunes did not reveal a strong impact of the
ground point pre-classification of AHN datasets on vegeta-
tion change detection (Appendix C). For the AHN4 dataset,
the volume of a single original LAZ file varies from 0.3 MB
to 16.5 GB, with an average size of 4.6 GB per file (Table 2).
Since handling such volumes is challenging for many com-
puting infrastructures (due to their CPUs and random-access
memory or RAM), we applied a “splitting” step before the
re-tiling (Fig. 2), with a maximum data volume of∼ 500 MB
being used for splitting the original tiles into smaller ones.

2.4 IT infrastructure and computational cost

All four AHN datasets were processed on the IT infrastruc-
ture services provide by SURF, the Dutch national facil-
ity for information and communication technology (https:
//www.surf.nl/, last access: 24 July 2025). Specifically,
we used the dCache platform for data storage (https://
www.surf.nl/en/services/dcache, last access: 24 July 2025)

and the HPC (high-performance computing) Cloud (https:
//www.surf.nl/en/services/hpc-cloud, last access: 24 July
2025) or Spider platform (https://www.surf.nl/en/services/
high-performance-data-processing, last access: 24 July
2025) for high-performance data processing. The data pro-
cessing platforms have fast access to the data storage
while enabling scalable and flexible processing of multi-
terabyte datasets on distributed resources. We first down-
loaded the raw AHN1–AHN4 lidar point clouds from
the PDOK web services (https://www.pdok.nl/introductie/
-/article/actueel-hoogtebestand-nederland-ahn, last access:
24 July 2025) to the dCache data storage using a customized
Python script (https://github.com/ShiYifang/AHN/tree/main/
AHN_downloading, last access: 24 July 2025). We then ran
the Laserfarm workflow for processing the AHN1–AHN3
datasets on the HPC Cloud, where we set up a cluster of
11 virtual machines (VMs), with each VM having two cores,
32 GB or 64 GB RAM, and 256 GB local hard disc drive
(HDD). Due to migration of the computing resources by
SURF (from HPC Cloud to Spider), we processed the AHN4
dataset with the Laserfarm workflow on Spider, where a
number of flexible and customizable workers with assigned
CPU cores were defined based on the computing requirement
for each workflow step. We used 2–10 workers, each with
2–4 cores and 16–32 GB RAM, for splitting, re-tiling, nor-
malization, and feature extraction and 2 workers, each with
12 cores and 94 GB RAM, for the rasterization step. All in-
put data (i.e. raw LAZ files), intermediate results (e.g. re-tiled
LAZ files, normalized LAZ files, featured PLY tiles), and fi-
nal outputs (i.e. GeoTIFF raster layers) were automatically
stored (and/or retrieved for the next step) in the dCache data
storage.

The computing time for each AHN dataset varies based
on the input data volume, the required processing steps (Ta-
ble 2), and the settings of the employed infrastructure. The
increase in data volume from AHN1 to AHN4 resulted in a
strong increase in the processing time (Table 2). In total, it re-
quired 57.6 d (wall time) to process the multi-temporal AHN
datasets (AHN1–AHN4). AHN1 (data volume of 33.1 GB)
only took a wall time of 4.8 d to complete, whereas AHN4
(data volume of 6408.6 GB) took a total wall time of 26.8 d.
It is worth noting that the actual computing time of the pro-
cess might be longer than the wall-time estimates, e.g. due to
processing errors, worker failures, and system maintenance.

3 Data product description

3.1 Overview of data products

The generated data products from each AHN campaign cover
the whole of the Netherlands, ranging from 50.77 to 53.36° N
and from 3.57 to 7.11° E. The data products are provided as
10 m resolution GeoTIFF raster files (25 single-band raster
layers for each AHN dataset) in the local Dutch coordinate
system RD_new (EPSG: 28992, NAP: 5709). The total vol-
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Figure 2. Overview of the processing workflow employed for four country-wide AHN datasets of the Netherlands (AHN1–AHN4). The pre-
processing step “reclassification” was only conducted for the AHN1 and AHN2 datasets, where ground points were reassigned a classification
value of 2. The splitting step was added to split the large LAZ files from AHN4 into smaller ones before re-tiling. Re-tiling, normalization,
feature extraction, and rasterization are the four main modules of the Laserfarm workflow, which has been applied for all four AHN datasets
to generate country-wide lidar-derived vegetation metrics. The input data were raw LAZ files with different point densities, and the output
data were 25 single-band GeoTIFF raster layers at 10 m resolution for each AHN dataset.

ume of the four sets of 25 lidar metrics is approximately
59.2 GB, and the total volume of additional masks and aux-
iliary data is 12.3 GB. The pixel value is stored in 32-bit
floating-point precision. The data products are freely acces-
sible via a permanent Zenodo repository (see Sect. 6).

3.2 Lidar-derived vegetation metrics

In total, 25 lidar-derived vegetation metrics were gener-
ated from each AHN dataset, representing vegetation height,
vegetation cover, and vegetation structure variability (Ta-
ble 3). For vegetation height, we generated seven lidar met-
rics (i.e. maximum; mean; median; and 25th, 50th, 75th, and
95th percentile of vegetation height) representing the height
of the vegetation at the canopy surface and for low, middle,
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Table 2. Overview of the number of input files, the total volume and the average volume per file for each processing step, and the total
processing wall time for each AHN dataset. Note that the total wall time was estimated based on different infrastructure settings for processing
the AHN1–AHN3 (HPC Cloud) and AHN4 (Spider) datasets.

Data characteristic AHN1 AHN2 AHN3 AHN4

Input for re-tiling (Reclassified) (Reclassified) (Split)

Number of input files 2720 60 185 1367 18 797
Total volume 33.1 GB 986.7 GB 2564.8 GB 6408.6 GB
Average volume per file (mean±SD) 12.20± 10.68 MB 16.40± 14.73 MB 1.75± 0.93 GB 4.60± 2.41 GB

Re-tiling

Number of re-tiled files 37 715 37 627 37 457 37 990
Total volume 33.1 GB 986.7 GB 2564.8 GB 6408.6 GB
Average volume per file (mean±SD) 0.83± 1.64 MB 26.90± 35.98 MB 0.07± 0.18 GB 0.17± 0.09 GB

Normalization

Number of normalized files 37 715 37 627 37 457 37 990
Total volume 64.0 GB 3682.4 GB 6067.5 GB 9593.3 GB

Average volume per file (mean±SD) 1.70± 2.13 MB 97.87± 59.23 MB 0.16± 0.09 GB 0.25± 0.13 GB

Feature extraction

Number of featured files 37715× 25 37627× 25 37457× 25 37990× 25
Total volume 257.1 GB 282.5 GB 285.9 GB 212.5 GB
Average volume per file (mean±SD) 0.29± 0.02 MB 0.30± 0.03 MB 0.33± 0.05 MB 0.23± 0.04 MB

Rasterization

Number of rasterized files 25 25 25 25
Total volume 4.8 GB 19.4 GB 18.8 GB 15.6 GB
Average volume per file (mean±SD) 202.1± 101.6 MB 774.5± 303.5 MB 759.8± 226.2 MB 625.5± 160.7 MB

Processing time

Total processing wall time (days) 4.8 11.7 14.3 26.8

and upper vegetation strata (Fig. 3a). For vegetation cover,
we derived 11 lidar metrics consisting of 1 metric describ-
ing the openness of vegetation (i.e. pulse penetration ratio),
1 metric describing the density of the upper vegetation layer
(i.e. canopy cover), and 9 metrics quantifying vegetation den-
sity at different height layers (i.e. below 1 m, 1–2 m, 2–3 m,
3–4 m, 4–5 m, 5–20 m, above 3 m, below 5 m, and above
20 m) (Fig. 3b). The height layers reflect the most relevant
height strata to capture the vegetation distribution of major
growth forms (e.g. grass, reed, shrubs, and trees) (Morsdorf
et al., 2010; Miura and Jones, 2010). Special attention was
given to representing low-vegetation strata (1–5 m) as they
are essential for low-stature terrestrial ecosystems such as
grasslands, shrublands, or agricultural areas when monitor-
ing animal habitats and species distributions (Koma et al.,
2021a; Bakx et al., 2019). Note that the pulse penetration ra-
tio is the only lidar metric (among the 25 metrics) that used
ground points for the calculation. All of the other 24 metrics
are only calculated with vegetation points (i.e. “unclassified”
in AHN). For vegetation structural variability, we derived
seven lidar metrics representing the vertical variability of the

vegetation distribution within a cell (Fig. 3c), including the
coefficient of variation, Shannon index, kurtosis, skewness,
standard deviation, variance, and roughness (sigma) of veg-
etation height. The detailed description of how these metrics
are calculated and of their ecological relevance can be found
in Table 3.

3.3 Auxiliary data

Since the point density of AHN datasets changes across
space and time, we also provide a raster layer of point density
(using all point classes) for each AHN dataset (four in total)
(Fig. 4). AHN1 has a much lower point density (average of
less than 0.5 points m−2) throughout the whole country com-
pared to the other AHN datasets due to sensor limitations
back in 1996. AHN2 and AHN3 have a similar point density
(on average, 10–20 points m−2), while AHN4 has the highest
point density (25–30 points m−2). Especially for the AHN2–
AHN4 datasets, distinct patterns (e.g. patches, lines, edges)
can be observed in different parts of the Netherlands. These
are partially due to the influence of the water surface (yellow
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Figure 3. Examples of lidar metric generation in a 10 m× 10 m grid cell (the number of all points: N = 8348). (a) Metrics of vegetation
height (mean, max, and percentiles of normalized height). (b) Vegetation cover metrics representing vegetation density within specific height
layers (e.g. “BR_4_5” indicates the vegetation density between 4–5 m; feature name: “band_ratio_4_normalized_height_5”). (c) Metrics of
vegetation structural variability (e.g. standard deviation and variance of vegetation height are calculated based on mean height z; kurtosis and
skewness of vegetation height are calculated based on the standard deviation and mean height within a cell) (see detailed calculation formula
in Table 3). The blue line in (c) represents a kernel density estimate (KDE) showing the shape of the point distribution. See abbreviations and
calculation formulae of all metrics in Table 3.
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Table 3. The 25 lidar-derived vegetation metrics capturing ecosystem structure in three key dimensions (vegetation height, vegetation cover,
and vegetation structural variability), together with their file names in the data products, the formulae for calculation, their descriptions,
and examples of their ecological relevance. Each lidar metric is provided as a single-band GeoTIFF raster layer at 10 m resolution, with
the file name “ahn#_10m_xx”, where # is the number of the AHN campaign (“1–4”), and xx is the name of the lidar metrics. For instance,
“ahn4_10m_perc_95_normalized_height” represents the 95th percentile of vegetation height derived from the AHN4 dataset. For the calcu-
lation formulae, N is the total number of normalized vegetation points within a cell, zi represents all normalized z values in a cell, and z is
the mean normalized z value in a cell.

Lidar metric
(abbreviation)

File name (ahn#_10m_xx) Calculation formula Description Ecological relevance

Vegetation height

Maximum vegetation
height (Hmax)

max_normalized_height zmax Maximum of
normalized z within a
cell

Height of canopy
surface, treetops

Mean of vegetation
height (Hmean)

mean_normalized_height zmean Mean of normalized z
within a cell

Average height of
vegetation, mean tree
height

Median of vegetation
height (Hmedian)

median_normalized_height zmedian Median of normalized
z within a cell

Vegetation height,
vertical distribution of
vegetation

25th percentile of
vegetation height
(Hp25)

perc_25_normalized_height z25 percentile 25th percentile of
normalized z within a
cell

Density of vegetation
in the
low stratum

50th percentile of
vegetation height
(Hp50)

perc_50_normalized_height z50 percentile 50th percentile of
normalized z within a
cell (corresponds to the
Hmedian)

Average height and
vertical distribution of
vegetation

75th percentile of
vegetation height
(Hp75)

perc_75_normalized_height z75 percentile 75th percentile of
normalized z within a
cell

Density of vegetation
in the upper stratum

95th percentile of
vegetation height
(Hp95)

perc_95_normalized_height z95 percentile 95th percentile of
normalized z within a
cell

Height of the
vegetation canopy
surface, avoiding the
effect of outliers
(compared to Hmax)

Vegetation cover

Pulse penetration ratio
(PPR)

pulse_penetration_ratio
Nground
Ntotal

Ratio of number of
ground points to total
number of points
within a cell

Openness of
vegetation, canopy
fractional cover, laser
penetration index

Canopy cover (Den-
sity_above_mean_z)

density_absolute_mean_normalized_height 100×
∑
[zi > z]/N Number of returns

above mean height
within a cell

Density of upper
vegetation layer

Density of vegetation
points below 1 m
(BR_below_1)

band_ratio_normalized_height_1 Nz<1/Ntotal Ratio of number of
vegetation points below
1 m to the total number
of vegetation points
within a cell

Density of vegetation
below 1 m

Density of vegetation
points between 1–2 m
(BR_1_2)

band_ratio_1_normalized_height_2 N1<z<2/Ntotal Ratio of number of
vegetation points
between 1–2 m to the
total number of
vegetation points
within a cell

Density of vegetation
in 1–2 m layer
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Table 3. Continued.

Lidar metric
(abbreviation)

File name (ahn#_10m_xx) Calculation formula Description Ecological relevance

Vegetation cover

Density of vegetation
points between 2–3 m
(BR_2_3)

band_ratio_2_normalized_height_3 N2<z<3/Ntotal Ratio of number of
vegetation points
between 2–3 m to the
total number of
vegetation points
within a cell

Density of vegetation
in 2–3 m layer

Density of vegetation
points above 3 m
(BR_above_3)

band_ratio_3_normalized_height Nz>3/Ntotal Ratio of number of
vegetation points above
3 m to the total number
of vegetation points
within a cell

Density of vegetation
above 3 m layer

Density of vegetation
points between 3–4 m
(BR_3_4)

band_ratio_3_normalized_height_4 N3<z<4/Ntotal Ratio of number of
vegetation points
between 3–4 m to the
total number of
vegetation points
within a cell

Density of vegetation
in 3–4 m layer

Density of vegetation
points between 4–5 m
(BR_4_5)

band_ratio_4_normalized_height_5 N4<z<5/Ntotal Ratio of number of
vegetation points
between 4–5 m to the
total number of
vegetation points
within a cell

Density of vegetation
in 4–5 m layer

Density of vegetation
points below 5 m
(BR_below_5)

band_ratio_normalized_height_5 Nz<5/Ntotal Ratio of number of
vegetation points below
5 m to the total number
of vegetation points
within a cell

Density of vegetation
below 5 m

Density of vegetation
points between 5–20 m
(BR_5_20)

band_ratio_5_normalized_height_20 N5<z<20/Ntotal Ratio of number of
vegetation points
between 5–20 m to the
total number of
vegetation points
within a cell

Density of vegetation
in 5–20 m layer

Density of vegetation
points above 20 m
(BR_above_20)

band_ratio_20_normalized_height Nz>20/Ntotal Ratio of number of
vegetation points above
20 m to the total
number of vegetation
points within a cell

Density of vegetation
above 20 m layer

Vegetation structural variability

Coefficient of variation
of vegetation height
(Coeff_var)

coeff_var_normalized_height 1
z
×

√∑ (zi−z)2

N−1 Coefficient of variation
of normalized z within
a cell

Vertical variability of
vegetation distribution

Shannon index
(Entropy_z)

entropy_normalized_height −
∑
i

pi × log2pi

(pi =Ni/
∑
j

Nj , and

Ni is the points in bin
i)

The negative sum of
the proportion of points
within 0.5 m height
layers multiplied with
the logarithm of the
proportion of points
within 0.5 m height
layers within a cell

Vertical complexity of
vegetation, foliage
height diversity
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Table 3. Continued.

Lidar metric
(abbreviation)

File name (ahn#_10m_xx) Calculation formula Description Ecological relevance

Vegetation structural variability

Kurtosis of vegetation
height (Hkurt)

kurto_normalized_height 1
σ 4 ×

∑
(zi − z)4/N (σ

is the standard
deviation of the z value
in a cell)

Kurtosis of normalized
z within a cell

Vertical distribution of
vegetation

Roughness of
vegetation (Sigma_z)

sigma_z
√∑(

Ri −R
)2
/(N − 1)

(Ri denotes the
residual after plane
fitting, and R is the
mean of the residuals)

Standard deviation of
the residuals of a
locally fitted plane
within a cylinder

Small-scale roughness
and variability of
vegetation

Skewness of vegetation
height (Hskew)

skew_normalized_height 1
σ 3 ×

∑
(zi − z)3/N Skewness of

normalized z within a
cell

Vertical distribution of
vegetation

Standard deviation of
vegetation height
(Hstd)

std_normalized_height

√∑ (zi−z)2

N−1 Standard deviation of
normalized z within a
cell

Vertical variability of
vegetation distribution

Variance of vegetation
height (Hvar)

var_normalized_height
∑ (zi−z)2

N−1 Variance of normalized
z within a cell

Vertical variability of
vegetation distribution

areas in AHN2, AHN3, and AHN4; see Fig. 4) but are also
related to flight lines and operational configurations (e.g. fly-
ing altitude and flight speed) during the campaign.

In addition to point density (i.e. density of all return
points), we also provide raster layers of pulse density
(i.e. density of first return points) for the AHN3 and AHN4
datasets. Pulse density is less instrument dependent than
point density and more directly reflects the scan quality and
condition. Since there is no pulse information available from
the AHN1 and AHN2 datasets, we only provide pulse den-
sity layers for AHN3 and AHN4. The two pulse density lay-
ers are made available in the data repository as auxiliary data
together with the derived lidar metrics (see Sect. 6).

Although AHN campaigns have been conducted during
the leaf-off season, the actual date/month during which an
area is scanned can vary from December (late winter) to
April (early spring), making it difficult to distinguish ac-
tual vegetation change (over the years) from leaf phenol-
ogy. We therefore provide the flight line timestamps as raster
layers with a 10 m resolution for comparing the dates of
data acquisition across the datasets and generated properties.
For AHN3 and AHN4, we first downloaded the flight line
vector layers from https://www.ahn.nl/dataroom (last access:
24 July 2025) and then generated a buffer zone around the
flight lines using the function “Buffer” in ArcGIS Pro (ver-
sion 3.3.0), with the setting of a distance (on both sides of
each flight line) of 300 m for AHN3 and of 700 m for AHN4.
The neighbouring buffer zones were then dissolved if they
had the same flight time. The specific distance value of the

buffer zone was derived from the distance between two flight
lines in each AHN survey. We then rasterized the generated
buffer zone polygons into raster layers at 10 m resolution us-
ing the “Polygon to Raster” function in ArcGIS Pro. In areas
where multiple flight lines are overlapping, we assigned the
latest flight date to the raster pixel to be in line with the flight
year maps provided by the AHN programme (see Fig. 1).
Users should take the surrounding pixel values into account
when investigating overlapping areas. The generated times-
tamp layers for AHN3 and AHN4 are made available in the
same data repository as the data products (see Sect. 6).

Although the AHN provides DTM and DSM layers at
0.5 and 5 m resolution for AHN2–AHN4, these do not come
at the same spatial resolution as the generated lidar-derived
vegetation metrics. To facilitate users in comparing DTMs
and DSMs with the generated lidar metrics, we generated
DTM and DSM layers at 10 m resolution for each AHN
datasets (except AHN1). The generated DTM and DSM lay-
ers were derived by resampling DTM and DSM tiles pro-
vided by the AHN to a 10 m resolution using an unweighted
average method. The Jupyter Notebook used for this step is
made available in GitHub (see Sect. 7).

3.4 Limitations and usage notes

3.4.1 Classification-related errors and masks

In the pre-classification of the raw AHN point clouds, there
is no “vegetation” class provided based on the ASPRS stan-
dard (i.e. class 3: low vegetation; class 4: medium vegetation;
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Figure 4. Point density of AHN1–AHN4 ALS campaigns across
the Netherlands. The total number of points was used for calculat-
ing the density of points at 10 m spatial resolution. The four point
density layers are made available in the data repository as auxiliary
data together with the derived lidar metrics (see Sect. 6).

or class 5: high vegetation). Instead, the vegetation points
in the raw AHN1 and AHN2 datasets are included in the
non-ground class (“uitgefilterd”, classification value of 0),
whereas they belong to the “unclassified” class (classifica-
tion value of 1) in the AHN3 and AHN4 datasets (Table 1).
This can introduce errors and biases when using the “uit-
gefilterd” or “unclassified” class for calculating ecosystem
structure properties because points belonging to human in-
frastructures can still be included in these classes. In particu-
lar, buildings and bridges are included (together with objects
other than ground) in the “uitgefilterd” class in the AHN1 and
AHN2 datasets, while they are classified separately (build-
ings in class 6: “buildings”, and bridges in class 26: “re-
served”) in the AHN3 and AHN4 datasets, eliminating the
errors caused by buildings and bridges in the final data prod-
ucts of the AHN3 and AHN4. Power lines are not sepa-
rated from the “uitgefilterd” class in the AHN1 and AHN2
datasets and are included in the “unclassified” class in the
AHN3 dataset, but, in the AHN4 dataset, they are separately
classified as class 14: “power line”. Yet, other human ob-
jects and infrastructures (e.g. cars, fences, and transmission

towers) are not separated in any of the four AHN datasets
and are thus included in the non-ground class (“uitgefilterd”)
of the AHN1 and AHN2 datasets and in the “unclassified”
class in the AHN3 and AHN4 datasets, introducing some er-
rors and biases into the final data products. There are also
points appearing on water surfaces (e.g. reflected by boats
and birds) which are included in the “uitgefilterd” or “un-
classified” class, causing inaccuracies in the final products.
In a previous study (Kissling et al., 2023), the accuracy of
the 25 lidar metrics generated from the AHN3 dataset was
assessed, particularly in relation to the error caused by us-
ing the “unclassified” class for calculating ecosystem struc-
ture properties. The results showed that the overall accuracy
of the generated lidar metrics was high (0.90± 0.04, n= 25
lidar metrics, tested for 100 randomly selected plots through-
out the Netherlands, with 10 m× 10 m size per plot), ranging
from 0.87 to 1. It is worth noting that the impact of those
errors on the 25 lidar metrics varies; for instance, a stronger
bias (i.e. the difference between the generated lidar metrics
and the ground truth) can be observed in height metrics de-
scribing the top canopy layer (i.e. Hmax and Hp95) com-
pared to in other height metrics or in metrics of vegetation
cover in the low strata (i.e. BR_below_1 and BR_below_5)
(Kissling et al., 2023).

To minimize the inaccuracies of the data products as
caused by human infrastructures and water surfaces, we
provide mask layers of water areas, roads, and buildings
for both the AHN3 and AHN4 data products based on the
Dutch cadastral data (TOP10NL) from 2018 (corresponding
to AHN3) and 2021 (corresponding to AHN4) (https://www.
kadaster.nl/zakelijk/producten/geo-informatie/topnl, last ac-
cess: 24 July 2025). TOP10NL is part of the Basic Topog-
raphy Registry (BRT), which provides the standard topo-
graphic base files for the whole of the Netherlands. Like the
lidar metrics, the masks are calculated at 10 m resolution with
the RD_new/EPSG 28992 projection coordinate system and
provided as raster layers in GeoTIFF format. In the masks,
water surfaces, buildings, and roads were merged into one
class with an assigned pixel value of 1, and the rest were
merged into one class with a pixel value of 0 (Fig. 5). Since
the historical versions of TOP10NL data are not available for
AHN1 (1996–2003) and AHN2 (2007–2012), we can only
provide the masks for the AHN3 and AHN4 datasets (see
Sect. 6 for data availability). However, despite the potential
changes in buildings and roads over time, it is still possible to
apply the generated masks to all four AHN data products, for
instance, to minimize errors and to have comparable areas of
interest. Note that water surfaces were already masked out
from the pulse penetration ratio layers by removing 0 values
that result from areas with waterbodies (i.e. falsely indicat-
ing dense vegetation). This was done by masking out water
areas (from TOP10NL) from the pulse penetration ratio lay-
ers using the “Extract by Mask” function in ArcGIS Pro. Ar-
eas with buildings and roads have the value of 1 in the pulse
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penetration ratio layers, which indicates total openness (no
vegetation).

Since power lines are not classified separately for the
AHN1–AHN3 datasets and thus are included in the vege-
tation metric calculation, this may cause abnormal values
of vegetation structure, especially for vegetation height and
vegetation cover above 20 m (Shi and Kissling, 2023). How-
ever, in AHN4, the points belonging to power lines are clas-
sified separately (Table 1), which provides a way to minimize
errors caused by power lines in the data products generated
using AHN1–AHN3. We therefore extracted all power line
points from the AHN4 raw point cloud and generated a mask
(at 10 m resolution) where pixels containing power lines are
assigned a value of 1 and the rest are labelled with “NoData”
(Fig. 5). Since the transmission towers are not classified sep-
arately in all four AHN datasets, the mask covers only the
power lines and not the transmission towers. Users can ap-
ply the power line mask generated from AHN4 to the data
products from AHN1–AHN3 and consequently improve the
comparability of the lidar metrics across time. Note that the
power line infrastructure may also change over time, and the
classification of power lines using AHN4 may thus not fully
represent the power line distributions in earlier time periods.

3.4.2 Strip issues

Several strip patterns occur in the data products from AHN2
(Fig. 6). These strip issues specifically affect the pulse pene-
tration ratio layer (representing vegetation openness), where
both ground points (ground class) and vegetation points (“un-
classified” class) were used for the metric calculation. A pos-
sible reason for this could be that the scan angle of the laser
scanner used for point cloud acquisition was rather wide, and
so the scanner received more laser pulses from the areas lo-
cated at the edges of the flight lines. Those overlapping areas
(edges of the flight lines) often have a doubled point density,
which also contributes to the strip patterns in the calculation
of the lidar metrics using ground points (e.g. pulse penetra-
tion ratio). This issue mostly occurs in an area in the centre
of the Netherlands (Fig. 6). Some vegetation density metrics
(e.g. BR_below_1, BR_below_5) also seem to be influenced
by this strip issue.

3.4.3 Abnormal values

A few pixels with abnormal values still exist in the final prod-
ucts. For instance, several pixels in the Hp95 layer have a
value higher than 100 m, which cannot represent the upper
canopy of vegetation since the tallest tree in the Netherlands
(a Douglas fir, Pseudotsuga menziesii, i.e. a tall and fast-
growing conifer native to western North America, which was
planted between 1860 and 1870 in Apeldoorn, the Nether-
lands) has been measured to be ∼ 50 m tall. More gener-
ally, most measurements of the tallest trees in the Nether-
lands range between 20–45 m. Hence, abnormal values of

vegetation height (e.g. > 50 m) most likely reflect the oc-
currence of human infrastructures that are not included in
the AHN1 and AHN2 “uitgefilterd” class or that are not suf-
ficiently captured in the AHN3 and AHN4 “building” and
“reserved” classes, e.g. aerial and radio masts (up to 350 m
tall), tall industrial and meteorological towers and chimneys
(50–200 m), cranes (50–130 m), elements of bridges (e.g. py-
lons and steel cables up to 140 m tall), wind turbines (up to
260 m), and power lines (up to 80 m). Flying objects, such
as birds and planes, can also be captured in the datasets, re-
sulting in abnormal height values in the data products. We
recommend filtering out those abnormal values before using
the data products for further analysis, e.g. by removing grid
cells with Hp95> 50 m, Hp95> 40 m, or Hp95 > 30 m.

Although the Netherlands has a rather flat terrain, it is
worth noting that the normalization method implemented in
the Laserfarm workflow may introduce inaccuracies into nor-
malized vegetation height values, especially if steep terrain
occurs within a grid cell (Kissling et al., 2022). When ap-
plying the same workflow to other countries or regions, ab-
normal values may occur in areas with drastic topographic
changes (e.g. cliffs, mountainous area). Users may consider
using a different normalization method, for instance, nor-
malizing non-ground points by subtracting the derived DTM
from all points or by interpolating the elevation of non-
ground points using the exact position of ground points be-
neath (Roussel et al., 2020). Some studies also suggest using
raw point clouds (e.g. the non-normalized DSM) to preserve
the geometry of treetops or plant area index profiles in high-
slope areas (Khosravipour et al., 2015; Liu et al., 2017).

Since we only used the points from the “unclassified” class
of the AHN datasets for calculating vegetation metrics (ex-
cept for the pulse penetration ratio, for which all points were
used), grid cells with no vegetation points resulted in NA val-
ues. Those areas are often bare ground, buildings, or wa-
terbodies, which should be excluded from vegetation struc-
ture assessments. We therefore generated an NA value mask
for each AHN dataset (AHN1–AHN4), which can be used
for masking areas that potentially have no vegetation (see
Sect. 6). Those NA value masks can also be combined and
used for vegetation change detection across multi-temporal
AHN data products. Note that NA values can also result in
areas where very low vegetation is misclassified as ground
points, given that the vertical accuracy of the z values in
AHN products is typically 5–15 cm (Table 1). Hence, “no-
vegetation areas” as derived from the NA value masks can
differ from the real land cover.

3.4.4 Sensitivity analysis

We conducted a sensitivity analysis to gain a better under-
standing of the robustness of the lidar metrics in relation to
the varying pulse densities of the different AHN datasets.
We focused on pulse density (i.e. density of the first re-
turn points) instead of point density (i.e. density of all re-
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Figure 5. Examples of masking roads, water surfaces, and buildings as derived from the 2018 Dutch cadastral data (areas A, B, and C)
and power lines generated from the AHN4 dataset (area D). Illustrated is the rasterized mask (first column), the generated vegetation height
metric (i.e. Hp95) from AHN3 (second column), and the corrected vegetation height using the masks (third column). Four subareas show the
inaccuracies in the originally generated vegetation height metric and the removal effect of using the mask for roads (area A), water (area B),
buildings (area C), and power lines (area D). A mask value of 1 represents the pixels with roads, water surfaces, buildings, and power lines,
while a value of 0 or the label “NoData” represents the rest. The masks and the lidar metrics are at 10× 10 m resolution. The subareas A–D
are located around Arnhem in the east of the Netherlands (51.9825248° N, 5.9102228° E). Hp95 denotes the 95th percentile of vegetation
height.

turn points) as pulse density is less dependent on instrument-
specific multiple-return detection capabilities. This makes it
more directly related to the scanning parameters (e.g. pulse
rate, scanning geometry) and conditions (e.g. flight speed,
altitude), reflecting a clearer measure of scan quality. For

the four completed AHN surveys, only AHN3 and AHN4
provide pulse information (e.g. “return number”, “number
of returns”) in the point cloud, whereas AHN1 and AHN2
do not provide such information. For the latter two, we
therefore approximated the pulse information by assuming
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Figure 6. Strip issues in the AHN2 dataset. The point density (black and white, including all points) and the pulse penetration ratio (colour,
representing vegetation openness) show similar strip patterns.

a pulse density of one-quarter and one-half of AHN3. Since
varying pulse density may have different impacts on lidar
metrics from structurally different habitat types, we per-
formed the sensitivity analysis for five main habitat types
(i.e. dunes, marshes, grasslands, shrublands, and woodlands)
within Natura 2000 sites in the Netherlands. For each habitat
type, 100 sample plots (10 m× 10 m, 500 plots in total) were
randomly selected, where Hp95 is not NA (assuming that
vegetation occurring in the plots) (see details of plot selection
in Appendix A). For each sample plot, the pulse density of
AHN4 was systematically down-sampled to the same pulse
density as AHN3 and then to one-half of the pulse density
of AHN3 (assuming comparability with AHN2) and then,
lastly, to one-quarter of the pulse density of AHN3 (assuming
comparability with AHN1). For systematic down-sampling,
we used the same methodology as described in Appendix B
of Kissling et al. (2024a); i.e. the first return points were
first sorted according to their GPS acquisition time (from
earliest to latest) and then were down-sampled to the differ-
ent densities. For instance, for woodlands, we down-sampled
the pulse density from 25 pulses m−2 (AHN4) to 14, 7, and
4 pulses m−2. We then compared the 25 lidar metrics gener-
ated from the original AHN4 point cloud to those from the
down-sampled point clouds for each habitat type. Our analy-
sis revealed that almost all lidar-derived vegetation metrics in

all habitats are robust in relation to varying pulse densities at
10 m resolution, even when calculated with strongly down-
sampled pulse densities of ≤ 4 pulses m−2 (see Figs. B1–
B5 in the Appendix). The exceptions were canopy cover
(Density_above_mean_z) and Shannon index (Entropy_z),
which decrease markedly with lower pulse densities in all
habitat types, and the coefficient of variation of vegetation
height (Coeff_var) in grasslands and shrublands (see Figs. B3
and B4). Some metrics in grasslands also showed larger vari-
ability with down-sampled pulse densities.

Given the vertical accuracy of AHN2–AHN4 (i.e. 5–
15 cm), classification-related errors, and the potential influ-
ence of data acquisition time, we suggest that small vegeta-
tion changes (e.g. less than 0.5–1 m) should be interpreted
with caution. These can be influenced by vertical height un-
certainties, low vegetation points being wrongly classified
as ground points, or differences in leaf phenology due to
varying data acquisition times rather than representing real
vegetation changes. When comparing vegetation changes be-
tween the AHN3 and AHN4 metrics, users can make use
of the flight time raster layers to take vegetation phenology
differences into account. Based on our sensitivity analysis,
we also suggest that users should be aware that some lidar
metrics from open and heterogeneous habitats such as grass-
lands and shrublands might be less robust in relation to vary-
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ing point and pulse densities compared to those from dunes,
marshes, and woodlands.

4 Demonstration of ecological use cases

4.1 Monitoring forest structural change across time
using multi-temporal ALS data

As a use case, we demonstrate here how the multi-
temporal data products generated from the Dutch ALS sur-
veys can capture forest structural change over the last 2
decades (2000–2023). We included the ongoing ALS cam-
paign (AHN5) since the data were made available for the
sample area (central location coordinates: 52.3250517° N,
5.7409230° E) at the time when the analysis was conducted.
This provided a longer time series for detecting forest
change. The sample area (in a forest area north of the na-
tional park De Hoge Veluwe) experienced a clear forest cut
in 2011 (between the AHN2 and AHN3 surveys), with fur-
ther forest loss and some regenerations captured by AHN4,
while the latest AHN5 showed a forest regrowth in the
middle–low-vegetation strata (< 10 m) compared to AHN4
(Fig. 7). Based on the AHN point clouds, the average vege-
tation height changed from 20.9 m (SD: ±4.9 m) (AHN1) to
22.6 m (SD: ±8.0 m) (AHN2) and showed a drastic decrease
from 18.0 m (SD: ±12.1 m) (AHN3) to 3.1 m (SD: ±4.9 m)
(AHN4) and then a slight regrowth to 3.4 m (SD: ±2.6 m)
(AHN5). The histograms derived directly from the AHN1–
AHN5 point clouds show the distribution of points shifting
from tall vegetation (above 20 m, AHN1–AHN3) to low veg-
etation (below 10 m, AHN4 and AHN5). Due to the very low
point density of the AHN1 data, high-resolution information
on vegetation structure in the year 2000 is lacking. However,
the histogram from AHN1 implies a pattern of canopy height
similar to that from AHN2 (Fig. 7). Google Earth images ob-
tained for the closest available dates from each AHN survey
also provide a good reference for the forest change events,
except for the time of AHN1.

Six selected lidar-derived vegetation metrics derived from
AHN1–AHN5 at 10 m resolution effectively capture the
changes in vegetation structure over time (Fig. 8). The
95th percentiles of vegetation height (Hp95) and mean veg-
etation height (Hmean) highlight reductions in forest canopy
height due to cutting in 2011 (between AHN2 and AHN3)
and in 2019 (between AHN3 and AHN4). The pulse penetra-
tion ratio (PPR) reveals shifts in vegetation openness, with
openness peaking in AHN4, while the density of vegetation
points at 2–3 m (BR_2_3) indicates regrowth in the under-
storey, particularly in AHN4 and AHN5 (after 2021). The
Shannon index (entropy_z) reflects the vertical distribution
of vegetation points (i.e. proportion of points within 0.5 m
height layers), with AHN2 showing the highest value due to
a more even point distribution of the canopy foliage before
the canopy was cut. AHN3 shows the widest Shannon index
range, capturing both high-canopy trees and new re-growth.

The standard deviation (i.e. vertical variability) of vegetation
height (Hstd) shows a pattern similar to that seen in Hp95.

4.2 Comparison of vegetation structural differences
within Natura 2000 sites

In a second use case, we analyse how vegetation structure
varies spatially across different Natura 2000 habitat types
in the Netherlands. Terrestrial habitats were categorized into
five main classes – dunes, marshes, grasslands, shrublands,
and woodlands – based on the dominant habitat type within
each site (see details in Appendix A). For each habitat class,
100 random sample plots (10 m× 10 m, 500 plots in total)
were selected, where Hp95 is not NA (assuming that vege-
tation occurs in the plots) (Fig. A1). We used the data prod-
ucts from AHN4 for the analysis as they are the latest com-
plete products for the whole of the Netherlands. Four lidar
metrics were compared: the 95th percentile of vegetation
height (Hp95), vegetation point density at 1–2 m (BR_1_2)
and 4–5 m (BR_4_5), and the coefficient of variation of veg-
etation height (Coeff_var). Structural differences among the
five habitat types were assessed using the non-parametric
Kruskal–Wallis test by ranks (Kruskal and Wallis, 1952),
which compares two or more independent groups of equal
or different sample sizes without assuming a normal distri-
bution of the residuals. Pairwise comparisons of the statisti-
cal significance were conducted among groups (i.e. habitat
types) using the Wilcoxon rank sum test (Wilcoxon et al.,
1970).

The strongest structural differences among the five habitat
types were observed in canopy height (Hp95) and vegeta-
tion density in the lower strata (BR_1_2), followed by vege-
tation vertical variability (Coeff_var) and vegetation density
in the middle strata (BR_4_5) (Fig. 9). The canopy height
(i.e. Hp95) of both woodlands and shrublands was highest
and showed a statistically significant difference compared
to all other habitat types, whereas grasslands, marshes, and
dunes did not differ in terms of canopy height (Fig. 9a). The
latter three habitat types showed a median canopy height of
∼ 2.3 m, whereas this is around 9.9 and 17.6 m for shrub-
lands and woodlands, respectively. Vegetation density in
the low-vegetation stratum (between 1–2 m) also did not
differ statistically between grasslands, marshes, and dunes
(Fig. 9b). However, woodlands and shrublands, with their
more shaded understorey and stronger light competition, had,
proportionally, much less vegetation in the lower layer (be-
tween 1–2 m) than the three open habitat types (Fig. 9b). In
the mid-layer (4–5 m), only the vegetation density of wood-
lands and marshes showed a statistically significant differ-
ence (Fig. 9c). The low mid-layer density in woodlands re-
flects the fact that understorey shrubs are proportionally un-
derrepresented compared to the vegetation density of high-
canopy trees, whereas shrubs and trees in marshes can be
abundant but may generally have a lower canopy height than
woodland trees, thus showing high vegetation density at 4–
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Figure 7. Forest structural change in a sample plot (100 m× 100 m) between 1998–2023 captured by the multi-temporal AHN datasets
(AHN1–AHN5). The histograms were generated from each AHN point cloud, showing the distribution of the normalized vegetation height
within the plot. The point clouds were coloured by height (blue indicates lower vegetation height, and red indicates higher vegetation height).
AHN1 has a rather poor point density but shows a histogram of vegetation height that is similar to that of AHN2. The forest cut can be
observed from the point clouds of AHN3 and AHN4 compared to AHN2, with forest regrowth occurring in AHN5. Google Earth images
from the example area show the changes in the forest. Note that the dates of the Google Earth images do not correspond exactly to the dates
of the airborne laser scanning surveys but rather to the closest dates available. Map data: © Google Earth.
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Figure 8. Boxplots of lidar metrics derived from multi-temporal AHN datasets capturing the changes in the vegetation structure in a
100 m× 100 m sample area (compare Fig. 7). (a) The 95th percentile of vegetation height (Hp95) and the mean vegetation height (Hmean)
representing vegetation height. (b) The pulse penetration ratio (PPR) and the density of vegetation points between 2–3 m (BR_2_3) repre-
senting vegetation cover. (c) The Shannon index (Entropy_z) and the standard deviation of vegetation height (Hstd) representing vegetation
structural variability. Boxes show the median and interquartile range, with whiskers extending to 1.5 times the interquartile range, and out-
liers are plotted as dots. Each grey line represents a single pixel (10 m× 10 m) value changing from AHN1 to AHN5, showing the influence
of the events on vegetation within each pixel (e.g. forest cut and regrowth).

5 m. In terms of structural variability, grasslands and marshes
have the highest median values of the coefficient of variation
of vegetation height across the 100 plots, showing significant
differences compared to woodlands, shrublands, and dunes
(Fig. 9d). This probably reflects a high heterogeneity in vege-
tation structure in both grasslands and marshes, where a large
variability of low vegetation (grasses, herbs) and high vege-
tation (shrubs, trees) can be present within the 10 m× 10 m
plots. It is also the only metric among the four selected met-

rics where dunes showed statistically significant differences
compared to grasslands and marshes.

5 Discussion

We present a set of multi-temporal high-resolution data prod-
ucts of ecosystem structure derived from country-wide ALS
surveys of the Netherlands (AHN1–AHN4), capturing veg-
etation structure dynamics over the last 2 decades (1998–
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Figure 9. Comparison of ecosystem structure between five Natura 2000 habitat types using four different lidar metrics of vegetation structure.
(a) Canopy height (the 95th percentile of vegetation height, Hp95), (b) vegetation density at 1–2 m (BR_1_2), (c) vegetation density at 4–5 m
(BR_4_5), and (d) structural variability of vegetation height (coefficient of variation in vegetation height, Coeff_var). The bars above the
violin plot indicate whether there is a statistical significance between two compared habitat types. The pairwise comparisons of the statistical
significance were conducted using the Wilcoxon rank sum test after the non-parametric Kruskal–Wallis test by ranks. The significant level
is marked as follows: ∗∗∗ (p < 0.001), ∗∗ (p < 0.01), and ∗ (p < 0.05). Red dots indicate the median value (µ̂median) of the lidar metrics
measured for each habitat type. Note that not all sampled plots have vegetation points (from the “unclassified” class) between 1–2 m and
between 4–5 m; therefore, the total number of sample plots for the BR_1_2 and BR_4_5 analysis was <100 for each habitat type (after
removing the NA value). The NA value also occurs for Coeff_var when there is only one point (from the “unclassified” class) in the sampled
plot (see metric calculation in Table 3).

2022). For each AHN dataset, we provide 25 lidar-derived
vegetation metrics as GeoTIFF raster layers representing
vegetation height, vegetation cover, and vegetation structural
variability at 10 m resolution. We further complement these
metric layers with auxiliary data to reduce uncertainties in
metric calculations and to facilitate multi-temporal compar-
isons. In total, we processed ∼ 70 TB (uncompressed) raw
point clouds from four national ALS surveys into ∼ 59 GB
GeoTIFF raster layers as final data products, together with
auxiliary data (∼ 12 GB) including raster layers of point den-
sity; pulse density; flight line timestamp information; terrain
and surface elevation; and masks of water areas, roads, build-

ings, power lines, and NA values. These data products hold
great value for ecological and geospatial applications, includ-
ing species distribution modelling, habitat characterization,
and forest and biodiversity dynamics monitoring. The avail-
ability of these ready-to-use lidar metrics enables ecologists
and researchers to integrate detailed ecosystem structural in-
formation from complex 3D point clouds into their studies
without the burden of handling large ALS datasets and com-
putational challenges. Additionally, the dataset serves as a
valuable resource for detecting vegetation structural changes
and for analysing ecosystem dynamics using multi-temporal
remote sensing techniques.
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Several key aspects should be considered when utilizing
the presented data products. First, many commonly used
lidar-derived metrics, especially those related to vegetation
height (e.g. maximum vegetation height, 95th percentile
height, mean height), are often highly correlated (Kissling
and Shi, 2023; Shi et al., 2018a). To gain a more compre-
hensive understanding of ecosystem structure, it is advis-
able to use a complementary set of lidar metrics that cap-
tures different dimensions of ecosystem structure or to use
dimensionality reduction methods (such as a principal com-
ponent analysis) to avoid multi-collinearity (Kissling and
Shi, 2023). For instance, using the coefficient of variation
of vegetation height (Coeff_var) instead of the standard de-
viation (Hstd) as a metric of structural variability can avoid
correlations with mean or canopy vegetation height (Hmean
and Hp95) (Kissling and Shi, 2023). Second, vegetation
cover in different height layers is a crucial component of
forests and other ecosystems, influencing energy fluxes be-
tween the ecosystem and the atmosphere (Shugart et al.,
2010; Toivonen et al., 2023). Unlike the cover metrics pro-
posed by Moudrý et al. (2022), where herbaceous, shrub,
and tree layers were used to represent different vegetation
strata, our metrics use fixed height intervals (e.g. 1–2, 2–3,
3–4, 4–5, and 5–20 m and above 20 m) to ensure applica-
bility across diverse ecosystems. Not all ecosystems share
the same vegetation growth forms, making these height-bin-
defined metrics more ecosystem agnostic. The cover met-
rics from different height layers can be used as predictors
of species distributions (Davies and Asner, 2014), plant di-
versity (Coverdale and Davies, 2023), and habitat character-
istics (Vierling et al., 2008; Bakx et al., 2019). Third, lidar
metrics related to vegetation structural variability (e.g. Hstd,
Hskew, and Hkurt) are often influenced by various ecolog-
ical and sensing-methodology-related factors, making them
potentially challenging to interpret (Assmann et al., 2022).
However, metrics representing structural variability are valu-
able inputs for models assessing forest functional diversity
and structural types (Atkins et al., 2023), especially when
combined with optical remote sensing (Kamoske et al., 2022;
Zheng et al., 2021). Thus, careful selection of lidar met-
rics for specific applications is highly recommended. Terrain
and surface descriptors such as DTMs and DSMs (or canopy
height models as derivatives) can be additionally considered
because they are important for forest and habitat classifica-
tions (Shoot et al., 2021), quantifying soil moisture or wet-
ness (Assmann et al., 2022), and analysing species composi-
tion (Toivonen et al., 2023; Hill and Thomson, 2005).

While multi-temporal ALS data offer valuable insights
into fine-scale vegetation structural changes and ecosystem
dynamics, there are also notable challenges, especially when
performing change detection and spatial comparisons across
point clouds with different characteristics, such as point or
pulse density, scanning angle, and varying vertical and hor-
izontal accuracy (White et al., 2016; Kissling et al., 2024a).
Instead of performing change detection directly on point

clouds (Xu et al., 2015; Kharroubi et al., 2022), many studies
use rasterized lidar metrics for monitoring changes in vege-
tation structure. This is computationally less intensive and
better suited for areas with a complex vegetation structure
as it regularizes complex 3D point cloud information onto
a 2D grid (Vastaranta et al., 2013; Choi et al., 2023). Sev-
eral commonly used change detection methods can be ap-
plied to the multi-temporal data with rasterized lidar met-
rics. These include image differencing (i.e. subtracting the
pixel values of one raster layer, such as Hp95 from AHN3,
from the other, such as Hp95 from AHN4), threshold-based
change detection (i.e. classifying the pixels as “changed” or
“unchanged” based on a set threshold after image differenc-
ing), and post-classification comparison (i.e. comparing clas-
sified raster layers, such as maps of vegetation types based on
derived lidar metrics, from different time periods) (Noorder-
meer et al., 2019; Dalponte et al., 2019). These methods can
be applied to the provided AHN data products, especially af-
ter masking water areas, roads, buildings, power lines, and
NA values. Change metrics derived from multi-temporal li-
dar data can also be combined with clustering methods to
characterize areas of structural changes, such as modifica-
tions of forests by the eastern spruce budworm (Trotto et
al., 2024). Together with the development of deep learning
based on change detection (Bai et al., 2023), more in-depth
insights from the presented AHN datasets can be revealed,
enabling accurate and comprehensive analysis of ecosystem
dynamics. Given the consistent coordinate system used in
the four AHN datasets (EPSG: 28992, NAP: 5709; see Ta-
ble 1), additional georeferencing steps are unnecessary be-
fore conducting further analysis with the data products that
we provide. The scan angle, overlapping rate, and vertical
accuracy of AHN2–AHN4 are rather comparable (Table 1),
potentially reducing errors related to systematic differences
across time. Nevertheless, the data products are generated
from point clouds with different point and pulse densities,
which may introduce inconsistencies into capturing vegeta-
tion structure. However, our sensitivity analyses showed that
most of the vegetation metrics calculated at a 10 m resolu-
tion are robust in relation to changes in pulse density, even
when down-sampled to pulse densities of ≤ 4 pulses m−2.
This was largely consistent across different habitat types. Ex-
ceptions are canopy cover (Density_above_mean_z) and the
Shannon index (Entropy_z) and, to a lesser extent, the co-
efficient of variation of vegetation height (Coeff_var), espe-
cially in grasslands and shrublands. Low vegetation (e.g. in
grasslands and dunes) is generally prone to being misclas-
sified as ground points, and a low pulse and point density
can influence normalization and feature extraction. We there-
fore recommend that temporal vegetation changes of < 0.5–
1 m should be carefully explored, e.g. by using the provided
auxiliary data of point density, pulse density, and flight line
timestamp information. Still, several studies indicate that the
spatial distribution of the point cloud remains similar, with
variations in point density, and that increases in point density
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do not necessarily increase area-based estimation accuracy
(Hudak et al., 2012; Fekety et al., 2015; Cao et al., 2016).
We therefore anticipate that the data products from AHN2,
AHN3, and AHN4 are reliable for careful change detection.
However, due to the low point density and reduced accu-
racy, we do not recommend including the data products from
AHN1 in multi-temporal analysis.

All of the software and tools employed in the pipeline for
producing the data products are free and open source, en-
suring a standardized yet flexible processing framework for
country-wide ALS data and enabling reproducibility for fu-
ture surveys. While existing ALS processing software such
as OPALS (Pfeifer et al., 2014) and LAStools (http://lastools.
org/, last access: 24 July 2025) are not (fully) open source
and while others like FUSION (https://forsys.sefs.uw.edu/
fusion/fusionlatest.html, last access: 24 July 2025), Cloud-
Compare (https://www.danielgm.net/cc/, last access: 24 July
2025), and lidR (Roussel et al., 2020) lack horizontal scala-
bility and are not specifically designed for processing large
ALS datasets on cloud infrastructures with reproducible end-
to-end workflows, the employed Laserfarm workflow fills a
niche by addressing these challenges. Laserfarm is a high-
throughput, modular, and reproducible end-to-end workflow
designed for efficiently extracting lidar metrics of ecosys-
tem structure using distributed computing infrastructures
(Kissling et al., 2022). With the workflow materials that we
provide, users can implement additional pre-processing steps
(e.g. splitting, reclassification) and customize required pa-
rameters based on the input ALS data and available com-
puting resources. The demonstrated configurations of IT in-
frastructure, computational cost, and time efficiency for pro-
cessing multi-temporal AHN datasets serve as a reference for
users to estimate the processing requirements for future na-
tional or regional ALS datasets. It is worth noting that the
normalization method implemented in the Laserfarm work-
flow subtracts the elevation of the lowest point within a given
neighbourhood to remove the influence of the terrain. This
approach was specifically chosen for its effectiveness in han-
dling small ditches and canals that are common in the Dutch
landscape, providing a straightforward way to generate pos-
itive height values after normalization. However, it may be
less suited to capturing continuous normalized height values
and fine-scale terrain variability in smaller grid cells (< 1 m)
(Kissling et al., 2022). For complex terrains and mountainous
areas, both ground classification and terrain model derivation
remain challenging and could lead to uncertainties in the gen-
eration of vegetation structure properties.

The data products presented here also make a great con-
tribution to multi-source data fusion in remote sensing and
ecological research (Ghamisi et al., 2019). Through the two
use cases discussed in Sect. 4, we demonstrate the utility
of these multi-temporal datasets for monitoring long-term
forest dynamics and characterizing habitat types. These ap-
plications can be further extended to other studies, such as
for improving land cover classification accuracy, particularly

for objects composed of similar vegetation (e.g. grasslands,
shrubs, and trees). Moreover, the fusion of vegetation struc-
tural information from lidar, spectral data from optical re-
mote sensing (e.g. high-resolution digital aerial photogram-
metry, Landsat and Sentinel-2 imagery), climate data, and
field measurements underscores the value of integrating com-
plementary remote sensing data across diverse applications.
These include wildlife habitat characterization (Boelman et
al., 2016), tree species identification (Shi et al., 2018b), for-
est structure and carbon stock mapping (Li et al., 2024),
and assessing disturbances to and the recovery of ecosystem
processes (Li et al., 2023). Additionally, combining ecosys-
tem structure data from multiple lidar platforms, such as ter-
restrial, drone-based, airborne, and spaceborne lidar, could
provide a more comprehensive understanding of ecosystem
structure, spanning from the understorey to canopy level and
across local plots to the national or continental level.

6 Data availability

All data products from AHN1–AHN4 (25 GeoTIFF lay-
ers for each AHN dataset), six DTM and DSM lay-
ers (for AHN2–AHN4), seven masks (two for roads,
water surfaces, and buildings from both AHN3 and
AHN4; one for power lines generated from AHN4; and
four for NA values for AHN1–AHN4), four point den-
sity layers (for AHN1–AHN4), two pulse density lay-
ers (for AHN3–AHN4), and two flight timestamp layers
(for AHN3–AHN4) are available from a Zenodo repos-
itory (https://doi.org/10.5281/zenodo.13940846, Shi et al.,
2025a). The data used for the demonstrated use cases are also
provided in the same repository. A detailed description of the
provided data can be found in the README file in the data
repository.

7 Code availability

The code that generates the data products from AHN1–
AHN4 and their auxiliary data, as well as the two use cases,
can be found at https://doi.org/10.5281/zenodo.15579064
(Shi et al., 2025b).

8 Conclusions

Ecosystem structure information derived from country-wide
ALS data is becoming increasingly necessary for biodiver-
sity science and ecosystem research and monitoring. The
multi-temporal data products of ecosystem structure and the
employed workflow presented here not only provide ready-
to-use information for ecosystem monitoring and modelling
within the Netherlands but also enable the reproduction of
the desired data products from existing and upcoming large-
scale ALS data beyond the Netherlands. We highlight the ca-
pability of multi-temporal ALS data products in capturing
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ecosystem structural dynamics across time and their usabil-
ity in combination with other data sources. We also carefully
evaluated the limitations and usability of the generated data
products and provided solutions and/or recommendations for
future processing and usage. We envisage that the provided
data products and the employed workflow will empower a
wider use and uptake of ecosystem structure information in
biodiversity and ecosystem science, land management, nat-
ural resource conservation, and policy support and decision-
making.

Appendix A

The source information about Natura 2000 sites was re-
trieved from the Europe Environment Agency (Natura 2000
(vector) – version 2021). The shapefile of the Natura 2000
sites and the attributes of each site that we used for the analy-
sis were downloaded via https://sdi.eea.europa.eu/datashare/
s/JWt9KJCFMrPQDc7/download (last access: 24 July
2025). The information on the habitat class (from the ta-
ble named “Natura2000_end2021_HABITATCLASS.csv”)
was used to group them into five habitat types (i.e. dunes,
marshes, shrublands, grasslands, and woodlands). The table
contains the following information: description of the habi-
tat class, habitat code, site code, and percentage of habitat
composition within the site.

We first selected all of the Natura 2000 sites within the
Netherlands (i.e. SITECODE starting with NL) and then
summarized the highest percentage of habitat class within
each site and grouped them into six main habitat types: water,
dunes, marshes, shrubland, grassland, and woodland. For wa-
ter, we included marine areas, sea inlets (habitat code: N01),
tidal rivers, estuaries, mud flats, sand flats, lagoons (habi-
tat code: N02), and inland waterbodies (habitat code: N06).
For dunes, we included coastal sand dunes, sand beaches,
and machair (habitat code: N04). For marsh, we included
bogs, marshes, water-fringed vegetation, and fens (habitat
code: N07) and salt marshes, salt pastures, and salt steppes
(habitat code: N03). For shrubland, we included heath, scrub,
maquis and garrigue, and phygrana (habitat code: N08).
For grassland, we included dry grassland, steppes (habitat
code: N09), humid grassland, mesophile grassland (habitat
code: N10), and improved grassland (habitat code: N14).
For woodland, we included broadleaved deciduous wood-
land (habitat code: N16), coniferous woodland (habitat
code: N17), evergreen woodland (habitat code: N18), and
mixed woodland (habitat code: N19). For each Natura 2000
site, the habitat type with the highest composition percent-
age was chosen as the dominant habitat. In total, there were
197 Natura 2000 sites within the Netherlands, including
36 water sites, 25 dune sites, 23 marsh sites, 17 shrubland
sites, 54 grassland sites, and 42 woodland sites. For our
study, we excluded water sites for the vegetation structure
analysis (remaining: 161 sites in total). For each habitat type,

Figure A1. Natura 2000 sites and their habitat types in the Nether-
lands. The non-water habitat types were grouped into five classes
(i.e. dunes, marshes, grasslands, shrublands, and woodlands) to con-
duct vegetation structure comparisons. For each class, we randomly
sampled 100 plots (10 m× 10 m each) where Hp95 was not NA (as-
suming that vegetation occurs in the plots) for the analysis (n= 500
in total).

we randomly selected 100 sample plots (10 m× 10 m for
each plot, i.e. 500 plots in total) where Hp95 is not NA (as-
suming that vegetation occurs in the plots) using the sam-
pleRandom( ) function in R (Fig. A1). The shapefile of the
500 sample plots across the Natura 2000 sites was then used
to extract the pixel values of the lidar metrics for comparison.

The shapefile of the Natura 2000 sites within the Nether-
lands (with habitat class information in attributes), 100 sam-
ple plots for each habitat class, original and grouped habitat
class information (.csv files), and the R processing script are
provided in the data repository (see Sect. 6) and the code
repository (see Sect. 7).
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Appendix B

Figure B1. Robustness of vegetation metrics in dune habitats. A total of 25 lidar metrics (blue: vegetation height metrics, green: vegetation
cover metrics, orange: vegetation structural variability metrics) were calculated with different pulse densities across 100 plots of 10× 10 m
resolution in dune habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time from the original
AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. one-half and one-quarter of the pulse density of AHN3
to represent AHN2 and AHN1, respectively). Boxes represent the interquartile range, horizontal red lines represent the medians, whiskers
extend to the 5th and 95th percentiles, and outliers are plotted as dots. See Table 3 for metric explanations.
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Figure B2. Robustness of vegetation metrics in marsh habitats. A total of 25 lidar metrics (blue: vegetation height metrics, green: vegetation
cover metrics, orange: vegetation structural variability metrics) were calculated with different pulse densities across 100 plots of 10× 10 m
resolution in marsh habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time from the original
AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. one-half and one-quarter of the pulse density of AHN3
to represent AHN2 and AHN1, respectively). Boxes represent the interquartile range, horizontal red lines represent the medians, whiskers
extend to the 5th and 95th percentiles, and outliers are plotted as dots. See Table 3 for metric explanations.
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Figure B3. Robustness of vegetation metrics in grassland habitats. A total of 25 lidar metrics (blue: vegetation height metrics, green:
vegetation cover metrics, orange: vegetation structural variability metrics) were calculated with different pulse densities across 100 plots of
10× 10 m resolution in grassland habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time
from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. one-half and one-quarter of the pulse density
of AHN3 to represent AHN2 and AHN1, respectively). Boxes represent the interquartile range, horizontal red lines represent the medians,
whiskers extend to the 5th and 95th percentiles, and outliers are plotted as dots. See Table 3 for metric explanations.
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Figure B4. Robustness of vegetation metrics in shrubland habitats. A total of 25 lidar metrics (blue: vegetation height metrics, green:
vegetation cover metrics, orange: vegetation structural variability metrics) were calculated with different pulse densities across 100 plots of
10× 10 m resolution in shrubland habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time
from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. one-half and one-quarter of the pulse density
of AHN3 to represent AHN2 and AHN1, respectively). Boxes represent the interquartile range, horizontal red lines represent the medians,
whiskers extend to the 5th and 95th percentiles, and outliers are plotted as dots. See Table 3 for metric explanations.
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Figure B5. Robustness of vegetation metrics in woodland habitats. A total of 25 lidar metrics (blue: vegetation height metrics, green:
vegetation cover metrics, orange: vegetation structural variability metrics) were calculated with different pulse densities across 100 plots of
10× 10 m resolution in woodland habitats in the Netherlands. Pulse densities were systematically down-sampled based on their GPS time
from the original AHN4 dataset to the pulse density of AHN3 and two lower pulse densities (i.e. one-half and one-quarter of the pulse density
of AHN3 to represent AHN2 and AHN1, respectively). Boxes represent the interquartile range, horizontal red lines represent the medians,
whiskers extend to the 5th and 95th percentiles, and outliers are plotted as dots. See Table 3 for metric explanations.
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Appendix C

C1 Background

Since the methods and/or algorithms used in the pre-
classification of the AHN datasets are unclear (no spe-
cific documents or information are publicly available) and
because differences in pre-classification methods between
AHN datasets can potentially lead to some biases in vege-
tation change detection (Fareed et al., 2023; Wu et al., 2019),
we performed a preliminary assessment of the effect of ter-
rain filtering on vegetation change detection across AHN
datasets (i.e. AHN2–AHN4).

C2 Study area

The study area for this analysis is in the Amsterdam Wa-
ter Supply Dunes (AWD), which is a 34 km2 dune ecosys-
tem in the west of Amsterdam, stretching 8 km along the
Dutch North Sea coast, with a width varying from 1.5 to
5 km. The AWD area is dominated by various dune habi-
tats, including shifting white dunes, fixed coastal dunes with
herbaceous vegetation, dunes with sea buckthorn forma-
tions, wooded dunes, and humid dune slacks (Kissling et
al., 2024b). Vegetation types include grasses (46 %), scrub-
lands (22 %), forests (21 %), sand (6 %), and other low veg-
etation. To evaluate the impact of varying ground point clas-
sification approaches (for AHN2, AHN3, and AHN4) on de-
rived lidar vegetation metrics, we selected three sample plots
within the AWD area to conduct our analysis. We selected
three sample areas (1 km× 1.3 km each) for this analysis,
and the specific locations of each sample plots are as follows:
area 1 – 52.304127° N, 5.437882° E; area 2 – 52.278998° N,
5.480002° E; and area 3 – 52.289103° N, 5.501239° E.

C3 Methods

First, we computed 25 lidar-derived vegetation metrics using
the pre-classified AHN datasets (“unclassified” class) as in
the main text. Second, we applied a filtering algorithm with
identical parameter settings to the original multi-temporal
AHN point clouds to reclassify the terrain and vegetation
points consistently across AHN2–AHN4. We then derived
the same 25 lidar metrics using the reclassified data, follow-
ing the same workflow applied to the pre-classifications. All
lidar metrics were derived and compared at a 10 m resolu-
tion. To further assess the differences in lidar-derived vege-
tation metric change across multi-temporal datasets, we con-
ducted pairwise comparisons between AHN2 and AHN3 and
between AHN3 and AHN4. The differences (delta metrics)
were calculated by subtracting the vegetation metrics of the
earlier datasets from those of the later ones (i.e. subtracting
AHN2 from AHN3 and subtracting AHN3 from AHN4). The
height of non-ground points was normalized using the height
of the lowest point within each 1 m× 1 m grid cell (in line

with the Laserfarm workflow). The resulting vegetation met-
rics were first exported as GeoTIFF files with a 10 m resolu-
tion, after which pixel-wise subtraction was performed.

We used an iterative grid-based filtering approach to seg-
ment terrain (i.e. ground) points from raw lidar point clouds,
enabling efficient separation of vegetation and ground points
in the dune environments. This filtering approach consists of
four steps.

C3.1 Step 1: preprocessing

This step mainly removes the outliers of the original point
cloud of AHN datasets. The statistical outlier removal (SOR)
was employed to remove noise points with the method pro-
posed in Rusu et al. (2008). Suppose that P is a set of
3D points, and, for each query point pquery ∈ P , d is the
mean distance of a query point to its k nearest neighbours.
For all points in P , the mean distance and standard deviation
of the distances of their k nearest neighbours are then deter-
mined. Only those points that have distances that are close to
the mean distance of the closest neighbours are kept, using
Eq. (C1).

P k =
{
pq ∈ P

∣∣ (µk −ασk)≤ d ≤ (µk +ασk)
}

(C1)

Here, α is a density threshold coefficient, and µk and σk are
the mean and standard deviation of the distance from a query
point to its k nearest neighbours. P k is the point set that is
kept, i.e. after removing the outliers.

C3.2 Step 2: grid initialization

The original 3D point cloud of the AHN is divided into a vir-
tual grid layer, starting with a coarse resolution. The indices
of the grids are calculated using Eq. (C2).

ni =
P i −P imin

Sizeig
(i ∈ x,y,z) (C2)

Here, P i denotes the coordinates of a point, and sizeig is the
grid size.

C3.3 Step 3: elevation interpolation

For each grid cell in the bottom layer, elevation Eg is inter-
polated using a distance-weighted average of points within
the grid using Eq. (C3).

Eg =

∑
Ep

(
L
√

2
−Dg

)
∑(

L
√

2
−Dg

) (C3)

Here, L is the grid size, Ep is the elevation of a point, and
Dg is the distance from the point to the geometric centre of
the grid.
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C3.4 Step 4: iterative refinement

The generated grids are iteratively subdivided by halving the
grid size per iteration until reaching the minimum grid size.
The points that exceed a height threshold above the interpo-
lated terrain elevation are classified as vegetation points.

Finally, the original points are classified into terrain
(i.e. ground) point and vegetation point categories. The clas-
sified vegetation and terrain points are applied to the compu-
tation of the lidar vegetation metrics. The parameter settings
in this workflow were minimum grid size (1 m), maximum
grid size (15 m), and height threshold (0.5 m).

C4 Results and conclusions

Our results revealed that the differences between the vegeta-
tion changes generated from point clouds using the AHN pre-
classification and using a consistent terrain-filtering method
across the AHN2–AHN4 datasets are negligible. The only
exceptions were the pulse penetration ratio (PPR), the coeffi-
cient of variation of vegetation height (Coeff_var), and the
Shannon index (Entropy_z), where small differences were
observed (Figs. C1–C3). This analysis thus provides the first
insights into the reliability of the pre-classification of the
AHN datasets when calculating vegetation change. Condi-
tional on those results, we conclude that most lidar met-
rics based on the pre-classifications of AHN (AHN2–AHN4)
datasets are reliable, with only a few vertical variability met-
rics showing a detectable effect of potential differences in
the ground classification methods between AHN2–AHN4
datasets. It should be noted that we conducted this assess-
ment only in the Dutch coastal dunes, and similar assess-
ments can be done across different sites and different habitats
in future studies for a more comprehensive understanding of
this topic.
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Figure C1. Pixel-wise comparisons of lidar-derived vegetation changes from area 1 using the pre-classifications from the AHN2–AHN4
datasets (blue) vs. those using a consistent terrain-filtering method across the three AHN datasets (red). The total number of pixels in area 1
is 13 416 (n= 13416).
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Figure C2. Pixel-wise comparisons of lidar-derived vegetation changes from area 2 using the pre-classifications from the AHN2–AHN4
datasets (blue) vs. those using a consistent terrain-filtering method across the three AHN datasets (red). The total number of pixels in area 2
is 13 416 (n= 13416).
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Figure C3. Pixel-wise comparisons of lidar-derived vegetation changes from area 3 using the pre-classifications from the AHN2–AHN4
datasets (blue) vs. those using a consistent terrain-filtering method across the three AHN datasets (red). The total number of pixels in area 3
is 13 416 (n= 13416).
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