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Abstract. Surface soil moisture (SSM) is a critical variable for understanding the terrestrial hydrologic cy-
cle, and it influences ecosystem dynamics, agriculture productivity, and water resource management. Although
SSM information is widely estimated through satellite-derived and model-assimilated methods, datasets with
fine spatio-temporal resolutions remain unavailable at the continental scale and yet are essential for improving
weather forecasting, optimizing precision irrigation, and enhancing fire risk assessment. In this study, we de-
veloped a new 3 h, 1 km spatially seamless SSM dataset spanning 2015 to 2023, covering the entire contiguous
United States (CONUS), using a spatio-temporal fusion model. This approach effectively combines the distinct
advantages of two long-term SSM datasets, namely, the Soil Moisture Active Passive (SMAP) L4 SSM prod-
uct and the Crop Condition and Soil Moisture Analytics (Crop-CASMA) dataset. The SMAP product provides
spatially seamless SSM observations with a 3 h temporal resolution but at a 9 km spatial resolution, while the
Crop-CASMA SSM dataset offers a finer spatial resolution of 1 km but has a daily temporal resolution and con-
tains spatial gaps. To overcome the spatio-temporal mismatch between the two products, we developed a time
series data mining approach known as the highly comparative time series analysis (HCTSA) method to extract
multiple spatially seamless characteristics (e.g., maximum and mean) from the two inter-annual SSM datasets
(i.e., SMAP and Crop-CASMA). Then, the fusion model was constructed using the extracted 9 and 1 km charac-
teristics and each scene of the SMAP in turn. Finally, the 3 h, 1 km SSM data (named STF_SSM) were predicted
from 2015 to 2023. The comparison with in situ data from multiple SSM observation networks showed that the
performance of our STF_SSM dataset is better than the Crop-CASMA and is close to the SMAP L4 product,
with a mean correlation coefficient (CC) of 0.716 at the daily scale and 0.689 at the 3 h scale. The STF_SSM
dataset in this study is the first long-time-series, spatially seamless SSM dataset to realize continuous intra-day
1 km SSM observations every 3 h across the CONUS, which provides a new insight into the fast changes in
soil moisture along with drought and wet spell occurrences and ecosystem responses. Additionally, this dataset
provides a valuable data source for the calibration and validation of land surface models. The STF_SSM dataset
is available at https://doi.org/10.5066/P13CCN69 (Yang et al., 2025a).
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1 Introduction

Surface soil moisture (SSM) is an important component of
global hydrological cycling and serves as a key indicator
of drought occurrences (Souza et al., 2021; Krueger et al.,
2024), climate change (Guillod et al., 2015), and ecosys-
tem functions (Green et al., 2019; Liu et al., 2020a). To bet-
ter understand the spatio-temporal changes in SSM, the Soil
Moisture Active Passive (SMAP) satellite, launched in 2015,
provides SSM data on a global scale at spatial resolutions
of 9 and 36 km using the onboard L-band radiometer (En-
tekhabi et al., 2010; Chan et al., 2016). SMAP products are
generated at four levels of processing. Retrieved from bright-
ness temperature information observed by satellites, SMAP
Level 2 (L2) and Level 3 (L3) SSM data are half-orbital and
composited daily. However, considering the non-overlapping
revisit orbit and snow coverage, spatial gaps are inevitable
in SMAP L2 and L3 SSM products. To solve this problem,
the SMAP Level 4 (L4) SSM product assimilates SMAP L2
and L3 data into a land surface model and provides spatially
seamless SSM and root zone soil moisture estimates with a
temporal resolution of 3 h and spatial resolution of 9 km.
Numerous studies have investigated the performance of
satellite-derived SSM based on the triple collocation anal-
ysis (Chen et al., 2018), information theory (Kumar et al.,
2018), and ground-based in situ data (Kim et al., 2018).
Results showed that the SMAP data typically have bet-
ter performance on a global scale compared with other
satellite-derived SSM products, such as the Soil Moisture
and Ocean Salinity (SMOS), the Advanced Scatterometer
(ASCAT), and Advanced Microwave Scanning Radiometer
2 (AMSR?2). For example, Ma et al. (2019) and Min et
al. (2023) demonstrated that SMAP data outperformed the
SMOS, AMSR2, and Climate Change Initiative of the Euro-
pean Space Agency (CCI) SSM product in terms of capturing
temporal dynamics. Montzka et al. (2017) evaluated different
SSM products in six regions and found that the SMAP data
had greater accuracy than SMOS, AMSR2, and ASCAT. Ad-
ditionally, SMAP data outperformed other satellite-derived
SSM products in the Gilgel Abay watershed of Ethiopia
(Alaminie et al., 2024), the Genhe area in China (Cui et al.,
2017), and the Huai River basin of China (Wang et al., 2021).
Although the SMAP data are stable and reliable, poten-
tial applications are constrained by their coarse spatial res-
olution. To address this issue, several downscaling strate-
gies have been applied by integrating optical/thermal in-
frared data (Peng et al., 2017; Sabaghy et al., 2020; Ab-
baszadeh et al., 2021; Meng et al., 2024). In general, the uni-
versal triangle feature (Carlson et al., 1990, 1995) and trape-
zoidal feature spaces (Moran et al., 1994; Merlin et al., 2012)
provide the theoretical basis for most downscaling studies.
The universal triangle feature primarily leverages land sur-
face temperature (LST) and normalized difference vegetation
index (NDVI) from optical/thermal infrared data, e.g., the
Moderate-Resolution Imaging Spectroradiometer (MODIS),
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to capture spatio-temporal variations in SSM, highlighting
the fact that SSM is closely related to LST and NDVI. (Carl-
son, 2007). Compared to the universal triangle feature, the
trapezoidal feature considers the influence of the fraction
of water-stressed vegetation (Djamai et al., 2016). By in-
corporating fine-resolution LST and NDVI at various frac-
tional vegetation cover conditions, the effects of evaporation
(e.g., soil evaporative efficiency) can be quantified, enabling
the development of SSM products at high spatial resolution
(Merlin et al., 2012; Kim and Hogue, 2012; Molero et al.,
2016). Therefore, fine-resolution LST and NDVI are often
employed as auxiliary data for SSM downscaling.

Commonly, downscaling approaches are based on geosta-
tistical models, which consider the spatial variations of LST
and NDVI within and outside of the SSM pixel (Song et al.,
2019). For example, a regression kriging-based model and its
modified version were used to disaggregate the coarse pix-
els in SSM data using LST and NDVI data (Jin et al., 2018;
Wen et al., 2020; Jin et al., 2021; Yang et al., 2024). Robust
ensemble learning approaches have also been used to down-
scale SSM (Zhao et al., 2018; Wei et al., 2019; Karthikeyan
and Mishra, 2021). For example, by integrating multiple de-
cision tree models, a random forest model was employed
to downscale SMAP SSM data from 36 to 1 km (Hu et al.,
2020). This approach can include fine-resolution auxiliary
information, such as topography, location, and soil texture
(Abbaszadeh et al., 2019; Liu et al., 2020b; Guevara et al.,
2021; Wang et al., 2022). Deep learning is another popular
downscaling approach as the strong fitting capability effec-
tively characterizes the SSM using LST, NDVI, and other
auxiliary information (Xu et al., 2022; Zhao et al., 2022; Xu
et al., 2024).

Using the aforementioned methods, many high-resolution
SSM datasets have been developed (Vergopolan et al., 2021;
Han et al., 2023; Brocca et al., 2024). However, the opti-
cal/thermal infrared auxiliary data are usually disturbed by
atmospheric conditions, such as clouds and haze (Ma et
al., 2022a, b), resulting in difficult disaggregation of coarse
SSM pixels under clouds or haze. To mitigate these issues,
multiple-day composited optical/thermal infrared data are of-
ten used as the auxiliary variables for producing the SSM
dataset (Li et al., 2022; Zheng et al., 2023). Meanwhile, re-
construction of the missing optical/thermal infrared data is a
reliable choice, which is then used for SSM generation (Long
et al., 2019; Abowarda et al., 2021; Song et al., 2022). For
example, Zhao et al. (2021) reconstructed the seamless LST
data and used them to generate the SSM dataset at a 1 km spa-
tial resolution. In addition, integrating other high-resolution
SSM products is also an appropriate method which can avoid
the influence of the optical/thermal infrared auxiliary data
(Jiang et al., 2019; Yang et al., 2022; Jiang et al., 2024). In
addition, synthetic aperture radar (SAR) data are also bene-
ficial for generating high-resolution SSM datasets. Since mi-
crowave signals can penetrate the cover of clouds or haze, the
SSM estimation can avoid the influence of weather factors.
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However, producing a large-scale, fine-temporal-resolution
SSM product is limited by the coarse revisit period and nar-
row swath width of SAR data (Wang et al., 2023; Zhu et al.,
2023; Fan et al., 2025).

High-resolution SSM datasets have been developed based
on the original SMAP SSM product. For instance, the Na-
tional Aeronautics and Space Administration (NASA) com-
bined data from the Sentinel-1 satellites’ synthetic aperture
radar with SMAP’s passive radiometer to produce the SSM
product (SPL2SMAP_S) which offers a spatial resolution of
3km (Jagdhuber et al., 2019). However, differences in the
revisit orbits of SMAP and Sentinel-1 coupled with the nar-
rower swath width of Sentinel-1 compared to SMAP restrict
the spatial coverage of the SPL2SMAP_S product (Das et
al., 2019; Kim et al., 2021). In addition, the United States
Department of Agriculture’s National Agricultural Statistics
Service (USDA-NASS) has developed a daily, 1km reso-
lution SSM product within the Crop Condition and Soil
Moisture Analytics (Crop-CASMA) system (Colliander et
al., 2019; Zhang et al., 2022). This product disaggregates
the 9 km satellite-derived SMAP SSM data by incorporating
auxiliary 1 km data from MODIS (Liu et al., 2021, 2022). Al-
though the Crop-CASMA SSM product provides sufficient
spatial details, it retains spatial gaps inherent to the daily
SMAP SSM data, limiting its overall spatial continuity. Simi-
larly, the lack of spatial information also restricts the applica-
tion of other high-resolution SSM datasets (Fang et al., 2022;
Lakshmi and Fang, 2023; Yang et al., 2024).

Finer spatial and temporal resolutions have become in-
creasingly important for SSM datasets to facilitate more ac-
curate monitoring of dynamic soil moisture variations. For
long time series and large-scale SSM datasets, a 1 km spa-
tial resolution is commonly adopted as daily auxiliary data
at 1 km resolution can be extracted from MODIS. However,
the commonly used 1 km SSM datasets at a large scale have
a daily or even coarser temporal resolution, limiting their ca-
pacity to depict the intra-day SSM variations. This highlights
the challenge of achieving both high temporal and high spa-
tial resolution in SSM datasets simultaneously.

In this work, we generated a 3h, 1km SSM dataset
(denoted as STF_SSM) for the contiguous United States
(CONUS) from 2015 to 2023. Based on an advanced and ef-
ficient spatio-temporal fusion model, the advantages of high
observation frequency (3h) in the SMAP L4 SSM product
and satisfactory spatial details (1 km) in the Crop-CASMA
SSM dataset were integrated into a new SSM dataset. A time
series data mining approach was employed to extract mul-
tiple spatially seamless characteristics from the SMAP L4
and Crop-CASMA SSM datasets, effectively addressing the
spatio-temporal mismatches between the two input datasets
within the fusion model. To evaluate the performance of the
STF_SSM dataset, ground-based in situ measurements were
used for validation at both 3h and daily scales. The gen-
erated STF_SSM dataset facilitates intra-day SSM observa-
tions, providing a valuable resource for the related studies.
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2 Data and methods

2.1 Data
2.1.1 SMAP L4 SSM product

SMAP L4 SSM data were downloaded from https://nsidc.org
(last access: 25 September 2024). The temporal and spa-
tial resolutions of the SMAP L4 SSM product are 3h and
9 km, respectively. The SMAP L4 SSM product has a spa-
tially complete coverage on a global scale. Validation studies
showed that the SMAP L4 product provides more accurate
and stable performance than SMAP L3 across all seasons
(Tavakol et al., 2019). In this work, we used the latest ver-
sion 7 SMAP L4 geophysical dataset.

2.1.2 Crop-CASMA SSM data

The Crop-CASMA system integrates crucial vegetation and
soil moisture data for the CONUS (such as SSM, root-zone
soil moisture, and NDVI). These data are continuously up-
dated and can be freely accessed via the USDA-NASS web-
site at https://nassgeo.csiss.gmu.edu/CropCASMA/ (last ac-
cess: 19 September 2024). The system supports direct down-
load, analysis, and visualization. In this study, the Crop-
CASMA SSM data are derived from the SMAP Thermal
Hydraulic disaggregation of Soil Moisture (SMAP THySM)
dataset, which can provide 1 km daily SSM data and has 2d
of latency (Liu et al., 2021, 2022; Zhang et al., 2022).

2.1.3 In situ data

In situ data are measured and recorded by ground-based
sensors at different depths, which have often been used as
the reference for validation of satellite-derived SSM datasets
(Dorigo et al., 2015). In this study, in situ data from 2015 to
2023 were obtained from the International Soil Moisture Net-
work (https://ismn.earth/en/, last access: 26 September 2024)
and the Oklahoma Mesonet (https://www.mesonet.org/, last
access: 17 November 2024) with measurements taken at a
depth of 5cm (McPherson et al., 2007). Note that the avail-
able in situ data were further filtered to ensure that only one
site was included per SSM pixel. Detailed information and
locations of the in situ networks are presented in Table 1 and
Fig. 1.

2.1.4 Land cover and terrain data

In this study, we validate the performance of our developed
datasets for different land cover types and different terrain
conditions. Land cover type data were from the National
Land Cover Database (NLCD) product available at https:
/Iwww.mrlc.gov/ (last access: 20 November 2024), which in-
cludes annual land cover type at a spatial resolution of 30 m
(Homer et al., 2020; Jin et al., 2023). Additionally, 30 m dig-
ital elevation models (DEM) from the NASA Shuttle Radar
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Table 1. Details of the selected in situ data and soil moisture observation network for validation.

Network Site number  Sensor

ARM 14 Hydraprobe II Sdi-12 E

CW3E 16 CS616/Stevens-Hydra-Probe

FLUXNET-AMERIFLUX 2 CS655/ThetaProbe-ML2X

MESONET 123 Campbell Scientific 229-L

PBO_H20 130  GPS

SCAN 183  Hydraprobe-Analog-(2.5-Volt)/Hydraprobe-Digital-Sdi-12-(2.5-Volt)
SNOTEL 261  Hydraprobe-Analog-(2.5-Volt)/Hydraprobe-Analog-(5.0-Volt)
TxSON 15 CS655

USCRN 91 Stevens-Hydraprobe-II-Sdi-12

Medora_7_E
(USCRN)

Windy_Gap
(CW3E)

Tonzi_Ranch
(FLUXNET-AMERIFLUX)

DELVALLE
(PBO_H20)

45°N

30°N

9IRW 75°W
LCRA_4 Omega CENT Bragg_Farm
(TxSON) (ARM) (MESONET) (SCAN)

Figure 1. Spatial distribution of the in situ soil moisture observation sites used in this study for soil moisture validation. Each red point refers
to one site. The eight marked sites show temporal variations of surface soil moisture (SSM) in Figs. 6 and 7, respectively. The basemap is

from Esri, Earthstar Geographics, and the GIS User Community.

Topography Mission project were utilized to describe the ter-
rain information in the CONUS (Rabus et al., 2003).

2.2 Method
2.2.1 Characteristic extraction

Because of the spatial gaps in the Crop-CASMA SSM data,
it is difficult to directly exploit the daily Crop-CASMA
SSM scene for the construction of the spatio-temporal fusion
model (see next section). To deal with this problem, a time
series mining approach, i.e., highly comparative time se-
ries analysis (HCTSA), was adopted to extract four spatially
seamless 1km characteristics (maximum, minimum, mean,
and median) in each pixel from the Crop-CASMA SSM time
series data (Fulcher et al., 2013; Fulcher and Jones, 2017).
Additionally, to match the extracted characteristics from the
Crop-CASMA SSM data, the same characteristics were also
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extracted at 9 km resolution from the corresponding SMAP
L4 time series data.

Even though the location of spatial gaps in the Crop-
CASMA SSM time series are varying over time, the ex-
tracted HCTSA-based characteristics are not affected (Yang
and Wang, 2023). Typically, some factors that significantly
influence SSM (e.g., precipitation, vegetation, and temper-
ature) exhibit periodic changes in the year, indicating that
inter-annual fluctuations in SSM tend to follow a periodic
pattern. Thus, we selected a 1-year temporal span for extract-
ing these characteristics of maximum, minimum, mean, and
median SSM. The extracted characteristics were then utilized
to generate the corresponding STF_SSM scene.

2.2.2 Spatio-temporal fusion model

In this study, the virtual image pair-based spatio-temporal fu-
sion (VIPSTF) model is employed to generate the 3 h, 1 km

https://doi.org/10.5194/essd-17-3391-2025
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STF_SSM dataset due to its stable performance, superior
computational efficiency, and flexible usage (Wang et al.,
2020; Yang et al., 2023). The spatial weighting version of
the VIPSTF model was adopted in this study because of the
reliable accuracy. The operation of the VIPSTF model re-
quires at least one or multiple known image pairs at differ-
ent spatial resolutions (a data pair is defined as one coarse-
resolution and one fine-resolution characteristic extracted
from the same year). Here, the extracted 1 and 9 km HCTSA-
based characteristics (i.e., maximum, minimum, mean, and
median of SSM time series) from the SMAP L4 and Crop-
CASMA SSM time series (i.e., four image pairs) are blended
using the VIPSTF model. Specifically, each STF_SSM scene
is produced as follows:

STF_SSM, = STF_SSMy;p + ASTF_SSM,, (1)

where STF_S\SM, is the generated 3h, 1km SSM scene
at time ¢t and ASTF_SSM, refers to the increment data of
the model at a 1 km spatial resolution at time ¢. The virtual
STF_SSMyp scene was predicted using a linear combina-
tion of the four extracted 1 km characteristics from the Crop-
CASMA SSM time series data in Eq. (2):

n
STF_SSMyp = » a;F_C; +b, )
i=1

where q; is the coefficient for the ith extracted fine charac-
teristic F_C; at a 1km spatial resolution. n is the number
of the characteristics (n =4 in this study), and b denotes a
constant. Based on the assumption of scale invariance (Wang
and Atkinson, 2018), the optimal coefficients a; and b for
each 3h SMAP scene were calculated in a linear regression
as follows:

SMAP, = Z a;C_C; +b+ ASMAP,, 3)

i=1

where SMAP; refers to the known SMAP L4 SSM scene
at time ¢ and C_C; is the ith extracted coarse character-
istic at a 9 km spatial resolution from the SMAP L4 SSM
time series data. ASMAP; represents the residual data from
the regression at time ¢. Moreover, the increment data (i.e.,
ASTF_SSM,) in Eq. (1) can be disaggregated by the follow-
ing spatial weighting scheme:

ASTF_SSM, (x0, yo) = » _ w; ASMAP; (xt, i) )
k=1

In Eq. (4), (xk, yx) denotes the spatial distribution of the kth
similar pixel surrounding the center pixel (xg, yo). The num-
ber of surrounding similar pixels is represented by s. Addi-
tionally, w; represents a weight calculated based on the dis-
tance between the center pixel and the kth surrounding sim-
ilar pixels. ASMAP; was interpolated from 9 to 1 km using
the bicubic method.
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2.2.3 Data generation

Based on the VIPSTF model, the 3h, 1 km STF_SSM dataset
was generated from 1 April 2015 to 31 December 2023. The
generation flowchart is depicted in Fig. 2. The specific pro-
cess steps for producing the STF_SSM dataset are described
as follows:

1. Foreach year, 1 and 9 km spatially seamless characteris-
tics (i.e., maximum, minimum, mean, and median) were
extracted from the Crop-CASMA and SMAP L4 SSM
time series using the HCTSA method, respectively.

2. To generate a STF_SSM scene at time 7, a VIPSTF
model was constructed using the extracted characteris-
tics in step (1) and a SMAP L4 SSM scene at time ¢
within the year. Then, the STF_SSM scene at time ¢ was
generated.

3. The aforementioned steps were repeated after each 3h
period to produce the 3h, 1 km STF_SSM data.

Finally, a total of 25567 STF_SSM scenes were produced,
accounting for approximately 1.78 TB. Each STF_SSM
scene requires approximately 73.0 MB of storage space. The
Pete High-Performance Computing (HPC) facility at Okla-
homa State University was employed for data generation.

2.3 Validation

In this paper, we divide the soil moisture observations
(Fig. 1) into two groups (3 h group and daily group) for the
validation of our generated data. Considering that the time of
SMAP L4 and STF_SSM data is not on the hour (at 01:30,
04:30, 07:30, 10:30, 13:30, 16:30, 19:30, and 22:30 UTC
(time zone used throughout)), the average SSM value be-
tween two adjacent integer times was used to represent the
SSM value at the specific time. For example, when validat-
ing the SMAP L4 and STF_SSM scenes at 04:30, the mean
value of the 04:00 and 05:00 in situ data was used to repre-
sent the soil moisture at 04:30. For daily-scale validation, the
hourly in situ data were averaged to obtain daily values. Sim-
ilarly, the 3h SMAP L4 and STF_SSM data were compos-
ited into daily scenes. To assess accuracy, five widely used
statistical metrics were adopted, that is, the correlation coef-
ficient (CC), root mean square error (RMSE), bias (Bias), un-
biased root mean square error (ubRMSE), and Kling—Gupta
efficiency (KGE).

3 Results

3.1 Spatial pattern of the developed SSM dataset

The spatial pattern of the Crop-CASMA SSM, the SMAP
L4 SSM, and the generated STF_SSM datasets are shown
in Fig. 3 at four randomly selected time points (i.e.,

Earth Syst. Sci. Data, 17, 3391-3409, 2025
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Figure 2. Flowchart for generating the 3h, 1 km STF_SSM dataset from 2015 to 2023.

1 April 2015, 8 June 2017, 16 August 2019, and 25 Octo-
ber 2021). The 1km Crop-CASMA SSM dataset has spatial
gaps and does not have wall-to-wall data covering the en-
tire CONUS. In contrast, both the SMAP L4 and STF_SSM
datasets can provide spatially seamless observations. It is
noted that the SMAP L4 SSM scenes contain some abnor-
mal pixels with extremely high SSM values (SSM values of
0.6 and higher), especially in the northern part of the CONUS
(e.g., some pixels around the Great Lakes in Fig. 3).

To illustrate the advantages of the STF_SSM dataset, we
zoomed into a sub-region in the CONUS at a date with rain-
fall (14 August 2018) and showed SSM in the three differ-
ent datasets in Fig. 4. It is clear that both the 3h SMAP L4
SSM and STF_SSM datasets can capture increased SSM val-
ues from 01:30 to 07:30 in the southwest region of the sub-
region. Moreover, The STF_SSM and Crop-CASMA SSM
datasets provide more detailed spatial information than those
in the SMAP L4 SSM product. The spatial texture of the
STF_SSM dataset closely resembles that of the 1km Crop-
CASMA SSM dataset, which is smoother than that of the
SMAP L4 SSM product.

Next, we selected two random pixels in Nebraska (shown
in Fig. 4) to exhibit intra-day SSM variation (Fig. 5). Al-
though the Crop-CASMA SSM scene provides spatial in-
formation at a 1km resolution, it only provides the SSM
value at the daily scale. In contrast, both the SMAP L4 and

Earth Syst. Sci. Data, 17, 3391-3409, 2025

STF_SSM datasets show the changes in SSM every 3 h. Fur-
thermore, the changing patterns of SSM over time are sim-
ilar between the SMAP L4 and STF_SSM datasets (the CC
values in Fig. 5a and b are 0.997 and 0.999), indicating the
stability and consistency of the STF_SSM dataset.

3.2 Validation based on daily soil moisture observations

At the daily scale, the three daily SSM datasets (the Crop-
CASMA SSM, SMAP L4 SSM, and STF_SSM datasets)
were compared against the daily in situ data from nine soil
moisture observation networks. Figure 6 shows the SSM time
series acquired from four randomly selected sites distributed
across the CONUS: the Windy_Gap site in the CW3E net-
work, CENT site in the MESONET network, DELVALLE
site in the PBO_H20 network, and LCRA_4 site in the Tx-
SON network. Although there are gaps in the in situ data
at these sites, the available in situ data are sufficient for
the validation of these three SSM datasets. Moreover, the
SSM daily variations of the three SSM datasets are similar to
those of the in situ data. For example, the CC values for the
SMAP L4, Crop-CASMA, and STF_SSM datasets in Fig. 6a
(Windy_Gap site in the CW3E network) are 0.924, 0.879,
and 0.886, respectively. In addition, there are some biases
between different SSM datasets due to differences in spa-
tial resolution and derived methods. Specifically, the SMAP
records a lower minimum SSM value at the Windy_Gap site

https://doi.org/10.5194/essd-17-3391-2025
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Figure 3. Spatial pattern of surface soil moisture (SSM) in the Crop-CASMA SSM dataset (left), SMAP L4 SSM product (middle), and
STF_SSM dataset (right) on 1 April 2015 (01:30), 8 June 2017 (07:30), 16 August 2019 (13:30), and 25 October 2021 (19:30). Both the
SMAP L4 and STF_SSM datasets are exhibited at the 3 h scale, while the Crop-CASMA SSM dataset is displayed at the daily scale. The
basemap is from Esri, Earthstar Geographics, and the GIS User Community.

and a higher SSM maximum at the DELVALLE site com-
pared with the Crop-CASMA and STF_SSM datasets.

At the network level, the results of the accuracy assess-
ment (Table 2) show that the 9km SMAP L4 SSM prod-
uct has the greatest accuracy among the three datasets.
At a spatial resolution of 1km, the generated STF_SSM
dataset outperforms the Crop-CASMA SSM dataset. Specif-
ically, the mean CC for the SMAP L4 SSM product is
0.749, which is 0.033 and 0.165 higher than the STF_SSM
and Crop-CASMA datasets, respectively. The RMSE and
ubRMSE for the SMAP L4 SSM dataset are 0.081 and
0.055m> m~3 and are the smallest among the three datasets.
The STF_SSM dataset has RMSE and ubRMSE values of
0.083 and 0.057 m®> m~3 and so are slightly higher than those
for the SMAP L4 SSM product but smaller than those for
the Crop-CASMA dataset. The Bias for the SMAP L4 SSM
product (with a Bias of —0.001 m> m~?) and the STF_SSM
dataset (with a Bias of —0.002m? m~3) are closer to SSM
observation data than that of the Crop-CASMA SSM dataset.

https://doi.org/10.5194/essd-17-3391-2025

The STF_SSM dataset has a mean KGE of 0.395, which is
0.026 smaller than that of the SMAP L4 but 0.185 larger
than that of the Crop-CASMA dataset. At the three SSM ob-
servation networks of MESONET, PBO_H20O, and TxSON,
the STF_SSM dataset demonstrates better performance com-
pared to the other datasets. However, for the other networks,
the SMAP L4 SSM product outperforms the other datasets in
terms of accuracy.

3.3 \Validation based on 3 h soil moisture observations

The 9 km SMAP L4 product and the 1 km STF_SSM dataset
were compared with the 3h in situ data from seven net-
works. We randomly selected four sites (Omega site in
the ARM network, Tonzi_Ranch site in the FLUXNET-
AMERIFLUX network, Bragg Farm site in the SCAN net-
work, and Medora_7_E site in the USCRN network) to ex-
hibit the SSM comparison (Fig. 7). The temporal variations
of SSM time series from the in situ data, SMAP L4 product,

Earth Syst. Sci. Data, 17, 3391-3409, 2025
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Figure 4. A sub-region in the western continental United States (CONUS) to exhibit the spatial textures of the three surface soil moisture
(SSM) datasets on 14 August 2018. The basemap is from Esri, Earthstar Geographics, and the GIS User Community.
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Figure 5. The intra-day surface soil moisture (SSM) variation for two randomly selected pixels on 14 August 2018. The Crop-CASMA SSM
dataset does not provide the intra-day SSM variation, shown as the flat black line. Panels (a) and (b) refer to the pixels 1 and 2 in Fig. 4,
respectively. Since pixel 2 is located in the spatial gaps of the Crop-CASMA SSM scene, it does not exhibit the flat black line in (b).

and STF_SSM dataset are similar to each other; e.g., the CC
values of the SMAP L4 and STF_SSM datasets in Fig. 7a
are 0.749 and 0.745 by referring to the in situ data, revealing
that both of the SSM datasets can well capture the dynamics
of SSM at the 3 h scale. Moreover, the difference between
the 9km SMAP L4 product and 1 km STF_SSM dataset
is small, indicating that the downscaling of our STF_SSM
dataset does not introduce significant errors in SMAP L4
SSM. Therefore, our STF_SSM dataset can be regarded as
a reliable high-resolution version of the SMAP L4 product.
The quantitative statistical metrics based on the 3h in
situ data are listed in Table 3. The results indicate that
the 9km SMAP L4 SSM product has better accuracy than
the 1 km STF_SSM dataset. Specifically, the mean CC and
KGE for the SMAP L4 SSM product are 0.728 and 0.414,
which are values 0.039 and 0.028 higher than those for the
STF_SSM dataset. Furthermore, the SMAP L4 SSM product
has a mean RMSE and ubRMSE of 0.086 and 0.059 m® m~3.

Earth Syst. Sci. Data, 17, 3391-3409, 2025

Additionally, the Bias of the SMAP L4 SSM product is
—0.005 m3 m~3, which is closer to the SSM observation data
than that of the STF_SSM dataset. For specific networks, we
found that the CC and KGE of the SMAP L4 SSM dataset at
the FLUXNET-AMERIFLUX network are 0.920 and 0.889
and therefore are the highest among the seven networks. On
the other hand, the STF_SSM dataset provides an RMSE of
0.081 and 0.067 m® m—3 for the ARM and TxSON networks,
which is 0.009 and 0.019 m® m~3 lower than the SMAP L4
SSM dataset, respectively.

3.4 SSM data accuracy across land cover types

Generally, the accuracy of satellite-derived SSM datasets
varies between land cover types because the penetration ca-
pacity of remote sensing signals can be affected by land cover
types. Therefore, it is necessary to assess the performance
of the SSM datasets under different land cover types. Ac-

https://doi.org/10.5194/essd-17-3391-2025
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Figure 6. Temporal variations of daily surface soil moisture (SSM) from the SMAP L4 (blue), Crop-CASMA (black), STF_SSM (red), and
in situ observation data (dark yellow) at four different sites. (a) Windy_Gap site in the CW3E network. (b) CENT site in the MESONET
network. (¢) DELVALLE site in the PBO_H20 network. (d) LCRA_4 site in the TxSON network.
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Figure 7. Temporal variations of 3 h surface soil moisture (SSM) from SMAP L4 (blue), STF_SSM (red), and in situ observation data
(dark yellow) at four different sites. (a) Omega site in the ARM network. (b) Tonzi_Ranch site in the FLUXNET-AMERIFLUX network.
(c) Bragg_Farm site in the SCAN network. (d) Medora_7_E site in the USCRN network.

cording to the NLCD land cover product from 2015 to 2023,
we separated the CONUS into nine types, that is, developed,
barren, forest, shrub, grassland, pasture, crops, wetlands, and
changed. The former eight types are the existing categories
(e.g., shrub and grassland) or composite categories (e.g., for-
est is composed of deciduous, evergreen, and mixed forest) in
the NLCD product. The changed category refers to the areas
where land use has changed between 2015 and 2023.

At the 3h scale, it is seen from Fig. 8a and b that the
SMAP L4 product has slightly better performance than the

https://doi.org/10.5194/essd-17-3391-2025

generated STF_SSM dataset for most land cover types. As
shown in Table 4, the mean CC and RMSE values of the
SMAP L4 product are 0.611 and 0.107 and are 0.042 and
0.002 better than those of the STF_SSM dataset, respec-
tively. However, both SSM datasets exhibit lower accuracy
in wetlands compared to other land cover types. Meanwhile,
the SSM accuracy has a larger variation across forest pixels,
shrub pixels, and developed area pixels than the other land
cover types. This is primarily because the topsoil in these
land cover types is covered by woody plants and human-

Earth Syst. Sci. Data, 17, 3391-3409, 2025
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made features, which influence SSM observations and lead to
a loss of accuracy. The highest accuracy is observed in barren
(with an RMSE of 0.083 m® m™ for the STF_SSM dataset)
and grassland areas (with an RMSE of 0.083 m® m~3 for the
SMAP L4 product) as these types tend to have less cover.
The land cover changes observed in the changed category
also provide satisfactory accuracy. This is because approx-
imately 50 % of the land cover change samples consist of
barren or grassland areas, which contribute to higher SSM
accuracy. These patterns are also reflected in the daily SSM
datasets (Fig. 8c and d). Moreover, the Crop-CASMA dataset
(with mean CC and RMSE values of 0.440 and 0.111, respec-
tively) has a lower performance than the STF_SSM dataset
across all land use covers, highlighting the reliability of the
generated STF_SSM dataset at a 1 km spatial resolution.

3.5 SSM data accuracy across topographic conditions

As a significant soil-forming factor, terrain is one of the de-
terminants of SSM variations. Particularly, SSM could have
strong spatial variability in areas with complex topographic
conditions. We analyzed the accuracy (including CC and
RMSE) of the 1 km Crop-CASMA and STF_SSM datasets
under different topographic conditions. As shown in Fig. 9a
and b, both the Crop-CASMA and STF_SSM datasets show
a decrease in the CC value with increasing elevation. How-
ever, the STF_SSM dataset shows a slower decline in accu-
racy (with a slope of —0.055) compared to the Crop-CASMA
dataset (with a slope of —0.100). Under complex terrain con-
ditions (i.e., larger slope), the accuracy of both SSM datasets
is reduced. It can be seen from Fig. 9c and d that the CC
of the Crop-CASMA dataset decreases more sharply as the
slope increases (with a slope of —0.023), while the CC in the
generated STF_SSM dataset declines more gradually (with
a slope of —0.011). Likewise, Fig. 9¢ and f show that the
RMSE values of both SSM datasets increase with eleva-
tion. According to the intercept, the STF_SSM dataset has a
slightly greater RMSE than the Crop_CASMA dataset, es-
pecially at high altitudes. Meanwhile, with an increase in
slope, the STF_SSM dataset has a slower rise in RMSE val-
ues than the Crop-CASMA dataset (Fig. 9g and h). This sug-
gests that the STF_SSM dataset is more reliable than the
Crop-CASMA dataset in complex terrain conditions.

4 Discussion

4.1 Implications

Ma et al. (2021) adopted the daily 25km, 10d compos-
ited CCI SSM time series to define agricultural drought
events. However, this 10d composition approach may not
capture the rapidly developed drought phenomena (e.g., flash
drought). In contrast, the generated 3h, 1km STF_SSM
dataset has advantages over the CCI dataset because the
STF_SSM dataset provides more detailed and continuous

https://doi.org/10.5194/essd-17-3391-2025
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Table 3. Accuracy of the 3 h surface soil moisture (SSM) from the SMAP L4 SSM product and the STF_SSM datasets. Values in bold
indicate the dataset with better performance for each statistic in each row.

SMAP L4 SSM (9 km)

\ STE_SSM (1 km)

CC RMSE Bias ubRMSE  KGE CC RMSE Bias ubRMSE  KGE
mm™3)  @m™)  (mm3) mm™3)  m*m™)  (mm3)
ARM 0.744 0.090 0.001 0.060 0.544 | 0.696 0.081 0.023 0.065 0.593
CW3E 0.818 0.074 —0.008 0.046 0.398 | 0.777 0.097 —0.047 0.051 0.216
FLUXNET-AMERIFLUX  0.920 0.060 —0.009 0.055 0.746 | 0.889 0.073 —0.030 0.066  0.645
SCAN 0.628 0.097 —-0.011 0.065 0.305 | 0.582 0.097 —0.016 0.066 0.304
SNOTEL 0.512 0.111 0.021 0.084 0.189 | 0.457 0.114 0.033 0.086 0.136
TxSON 0.769 0.086 —-0.018 0.047 0.358 | 0.750 0.067 0.020 0.045 0.514
USCRN 0.708 0.088 —0.012 0.055 0.357 | 0.674 0.097 —0.032 0.057 0.295
Mean 0.728 0.086 —0.005 0.059 0.414 | 0.689 0.090 —0.007 0.062  0.386
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Figure 8. Accuracy of the surface soil moisture (SSM) datasets under different land cover types. The “changed” type refers to areas where
land cover type changed between 2015 and 2023. Panels (a) and (b) are the correlation coefficient (CC) and the root mean square error
(RMSE) of SSM datasets at the 3 h scale. Panels (c) and (d) are the CC and RMSE of SSM datasets at the daily scale. For each land cover
type, the number of validation sites is 45 (developed), 7 (barren), 190 (forest), 211 (shrub), 148 (grassland), 97 (pasture), 69 (crops), 10

(wetlands), and 49 (changed), respectively.

SSM information in both the temporal and spatial dimen-
sions. This implies that the STF_SSM dataset can detect both
long-term and flash drought events at a finer scale.

Figure 10 exhibits the SSM variation under four drought
events in Oklahoma (January to February 2018), Alabama
(May to December 2016), California (January to Decem-
ber 2020), and Nevada (January to December 2020) (U.S.
Drought Monitor, 2024). The SSM in our dataset shows a
clear response to the drought event. As shown in Fig. 10a,
during the Oklahoma’s drought in early 2018 (Shephard et
al., 2021), SSM is about 0.08 m®> m™ lower than the multi-
year average value from 2015 to 2023. The drought was grad-
ually alleviated in February. Alabama’s drought in 2016 be-
gan around May and continued into December (Fig. 10b)
(Noel et al., 2020) as the SSM value began to deviate from
the average in May and remained in a lower range. In

https://doi.org/10.5194/essd-17-3391-2025

2020, California and Nevada suffered extreme and long-term
droughts (Williams et al., 2022); Fig. 10c and d show that
SSM values in the two states were generally lower than the
average and continued for the entire year.

In addition to droughts, SSM is also sensitive to flood-
ing. When a flooding event begins, the SSM value is usually
rapidly increased over a short period. To highlight the ad-
vantages of the developed 3 h SSM dataset, we portrayed the
SSM variation under two flooding events. Figure 11a shows
the flooding in 2015 in Williamsburg, South Carolina, be-
cause of extreme precipitation from 1 to 5 October 2015. It
can be seen that the SSM value in this region began to in-
crease dramatically from the evening of 1 to 2 October 2015
and remained at a high level until 5 October 2015. Figure 11b
presents the flooding in 2017 in Jefferson, Texas, due to Hur-
ricane Harvey. We found that the SSM value had started to

Earth Syst. Sci. Data, 17, 3391-3409, 2025
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Table 4. Mean correlation coefficient (CC) and root mean square error (RMSE) of surface soil moisture (SSM) datasets under different land

cover types.

Land cover type 3h ‘ Daily
(number of validation sites) SMAPL4 |  STESSM | SMAPL4 | Crop-CASMA |  STF_SSM
cc RMSE | CC RMSE | CC RMSE | CC RMSE | CC RMSE
(m? m=3) (m3 m—3) (m3 m—3) (m3 m—3) (m3m=3)
Developed (45) 0.554 0.117 | 0.530 0.135 | 0.653 0.091 | 0.480 0.114 | 0.640 0.104
Barren (7) 0.591 0.105 | 0.564 0.083 | 0.601 0.103 | 0.208 0.117 | 0.576 0.092
Forest (190) 0.530 0.151 | 0.472 0.156 | 0.634 0.104 | 0.327 0.123 | 0.570 0.110
Shrub (211) 0.615 0.091 | 0.562 0.089 | 0.669 0.078 | 0.481 0.083 | 0.627 0.076
Grassland (148) 0.691 0.083 | 0.662 0.089 | 0.753 0.083 | 0.669 0.090 | 0.734 0.082
Pasture (97) 0.680 0.101 | 0.639 0.107 | 0.704 0.091 | 0.517 0.112 | 0.678 0.093
Crops (69) 0.626 0.102 | 0.585 0.099 | 0.654 0.097 | 0.494 0.108 | 0.623 0.095
Wetlands (10) 0.532 0.138 | 0.463 0.138 | 0.551 0.124 | 0.279 0.145 | 0.498 0.134
Changed (49) 0.677 0.084 | 0.639 0.094 | 0.730 0.078 | 0.505 0.104 | 0.693 0.088
Mean 0.611 0.108 | 0.569 0.110 | 0.661 0.094 | 0.440 0.111 | 0.627 0.097
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Figure 9. Accuracy of the estimated surface soil moisture (SSM) from the 1km Crop-CASMA and generated STF_SSM datasets along
changing topographic conditions, denoted by elevation and slope. Panels (a), (c), (e), and (g) refer to the 1 km Crop-CASMA SSM dataset.

Panels (b), (d), (f), and (h) are the generated STF_SSM dataset.

rise on the evening of 24 August 2017 before Hurricane Har-
vey reached landfall fully (25 August 2017) and peaked on
27 August 2017.

It is clear from the mentioned analysis that SSM informa-
tion is closely linked to drought and flooding. This suggests
that SSM can be applied to identify these events and quan-
tify their severity. Thus, the developed STF_SSM dataset has
great potential for application, especially in agriculture. For
instance, near-real-time crop conditions could be observed
directly by dynamically monitoring SSM. It will provide a

Earth Syst. Sci. Data, 17, 3391-3409, 2025

rational basis for refining irrigation management. In addition,
severe drought and flooding affect crop yields, implying that
SSM information with fine spatio-temporal resolution also
has the potential to play an important role in crop yield esti-
mation.
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to 2023. Red lines represent the SSM values for the corresponding year. (a) The drought in Oklahoma in 2018. (b) The drought in Alabama
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Figure 11. Surface soil moisture (SSM) variations under flood events. Black lines represent the average SSM values calculated from 2015
to 2023. Red lines are the SSM values for the corresponding year. (a) The flood in Williamsburg, South Carolina, in 2015. (b) The flood in

Jefferson, Texas, in 2017.

4.2 Accuracy and latency time of updated STF_SSM
data

Drought monitoring needs real-time or near-real-time soil
moisture data and requires high data accuracy and short la-
tency time. Since the strategies of characteristic extraction
for training the STF_SSM dataset from 2015 to 2023 depend
on the complete SSM time series data over the entire year,
it is difficult to directly update the near-real-time data using
this strategy. Therefore, we propose three alternative strate-
gies for characteristic extraction to examine on a randomly
selected date in 2023 (10 January 2023). This first alterna-
tive is using all data in 2022, the second alternative is us-
ing available data in 2023 (before 10 January 2023), and the
third is using all data in 2022 plus available data in 2023. By
referring to the corresponding STF_SSM scenes (predicted
using all data in 2023), we found that using available data in
2023 has the greatest performance among the three strategies
of characteristic extraction with a mean CC and RMSE of
0.999 and 0.006 m* m—3 (Table 5). Meanwhile, the CC and
KGE of using all data in 2022 plus available data in 2023
are 0.964 and 0.947 and so are 0.004 and 0.009 higher than
those using data only in 2022. This means that using char-
acteristics extracted from temporally adjacent data in 2023
improves fusion accuracy.

https://doi.org/10.5194/essd-17-3391-2025

Due to a data-driven approach to production, real-time up-
dates of the STF_SSM data have unavoidable latency time.
This is because the latency time of the STF_SSM dataset de-
pends on that of other auxiliary data. According to the inves-
tigation from the official website, the near-real-time SMAP
L4 SSM product and Crop-CASMA SSM dataset usually
have 3 and 2d of latency, respectively. Thus, if only avail-
able data within the year are adopted to update the STF_SSM
data, the latency time of the near-real-time STF_SSM scene
is at least 3d.

4.3 Analysis of different fine SSM datasets

Currently, some high-resolution SSM datasets have been
published and used. We listed six 1km SSM datasets at a
large scale and exhibited the details of these datasets, such
as the spatial resolution, temporal resolution, and accuracy,
in Table 6. Given the differences in validation methods, spa-
tial and temporal coverages, and statistical metrics, etc., it
is difficult to harmonize these datasets to the same standard
to quantify accuracy. Therefore, before using the data, it is
necessary to further select the more suitable SSM dataset ac-
cording to the requirements.

Earth Syst. Sci. Data, 17, 3391-3409, 2025
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Table 5. Accuracy of near-real-time STF_SSM data (on 10 January 2023) production using different strategies of characteristic extraction.

CcC RMSE Bias ubRMSE KGE

(m3 m—3) (m3 m—3) (m3 m—3)
Accuracy using all data in 2022 0.960 0.035 —0.010 0.033 0.938
Accuracy using all data in 2022 plus available data in 2023  0.964 0.032 —0.008 0.031 0.947
Accuracy using available data in 2023 0.999 0.006 0.000 0.006  0.992

Table 6. Comparative analysis for six high-resolution SSM datasets. Statistical metrics for accuracy include the root mean square error
(RMSE), unbiased root mean square error (ubRMSE), and unbiased root mean square deviation (ubRMSD).

Reference Area Spatial Temporal  Accuracy
resolution  resolution (m3 m~3)
This study CONUS 1km 3h ubRMSE = 0.057
Vergopolan et al. (2021) CONUS 30m 6h RMSE =0.07
Fang et al. (2022) Global 1km daily ubRMSE = 0.063
Zheng et al. (2023) Global 1km daily ubRMSE = 0.045
Han et al. (2023) Global 1km daily ubRMSE = 0.050
Song et al. (2022) China 1km daily ubRMSD =0.074

4.4 Uncertainties and future works

Although the STF_SSM dataset has good performance in
representing the fast changes in soil moisture, two uncertain-
ties in the data generation need to be noted. First, the spatio-
temporal fusion model used in this study is a data-driven
method which depends on the stable and accurate SMAP
L4 SSM product and Crop-CASMA SSM dataset. If either
of these datasets stops updating or contains significant er-
rors, the generation and accuracy of the STF_SSM dataset
will be impacted. Second, many environmental and ecolog-
ical variables affect the SSM, such as precipitation, vegeta-
tion, temperature, evaporation, and terrain. However, these
variables are not fully considered in the STF_SSM produc-
tion, decreasing the interpretability of the STF_SSM dataset.

Currently, geostationary satellites have a large potential to
provide hourly and spatially fine auxiliary variables to pro-
duce SSM datasets. Fusing the auxiliary variables from the
geostationary satellites for the generation of hourly SSM data
is an ongoing work. However, the extensive data acquisition
and necessary preprocessing steps can significantly increase
the time cost of data production without leading to a substan-
tial improvement in accuracy. Thus, balancing data accuracy
and generation efficiency is necessary for the downscaling of
the SSM dataset in the future. Compared with existing SSM
datasets, the generated SSM dataset in this study has advan-
tages in terms of spatio-temporal resolution. It is worthwhile
to further explore its potential applications, such as moni-
toring drought severity and occurrences, quantifying wildfire
danger levels, evaluating responses of agriculture and natu-
ral ecosystems to soil moisture dynamics, and understanding
local and regional hydrological processes.
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5 Code and data availability

The STF_SSM dataset is available at https://doi.org/10.5066/
P13CCN69 (Yang et al., 2025a). Moreover, the STF_SSM
dataset and generating code are also published at https://doi.
org/10.6084/m9.figshare.28188011 (Yang et al., 2025b).

6 Conclusions

In this study, we develop a spatio-temporal fusion model
to generate the first spatially seamless 3h, 1 km STF_SSM
dataset in the CONUS from 2015 to 2023. This dataset in-
tegrates the 3h, 9km SMAP L4 SSM product from NASA
and the daily, 1 km Crop-CASMA SSM dataset from USDA-
NASS. The former provided fine temporal resolution, and
the latter provided detailed spatial details. To deal with the
mismatch between the two datasets in terms of temporal res-
olution and spatial coverage, the HCTSA-based time series
mining method was used to extract spatially seamless char-
acteristics from both SSM time series data for each year.
Four characteristics extracted at 1 and 9 km spatial resolu-
tions (minimum, maximum, mean, and median of SSM time
series) were employed as inputs of the fusion model. By
coupling with each 3h, 9km SMAP L4 scene, the down-
scaled 3h, 1km STF_SSM scene was simulated in turn.
Data validation at the daily scale showed that the gener-
ated 1 km STF_SSM dataset (with a mean CC and ubRMSE
of 0.716 and 0.057m? m~3) outperforms the 1km Crop-
CASMA SSM dataset (with a mean CC and ubRMSE of
0.584 and 0.072m> m—>) when compared to in situ mea-
surements. At the 3 h scale, the accuracy of the 9 km SMAP
L4 SSM product (with a mean CC and ubRMSE of 0.728
and 0.059 m3> m~3) is slightly higher than that of the 1km
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STF_SSM dataset (with a mean CC and ubRMSE of 0.689
and 0.062 m> m~3). Additionally, the STF_SSM dataset has
a better performance than the Crop-CASMA dataset un-
der complex terrain conditions. Overall, the generated 3 h,
1km STF_SSM dataset is reliable and has great potential
for applications at various spatio-temporal scales. The pro-
posed STF_SSM dataset can be freely acquired from https:
//doi.org/10.5066/P13CCNG69 (Yang et al., 2025a).
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