
Earth Syst. Sci. Data, 17, 351–367, 2025
https://doi.org/10.5194/essd-17-351-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

A Sentinel-2 machine learning dataset for tree species
classification in Germany

Maximilian Freudenberg1,2, Sebastian Schnell3, and Paul Magdon4

1Forest Inventory and Remote Sensing, University of Göttingen, Göttingen, Germany
2Neural Data Science Group, University of Göttingen, Göttingen, Germany

3Thünen Institute of Forest Ecosystems, Eberswalde, Germany
4Faculty of Resource Management, University of Applied Sciences and Arts (HAWK), Göttingen, Germany

Correspondence: Maximilian Freudenberg (maximilian.freudenberg@uni-goettingen.de) and Paul Magdon
(paul.magdon@hawk.de)

Received: 28 May 2024 – Discussion started: 4 July 2024
Revised: 24 November 2024 – Accepted: 26 November 2024 – Published: 3 February 2025

Abstract. We present a machine learning dataset for tree species classification in Sentinel-2 satellite image
time series of bottom-of-atmosphere reflectance. It is geared towards training classifiers but is less suitable for
validating the resulting maps. The dataset is based on the German National Forest Inventory of 2012 as well
as analysis-ready satellite imagery computed using the Framework for Operational Radiometric Correction for
Environmental monitoring (FORCE) processing pipeline. From the National Forest Inventory data, we extracted
the tree positions, filtered 387 775 trees in the upper canopy layer, and automatically extracted the corresponding
bottom-of-atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with
the corresponding tree species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary
information such as the approximate tree position, the year of possible disturbance events, or the diameter at
breast height. Temporally, the dataset spans the years from July 2015 to the end of October 2022, with approx.
75.3 million data points for trees of 48 species and 3 species groups as well as 13.8 million observations for
non-tree backgrounds. Spatially, it covers the whole of Germany. The dataset is available at the following DOI
(Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-0.

1 Introduction

Climate change increases the risk of severe weather events
such as heavy rainfall or drought in central Europe (Toreti
et al., 2023). The recent past has seen large-scale forest
diebacks due to drought, disease, insect infestations, or a
combination of these disturbances (Senf et al., 2020; Senf
and Seidl, 2021b). Forest managers face the challenge of
adapting their management practices through diversification
and other strategies to mitigate these threats. Here, remote
sensing will play an increasingly important role as it can
support well-informed decisions by providing extensive land
cover and forest information at higher temporal frequencies
than ground-based forest monitoring approaches. In this con-
text, information on tree species is essential for many forest
management decisions.

Tree species classification in satellite imagery is impor-
tant, not only for scientific applications, but also for prac-
tical applications in forestry and nature conservation. This
task has been a focus since the early days of spaceborne re-
mote sensing with the first Landsat sensors (Walsh, 1980),
and it continues today with the application of machine learn-
ing methods to large areas (Bolyn et al., 2022; Blickensdörfer
et al., 2024).

Sentinel-2 (S2) satellite images are the ideal basis for such
analyses, as they are standardized, freely available, and col-
lected with high temporal revisit frequency. Machine learn-
ing, particularly deep learning, is commonly employed to
tackle classification tasks in image data, although it requires
substantial amounts of training data (Bolyn et al., 2022; Lake
et al., 2022; Yuan and Lin, 2020). Deep learning is a type

Published by Copernicus Publications.

https://doi.org/10.3220/DATA20240402122351-0


352 M. Freudenberg et al.: A Sentinel-2 dataset for tree species classification

of machine learning that uses neural networks with multi-
ple layers to automatically learn patterns from large datasets
(Goodfellow et al., 2016). In the context of tree species clas-
sification, generating training data is demanding, and one has
to resort to visual interpretation and on-screen labeling of
high-resolution aerial images, ideally combined with valida-
tion in the field – or one has to source labels from forest
inventory data.

Ahlswede et al. (2023) addressed the problem of training
data compilation and created a multimodal training dataset
containing aerial as well as Sentinel-1 and Sentinel-2 images
of over 50 000 sites in the state of Lower Saxony, Germany.
The dataset contains image-wise labels for 20 European tree
species, generated from stand level forest inventory data. Uti-
lizing different deep-learning models, the authors achieved
an F1 score of 54.6 % using Sentinel-2 data alone. The F1
score is the harmonic mean of user’s and producer’s accu-
racy, or precision and recall, respectively. They concluded
that “the integration of multi-seasonal data might disentan-
gle further species-related information regarding phenology
phases” (Ahlswede et al., 2023, p. 691) – this is what we aim
for with the dataset presented here.

Hemmerling et al. (2021) used exactly these kinds of
multi-seasonal Sentinel-2 data to classify 17 different tree
species in the state of Brandenburg, Germany. They applied
a random forest classifier to time series of the years 2018
and 2019 and reached F1 scores between 67 % and 99 % for
the nine most frequent species, thereby demonstrating that at
least a subset of the species can be separated using S2 time
series comparable to the ones provided here. As in the first
study, the authors obtained their labels from forest invento-
ries compiled by state authorities.

These two studies are noteworthy exceptions regarding the
amount of training data used, because the used datasets were
relatively large. Fassnacht et al. (2016) reviewed studies on
tree species classification from remotely sensed data and con-
cluded that “investigations focusing on [. . . ] a single often
comparably small test site by far dominated the reviewed
studies”. This hinders the generalizability of results and the
applicability of generated models to other areas: a dataset
covering a large area and long time spans is needed.

To overcome the problem of limited training data, we tap
into the largest dataset of field observations of tree species
in Germany: the National Forest Inventory (NFI). The Ger-
man NFI runs in a cycle of 10 years, with a subsample after
5 years, and covers more than 25 000 sites, over 60 000 sam-
pling points, and more than 500 000 trees across all owner-
ships and site conditions (Polley et al., 2018). For each tree,
several variables such as species, relative position, and diam-
eter at breast height (DBH, 1.3 m) are recorded. The result-
ing dataset is the most comprehensive available for German
forests, and the derived statistics provide valuable insights
into forest condition, composition, and development at the
regional and national levels. However, the design of the NFI
was not tailored to creating remote sensing reference datasets

but to providing an efficient sampling and plot design for es-
timating key forest variables. From a remote sensing perspec-
tive, one of the major caveats is that the exact sampling posi-
tions need to be kept confidential, e.g., to prevent biased esti-
mates when management practices are changed in the vicin-
ity of the plot.

The goal of the work presented is twofold: first to make
satellite data at NFI plot positions available to third parties
without revealing the exact geolocations, and second to ana-
lyze the separability and temporal patterns of tree crown re-
flectances for tree species in Germany. We link NFI records
to bottom-of-atmosphere (BOA) reflectance time series from
matching Sentinel-2 images, enabling tree species classifi-
cation and other applications for a broad range of potential
users. Said time series were extracted from analysis-ready
data generated by the Framework for Operational Radio-
metric Correction for Environmental monitoring (FORCE)
(Frantz, 2019) hosted on the CODE-DE (https://code-de.org,
last access: 22 January 2025) platform. The resulting dataset
provides BOA reflectances from July 2015 to October 2022
and in total contains the time series of 387 775 individual
trees and 70 242 non-tree locations. Multiplying the counts
of tree and non-tree locations by their individual numbers
of observed time steps yields a total of ca. 75.3 million
data points for trees and 13.8 million observations for non-
tree backgrounds, covering the entirety of Germany, 48 tree
species, and 3 species groups. The primary purpose of the
data is to train classifiers to detect tree species in satel-
lite images from the Sentinel-2 mission, but they could
also be used for studying phenological and spectral pat-
terns of tree species. They are less suitable for validating
maps at the pixel level. The dataset is available online at
https://doi.org/10.3220/DATA20240402122351-0 (Freuden-
berg et al., 2024) with the CC BY 4.0 license.

2 Materials and methods

2.1 Study area and National Forest Inventory

The dataset covers the entire area of Germany, including its
islands. More specifically, the dataset contains 24 925 of the
25 382 cluster plots recorded in the National Forest Inven-
tory 2012. Either the missing cluster plots contained only
trees below the canopy layer, the field inventory was com-
piled in a non-standard way (e.g., with custom postprocess-
ing of the coordinates), or the cluster plot coordinates were
simply missing from the database we obtained. Temperate
broadleaf and mixed forests prevail in most regions of the
country. Coniferous forests, mainly consisting of Picea abies
(Norway spruce), dominate at higher elevations, and forests
with Pinus sylvestris (Scots pine) occur in the sandy soils of
the northeastern part of the country. In 2022, about 32 % of
Germany was covered by forest (Riedel et al., 2024). Heavy
droughts and the following insect infestations in the years
2018–2022 resulted in a decline in growing stock in certain
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Figure 1. The sampling locations of the 2012 German National
Forest Inventory. Borders: © GeoBasis-DE/BKG 2024.

Figure 2. The German National Forest Inventory sampling grid
(black squares) and the subplots (green). The southwestern subplot
in each cluster plot is aligned with the overarching grid.

areas (Reinosch et al., 2024; Thonfeld et al., 2022; Holzwarth
et al., 2023).

The German National Forest Inventory is conducted on a
regular, square sampling grid as shown in Fig. 1 with a grid
size of 4 km× 4 km or less, depending on the federal state
and region. At each grid point there are four inventory plots
aligned in a 150 m× 150 m square. The southwestern corner
of the square aligns with the grid, as shown in Fig. 2.

The geolocation of each subplot is measured with a Global
Navigation Satellite System (GNSS) device, which may or

may not be differentially corrected using correction informa-
tion from terrestrial reference stations. At the subplot, two
angle count samplings are performed (Gregoire and Valen-
tine, 2007), which means that trees whose DBH covers more
than a certain solid angle are recorded.

The first angle count sampling includes all trees within
a distance from the sample location of 25 times their DBH
(basal area factor 4). The positions of the selected trees are
determined by measuring their azimuth angle using a com-
pass and their distance to the plot center using an ultrasonic
device (Haglöf Vertex or similar) or, in marginal cases, a
measuring tape. Furthermore, the tree species, DBH, and
other variables are recorded. In these measured tree posi-
tions, the BOA reflectances were extracted and related to the
corresponding ground-measured information – how this was
done is described later.

The second angle count sampling captures the surrounding
forest composition by recording the species of all trees within
a radius of 33.34 or 50 times their DBH (basal area factor 2 or
1), depending on how many trees were observed in the first
sampling with basal area factor 4. The second angle count
sampling allows one to say which subplots are pure stands,
i.e., which have only one tree species. The information about
stand purity is included in the dataset so that the user can
filter for trees in pure stands.

2.2 NFI reference data selection

The reflectances recorded in a Sentinel-2 pixel represent the
mixture of all land covers – or in our case tree species –
within that pixel. However, in closed-canopy forests the BOA
reflectance is dominated by the uppermost canopy layer, and
we can safely assume that trees overshadowed by larger indi-
viduals contribute only little to the overall reflectance within
a pixel. To compile the provided training dataset, we there-
fore filtered the NFI data for trees that are probably visible
from above. We first removed all trees that grow in the un-
derstory; this information is recorded in the inventory. For the
remaining trees, we modeled a circular growing space using
the NFI’s official method described in Riedel et al. (2017,
p. 39, 40). The model establishes a species-specific linear re-
lation between the basal area and the growing space of a tree.
The growing space is a measure of the area occupied by a tree
as a whole in an idealized forest stand. Lacking a model for
direct estimation of crown area from basal area, we use the
growing space as a proxy for it and stick to the term “crown
area”. The model is defined in Eq. (A1), and the parameters
are supplied in Table A1 in the Appendix. As we know the
position of each tree as well as its predicted crown area, we
removed trees that are probably not visible from above using
a heuristic algorithm. We counted a tree as visible if it had
the largest basal area of all trees within a radius of 3 m or its
crown area was overlapped by surrounding trees by less than
50 %. Trees classified as visible by this heuristic formed the
basis for the training dataset.
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Figure 3. Sketch of a tree group: green trees are assumed to be
visible. The blue tree area overlaps with other trees by more than
50 % and is therefore discarded.

To allow training of classification methods for discrimina-
tion between tree and non-tree pixels, we added non-forest
observations to the dataset. For this, we sampled the tree
cover density layer provided by the Copernicus Land Mon-
itoring Service for the year 2018 within a 300 m× 300 m
patch around the NFI plots (https://land.copernicus.eu/en/
products/high-resolution-layer-tree-cover-density, last ac-
cess: 22 January 2025). The tree cover density layer is sam-
pled at locations that are at least 20 m away from the next
pixel with a tree density greater than 10 %.

2.3 Satellite data selection

We used images from the Sentinel-2 satellites, preprocessed
to analysis-ready level, which includes atmospheric cor-
rection and cloud masking using the FORCE processing
pipeline (Frantz, 2019). FORCE provides a way of comput-
ing harmonized time series that are spatially and spectrally
well aligned, which is discussed in more detail later. The re-
sulting data comprise all S2 bands with 10 or 20 m resolu-
tion, with the 20 m bands pan-sharpened (resampled) to 10 m
resolution. Additionally, FORCE provides quality assurance
information (QAI) that aids in filtering out undesirable image
conditions such as clouds, snow, or high water vapor content.
The data are hosted on the CODE-DE (https://code-de.org,
last access: 22 January 2025) and EO-Lab (https://eo-lab.org,
last access: 22 January 2025) platforms. End users have the
option of either downloading the preprocessed data or re-
processing them using the same settings for generating the
FORCE data cube in CODE-DE. The necessary parameter
files are provided alongside the dataset.

2.4 Time series extraction and data processing

Previous studies have taken different approaches to link-
ing forest field data to satellite images. Many work only
with pure stands (e.g., Verhulst et al., 2024; Hościło
and Lewandowska, 2019), while others assign plot-specific
species compositions (e.g., Blickensdörfer et al., 2024).
Some sample individual pixels within polygons (Hemmer-
ling et al., 2021; Grabska-Szwagrzyk et al., 2024), cut out
pixels covered by a fixed-area plot (Persson et al., 2018), or

even calculate reflectances at the individual tree crown level
(Plakman et al., 2020).

As the German NFI performs angle count sampling, it is
not possible to determine exactly how much of a given area
(e.g., a Sentinel-2 pixel) is covered by which tree species and
adjacent land cover types. In such cases, there are mainly
two approaches one can follow for relating field and satellite
data, which we call “tree-centric” and “pixel-centric”. The
tree-centric approach assigns the most probable reflectance
value to individual tree crowns by directly extracting them
from the satellite image. In contrast, the pixel-centric ap-
proach labels individual pixels with species information, e.g.,
a species composition derived from inventory data. We chose
the tree-centric approach, as it accounts best for the response
design of the angle count sampling. With angle count sam-
pling, an assignment of species information to pixels is diffi-
cult because it does not provide a full census of all trees over
a specifiable area.

We started by clipping 300 m× 300 m image patches con-
taining the 24 925 filtered NFI cluster plots and their sur-
roundings from the FORCE data cube, as depicted in Fig. 4.
We extracted the BOA reflectance as well as the QAI. Before
extraction, we filtered the plots to ensure that they contained
at least one pixel with data not affected by clouds or cloud
shadows.

In a second step, we extracted the BOA and QAI pixel
time series from the patches in each tree position. In cases
where a single tree covered more than one 10 m× 10 m Sen-
tinel pixel, we calculated the area-weighted average of all
pixels intersected by the tree’s crown area, as depicted in
Fig. 5. Each extracted satellite observation was then linked
to its acquisition date, the corresponding NFI data, and more
information. Senf and Seidl (2021a) provide a Landsat-based
map of forest disturbances for Germany between 1986 and
2020 at a resolution of 30 m. To be able to identify possible
disturbance events, we included the disturbance year from
this map in the dataset. However, this still leaves a gap be-
tween 2020 and 2022 for which no disturbance information
is available. This was bridged by attaching the information on
whether the trees were still present in the 2022 NFI. To en-
able approximate spatial analyses, we furthermore included
the center coordinate of the 1 km INSPIRE grid tile that the
cluster plots are located in. The INSPIRE grids (INSPIRE
MIG, 2023) are a set of pan-European geographical grid sys-
tems in the ETRS89-LAEA coordinate reference system with
their origin at 52° N, 10° E. The grids have a spacing in me-
ters, equaling a power of 10; we used the 1 km grid.

The final dataset comprises the columns presented in Ta-
ble 1, and an excerpt is given in Table C1 in the Appendix.
All samples were randomly split into training and validation
sets based on their cluster plot IDs with a ratio of 70 %–
30 %. This rules out any spatial overlap between the training
and test sets and reduces correlations between the two. For
benchmark studies, we recommend using this split to ensure
comparability across publications.
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Figure 4. The time series extraction workflow: first, 300 m× 300 m tiles are clipped from the FORCE data cube for Germany for all records
between 2012 and 2022. Second, the pixel-wise time series are extracted from the tile time series.

Figure 5. (a) The whole cluster plot cutout of 300 m× 300 m. S2 image: European Space Agency (2021). (b) The lower-left subplot with
the corresponding orthophoto for reference. Douglas firs are in the lower part of the image, and Norway spruce is in the upper part of the
image. Image: © BKG 2021. (c) The S2 pixels corresponding to the subplot, with the circles depicting the modeled tree crown areas. The
crossed-out tree is omitted because it overlaps too much with the surrounding trees.

2.5 Assessment of the geolocation accuracy of the NFI
plots

The tree positions in the NFI are measured in polar coordi-
nates relative to the plot center using a compass for the angle
and an ultrasonic device for the distance measurement. We
assume that the errors for angle and distance are small com-
pared to the GNSS error of the plot center position measure-
ment. GNSS measurements can be differentially corrected
by using ground-based reference stations to increase the po-
sitional accuracy. Depending on the federal state and field
team, coordinates of the plot centers are measured with cor-
rected GNSS devices or not. Of the subplots with trees in
the dataset, 76.5 % were corrected, 22.5 % were not, and the
remainder have an unknown status.

To estimate the accuracy of the plot center coordinates,
we compared the field-measured tree positions with tree po-
sitions derived from true-ortho aerial images obtained from
the Federal Agency for Cartography and Geodesy. These im-
ages are orthorectified using a surface model and aligned
with high accuracy to ground control points. The ATKIS
orthophoto standard guarantees a geolocation error with a
standard deviation of 0.4 m or less (Arbeitsgemeinschaft der
Vermessungsverwaltungen der Länder der Bundesrepublik

Deutschland (AdV), 2020). Two expert image interpreters
then manually shifted a sample of 200 NFI plot positions,
and thereby the trees, to match the true tree positions by com-
paring local tree patterns as depicted in Fig. 6. This allows us
to quantitatively evaluate the deviation of measured positions
from true positions and to compare the accuracy of corrected
and uncorrected measurements.

2.6 Species separability analysis

To detect inconsistencies within the dataset, we computed
the infrared reflectance histograms of five species for mixed
and pure stands. If the histogram shows artifacts like dou-
ble peaks or differs strongly between pure and mixed stands,
this could indicate deficiencies in the respective parts of
the dataset. The histograms were computed for band B8
(842 nm), averaged over all records in June 2021 for a sam-
ple of five species whose occurrences are correlated – Betula
pendula often grows along with Pinus sylvestris, and Fagus
sylvatica often appears together with Quercus spp. June 2021
was chosen because both Sentinel satellites were operational
and, unlike the preceding years and 2022, 2021 was not par-
ticularly dry.
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Table 1. Dataset contents and column descriptions.

Column name Data type Description

tree_id Integer A globally unique tree ID. Negative values represent non-tree records.

tnr Integer Cluster plot ID

enr Integer Corner ID (1–4). Negative values represent non-tree records.

time Integer The acquisition date, encoded as Unix time, representing the number of seconds elapsed since
1 January 1970, 00:00 UTC. Every date was randomly shifted by up to 3 d.

species Integer The tree species, encoded according to the official NFI schema and provided within the dataset
in a separate table, “x_ba”

boa Byte array The BOA reflectance values: 10 signed 16-bit integers, one for each band, encoded as a 20 B
blob. To hamper the identification of the exact plot positions, each value was multiplied by a
uniform random number between 0.95 and 1.05.

qai Integer Quality assurance information bit flags, encoded as 16-bit integers, allowing for filtering
based on image quality. The FORCE documentation provides details on the meaning of each
bit (https://force-eo.readthedocs.io/en/latest/howto/qai.html#quality-bits-in-force, last access:
22 January 2025).

is_train Boolean Whether the record belongs to the training or validation sets

is_pure Boolean Whether the record comes from a pure stand according to the NFI definition

dbh_mm Integer Diameter at breast height (1.3 m) in millimeters

height_dm Integer Tree height in decimeters

crown_area_m2 Float Modeled tree crown area in square meters

x_wgs84 Float Longitude of the corresponding 1 km INSPIRE grid tile center

y_wgs84 Float Latitude of the corresponding 1 km INSPIRE grid tile center

is_corrected Boolean Whether the NFI position measurement was differentially corrected

disturbance_year Integer The disturbance year according to the map provided by Senf and Seidl (2021a)

present_2022 Boolean Whether the tree was observed again in the 2022 forest inventory

doy Integer The day of year of the acquisition, corresponding to the shifted date

3 Dataset description and statistics

3.1 Numerical species distribution

Due to the greatly varying dominance of tree species in
Germany, the numerical distribution of the different species
(Fig. 7) is heavily imbalanced. The most abundant species is
Pinus sylvestris (Scots pine), followed by Picea abies (Nor-
way spruce), Fagus sylvatica (European beech), and the dif-
ferent Quercus (oak) species. A complete list of the included
tree species and their counts can be found in Table C2.

3.2 Temporal signatures of selected species

Evergreen and deciduous trees can be clearly separated vi-
sually by inspecting the time series of their infrared (IR)
reflectance, as depicted in Fig. 8. In the presented time se-
ries, the observations for a given species and point in time

have been averaged across all undisturbed individuals in pure
stands. Whether a stand is pure or not was determined us-
ing the second angle count sampling of the NFI (basal area
factor of 1 or 2). Obviously, deciduous broadleaf trees ex-
hibit a much stronger seasonal pattern than evergreen conif-
erous trees in our dataset. This separation is less evident in
the green band, likely due to its higher susceptibility to at-
mospheric effects and its lower absolute reflectance, which
combine to diminish the signal-to-noise ratio. While the tem-
poral infrared profiles of Fagus sylvatica and Quercus robur
are generally distinguishable across most years, there are
instances where differentiation becomes challenging (e.g.,
2016 and 2020). Quercus robur tends to have a slightly lower
IR reflectance on average, particularly in summer. Picea
abies and Pinus sylvestris also differ only slightly in the in-
frared, with Picea abies trending towards having lower aver-
age values. Overall, differentiating species by their temporal

Earth Syst. Sci. Data, 17, 351–367, 2025 https://doi.org/10.5194/essd-17-351-2025

https://force-eo.readthedocs.io/en/latest/howto/qai.html#quality-bits-in-force


M. Freudenberg et al.: A Sentinel-2 dataset for tree species classification 357

Figure 6. Original measured GNSS coordinates (red) were shifted
(here by 4.8 m) to the visually best-matching position (green) in
aerial orthophotos to quantify GNSS errors. The circles depict mod-
eled crown areas. Image: © GeoBasis-DE/BKG 2024.

Figure 7. The numerical species distribution in the training dataset
(colored) and in the original NFI 2012 data (grey).

profiles alone seems challenging without considering their
spectrum at the same time. Figure B1 in the Appendix de-
picts the same data as Fig. 8 but additionally includes error
bands that were omitted here for clarity.

Looking at a random selection of four individual trees’
time series, depicted in Fig. 9, it becomes clear that, at the
level of a single tree, the differences between species still
seem to be present but with high variance from year to year.

Figure 10 shows the total observation count over time,
i.e., how often each tree was imaged in a month, summed

Figure 8. Time series of BOA reflectance for the indicated species,
averaged over all undisturbed individual trees in pure stands at a
given time. The data have been filtered to exclude all types of cloud
cover as well as their shadows, snow, and pixels with high aerosol
optical depth.

Figure 9. Time series of random single trees of different species.

up across all the trees. After the commissioning of Sentinel-
2B in June 2017, the number of observations increased. As
one would expect, there are more observations in the summer
months when clouds are less likely, and especially from 2018
onward the counts regularly reach over 1 million.

3.3 Spectral signatures

Besides the temporal variation of the reflectance, the spectral
variation is an important feature for the tree species classi-
fication – however, the species are not necessarily separable
by their spectra alone, as can be seen in Fig. 11. It depicts the
Sentinel-2 spectra of the five most frequent species as well

https://doi.org/10.5194/essd-17-351-2025 Earth Syst. Sci. Data, 17, 351–367, 2025
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Figure 10. Total monthly observations of all trees in the dataset
(tree count multiplied by individual observation count per month).
The vertical red line corresponds to the Sentinel-2B commissioning
date.

Figure 11. Average spectrum of the five most frequent species in
the dataset plus the background class. Records from pure stands
have been averaged between May and August (inclusive) of the
years 2017–2022.

as the background classes. Fagus sylvatica and Quercus pe-
traea, for example, have almost matching spectra, especially
at the shorter wavelengths. The resulting spectra match the
ones presented in Immitzer et al. (2016).

3.4 Spatial distribution

It can be expected that the temporal signatures will vary with
local conditions, e.g., along a latitudinal or elevation gradi-
ent. Therefore, it is important to analyze the spatial coverage
of the training data. Figure 12 shows that Picea abies (a) is
mainly present in the southwest of Germany and in the lower
mountain ranges. Pinus sylvestris (b), on the other hand, is
predominant in the sandy soils of the northeastern part of
the country. The different Quercus species (c) mostly occur
in the west of Germany but are also present throughout the
rest of the country. Fagus sylvatica (d), lastly, co-occurs with
Quercus spp., but in contrast to them manages to settle in the

higher and therefore colder hillscapes of the central parts of
Germany. Note however that these spatial distributions are
derived from the dataset, which does not mirror the NFI one
to one due to filtering and the availability of satellite images.

3.5 NFI geolocation accuracy estimation

The analysis of the spatial accuracy of the NFI plot coor-
dinate GNSS measurements reveals that 95 % of the cor-
rected GNSS positions deviated by less than 11.2 m and 81 %
by less than 5 m. Figure 13 depicts the corresponding his-
togram along with the empirical cumulative density function.
Against expectations, the comparison of corrected and uncor-
rected GNSS measurements shows no significant difference.

3.6 Separability analysis

Figure 14 shows the histograms of S2 band B8 (842 nm), av-
eraged over all records in June 2021 for the species pairs Be-
tula pendula–Pinus sylvestris and Fagus sylvatica–Quercus
robur–Quercus petraea, each computed over mixed and pure
stands, respectively. These combinations were chosen be-
cause the respective species often co-occur. The reflectance
distributions for Pinus and Betula clearly differ between
mixed and pure stands. In mixed stands, the distributions
are relatively wide and overlap, whereas in pure stands there
are separable peaks (although some overlap remains) and
the distance between the maxima is larger. Comparing Fa-
gus sylvatica to the two Quercus species, one can see that
the distributions overlap much more, as all three species are
broadleaved. In mixed stands, there is hardly any observable
difference between the distributions. In pure stands, the dis-
tributions still overlap significantly, but the distance between
peaks is slightly greater than in mixed stands.

4 Discussion

4.1 Geolocation accuracy

For Sentinel-2, to obtain the presented dataset, we linked
spatial information from two different data sources: georefer-
enced satellite images and on-ground GNSS measurements.
A misalignment of these sources might lead to extrac-
tion of wrong pixel values from the image data. FORCE
co-registers all Sentinel-2 images with averaged Landsat
time series. The Landsat images are in turn co-registered
with the Sentinel-2 global reference image, which results
in a geometric accuracy of 10.2 m at the 90 % confidence
level for Landsat 8 (Haque et al., 2022) (8 m at 80 %
confidence). Consequently, this is the best estimate for
the spatial accuracy of the S2 images used. The reason
for this cyclic co-registration of Sentinel to Landsat to
Sentinel is that so far only the S2 level-1 archive has
been processed to a common standard (https://sentinels.
copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/
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Figure 12. Spatial tree distribution of tree density for different species. Note the different scales. Borders: © GeoBasis-DE/BKG 2024.

Figure 13. Histogram of the distances by which the plot locations
were shifted from the original GNSS positions. Differentially cor-
rected measurements are depicted in blue.

copernicus-sentinel-2-collection-1-availability-status, last
access: 22 January 2025). The level-2 data, which compen-
sate for atmospheric effects and are needed for coherent time
series, are not yet available on a standardized processing
baseline in any public archive.

For NFI geolocation accuracy, the comparison of corrected
and uncorrected GNSS measurements showed no significant
difference in spatial accuracy, at least not in the way we mea-
sured it. As differential correction unquestionably increases
GNSS accuracy, we suppose that increasing the count of
sampled plots as well as the number of image interpreters
would change our result. Furthermore, trees growing skew
and outliers matching the crown patterns might have influ-
enced the results negatively. Lastly, it will be interesting to
analyze the accuracy of trained classifiers as a function of
correction status.

Combined geolocation accuracy is difficult to compute
for several reasons: (1) the satellite images are corrected by
FORCE, as discussed above; (2) the satellite image accu-
racy is latitude- and time-dependent (S2 Data Quality Re-
ports: https://sentiwiki.copernicus.eu/web/document-library,
last access: 22 January 2025); and (3) the GNSS errors we
measured do not follow a Gaussian distribution. Neglecting
these points and using the values derived for the 80 % confi-
dence level, i.e., 8 m for the satellite images and 5 m for the
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Figure 14. Histogram of near-infrared (842 nm) BOA reflectances, averaged over all trees in June 2021 for (a) Pinus sylvestris and Betula
pendula and for (b) Fagus sylvatica, Quercus robur, and Quercus petraea. The upper parts represent pure stands and the lower parts mixed
stands.

GNSS positions, we obtain an error estimate of 9.4 m. This is
nearly equivalent to the pixel size, which means that the ex-
tracted pixel values are still likely to represent a reasonable
approximation of the targeted trees, whose diameter is of a
comparable size. Lastly, the error of 9.4 m is likely overes-
timated for two reasons: first, the true error distributions of
GNSS and satellite geolocation error magnitudes is lognor-
mal (as opposed to a Rayleigh distribution), typically with a
higher share of small magnitudes. Second, the 8 m satellite
geolocation error is derived for a single Sentinel-2 scene but
is averaged out by the co-registration process.

4.2 Adverse imaging conditions

During the extraction process, we filtered out most pixels
with cloud cover or cloud shadows. FORCE employs the
FMASK algorithm (Zhu and Woodcock, 2012) for cloud de-
tection, which has an accuracy of 84 % for cloud or clear
detection and a 72 % detection accuracy for cloud shadows
(Aybar et al., 2022). Consequently, falsely labeled image
regions lead to commission or omission errors in the final
dataset; i.e., usable pixels might be removed by being labeled
as cloudy, or cloud pixels could be in the dataset. However,
there are other imaging conditions that might affect the qual-
ity of a pixel, like high aerosol content, snow, or poor illu-
mination conditions. FORCE encodes this information in the
quality assurance information, and end users can use this to
further narrow the dataset down to only the highest-quality
pixels.

4.3 Extraction of non-forest points

The non-forest points were randomly sampled within the ex-
tracted 300 m× 300 m tiles. In consequence, we only sam-
pled non-forest points from areas like city centers or indus-
trial zones where they are situated close to forests – which is
rather unlikely. Therefore, the extracted non-forest points are
biased towards rural villages and agricultural areas.

4.4 Taxonomic identification

The field teams of the NFI data are trained and undergo test-
ing before being allowed to take samples. However, it cannot
be ruled out that, under adverse conditions, certain species
are confused. We cannot quantify this error but assume that
the vast majority of tree species identifications are correct, in
particular for common species.

4.5 Tree-centric pixel extraction

As described in Sect. 2.4, there are different ways of link-
ing satellite image data to field information. We took a tree-
centric approach and extracted reflectances for every tree
in the dataset. Compared to the pixel-centric approach, this
comes with advantages and disadvantages. The main ad-
vantages of the tree-centric approach are that it reflects the
response design of angle count sampling and one obtains
the best estimate for the spectral reflectance of a given tree
crown. This also allows one to extract data for rare species
and those that only appear in mixed stands, although their
statistics will be influenced by mixed pixels. Lastly, one does
not need to define a dominant species based on arbitrary
thresholds, as was done in Persson et al. (2018), for exam-
ple.

A drawback in comparison to the pixel-centric approach is
that different tree crowns can receive the same spectral sig-
nature. For example, if two tree crowns are completely lo-
cated within the same S2 pixel, they receive identical val-
ues and information is duplicated. We checked the non-
randomized dataset for duplicate bottom-of-atmosphere re-
flectances among the tree records. Non-tree points were sam-
pled from a larger area, so duplication plays no role in their
case. To identify duplicates, we grouped the dataset by clus-
ter ID, corner ID, time, and reflectance spectrum. If there
were N identical reflectances per group, we counted N − 1
as duplicates. In total, the dataset subset for trees contains
ca. 4.87 million duplicate entries out of ca. 66 million, which
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translates into 7.38 %. Out of these 4.87 million duplicates,
3.86 million (5.84 %) are duplicates with identical species la-
bels and 1.01 million (1.53 %) have differing species labels.
Ergo, at least 0.77 % (1.01 million of 66 million / 2) of the
labels are wrong.

Should the user wish to reduce the correlation between
samples or remove duplicate pixel time series, we recom-
mend the following procedure: first, group the dataset by sub-
plot; second, compute the correlation of the full time series
between the different trees in the plot; and finally, remove
all trees that correlate beyond a certain threshold, except for
one.

A weakness that both approaches, tree-centric and pixel-
centric, share is mixed pixels: at present, we cannot exactly
quantify the effect on our dataset of pixels that contain dif-
ferent tree species, as it is in most cases impossible to derive
the species shares of a pixel based on the NFI data. The NFI
does not fully sample a given plot, so in most cases labels are
only available for parts of a given pixel. Another source of
mixed pixels are the 20 m resolution bands of Sentinel-2 that
are pan-sharpened to 10 m by FORCE, thereby distributing
identical information across several pixels.

4.6 Species separability analysis

Figure 14a shows that the IR–reflectance distributions of
Pinus and Betula are wide and overlap in mixed stands,
whereas they are more separated in pure stands. We interpret
this as a potential indication that, at least for this species pair,
the dataset may contain mislabeled data due to insufficient
spatial accuracy or the extracted pixel values originate from
mixed pixels containing other species or land cover classes.

In contrast, comparing Fagus and Quercus spp. in mixed
and pure stands revealed no significant differences, with the
reflectance distributions overlapping substantially. However,
this does not necessarily indicate labeling errors; it could also
reflect naturally occurring values. This highlights the neces-
sity of including factors beyond spectral data, e.g., temporal
profiles as shown in Fig. 9, for accurate species classification.

4.7 Considerations for map production

The purpose of this dataset is to train classifiers, ultimately
for mapping of tree species. These classifiers will have a cer-
tain model accuracy derived from, e.g., the validation split
of the presented dataset. However, caution is required when
judging the accuracy of generated maps based on models
– model accuracy should not be used as the sole basis for
validation. This applies to the current dataset as well, since
heuristic data filtering or pixel duplication may have altered
the distribution of reflectance values in a way that could
negatively affect the results. Users should also consider this
when applying additional data filters, e.g., for the DBH. Con-
sequently, we recommend auxiliary data for validating gen-
erated maps. If users wish to validate maps based on the pre-

sented dataset, they can do so using aggregate statistics, such
as at the state level, since the dataset contains coarse loca-
tion data that make it suitable for such analyses. However,
such analyses will be restricted to trees that are visible from
above according to our heuristic. Furthermore, areas covered
by tree species, as derived from the maps produced, can be
compared to population estimates from the NFI, which are
publicly available (J.H. von Thünen-Institut, 2024). Lastly,
the “area of applicability” approach developed by Meyer and
Pebesma (2021) can be used to ensure that models are not
applied outside the predictor variable space, thus preventing
potential bias.

5 Data availability

All the data are available online at
https://doi.org/10.3220/DATA20240402122351-0 (Freuden-
berg et al., 2024) with the CC BY 4.0 license.

6 Conclusion and outlook

In this work, we present the most comprehensive dataset so
far of annotated Sentinel-2 time series data for tree species
detection in Germany. With over 380 000 trees of 48 species
observed for over seven years, this dataset can significantly
advance research into automatic tree species classification
for Germany and central Europe. At the same time, the de-
scribed approach can serve as a pilot study for making NFI
data from other countries accessible to the remote sensing
community, e.g., for training machine learning models with-
out releasing exact geolocations publicly. Lessons learned
from its application can be used to enhance future inventories
and datasets. For example, it could show that, for underrep-
resented species, more labels are required, and in turn they
could be sampled in targeted inventories.

As discussed in the previous section, the dataset still has
several shortcomings that could be improved. To achieve bet-
ter agreement between labels and images, the spatial ac-
curacy of the data sources has to be increased. To do so,
we suggest that in future all NFI position measurements
be taken using differential GNSS devices, although we saw
no significant differences in accuracy. Furthermore, we ex-
pect that aligning the Sentinel-2 images directly with the S2
global reference image instead of averaged Landsat time se-
ries would improve their spatial accuracy and make it easier
to derive interpretable error metrics. We consider releasing
an updated dataset version as soon as the newly aligned Sen-
tinel L2A collection is fully accessible.

The main focus of further efforts will be to increase the
number of labels for weakly represented classes, e.g., by uti-
lizing automatically classified high-resolution orthophotos as
a reference. Our first attempts to automatically identify un-
derrepresented tree species in standard RGBI aerial images
with 20 cm spatial resolution have failed, so the presented
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dataset is still limited regarding less abundant species. An-
other option for increasing the overall amount of data would
be to incorporate forest inventory data at the stand level from,
e.g., state forest enterprises. However, these data often only
provide estimates of tree species proportions within manage-
ment units but no geolocation of individuals.

We hope that this dataset will foster research into time-
series-based classification of tree species and believe that
it offers many possibilities for analyses that go beyond the
ones presented here. Users can freely recombine the pro-
vided data, calculate basal or crown area proportions per
sampling location, and use this information as labels instead.
Using classification methods in general, one could investi-
gate which spectral bands and which points in time are cru-
cial for precise species classification. As the dataset contains
not only the time series of individual trees’ BOA reflectances
but also their approximate locations, spatiotemporal patterns
in tree phenology could be assessed at the individual species
level. For example, the onset of leaf emergence could be
analyzed first in the dataset alone and later using species
maps generated by a derived classification method. Lastly,
the dataset could be used to correlate reflectances and ap-
proximate health conditions with meteorological events like
droughts at a per-species level. This would open up further
research into climate-change-resistant species and enable the
identification of endangered forest stands. In the future we
plan to release updated versions of the dataset, particularly
after the final publication of the 2022 NFI.

Appendix A: Crown area estimation

The following equation is used to model the crown area with
the parameters α and β from Table A1 (Riedel et al., 2017,
p. 39, 40).

AC = α+βAB (A1)

AC is the tree crown area, and AB is the basal area.
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Table A1. Parameters of the crown area equation (Riedel et al., 2017, p. 40). We corrected the α value for poplar; the original value was 23,
which is a typing error.

Tree species group α β Maximum Assigned tree species
(m2) stem count

Fir 2.85 200 3500 All firs except hemlock
Douglas fir 5.00 200 2000 Douglas fir
Pine 1.00 300 10 000 All pines
European larch 5.00 285 2000 European larch

Japanese larch 5.00 260 2000 Japanese larch (+ hybrids)
Beech 1.33 300 7500 Beech, hornbeam (whitebeam)
Oak 1.11 395 9000 Pedunculate oak, sessile oak, Turkey oak, swamp oak
Red oak 2.50 350 4000 Red oak

Ash 2.50 330 4000 All other deciduous trees not mentioned
Alder 2.50 435 4000 Alder, black alder, white alder, grey alder, green alder
Birch 2.50 525 4000 Silver birch, downy birch (+Carpathian birch)
Poplar 2.30 320 350 All poplars

Spruce 2.85 195 3500 All spruces as well as arborvitae, hemlock, sequoia, yew, Law-
son cypress, and other conifers

Appendix B: Additional figures

Figure B1. Time series of infrared reflectance and the standard deviation for the indicated species, averaged over all undisturbed individual
trees in pure stands at a given time. The bands have a width of 2 standard deviations. The data have been filtered to exclude all types of cloud
cover as well as their shadows, snow, and pixels with high aerosol optical depths.
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Appendix C: Database excerpt and species counts

Table C1. Database excerpt. The bottom-of-atmosphere (BOA) reflectance is encoded as 10 signed 16-bit integers, and the quality assurance
information (QAI) is a single 16-bit integer. DOY stands for “day of year.”

tnr (cluster ID) enr (corner ID) tree_id Species Time BOA QAI is_train is_pure

455 1 69831 211 1440374400 10 16-bit integers 8192 1 0 . . .
455 1 69831 211 1448064000 10 16-bit integers 10256 1 0 . . .
455 1 69831 211 1455494400 10 16-bit integers 10240 1 0 . . .
455 1 69831 211 1460592000 10 16-bit integers 8192 1 0 . . .
455 1 69831 211 1463961600 10 16-bit integers 8192 1 0 . . .
455 1 69831 211 1467072000 10 16-bit integers 8192 1 0 . . .
...

...
...

...
...

...
...

...
...

. . .

dbh_mm height_dm crown_area_m2 x_wgs84 y_wgs84 is_corrected disturbance_year present_2022 DOY

. . . 231 243 20.4 9.80714 47.64294 1 0 1 236

. . . 231 243 20.4 9.80714 47.64294 1 0 1 325

. . . 231 243 20.4 9.80714 47.64294 1 0 1 46

. . . 231 243 20.4 9.80714 47.64294 1 0 1 105

. . . 231 243 20.4 9.80714 47.64294 1 0 1 144

. . . 231 243 20.4 9.80714 47.64294 1 0 1 180

. . .
...

...
...

...
...

...
...

...
...
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Table C2. List of all the included tree species with counts.

Species code Species Common name Count

−1 – – Other land cover 70 242
10 Picea abies Norway spruce 107 798
12 Picea sitchensis Sitka spruce 937
19 Picea spec. Other spruces 232
20 Pinus sylvestris Scots pine 102 730

21 Pinus mugo Mountain pine 88
22 Pinus nigra European black pine 606
24 Pinus cembra Swiss pine 3
25 Pinus strobus Eastern white pine 431
29 Pinus spec. Other pines 65

30 Abies alba Silver fir 9375
33 Abies grandis Grand fir 384
39 Abies spec. Other firs 291
40 Pseudotsuga menziesii Douglas fir 9598
50 Larix decidua European larch 7674

51 Larix kaempferi Japanese larch (+ hybrids) 3308
90 Other coniferous trees 139
94 Taxus baccata European yew 11
100 Fagus sylvatica Beech 57 341
110 Quercus robur English oak 19 617

111 Quercus petraea Sessile oak 18 697
112 Quercus rubra Northern red oak 1861
120 Fraxinus excelsior Common ash 7469
130 Carpinus betulus Hornbeam 3411
140 Acer pseudoplatanus Sycamore maple 5042

141 Acer platanoides Norway maple 598
142 Acer campestre Field maple 387
150 Tilia spec. Linden tree (indigenous species) 1294
160 Robinia pseudoacacia Black locust 1553
170 Ulmus spec. Elm, native species 406

181 Castanea sativa Chestnut 416
190 Miscellaneous broadleaf trees with a long life expectancy 246
191 Sorbus domestica Service tree 2
193 Sorbus aria Common whitebeam 51
200 Betula pendula Silver birch 9729

201 Betula pubescens Moor birch 858
211 Alnus glutinosa Black alder 7098
212 Alnus incana Grey alder 460
220 Populus tremula Common aspen 1402
221 Populus nigra European black poplar (+ hybrids) 1945
222 Populus x canescens Grey poplar (+ hybrids) 196
223 Populus alba Silver poplar 109
224 Populus trichocarpa x maximoviczii Balsam poplar 636
230 Sorbus aucuparia European rowan 270
240 Salix spec. Willow 1203

250 Prunus padus Bird cherry 77
251 Prunus avium Wild cherry 1357
252 Prunus serotina Black cherry 132
290 Miscellaneous broadleaf trees with a short life expectancy 92
292 Malus sylvestris European crab apple 37

293 Pyrus communis European wild pear 42
295 Sorbus torminalis Wild service tree 71
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