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Abstract. Fire is a key Earth system process, driving variability in the global carbon cycle through CO; emis-
sions into the atmosphere and subsequent CO; uptake through vegetation recovery after fires. Global spatiotem-
porally consistent datasets on burned area have been available since the beginning of the satellite era in the
1980s, but they are sparse prior to that date. In this study, we reconstructed global monthly burned area at a
resolution of 0.5° x 0.5° from 1901 to 2020 using machine learning models trained on satellite-based observa-
tions of burned area between 2003 and 2020, with the goal of reconstructing long-term burned area information
to constrain historical fire simulations. We first conducted a classification model to separate grid cells with ex-
treme (burned area > the 90th percentile in a given region) or regular fires. We then trained separate regression
models for grid cells with extreme or regular fires. Both the classification and regression models were trained
on a satellite-based burned area product (FireCCI51), using explanatory variables related to climate, vegetation
and human activities. The trained models can well reproduce the long-term spatial patterns (slopes =0.70-1.28
and R? =0.69-0.98 spatially), inter-annual variability and seasonality of the satellite-based burned area obser-
vations. After applying the trained model to the historical period, the predicted annual global total burned area
ranges from 3.46 x 10° to 4.58 x 10° km? yr—! over 1901-2020 with regular and extreme fires accounting for
1.36 x 10°-1.74 x 10° and 2.00 x 10°-3.03 x 10° km? yr~!, respectively. Our models estimate a global decrease
in burned area during 1901-1978 (slope = —0.009 x 10 km? yr—2), followed by an increase during 1978-2008
(slope = 0.020 x 10°km? yr=2), and then a stronger decline in 2008-2020 (slope = —0.049 x 10° km? yr=2).
Africa was the continent with the largest burned area globally during 1901-2020, and its trends also dom-
inated the global trends. We validated our predictions against charcoal records, and our product exhibits a
high overall accuracy in simulating fire occurrence (> 80 %) in boreal North America, southern Europe, South
America, Africa and southeast Australia, but the overall accuracy is relatively lower in northern Europe and
Asia (< 50%). In addition, we compared our burned area data with multiple independent regional burned
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area maps in Canada, the USA, Brazil, Chile and Europe, and found general consistency in the spatial pat-
terns (linear regression slopes ranging 0.84—1.38 spatially) and the inter-annual variability. The global monthly
0.5° x 0.5° burned area fraction maps for 1901-2020 presented by this study can be downloaded for free from
https://doi.org/10.5281/zenodo.14191467 (Guo and Li, 2024).

1 Introduction

Fire is an important component of the Earth system (Bow-
man et al., 2009; Bowman et al., 2020), having large impacts
on ecosystems by altering vegetation structure and function
(Bond et al., 2005; Lasslop et al., 2016), and affecting the re-
gional or even global energy budget through changes in sur-
face albedo (Randerson et al., 2006) and aerosol and green-
house gas emissions (van der Werf et al., 2010). Vegeta-
tion recovery after fires also contributes to a legacy carbon
flux into the ecosystem carbon sink (Hudiburg et al., 2023;
Song et al., 2018; Yue et al., 2020). In contrast, fire occur-
rence and spread are controlled by complex factors such as
climatic conditions, vegetation states, ignition foci, anthro-
pogenic activities and their interactions (Andela et al., 2017;
Flannigan et al., 2009; Jones et al., 2022; Senande-Rivera
et al., 2022). Therefore, accurately mapping spatiotemporal
patterns in global burned area is essential for understand-
ing the mechanisms of fire disturbances and quantifying the
global carbon budget and local energy balance (Mouillot et
al., 2014).

Satellites provide direct observations of fire activities (e.g.,
burned area and fire radiative power) (Andela et al., 2017;
Giglio et al., 2006; Luo et al., 2024), but they have limited
temporal coverage because most satellite data are available
for only after the 1980s (Chuvieco et al., 2019). Fire mod-
ules in dynamic global vegetation models (DGVMs) are able
to simulate long-term burned area and interactions with vege-
tation dynamics based on climate conditions and soil proper-
ties (Sitch et al., 2015, 2024), but the spatial resolution at the
global scale is usually coarse due to the coarse resolution of
the input meteorological forcing data, and most models fail
to capture global trends in burned area (Andela et al., 2017;
Hantson et al., 2020). The processes included and the param-
eterizations of fire processes vary widely across fire models,
resulting in a large range of simulated burned area at both the
regional and global scales (Hantson et al., 2020). Consider-
ing the limitations of satellite observations and fire models,
spatiotemporally consistent burned area maps for the 20th
century, trained on present-day observations, are essential for
fire modeling and can serve as publicly available benchmarks
for fire ecology and carbon cycle studies.

A previous study synthesized historical statistics on
burned area and a reconstructed global fire history of the 20th
century at the decadal scale using statistical models and a
prescribed fire probability map from satellites (Mouillot and
Field, 2005). This dataset is valuable since it incorporates
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many historical national fire records, despite being prone to
uncertainties. Machine learning models are now widespread
and constitute appropriate tools to capture non-linearity in
complex systems such as wildfires and have been used to
predict burned area based on climate, fuel conditions and
anthropogenic activities, but the temporal coverage of pre-
dictions is sometimes limited by the input data (Jain et al.,
2020; Joshi and Sukumar, 2021; Li et al., 2023). There have
been attempts to integrate machine learning models to re-
place process-based wildfire models in Earth system mod-
els. Machine learning models also exhibit better performance
than process-based wildfire models even though they heav-
ily depend on the input data that are simulated — often with
substantial uncertainty — by Earth system models (Zhu et al.,
2022). It is challenging for machine learning models to pre-
dict extreme values, because extreme values are often treated
as outliers and are limited by the sample size (Breunig et
al., 2000; Ribeiro and Moniz, 2020). However, extreme fires,
usually defined as fires with an unprecedented scale or in-
tensity (Bowman et al., 2017; Castro Rego et al., 2021; Cun-
ningham et al., 2024), have significantly greater impacts than
regular fires as they release more CO,, altering hydrological
cycles and emitting higher levels of pollutants (Clarke et al.,
2022; Page et al., 2011).

In this study, we produced a global monthly 0.5° x 0.5°
burned area fraction (BAF) dataset for 1901-2020 (Guo and
Li, 2024) using machine learning models based on climate
conditions, vegetation states, population density and land use
data (Table 1). To better capture extreme fires, we developed
a classification model to distinguish grid cells with extreme
or regular fires. To define extreme fires, we used the 90th per-
centile of burned area fractions within a region as the thresh-
old. We then trained separate regression models on grid cells
categorized as having extreme or regular fires. The models
were trained against the satellite-based burned area product
(FireCCI51) for 2003-2020. We then used the models to re-
construct the burned area from 1901 to 2020. In addition to
evaluating the models against satellite observations that were
not used for model training, we also compared our burned
area predictions with charcoal records and other independent
global and regional burned area datasets (Table 2).

2 Methods
The workflow of this study is illustrated in Fig. 1. The

datasets used for extracting predictors and comparisons are
listed in Tables 1 and 2, respectively. We first divided the
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globe into 14 regions (Fig. S1 in the Supplement) following
the Global Fire Emission Dataset (GFED regions) (Giglio et
al., 2006; van der Werf et al., 2017) and conducted machine
learning model training, testing and prediction in each GFED
region individually. The 14 GFED regions were abbrevi-
ated as BONA (Boreal North America), TENA (Temperate
North America), CEAM (Central America), NHSA (North-
ern Hemisphere South America), SHSA (Southern Hemi-
sphere South America), EURO (Europe), MIDE (Middle
East), NHAF (Northern Hemisphere Africa), SHAF (South-
ern Hemisphere Africa), BOAS (Boreal Asia), CEAS (Cen-
tral Asia), SEAS (Southeast Asia), EQAS (Equatorial Asia)
and AUST (Australia and Aotearoa/New Zealand).

2.1 Data preparation

We used data from the satellite-based monthly global burned
area grid product FireCCI51 (2003-2020) (Lizundia-Loiola
et al., 2020) for model training. This dataset was resampled
from the original resolution, 0.25° x 0.25°, to 0.5° x 0.5°.
We excluded all burned pixels overlapping cropland classes
in the CCI land-cover layer provided with FireCCI51
(Lizundia-Loiola et al., 2020) to remove agricultural fires
from our analysis. We used the 90th percentile of burned area
fractions across the 0.5° x 0.5° grid cells within a region as
the threshold for defining extreme fires. This percentile was
chosen based on the previous literature (Bowman et al., 2017;
Cunningham et al., 2024; Lannom et al., 2014). It is high
enough (> 90th) to distinguish moderate from extreme sam-
ples to train separate models for each category. Meanwhile,
it is not too high (e.g., 95th or 99th) in regions with limited
data (such as Europe and the Middle East), ensuring suffi-
cient extreme samples for model training and evaluation. The
monthly distribution of burned area within the 0.5° x 0.5°
grid cells (Fig. S2) shows that if regular and extreme fires are
modeled together (black curves), the abundant moderate val-
ues drown out the extremes (orange curves), causing the to-
tal burned area to be underestimated. We thus first conducted
a classification and then trained separate models for regular
and extreme burned fractions to enhance the representation
of extreme events and improve regression performance. We
used 16 explanatory variables to represent climate, vegeta-
tion and anthropogenic effects on regular and extreme BAF
in machine learning models (Table 1).

Climatic variables, including the daily maximum temper-
ature (Tmax), daily minimum temperature (Tmin), precipita-
tion (Precip) and wind speed (Wind) were directly extracted
and resampled to a monthly time step from CRUJRA v2.2,
a global climate forcing dataset covering the period 1901—
2020 with a 6-hourly temporal resolution and a 0.5° x 0.5°
spatial resolution (Harris et al., 2014, 2020; Kobayashi et
al., 2015). Vapor pressure deficit (VPD) was calculated using
empirical equations (Buck, 1981) based on air temperature,
air pressure and specific humidity data from CRUJRA v2.2 at
the 6 h step and then averaged to the monthly scale. The fire
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weather index (FWI), a numeric rating of fire intensity used
in the Canadian Forest Fire Weather Index System (Wagner,
1987), was calculated using the “cffdrs” package (Wang et
al., 2017) in R programming language (R Core Team, 2024).
Air temperature, relative humidity, wind speed and precipita-
tion were derived from CRUJRA v2.2 at the daily time step,
which was then averaged to monthly.

Variables related to anthropogenic effects include popula-
tion density, land use and land use change fractions. Popu-
lation density was resampled to the 0.5° x 0.5° scale from
HYDES3.2, a global population density dataset with a spatial
resolution of 5 arcmin available from 10 000 BCE to 2015 CE
(Klein Goldewijk et al., 2017). Land use fractions refer to the
area fraction of a certain land use type in each 0.5° x 0.5°
grid cell in the current year, and land use change fractions are
the difference in land use fractions between the current year
and the previous year. We use the area fractions of four land
use types (forest, shrub, natural grass and cropland) from the
ESA CCI land cover maps for 1992-2020 (Li et al., 2018),
and the Land Use Harmonization 2 dataset for the Global
Carbon Budget 2020 (LUH2-GCB2020) for the period be-
fore 1992 (Chini et al., 2021), following the methods used
by Peng et al. (2017). In the land use harmonization pro-
cess, we resampled both ESA CCI and LUH2 datasets to
0.5° x 0.5° and reclassified them into five land use types (for-
est, shrub, natural grass, cropland and others). The above five
land use types were converted from the ESA CCI land-cover
maps based on a cross-walking table (Li et al., 2018). For the
LUH2 dataset, we reclassified land use by summing forested
primary land (primf) and potentially forested secondary land
(secdf), to create a single “forest” category, and by summing
all crop types (c3ann, c3per, c3nfx, c4ann, and c4per) to form
the “cropland” category. To define natural grass and shrub,
we first combined non-forested primary land (primn) and po-
tentially non-forested secondary land (secdn) into a unified
grass + shrub type. We then allocated this combined area to
separate grass and shrub categories based on their propor-
tional distribution. For the period before 1992, the propor-
tional distribution was set the same as ESA CCI land cover in
1992, and for years in the period 1992-2020, the proportional
distribution was set according to the corresponding year of
ESA CCI land cover. The area fraction changes between two
consecutive years in LUH2 were used to extrapolate the land
use fraction in each year before 1992. Therefore, the har-
monized land use maps adopted the inter-annual variability
from LUH2-GCB2020 before 1992, while the absolute area
fractions were based on the ESA CCI maps. Comparisons of
LUH2-GCB2020, ESA CCI maps and the harmonized maps
in this study are shown in Fig. S3. Among the five land use
types, four of them (forest, shrub, natural grass and cropland)
were used as input to the machine learning models.

We used the leaf area index (LAI) in the previous three
months as a proxy for fuel status for the fire activity in the
current month. Global monthly LAI maps in 0.5° x 0.5° grid
cells are resampled from GIMMS LAl4g, a satellite-based
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Figure 1. Workflow of this study.

global LAI dataset available every half-month for 1982-
2020 with a spatial resolution of 5 arcmin (Cao et al., 2023).
After bias corrections, we further generated LAI data for
1901-1981 using the multi-model average LAI from S3 sim-
ulations incorporating dynamic climate, CO; and land use
change by eight DGVMs (EDv3, IBIS, ISAM, LPJ-GUESS,
LPJmL, LPX-Bern, ORCHIDEE, and VISIT) in TRENDY
v11 (Sitch et al., 2024). In the bias correction process, maps
indicating the global monthly LAI difference (defined as
LAI bias) between the GIMMS LAI4g dataset and multi-
model averages from TRENDY v11 were firstly calculated
for 1982-2020, and then machine learning models were uti-
lized to predict the LAI biases for 1901-1981 using 15 vari-
ables (the variables in Table 1 excluding LAI and BAF) af-
ter model training and testing with data covering 1982-2020
(80 % for training and 20 % for testing) in each region. Fi-
nally, the harmonized LAI during 1901-1981 is equal to the
sum of the multi-model average LAI from TRENDY vl11
and the predicted LAI biases. The LAI for 1982-2020 was
directly derived from GIMMS LAI4g. The harmonized LAI
maps therefore adopt the inter-annual and inter-monthly vari-
ability of TRENDY vl11 to extrapolate the temporal cover-
age of GIMMS LAI4g to before 1982. Comparisons of the
LAI from GIMMS LAI4g, TRENDY vl1 and the harmo-
nized data in this study are shown in Figs. S4-S6.

All datasets were aggregated into monthly data with a spa-
tial resolution of 0.5° x 0.5° for the training and prediction
of the machine learning models.
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2.2 Machine learning models

For each region (Fig. S1), we fed BAF as the dependent vari-
able, and the 16 explanatory variables (Table 1) as indepen-
dent variables to build the machine learning models individ-
ually. To better capture extreme fires, we first developed a
random forest classification model to distinguish grid cells
(0.5° x 0.5°) with no BAF, regular BAF or extreme BAF. Ex-
treme fire is usually defined by a percentile threshold of fire
size, fire radiative power or the fire spread rate in a region
(Bowman et al., 2017; Castro Rego et al., 2021; Cunning-
ham et al., 2024). Here, we defined grid cells with extreme
BAF as grid cells with a BAF exceeding the 90th percentile
of all grid cells with fires in each region through the entire pe-
riod (2003-2020). Other grid cells with a BAF greater than
0 were thus treated as grid cells with a regular BAF. To bal-
ance sample sizes across BAF types, we applied a weighting
method in the machine learning classification models. Let the
sample counts for no BAF, regular BAF and extreme BAF be
nl, n2 and n3, respectively. We computed their least com-
mon multiple, M, and assigned weights of M/nl, M/n2 and
M/n3 to each BAF type. After classification, we performed
machine learning regressions separately for grid cells with a
regular or extreme BAF. Grid cells for each category (regu-
lar and extreme) were fed into separate regression models to
estimate the specific BAF value (continuous values).

For the regression model selection, we tested commonly
used machine learning models, including random forest (Tin
Kam, 1995), quantile random forest (Meinshausen, 2006),

https://doi.org/10.5194/essd-17-3599-2025
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Table 1. Explanatory variables used in the machine learning models.

3603

Variables Descriptions Datasets References
Tmax Daily maximum temperature (°C) CRU JRA v2.2 Harris et al. (2014, 2020);
. . .. Kobayashi et al. (2015)
Tmin Daily minimum temperature (°C)
Precip Monthly total precipitation (mm/month)
Wind Wind speed (m s_l)
VPD Vapor pressure deficit (hPa) Calculated based on CRU JRA -
FWI Fire weather index v2:2
Popd Population density (individuals km2) HYDE3.2 Klein Goldewijk et al. (2017)
LAI Leaf area index in the previous months TRENDY vl11 Cao et al. (2023); Sitch et al.
GIMMS LAl4g (2024)
Forest Fraction of certain land use type in 0.5° x 0.5° grid LUH2-GCB2020 Chini et al. (2021); Li et al.
cells in each year CCI PFT map (2018)
Shrub
Natural
Grass
Cropland
Aforest Fraction difference of certain land use type in
Ashrub 0.5° x 0.5° grid cells between the previous year and
the current year
Anatural
grass
Acropland
BAF Burned area fraction in 0.5° x 0.5° grid cells ex-  FireCCI51 Lizundia-Loiola et al. (2020)

cluding burned area on cropland

gradient boosting (Friedman, 2001) and extreme gradient
boosting (Chen and Guestrin, 2016), and a deep learning ar-
chitecture called long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) in NHAF and BOAS.
We chose NHAF as the testing region because its annual
total burned area dominates the global annual total burned
area. Further, our preliminary tests severely underestimated
the annual total burned area in NHAF, and thus we aimed
to improve model performance in NHAF by testing differ-
ent machine learning models. In this test, we took only one
year’s data (2010) and split it into the training set (80 %)
and the testing set (20 %). In addition, we selected BOAS as
another testing region because this region experiences regu-
lar fires but has different climatic and vegetation conditions
from NHAF. In this test, we took only one year’s data (2010)
and split it into the training set (80 %) and the testing set
(20 %). It turned out that LSTMs have the best performance
(Figs. S7, S8, S10h, S11h) for regression with a memory win-
dow of three months. LSTMs consist of three gated mem-
ory cells (input gate, forget gate and output gate) that enable
the integration of input data over long time series (Hochre-
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iter and Schmidhuber, 1997), exhibiting good performance
on extreme events (e.g., precipitation or floods) (de Sousa
Aratjo et al., 2022; Nearing et al., 2024). All machine learn-
ing models were built using the “scikit-learn” (Pedregosa et
al., 2011) and “pytorch” (Paszke et al., 2019) packages in
Python.

In addition to the 16 explanatory variables in Table 1, we
conducted sensitivity tests by incorporating lightning (Ka-
plan and Lau, 2021) and terrain information (Danielson and
Gesch, 2011) in each region (Sect. S3 in the Supplement)
to assess whether these variables can help improve model
performance. We also tested other variables in NHAF (e.g.,
gross domestic product, GDP; human development index,
HDI; livestock density; road density; tree cover; and forest
aboveground biomass) (Fig. S9), but they were excluded ei-
ther using recursive feature elimination cross-validation (i.e.,
negligible contributions to the model) or due to the limited
time span (i.e., not covering the entire 20th century and diffi-
cult to extrapolate). The recursive feature elimination cross-
validation was applied to prevent model performance degra-
dation if irrelevant features were added (Guyon and Elisse-

Earth Syst. Sci. Data, 17, 3599-3618, 2025
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eff, 2003). Moreover, reducing the feature set could enhance
model interpretability and conserve computational resources
(Lundberg et al., 2020).

For the model parameterizations, the time step length was
set to three consecutive months (the previous two months and
the current month) in LSTMs to predict the current month’s
regular or extreme BAF. We randomly split the data over the
period of 20032020 into five folds, using one fold (20 %) as
the testing set and the remaining four folds as the training set
(80 %). This process was looped for each of the five folds. We
then used the training set to train the models and the testing
set to evaluate model performance. We optimized the model
parameters according to the principle of minimum Gini im-
purity for the classification model and minimum mean square
error loss for the regressions. We optimized model hyperpa-
rameters using a grid search with five-fold cross-validation.
For the random forest classifiers, we tuned “max_depth” and
“n_estimators”’; for the LSTM regressors, we tuned “hid-
den_sizes”, “learning_rate” and “epochs”. All combinations
of these parameter values were used to retrain the models,
and performance was evaluated on each held-out fold using
coefficient of determination, slope, and rooted mean squared
error. The combination yielding the best average metrics
across folds was selected as optimal.

After determining the optimal model parameters, we con-
ducted the model evaluation using a leave-one-year-out
method in addition to the five-fold evaluation method in the
model parameterization process. Specifically, for the period
2003-2020 in each region, we excluded one year’s data and
used data from the remaining years to train the models. The
data from this year were then compared with the models’ pre-
dictions for this year. This procedure was repeated for each
year during 2003-2020. The SHapley Additive exPlanations
(SHAP) value, representing the explainable contributions of
features and their interactions in machine learning models,
was calculated with the “shap” package (Lundberg et al.,
2020) using TreeExplainer and DeepExplainer for the ran-
dom forest classification models and LSTMs, respectively,
in Python.

The machine learning models with optimal parameters
from the five-fold evaluation process were finally used to
predict global monthly BAF maps for 1901-2020. For the
time series of annual total burned area, we conducted break-
point detections and linear regressions for each segment. The
number of breakpoints were identified using the Bayesian
optimization function in the “GPyOpt” package (Javier Gon-
zalez, 2016), and linear regressions for each segment were
conducted using the PiecewiseLinFit function in the “pwlf”
package (Jekel and Venter, 2019) in Python.

2.3 Other fire datasets used for comparison

We used two databases of charcoal records, the Global Char-
coal Database v4 (Power et al., 2010) and the Reading Palae-
ofire Database (Harrison et al., 2022) (D1 and D2 in Table 2),
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to evaluate the models’ prediction accuracy of fire occur-
rence from 1901 to 2020. Fire occurrence in a certain grid
cell refers to its BAF being greater than 0, and we defined
the prediction accuracy (%) for each site as the number of
charcoal records that match our predicted fire occurrence di-
vided by the total number of charcoal records multiplied by
100 %. Note that the charcoal age reported in both databases
is associated with uncertainties, but only the Reading Palae-
ofire Database provides age uncertainties for some records.
We thus calculated the average uncertainty across records
with reported age uncertainties for 1901-2020 in the Read-
ing Palaeofire Database and assigned this average uncertainty
(3 years after rounding) to those records without reported un-
certainties in both databases. For a given charcoal record,
if there is a predicted fire occurrence in the same grid cell
within the time span of the uncertainty age range, it is con-
sidered as a correct prediction.

In addition to the charcoal records databases, we compared
our predicted burned area with burned area datasets in differ-
ent countries or regions that cover more than 10 years (Ta-
ble 2). Fire history reconstruction (D3 in Table 2) by Mouil-
lot and Field (2005) is a global annual gridded (1° x 1°)
burned area dataset for the 20th century produced based on
regional burned area statistics. The datasets by the State Gov-
ernment of Australia (D11-D14 in Table 2) include wildfires
and prescribed burns, mainly consisting of bureau statistics
and missing data before the satellite era and satellite-based
data thereafter. The remaining polygon and raster datasets
(burned area products across the globe and in Canada, the
USA, Brazil, Chile and Europe) listed in Table 2 are all
satellite-based. We converted the polygon data to raster data
at a spatial resolution of 30 m and resampled all raster data
to 0.5° x 0.5°. Then, we calculated the time series of annual
and monthly total burned area in each region and globally.
We also derived the spatial pattern averaged over all years of
the reported period for each dataset.

3 Results

3.1 Model performance

In the optimization of model parameters (Sect. 2.2), the input
data was randomly split into 80 % for training and 20 % for
testing. Based this test subset, the overall accuracy of our ran-
dom forest classification models range from 87.8 % to 97.7 %
in the 14 regions. The ranges of AUC (area under the receiver
operating characteristic curve, with values ranging between
0 and 1, and a higher values indicating better model perfor-
mance) are 0.885-0.972 and 0.917-0.989 for grid cells with
regular BAF and extreme BAF, respectively (Table S1 in the
Supplement). Based on the testing samples, the slopes of the
linear regression between the predicted and observed regu-
lar BAF across all grid cells in each region range from 0.42
to 0.96, and the coefficients of determination (R?) range be-
tween 0.60 and 0.95 (Fig. S10). The slopes for the extreme

https://doi.org/10.5194/essd-17-3599-2025
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Table 2. Charcoal and burned area datasets used for comparison.

3605

No.  Datasets Spatial Resolution Temporal Source
Resolution
D1 Global Charcoal Database Global, site B.P. 21 000-years https://cran.r-project.org/web/
packages/GCD/index.html (last access:
18 April 2024)
D2 Reading Palacofire Database Global, site B.P. 56 000-years Harrison et al. (2022)
D3 Fire history reconstruction for the Global, 1° x 1° 1900-1999, annual ~ Mouillot and Field (2005)
20th century
D4  FireCCILT11 Global, 1982-2018, Otén et al. (2021)
0.05° x 0.05° monthly
D5 Global Annual Burned Area Maps Global, 30 m 1985-2020, annual ~ Long et al. (2019)
(GABAM)
D6 Monitoring Trends in Burn USA, polygon 1984-2022, daily Eidenshink et al. (2007)
Severity
D7 MapBiomas Fire Collection Brazil, 30 m 1985-2020, annual  https://brasil. mapbiomas.org/en/
mapbiomas-fogo/ (last access:
5 November 2022)
D8 Canadian National Burned Area Canada, polygon 1986-2022, daily https://cwfis.cfs.nrcan.gc.ca/datamart
Composite (last access: 10 April 2024)
D9 European Forest Fire Information Europe, polygon 1980-2020, daily https:
System /[forest-fire.emergency.copernicus.eu
(last access: 28 August 2023)
D10  Occurrence of Wildfires by Time Chile, polygon 1985-2020, annual ~ Chilean National Forest Service
Range (CONAF)
D11 NPWS Wildfires and Prescribed New South Wales, 1935—present, https://data.nsw.gov.au/data/dataset/fire-
Burns polygon annual history-wildfires-and-prescribed-burns-
1e8b6 (last access:
14 April 2024)
D12  Fire history — Queensland Parks Queensland, 1937—present, https://qldspatial.information.qld.gov.
and Wildlife Service polygon annual au/catalogue/custom (last access:
14 April 2024)
D13  Bushfires and Prescribed Burns South Australia, 1950—present, https://data.sa.gov.au/data/dataset/
History of South Australia polygon annual fire-history (last access: 14 April 2024)
D14 DPCA Fire History of Western Western Australia, 1926—present, https://catalogue.data.wa.gov.au/

Australia

polygon

annual

dataset/dbca-fire-history (last access:
14 April 2024)

BAF are in the range 0.43-0.96, and R? is between 0.58 and
1 (Fig. S11).

In the model evaluation based on the leave-one-year-out
method, the multi-year (2003—-2020) mean BAF between ob-
servations (FireCCIS1) and our prediction is spatially consis-
tent in general. There is a strong spatial correlation between
observations and predictions at the global scale, with a R?
of 0.97 and a linear slope of 0.97. For all the regions, R>
ranges from 0.69 to 0.98, and slopes range from 0.70 to 1.28
(Fig. 3a—0), which indicates that the trained models can well

https://doi.org/10.5194/essd-17-3599-2025

reproduce the spatial patterns of burned area. Still, some re-
gions show mismatches, especially in the tropics (Fig. 2a-b).
Our predictions tend to overestimate BAF in the southeastern
regions in South America (Figs. 2a, 3f) and in the southern
part of Africa; however, they underestimate BAF in North
Africa (Figs. 2a, 3i). Notably, the relative difference between
predictions and observations is small in these regions. BAF in
boreal North America and boreal Asia is also partially under-
estimated by our predictions (Figs. 2a, 3b, k). Large relative
differences exist in the boreal regions compared with obser-
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Figure 2. Multi-year (2003-2020) averaged burned area differ-
ence between our predictions by the leave-one-year-out method and
FireCCI51 observations (predictions minus observations). (a) Map
of the burned area fraction (BAF) difference in each 0.5° x 0.5° grid
cell. The BAF difference is the ratio of the burned area difference
to the total grid area within each 0.5° x 0.5° cell, making it unitless
and bounded between O and 1. (b) Latitudinal sum of the burned
area difference using the BAF difference map from (a) multiplied
by the area of each 0.5° x 0.5° grid cell. Both absolute (solid line)
and relative (dashed line) differences are shown.

vations (Fig. 2b) due to the smaller absolute burned area than
in the tropical regions. Additionally, the relative differences
within 40-60° S fluctuate due to the small number of land
grid cells with fire occurrence (Fig. 2b).

The interannual variabilities in global total burned area in
2003-2020 between the predictions and observations are in
a good agreement at the global scale and within each region
(Fig. S12). R? for the temporal regressions of the global to-
tal burned area between predictions and observations is 0.88,
and it ranges from 0.43 to 0.99 across regions. The linear
slope is 0.79 for the global total burned area, and its range
is 0.54—1.24 across regions. The model can also well cap-
ture the seasonality of burned area in each region (Figs. S13,
S14).

3.2 Variable importance for predicting burned area

We also analyzed variable importance based on the SHAP
values for the burned area prediction. In terms of similarities
in variable importance between the classification and regres-
sion models, fire weather index (FWI) and leaf area index
(LAI) in the previous months are among the most important
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variables in most regions, while the land use change fraction
between the previous year and the current year (Afraction)
has low importance in all regions.

In the classification models built for distinguishing grid
cells with no fire, regular BAF or extreme BAF (Fig. 4a),
FWI and LAI, indicating climatic conditions and vegetation
status, respectively, are the two most important predictors
across the globe. Vapor pressure deficit (VPD) and daily
maximum temperature (Tmax) are the most important cli-
matic factors in boreal regions (BONA and BOAS). The area
fractions of natural grass and cropland rank in the top 5 in
MIDE, NHAF, CEAS and EQAS. The contribution of precip-
itation (Precip) is high in the tropical regions (NHSA, NHAF,
SHAF and EQAS). Wind speed (Wind) is consistently not
essential in all regions. The importance of population den-
sity (Popd) remains low in most regions except in EURO and
CEAS.

In the regression models predicting regular BAF and ex-
treme BAF (Fig. 4b, c), the contribution of FWI is more sig-
nificant in predicting extreme BAF than regular BAF, while
Tmax, VPD and LAI in the previous months are more cru-
cial in predicting regular BAF than extreme BAF. Popd con-
sistently shows a low contribution in predicting both regular
BAF and extreme BAF. The cropland area fraction makes
the largest contribution in NHAF and CEAS in predicting
regular BAF, and forest area fraction is the most important
variable for predicting extreme BAF in BONA and SEAS.
Additionally, the shrub area fraction ranks in the top 5 for
predicting extreme BAF in NHAF, SHSA and AUST.

3.3 Predicted burned area

The predicted annual global total burned area from 1901 to
2020 ranges from 3.46 x 10° to 4.58 x 10 km? yr~!, with
regular and extreme burned area accounting for 1.36 x 10°—
1.74 x 10% and 2.00 x 10°-3.03 x 10 km? yr~!, respectively
(Figs. S15a, S16a). In comparison, the global total burned
area from FireCCI51 is in the range of 3.43 x 10°-4.58 x
10°km? yr—! over 2003-2020 (1.43 x 10°-1.71 x 10° and
1.99 % 10°-2.98 x 10 km? yr~! for regular and extreme fires)
(Figs. S15a, S16a). Breakpoint detection shows three seg-
ments with two breakpoints around 1978 and 2008 globally
(Fig. 5a). Global total burned area decreased from 1901 to
1978 (slope = —0.009 x 10% km? yr—2), increased from 1978
to 2008 (slope = 0.020 x 10° km? yr—2) and then decreased
again from 2008 to 2020 (slope = —0.049 x 10° km? yr—2)
(Fig. 5a). Extreme burned area mainly contributed to the
above trends, with global total extreme burned area decreas-
ing from 1901 to 1978 (slope = —0.007 x 10° km? yr—2), in-
creasing from 1978 to 2008 (slope =0.019 x 10° km? yr=2)
and decreasing again from 2008 to 2020 (slope = —0.047 x
10% km? yr‘z) (Figs. S16a, S17a). Northern Hemisphere
Africa (NHAF) and Southern Hemisphere Africa (SHAF)
are the top two regions with the largest annual total burned
area. The annual total burned area of NHAF is in the range
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Figure 3. Scatter plots of the multi-year (2003-2020) averaged burned area fraction (BAF) in each 0.5° x 0.5° grid cell from predictions
by the leave-one-year-out method and FireCCI51 observations for each region (a—0). Dots represent grid cells with BAF > 0 averaged over
2003-2020. N, R2, slope, p and RMSE, respectively, represent the number of grid cells with multi-year averaged BAF > 0, coefficient
of determination, linear slope, p-value for linear correlation and rooted mean squared error between the BAF from our predictions and
observations. BAF is the ratio of burned area to total grid area within each 0.5° x 0.5° cell, making it unitless and bounded between 0 and 1.

of 0.97 x 10°-1.90 x 10°km2 yr~!, and it increased from
1901 to 1922 (slope = 0.005 x 10 km? yr=2), declined from
1922 to 1957 (slope = —0.008 x 10% km? yr—2) and then de-
clined more slowly from 1957 to 2020 (slope = —0.004 x
10 km? yr—2) (Fig. 4i), dominated by extreme burned area
(Figs. S16i, S17i). The annual total burned area of SHAF
is in a similar range (1.15 x 10°-1.87 x 10® km? yr=!) as
NHAF, and it also shows a similar decreasing trend from
1901 to 1979 (—0.004 x 10° km? yr~2). However, it turned
into an increasing trend from 1979 to 2011 (slope =0.011 x
10 km? yr—2) and then decreased again from 2011 to 2020
(slope = —0.019x 10 km? yr—?2) (Fig. 5j), dominated by reg-
ular burned area (Figs. S16j, S17j). Therefore, the global
burned area trends (Fig. 5a) are predominantly controlled by
the trends in SHAF (Fig. 5j).

The total burned area in other tropical regions such as
southern hemisphere South America (SHSA) and equatorial
Asia (EQAS) is lower than that in Africa. The annual total
burned area in SHSA is dominated by extreme burned area

https://doi.org/10.5194/essd-17-3599-2025

(Fig. S17f) and varies from 0.09 to 0.66 x 10® km? yr~!. It in-
creased from 1901 to 1962 (slope =0.001 x 10° km? yr—2),
decreased with a slope of —0.002 x 10° km? yr~2 from 1962
to 1974 and then increased from 1974 to 2020 (0.004 x
10° km? yr—2) (Fig. 5f). The annual total burned area in
EQAS, dominated by extreme burned area (Fig. S17n),
ranges from 0.002 x 10° to 0.018 x 10 km? yr~!, but no sig-
nificant trends were detected. In the boreal regions, the trends
in annual total burned area are different between boreal North
America (BONA) and boreal Asia (BOAS). The annual total
burned area increased at 0.0003 x 10° km? yr=2 from 1901
to 1929, but it decreased at —0.0002 x 10° km? yr=2 from
1927 to 2017 in BONA (Fig. 5b). By contrast, it decreased at
—0.0006 x 10°km? yr~2 from 1901 to 1941 but increased at
0.0009 x 106 km? yr—2 from 1941 to 1997 in BOAS (Fig. 5k).
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gion.

3.4 Comparison with charcoal records and other burned
area datasets

Two charcoal databases, Global Charcoal Database and
Reading Palaeofire Database, were applied to calculate the
overall accuracy (%) of the predicted fire occurrence. The
overall accuracy of the two databases is 41.4 % £23.8 % and
33.0% £ 15.3 % (average and standard deviation of the ac-
curacy values for 1901-2020), respectively (Fig. 6¢). Spa-
tially, the number of sites in the Reading Palaeofire Database
(Fig. 6b) is larger than that in the Global Charcoal Database
(Fig. 6a). Sites with high accuracy (> 80 %) are mainly
located in boreal North America, southern Europe, South
America, Africa and southeast Australia (Fig. 6a, b). How-
ever, sites in northern Europe and Asia have relatively lower
accuracy (< 50 %). In addition, Global Charcoal Database
exhibits a significant increasing trend in global accuracy
from 1901 to 2020, indicating better model performance in
the recent period (Fig. 6¢).

We further compared our predicted burned area with inde-
pendent burned area datasets at the global and regional scale
(Table 2). Significant trends in the annual total burned area
in different regions from various datasets are summarized in
Table S2.
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At the global scale, we first compared our predictions with
FireCCILT11, a satellite-based burned area dataset available
monthly from 1982 to 2018 (1994 was missing) (Otén et
al., 2021). Spatially, our predicted multi-year average BAF
is lower than that reported by FireCCILT11 in regions such
as CEAS, SEAS, Africa and the southern part of Australia
(Fig. 7a). Consequently, the global and regional annual to-
tal burned area from our predictions is lower than that from
FireCCILT11 (Fig. 8a—0). The global annual total burned
area from our predictions ranges from 3.61 x 10° to 4.58 x
10 km? yr~! during 1982-2018, compared to 4.09 x 10°—
5.18 x 106 km? yr—! from FireCCILT11 over the same pe-
riod. Significant linear trends were detected in the time se-
ries of annual total burned area from FireCCILT11 at the
global scale and in CEAM, SHSA, MIDE, NHAF, SHAF and
CEAS, and the trends are generally comparable to our pre-
dictions (Table S2). It should be noted, however, that signifi-
cant orbit-drift artifacts may cause biases in the FireCCILT11
product over numerous large spatial patches almost on every
continent except Antarctica (Giglio and Roy, 2022, 2024),
and, thus, these comparisons should be interpreted with cau-
tion, especially in the tropics.

Next, we also compared our predictions with Global An-
nual Burned Area Maps (GABAM) (Long et al., 2019), a
satellite-based burned area dataset available almost annu-
ally from 1985 to 2020 except for 1986, 1988, 1990, 1991,
1993, 1994, 1997 and 1999. Spatially, our predicted multi-
year average BAF is higher than that in GABAM, mainly
in the tropical regions (most Africa, Amazon and northern
part of Australia) (Fig. 7b). This is because GABAM was
produced from Landsat imagery, which has a lot of miss-
ing data in the tropics and thus underestimated burned area
in these regions (Long et al., 2019; Pessoa et al., 2020).
For 1985-2020, the global annual burned area from our pre-
dictions ranges 3.61 x 10°—4.58 x 10% km? yr—! compared to
0.77 x 10°-4.90 x 10° km? yr~! from GABAM. Regionally,
annual total burned area from GABAM is consistent with our
predictions for BONA, TENA, CEAM and EQAS (Fig. 8b—d,
n), but it is much higher for EURO and MIDE (Fig. 8g, h). As
a global dataset, neither evidence of active fires nor region-
specific algorithms was taken into consideration in GABAM,
which could also introduce uncertainty in burned area detec-
tion (Long et al., 2019).

We further compared our predictions with the fire recon-
struction dataset by Mouillot and Field (2005) based on re-
gional statistics. The multi-year average BAF from our pre-
dictions is lower than that from Mouillot and Field (2005)
in the southeastern USA, SHSA, NHAF, India and Aus-
tralia, but it is higher in SHAF and BOAS (Fig. 7c). The
range of global annual total burned area during 1901-1999 is
3.46 x 10°~4.51 x 10 km? yr~! from our predictions, com-
pared to 3.80 x 10°~7.23 x 10% km? yr~! from Mouillot and
Field (2005) (Fig. 8a). At the global scale, annual total
burned area increased by 0.020 x 10®km?yr—2 in 1978-
2008 from our predictions and by 0.041 x 10°km? yr—2
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in 1972-1997 according to predictions from Mouillot and
Field (2005), respectively (Fig. 8a). Annual total burned area
from our predictions and Mouillot and Field (2005) exhibit
similar trends in some regions. For example, the decreasing
trend in annual total burned area in BONA during 1929-2017
from our predictions (Fig. 5b) is consistent with the trend
during 1920-1965 from Mouillot and Field (2005) (Figs. 5b,
8b). In SHSA, similar increasing trends were detected during
1974-2020 from our predictions and during 1973-1999 from
Mouillot and Field (2005) (Figs. 5f, 8f).

Comparing with the regional burned area datasets in
Canada, the US (continental USA and Alaska), Brazil, Chile
and Europe, the predictions generally reproduce the inter-
annual variability of the total observed burned area (Fig. 9a—
f). The slopes of the multi-year average burned area be-
tween our predictions and regional datasets range from 0.84
to 1.38, suggesting that they are in a good agreement spatially
(Fig. 9k—p). Especially in Brazil and Chile, our predictions
are highly consistent with the burned area from MapBiomas
(D7, Table 2) and CONAF (D10, Table 2), respectively, based
on the data from Landsat satellites, even in the period before
2000 when no burned area observations were used to train
our models (Fig. 9d, e).
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Our predicted burned area is higher than that from the re-
gional datasets in the US and Europe before 2000 (Fig. 9b,
f), probably because our model only included anthropogenic
factors such as land use, land use change and population den-
sity, while fire management practices in these regions such
as suppression were not explicitly included (Table 1). In
Queensland and Western Australia (Fig. 9h, j), burned area
from our predictions and FireCCI51 are both much higher
than that reported by state governments (D11-D14, Table 2).
Compared to the regional burned area datasets in Australia,
our predictions are higher in the northern part but lower in the
southern part (Fig. 9u). Although the time span of the burned
area datasets in Australia is long, the incomplete statistics
and missing data before the satellite era may also influence
the reliability of these datasets.

3.5 Additional product versions

In addition to the historical reconstructed burned area dataset
based on FireCCI51 presented above, we also produced
two additional products of historical burned area with the
same spatiotemporal resolution: (1) the GFED5-based ver-
sion, which is based on machine-learning models trained on

Earth Syst. Sci. Data, 17, 3599-3618, 2025
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Figure 6. Fire occurrence comparison between two charcoal record
databases and our prediction from 1901 to 2020. (a) Site accuracy
map using the Global Charcoal Database. The site accuracy (%) is
equal to the number of records with predicted burned area divided
by the number of all records and multiplying by 100 %. (b) The
same as (a) but using the Reading Palaeofire Database instead.
(¢) Accuracy time series using the Global Charcoal Database and
Reading Palaeofire Database, respectively. Note that only records
with record year =+ record age uncertainty overlapping with 1901—
2020 are taken into consideration.

the burned area from GFEDS5, which includes much more
fires than GFED4 (Chen et al., 2023) instead of FireCCI51,
and (2) FireCCI51-GDP-based version, with burned area fur-
ther calibrated using the relationship between statistically de-
rived burned area (Mouillot and Field, 2005) and regional
gross domestic product (GDP) (Bolt and van Zanden, 2024)
before 2000.

The GFED5-based version was produced and validated
using the same methods as in Sect. 2.1 and 2.2 but by re-
placing the burned area of FireCCI51 with GFEDS. The
GFEDS burned area is based on the MCD64A1 burned area
and adjusted with the Landsat or Sentinel-2 data, includ-
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(a) Prediction - FireCCILT11 (1982-2018)

(b) Prediction - GABAM (1985-2020)

(c) Prediction - Mouillot and Field (1901-1999)

] | —
-0.2 -0.1 0.0 0.1 0.2
fraction difference in each 0.5°x0.5° grid cell

Figure 7. Maps of burned area fraction difference between our pre-
dictions and other global burned area datasets. (a) Map of the multi-
year average (1982-2018) burned area fraction difference between
our predictions and FireCCILT11 (the former minus the latter). (b,
¢) Same as (a) but using the Global Annual Burned Area Maps
(GABAM) (1985-2020) and Mouillot and Field (2005) (1901-
1999), respectively. Note that there are several years (1986, 1988,
1990, 1991, 1993, 1994, 1997 and 1999) without available data be-
fore 2000 in GABAM.

ing more small fires in this product (Chen et al., 2023).
The evaluation results of the GFEDS5-based reconstruction
are explicitly described in Sect. S1 (Figs. S18-S20). Briefly,
the annual global total burned area in the GFEDS5-based
version for 1901-2020 ranges from 5.42 x 10° to 7.35 x
106 km? yr~!, with regular and extreme burned area account-
ing for 2.72x 10°-3.13x 10° km? yr~! and 2.54 x 10°-4.27 x
10°km? yr~!, respectively (Figs. S21a, S22a, S23a), com-
pared to the range of 3.46 x 10°~4.58 x 10® km? yr—! over
1901-2020 (1.36 x 10°~1.74 x 10° and 2.00 x 10%-3.03 x
10 km? yr~! for regular and extreme fires) in the FireCCI51-
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Figure 8. Time series of the annual total burned area across the globe (a) and in each region (b—o0) from our predictions (red lines), Mouillot
and Field (2005) (blue lines), FireCCILT11 (gray lines) and GABAM (purple lines). The breakpoints and significant slopes (p-value < 0.05)
were calculated using the methods mentioned in Sect. 2.2. Note that there are several years (1986, 1988, 1990, 1991, 1993, 1994, 1997 and
1999) without available data before 2000 in GABAM, and thus breakpoint detection and linear slopes were applied after 2000 for this dataset.

based reconstruction (Figs. S15a, S16a). In most regions, de-
spite the annual total burned area from the GFED5-based
reconstruction being generally higher than that from the
FireCCI51-based reconstruction due to differences in data
sources (e.g., more small fires from GFEDS), the trends in
annual total burned area from both reconstructions are gen-
erally consistent across different regions (Fig. S21). How-
ever, one main difference between these two data versions is
that the decreasing trend in global annual total burned area
in the first half of the 20th century disappears in the GFEDS5-
based reconstruction (Fig. S21a) because of the diminished
decreasing trend in SHAF (Fig. S21j).

To explicitly consider more anthropogenic effects (e.g.,
fire suppression or landscape fragmentation), in addition to
the population density used in the original FireCCI51-based
reconstruction, we also calibrated the reconstructed burned
area before 2000 at the regional scale using GDP as a proxy
for anthropogenic effects and the statistic-based burned area
from Mouillot and Field (2005) (see detailed methods in
Sect. S2 and Fig. S24). Temporally, the annual global to-
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tal burned area in the FireCCI51-GDP data version before
2000 ranges from 4.77 x 10° to 6.44 x 10 km? yr—!, with
regular and extreme burned area accounting for 1.68 x 10°—
2.31 x 10km? yr~! and 2.87 x 10°-4.29 x 10% km? yr~!, re-
spectively (blue lines in Figs. S21a, S22a, S23a). The area is
much larger than the global total burned area from the orig-
inal FireCCI51-based version, which ranges between 3.46 x
10°-4.51 x 106 km? yr—! before 2000 (1.41 x 10°-1.74 x 10°
and 2.00 x 10°-2.95 x 10% km? yr~! for regular and extreme
fires) (Figs. S15a, S16a). The temporal trends in annual to-
tal burned area in the FireCCI51-GDP version is similar to
the original FireCCI51-based version in most regions. How-
ever, the trends in TENA (Fig. S21c), NHAF (Fig. S21i) and
AUST (Fig. S210) are opposite between the FireCCI51-GDP
version and the original FireCCI51-based version. This could
be partly explained by the trends in annual total burned area
from Mouillot and Field (2005) (Fig. 8i, 0), which was used
to build the relationship between regional burned area and
GDP. The regional total burned area after calibration using
GDP was applied proportionally to each grid cell based on
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Figure 9. Burned area comparison between our predictions and other regional burned area datasets. (a—j) Time series of the annual total

burned area from FireCCIS1 (black lines), our predictions (red lines)

and other regional datasets (gray lines). (k—t) Scatter plots comparing

burned area fractions from our predictions and other regional datasets using multi-year averaged values (the full time span of observations).
(u) Map of the multi-year average burned area difference between our predictions and other regional datasets (the former minus the latter).
The labels next to each rectangle correspond to the abbreviated names of the datasets in Table 2. Note that the scales of the color bars are

different across regions.

the gridded burned area from the original FireCCI51-based
version (Sect. S2). As a result, the spatial patterns remain
similar between these two data versions.

Earth Syst. Sci. Data, 17, 3599-3618, 2025

4 Uncertainty and discussion

Although our models show good performance in the evalua-
tion (Figs. 2-3, S10-S13), there are some uncertainties in the
reconstructed historical burned area product, associated with
the input explanatory data, the satellite-based burned area
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used for model training and the model selection. Due to the
limited time span of the satellite-based data, such as that on
land use change and LAI, we harmonized the satellite-based
datasets with other datasets before the satellite era. For ex-
ample, large regional and global differences were found be-
tween the two land use datasets (LUH2-GCB2020 and CCI
plant functional type (PFT) maps) (Fig. S3). Different data
sources, definitions of land use types and uncertainties in the
cross-walking table for converting the 37 original ESA CCI
land cover types to the main land cover classes may partly
explain the differences between the two land use datasets
(Li et al., 2018). There are several alternative land cover and
land use datasets with a higher spatial resolution than ESA
CCI and LUH2-GCB2020, such as forest maps (Hansen et
al., 2013; Vancutsem et al., 2021) and global cropland ex-
tent maps (Potapov et al., 2022). However, due to the limited
temporal coverage or land cover types, we used ESA CCI
and LUH2-GCB2020 for their consistent and comprehensive
land cover and land use types and the long temporal cov-
erage. Differences also exist between the two LAI datasets
(GIMMS LAI4g and LAI from TRENDY vl11) (Figs. S5,
S6) due to differences in data sources. GIMMS LAI4g is
a satellite-based product (Cao et al., 2023), while the LAI
from TRENDY v11 was simulated by DGVMs (Sitch et al.,
2024). In addition to the features selected in this study, other
variables besides those listed in Table 2 were tested but elim-
inated (Fig. S9, Tables S3-S5). For instance, lightning data
are only available for 2010-2024, and thus they cannot be
utilized to reconstruct burned area in the 20th century (Ka-
plan and Lau, 2021). Terrain resampling to 0.5° x 0.5° grid
cells inevitably diluted explicit information from a fine spa-
tial resolution (Cary et al., 2006), thus posing a minor effect
across all regions except NHAF and SHAF. GDP and HDI
(Kummu et al., 2018) were not important in the sensitivity
tests probably because they were produced with sub-national
data and mapped based on the same population density data
as we used (Table 1). Other tested variables (e.g., livestock
density, road density, forest aboveground biomass and tree
cover) were excluded due to their low importance, the limited
temporal coverage of data sources and difficulty in extrapo-
lation (Gilbert et al., 2018; Hansen et al., 2013; Meijer et
al., 2018; Santoro et al., 2021). Sea-surface temperature has
also been proved as a good indicator of El Nifio—Southern
Oscillation (ENSO) and fire activity, especially in the trop-
ics (Chen et al., 2011; Fernandes et al., 2011). However, our
model training and prediction are based on land grid cells,
and it is difficult to incorporate the sea-surface temperature
information in each land grid cell in the current framework.
In addition, sea-surface temperature is closely linked to cli-
mate variables over land through atmospheric circulation and
teleconnection. Thus, the impacts of sea-surface temperature
could have been implicitly considered in the model through
the climate variables over land. Representations of anthro-
pogenic interventions on fires (e.g., fire suppression or pre-
scribed burns) (Libonati, 2024) cannot be fully considered by
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the population density used in our models due to the limited
temporal coverage of the related datasets. Fire suppression
has been used to historically control fire activities for a long
time (Douglas et al., 2001), especially in the US. About 98 %
of wildfires were suppressed within the first 24 h in the US
(Calkin et al., 2005). Meanwhile, evidence shows that con-
ventional fire suppression can build up fuels and enlarge fire
risk. Thus, prescribed burns are the new recognized measure
for clearing accumulated fuels and relieving extreme wildfire
risk (Kreider et al., 2024; Schoennagel et al., 2017). Unfor-
tunately, fire suppression was not explicitly represented in
our models due to a lack of data, and it may partly explain
the overestimated burned areas in continental USA and Eu-
rope during the 20th century (Fig. 9b, g). Moreover, land-
scape fragmentation, usually caused by land use and man-
agement (Driscoll et al., 2021), has also been proved to alter
fire regimes (Alencar et al., 2015), fire occurrence (Silva Ju-
nior et al., 2018) and burned area trends (Rosan et al., 2022)
in some regions. Nevertheless, fragmentation was not explic-
itly considered in the reconstruction of burned area in this
study, because fragmentation indices are calculated based on
high-resolution land cover maps, and there are no such data
available before the satellite era.

Though the temporal coverage of FireCCILT11 is longer
than that of FireCCI51, there are some known issues in
FireCCILT11. For example, the orbit-drift artifacts can be
many times greater in magnitude than the true burned area
signal, especially in the tropics and the USA, and it thus
distorts burned area trends and causes inconsistency over
the time span at the sub-continental scale (Giglio and Roy,
2022, 2024). We chose to use FireCCI51 for its recognized
coherence and robust performance, but FireCCI51 may ne-
glect some small fires due to its moderate spatial resolution
(approximately 250 m), even though the sensitivity to small
fires in FireCC51 was improved compared with FireCCI50
(Lizundia-Loiola et al., 2020).

In this study, we tested other commonly used machine
learning models in NHAF and BOAS (Sect. 2.2). In NHAF,
the R? between the BAF observations and BAF predictions
by other machine learning models is 0.54 for regular BAF
and ranges from 0.29 to 0.33 for extreme BAF (Fig. S7).
LSTMs performed best with a R? of 0.78 for regular BAF
and 0.69 for extreme BAF (Figs. S10h, S11h). In BOAS, the
R? between observations and predictions by other machine
learning models is 0.59-0.74 for regular BAF (Fig. S8b—e)
and 0.36-0.53 for extreme BAF (Fig. S8g—j). LSTMs per-
formed best with a R? of 0.75 for regular BAF and 0.56 for
extreme BAF (Fig. S8a, f). Compared with models only us-
ing information at the current time step, LSTMs incorporate
information from previous time steps and thus are able to in-
clude feedback effects from output to input, which is impor-
tant to account for the complex interactions between fires and
other factors (Hochreiter and Schmidhuber, 1997). Extrapo-
lation studies are based on the assumption that the paradigms
of the interacting factors will not change in space or time, so
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models trained on limited data can be applied to make pre-
dictions beyond the spatial or temporal coverage of the train-
ing data. However, the paradigms may change across space
or time in the real world. Therefore, this kind of uncertainty
inevitably exists spatiotemporally in extrapolation studies.

When comparing fire occurrence with charcoal datasets,
the varying accuracy across the globe could partially be ex-
plained by the varying data quality across sites. Meanwhile,
there are large uncertainties in the models used for calculat-
ing the age of charcoal records (Harrison et al., 2022), which
affect the calculation of predicted fire occurrence accuracy
to some degree. Moreover, charcoal records could not dis-
tinguish wildfires and human-induced fires, but our predic-
tions exclude fires in croplands (Sect. 2.1), which may cause
inconsistency between charcoal records and our reconstruc-
tion. The differences between our predictions and the dataset
by Mouillot and Field (2005) may also be induced by some
assumptions (e.g., applying the same trends to nearby coun-
tries if there is no historical data, or using a prescribed fire
probability map for burned area mapping) in Mouillot and
Field (2005) due to a lack of data and some methodology
limitations. Moreover, some burned area statistics before the
satellite era in some regions (e.g., US Forest Services, Food
and Agriculture Organization of the United Nations) applied
in Mouillot and Field (2005) could be very uncertain due to
the difficulty in counting all fires across a country or state
without large-scale monitoring techniques. In summary, our
predictions reproduced the inter-annual variability and sea-
sonality of FireCCI51 (2003-2020) in all regions, and match
well with other observation-based burned area datasets in
Brazil and Chile (1985-2020), even though we fed no ob-
served burned area before the 21st century to train our mod-
els. Our predictions are yet able to capture the spatiotemporal
pattern of burned area in some regions (e.g., Australia) due
to the uncertainty and missing data from data sources.

5 Data availability

The global monthly 0.5° x 0.5° burned area fraction maps
from 1901 to 2020 can be freely accessed at https://doi.org/
10.5281/zenodo.14191467 (Guo and Li, 2024). The avail-
ability of other datasets used in this study is noted in Tables 1
and 2.

6 Conclusions

We used machine learning models to build empirical rela-
tionships between monthly burned area fraction and factors
related to climate, vegetation and human activities at the
0.5° x 0.5° scale. Our historical burned area product (1901—
2020) can be used to benchmark historical fire module simu-
lations in DGVMs, re-calculate historical fire emissions and
estimate the legacy effects of vegetation recovery after fires
on the terrestrial carbon sink. Though the temporal coverage
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of our product is long enough to support studies related to
fire disturbance, carbon dynamics and climate change, more
reliable explanatory data for model training, and burned area
data for validation, would help further improve the accuracy
of the reconstructed burned area product.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-3599-2025-supplement.
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