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Abstract. Determining the distribution of soil organic carbon (SOC) in subsoil (20–100 cm depth) is important
with respect to the global C cycle and warming mitigation. However, significant knowledge gaps remain regard-
ing the spatiotemporal dynamics of SOC within this layer. By integrating traditional depth functions with ma-
chine learning approaches, we quantified soil β values, which represent the relative rate of decline in SOC den-
sity with depth, and provided high-resolution assessments of SOC dynamics across global ecosystems, including
cropland, grassland, and forestland. The estimated subsoil SOC densities were 62 Mg ha−1 (95 % CI: 52–73) for
cropland, 70 Mg ha−1 (95 % CI: 57–83) for grassland, and 97 Mg ha−1 (95 % CI: 80–117) for forestland. SOC
density exhibited a consistent decline with depth, ranging from 30 to 5 Mg ha−1 in cropland, 32 to 7 Mg ha−1

in grassland, and 40 to 13 Mg ha−1 in forestland, across 20 cm depth increments from 20 to 100 cm. The esti-
mated global subsoil SOC stock was 803 Pg C, with cropland, grassland, and forestland contributing 74, 181, and
547 Pg C, respectively. On average, 57 % of this carbon was stored within the top 0–100 cm of the soil profile.
This study provides information on the vertical distribution and spatial patterns of SOC density at a 10 km reso-
lution across global ecosystems, providing a scientific basis for future studies pertaining to Earth system models.
The dataset is open-access and is available at https://doi.org/10.5281/zenodo.15019078 (Wang et al., 2025).

1 Introduction

Soil organic carbon (SOC) plays a pivotal role in global
carbon cycling, climate change mitigation, and reducing
greenhouse gas emissions while simultaneously supporting
ecosystem health (Bradford et al., 2016; Lal et al., 2021;
Griscom et al., 2017). Subsoil, defined here as the soil layer
below 20 cm, contains over half of the global SOC stock
(Jobbágy and Jackson, 2000; Poffenbarger et al., 2020; Bat-
jes, 1996). However, the extensive loss of SOC through agri-
cultural practices such as crop production and grazing has
contributed substantially to rising atmospheric CO2 levels
(Beillouin et al., 2023; Lal, 2020; Qin et al., 2023). Com-

plex polymeric carbon in subsoil is vulnerable to decomposi-
tion under future warming. Specifically, ecological or trophic
limitations of SOC biodegradation in deep-soil layers can
lead to sharp declines in the nutrient supply and biodiver-
sity (Chen et al., 2023). Subsoil is better suited to long-term
C sequestration than topsoil. The “4 per 1000” initiative aims
to boost SOC storage in agricultural soils by 0.4 % annually,
offering a potential pathway for mitigating climate change
and increasing food security (Chabbi et al., 2017). Promot-
ing subsoil carbon sequestration, particularly in agricultural
and managed ecosystems, could facilitate the long-term sta-
bilization of fossil-fuel-derived carbon in soils (Button et al.,
2022). Despite the importance of subsoil organic carbon dy-
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namics, these are still poorly understood, especially at the
large scale (Padarian et al., 2022). This is primarily due to the
challenges associated with measuring SOC at greater depths,
which is difficult, time-consuming, and labor-intensive.

Recent studies have focused on SOC allocation and dy-
namics at varied depths and the subsoil SOC–climate feed-
back cycle of terrestrial ecosystems (Luo et al., 2019; Jia et
al., 2019; Li et al., 2021). The complexity, uncertainty, and
large spatial heterogeneity of SOC stock estimation have lim-
ited the ability to accurately quantify the SOC stock distri-
bution (Mishra et al., 2021; Wang et al., 2022a). Currently,
three primary methods are commonly used to estimate large-
scale SOC stocks: (1) area-weighted averaging based on veg-
etation inventories and soil survey data (Tang et al., 2018);
(2) machine learning based on remote sensing, land use, and
edaphic data and climatic factors as covariates (Ding et al.,
2016); and (3) depth-distribution-function-based empirical
analysis (Wang et al., 2023). The first approach provides the
most accurate measurement of the SOC stock but is time-
consuming and labor-intensive and is not practical at the
global scale. The latter two approaches do not fully consider
the vertical distribution of the soil profile or the soil proper-
ties of various ecosystems. Extrapolating surface SOC mea-
surements from the 0–40 or 0–50 cm layer to predict subsoil
SOC at greater depths, such as at 0–100 or 0–200 cm, intro-
duces significant uncertainty, hindering precise estimation of
the global subsoil SOC stock (Wang et al., 2023; Ding et al.,
2016).

Studies of whole-soil profiles have recorded greater
changes in the SOC dynamics of the subsoil under warming
(Zosso et al., 2023; Luo et al., 2020; Soong et al., 2021). The
amount and quality of C in input soil, such as aboveground
litter and root biomass input, could profoundly alter the ver-
tical SOC distribution (Lange et al., 2023; Feng et al., 2022).
The β model, in particular, uses simple and flexible func-
tions that capture the relative slope of depth profiles with a
single parameter, with the advantage of being able to inte-
grate SOC values from the surface down to a given depth
(Jobbágy and Jackson., 2000). The β model was originally
applied to vertical root distributions and has been used to fit
the steepest reductions with depth (Gale and Grigal, 1987;
Jackson et al., 1997). Some researchers have used the global
average β of 0.9786 to calculate deep-soil SOC stocks (Yang
et al., 2011; Deng et al., 2014). However, the different hy-
drological conditions, soil types, and ground or underground
organic matter have limited the ability to resolve the SOC
depth distribution with confidence.

In this study, we produced spatially resolved global esti-
mates of the depth distributions and stocks of subsoil SOC
using the β model as a depth-distribution-function-based
empirical approach for evaluating cropland, grassland, and
forestland ecosystems on a global scale. We collected and
analyzed 17 984 observation data from globally distributed
soil profiles (0–100 cm) across 14 550 sites to estimate soil
β values. We then developed a random forest (RF) model to

estimate the spatial variation in grid-level soil β values in the
associated ecosystems to resolve the dynamics of the SOC
density in different soil layers and the subsoil stocks of the
global ecosystems.

2 Methods

2.1 Data collection

We conducted a review of the previously published, peer-
reviewed literature on the SOC stocks or SOC content of
soil profiles between 1980 and January 2023 to obtain a
database. The Web of Science and China National Knowl-
edge Infrastructure (CNKI) databases were searched using
the terms “soil organic carbon” and “soil profile” or “sub-
soil” or “deep soil”. The criteria were as follows: (1) the re-
search scope was worldwide. (2) The study was conducted
in the field. (3) The profiles of multiple sites were reported
in the same literature, and the profile of each site was con-
sidered to be from an independent study. (4) Profiles with
three or more suitable measurements of organic carbon in the
first meter were collected from the analysis in which there
was sufficient detail to characterize the vertical distribution
of SOC. (5) The data extracted included basic site informa-
tion, including location (latitude and longitude); soil organic
carbon (SOC); total nitrogen (TN); soil bulk density (BD);
soil pH and C/N ratio; microbial biomass carbon and nitro-
gen (MC); microbial biomass nitrogen (MN); soil clay con-
tent; and climate conditions, namely mean annual precipita-
tion (MAP) and mean annual temperature (MAT). If the soil
organic matter (SOM) was reported rather than the SOC, the
value was converted to SOC by multiplication with a con-
version factor of 0.58 (Don et al., 2011). To extract data
presented graphically, the digital software GetData Graph
Digitizer 2.25 (https://getdata-graph-digitizer.com/, last ac-
cess: 16 June 2023) was used. A total of 209 peer-reviewed
papers comprising 1221 soil profiles were included in this
dataset, of which 758 were for cropland, 219 were for forest-
land, and 244 were for grassland. Additionally, an expanded
dataset was sourced from the WoSIS Soil Profile Database,
contributing 7636 profiles for cropland, 4534 for forestland,
and 4593 for grassland (Fig. 1a). Missing soil and climate
factor data from a few sites were either provided by the study
authors through direct correspondence or obtained from the
spatial datasets (Sect. 2.2) based on latitude and longitude.
These completed data were analyzed to determine the im-
pact of the environment on soil β values; to develop a model
to predict global grid-level β values; and, subsequently, to
estimate the SOC density of soil profiles and to calculate
SOC stocks. Additionally, the soil samples were classified
into four major types, namely sandy soil, loam, clay loam,
and clay soil, according to the international soil texture clas-
sification standard (Zhao et al., 2022).
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Figure 1. Geographic distribution of study sites and variation in soil β values in 0–100 cm soil profiles across different ecosystems and soil
textures. (a) Red, yellow, and blue dots represent cropland, grassland, and forestland, respectively. (b) Soil β values of the study sites showing
significant differences in different ecosystems with ANOVA analysis and Duncan’s new multiple range test. Panels (c)–(e) demonstrate the
variations in soil β values across sandy soil, loam, clay loam, and clay for cropland, forestland, and grassland, respectively.

2.2 Calculation of soil attributes from literature-derived
database

Since the 0–1 m soil profile has different layers in the raw
data, the mass-preserving spline method (R package mp-
spline2) was used to divide the soil profiles into five layers at
20 cm intervals. This function was implemented for continu-
ous down-profile estimates of soil attributes (SOC, TN, clay,
MC, MN, etc.) measured over discrete, often discontinuous
depth intervals. In some studies, bulk density data below the
20 cm soil layer were lacking. Notable differences in global
SOC stock estimations were attributed to the values used for
soil bulk density. Therefore, we used the database issued by
predecessors to generate bulk density data within the 0–1 m
profile at 20 cm intervals (Shangguan et al., 2014). The equa-
tion used to calculate SOC density at each research site was
the following:

SOC density= SOC ·BD ·D · (1−GC/100)/10, (1)

where SOC is the SOC concentration (g kg−1), BD is the
soil bulk density (g cm−3), D is the thickness of the soil
layer (at intervals of 20 cm in the first meter), and SOC den-
sity (Mg C ha−1). GC (> 2 mm) is the gravel content (%).

2.3 Calculation of soil β values from literature-derived
database

To enhance the comparability of data from different stud-
ies, the corresponding soil β values were calculated using
Eq. (2), which follows the methodology adopted by Yang et

al. (2011). The SOC density in the top 0–100 cm was cal-
culated from the initial depth’s SOC density using Eq. (3),
which was developed by Jobbágy and Jackson (2000). The
equations are as follows:

Y = 1−βd , (2)

X100 =
1−β100

1−βd0
·Xd0 , (3)

where Y represents the cumulative proportion of the SOC
density from the soil surface to depth d (cm), and β is the
relative rate of decrease in the SOC density with soil depth. A
lower β indicates a steeper decline with depth. X100 denotes
the SOC density within the upper 100 cm, d0 represents the
depth of the 0–20 cm soil layer, and Xd0 is the SOC density
of the top 20 cm soil depth.

2.4 Spatial gridded datasets

The gridded datasets included forestland, grassland, and
cropland areas, climate factors, and soil properties. Ar-
eas of cropland, forestland, and grassland were obtained
from Global Agro-Ecological Zones (GAEZ, https://gaez.
fao.org/, last access: 30 June 2023) at a resolution of
0.083°× 0.083°. MAP and MAT were acquired from
the Climatic Research Unit Time Series (CRU TS ver-
sion 4.05; https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/
cruts.2103051243.v4.05/, last access: 7 July 2023). The spa-
tial data for SOC, total N, soil clay content, and soil pH and
gravel content were acquired from the Harmonized World
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Soil Database version 1.2 (https://www.fao.org/soils-portal/
data-hub/soil-classification/worldreference-base/en/, last ac-
cess: 28 July 2023). MC and MN data were obtained from
this study (Xu et al., 2013). The BD and gravel con-
tent (GC) datasets for the entire soil profile were acquired
from the Harmonized World Soils Database version 2.0
(HWSD v2.0) (https://gaez.fao.org/pages/hwsd, last access:
5 September 2024), whose resolution is 1 km. The below-
ground net primary productivity (BNPP) data were sourced
from Xiao et al. (2023). All data were resampled to 0.083°
resolution using the raster R package (https://rspatial.org/
raster, last access: 7 October 2024).

2.5 Application of RF modeling to predict spatial
β values

We reconstructed the relationships among multiple factors
of cropland, grassland, and forestland soil β values using an
RF algorithm. The developed RF models were applied to pre-
dict grid-level soil β values for each ecosystem. Prior to con-
structing the RF model, the optimal parameter values of mtry
and ntrees were determined through the bootstrap sampling
method, which was performed with the e1071 R package.
Predictions of soil β values derived from RF and random-
effect regression models were evaluated by means of 10-fold
cross-validation. The dataset was divided into 10 subsets of
equal size, with 70 % of the data being used for model fit-
ting and RF procedures, and then predictions were made with
the fitted models using the remaining 30 % of the data. The
performance of the RF models was evaluated based on the
coefficient of determination (R2) and the root mean square
error (RMSE) according to the following equations:

R2
= 1−

q∑
p=1

(
yp− ŷp

)2
q∑

p=1

(
yp− y

)2 , (4)

RMSE=

√√√√√√
q∑

p=1

(
yp− ŷp

)2
q

, (5)

where yp represents an observed value (p = 1, 2, 3, . . . ),
ŷp represents the corresponding predicted value (p =
1, 2, 3, . . . ), y represents the mean value of observed values,
and q represents the total number of observed values.

2.6 Estimating global SOC density and SOC stock
ecosystems across different ecosystems

To reveal the dynamics of SOC with depth, we used the glob-
ally predicted β values for cropland, grassland, and forest-
land ecosystems in Eq. (3) to calculate cumulative SOC den-
sity at specific depths (e.g., 40, 60, 80, and 100 cm). Based
on these cumulative values, the SOC density for each 20 cm

interval was calculated by subtracting the cumulative SOC
density of the shallower depth from that of the deeper depth.
Subsequently, the total carbon stocks for different ecosys-
tems worldwide were calculated by multiplying the SOC
density by the corresponding land area (see Eq. 6).

SOC stocks= SOC density · Secosystem (6)

In the above, Secosystem is the area of cropland, grassland, or
forestland (ha). The term “SOC stocks” is in petagram car-
bon.

2.7 Uncertainty analysis

A Monte Carlo simulation was employed to estimate the
overall uncertainty in the estimated spatial SOC density. The
uncertainty mainly stemmed from soil β value estimation-
related parameters and the RF model. Input parameters in
the RF model prediction followed independent normal dis-
tributions by assuming the grid value as the mean value and
its 10 % value as the standard deviation (Liu et al., 2024; Xu
et al., 2023; Vanden et al., 2004). Then 1000 random sam-
plings were used to obtain the interval of each grid via Monte
Carlo simulations. The sampling values were then used to
run the RF model to predict the grid-level soil β value, with
100 bootstraps to run the RF model. Then we used predicted
grid-level soil β to recalculate the distribution of SOC den-
sity (SOCD) across different ecosystems. Finally, we calcu-
lated the mean along with the 2.5 % and 97.5 % percentiles
to establish the 95 % confidence interval for SOC density and
SOC stocks.

Ui =
CIi
xi
× 100% (7)

In the above, xi is the mean of the prediction, CIi is the
confidence interval of xi , and Ui is the uncertainty.

2.8 Data management and analyses

One-way analysis of variance (ANOVA) at p < 0.05 was ap-
plied to identify significant differences in soil β values us-
ing SPSS version 20.0 (SPSS Inc., Chicago, IL, USA) soft-
ware. We created a database of peer-reviewed publications
using Excel 2010 software (Microsoft Corp., Redmond, WA,
USA). Weather data analysis was performed using MAT-
LAB R2017a software (MathWorks Inc., Natick, MA, USA).
Weather data were analyzed using MATLAB R2017a (Math-
Works, Natick, MA, USA). R software (version 3.5.1; R De-
velopment Core Team, Vienna, Austria) was used to gener-
ate graphs. A publicly available map of China was obtained
from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn, last access: 9 May 2023). All map-
related operations were performed using ArcGIS 10.2 soft-
ware (http://www.esri.com/en-us/arcgis, last access: 20 Jan-
uary 2025). All algorithms were implemented using the ran-
domForest R package in the R software environment (ver-
sion 3.5.1; R Development Core Team, Vienna, Austria).
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3 Results

3.1 Soil β values of the three global ecosystems based
on field measurements

We analyzed 17 984 globally distributed soil β values (cal-
culated based on SOC density and depth) from 14 550 sites,
including 5940 cropland sites, 4209 grassland sites, and
4401 forestland sites (Fig. 1a). This included an additional
8394 observations for cropland, 4753 for forestland, and
4837 for grassland, obtained from the literature and the
WoSIS Soil Profile Database. The average soil β values
across all observations were 0.9731 for cropland, 0.9772 for
grassland, and 0.9790 for forestland (Fig. 1b), with sig-
nificant differences being observed among the ecosystems.
Soil β values exhibited significant differences among sandy
soil, loam, clay loam, and clay soil. Cropland and grass-
land ecosystems exhibited the highest β values in sandy soil,
while forest ecosystems showed the highest β values in clay
soil (Fig. 1c and d).

3.2 Impact of soil and climate variables on soil β values

The soil β value is significantly influenced by the com-
bined effects of various climatic, biological, and edaphic
factors. MAT, MAP, and BNPP were the most influential
drivers of β values (Fig. S1 in the Supplement). Higher
MAT promoted increases in soil β values, and higher MAP
promoted decreases. However, when the MAT was about
20 °C and MAP was about 1000 mm, the soil β value
growth and decline rates were substantially reduced (Fig. 2a
and b). BNPP demonstrated a nonlinear relationship: β val-
ues decreased with increasing BNPP levels. When BNPP
was below 1.5 Mg ha−1 yr−1 and exceeded 2 Mg ha−1 yr−1,
the soil β values decreased sharply (Fig. 2c). The regres-
sion between C/N, MC, MN, TN, pH, and soil β val-
ues followed a parabolic relationship. When C/N> 10,
MC> 100 mg kg−1, MN> 20 mg kg−1, TN> 3 g kg−1, and
pH< 6, the soil β values decreased (Fig. 2d–h). β val-
ues remained relatively stable across most clay percentages
but showed a decrease when clay content exceeded 30 %
(Fig. 2i). Through comparison and analysis, we ultimately
selected nine significant factors (BNPP, pH, Clay, MAT,
MAP, TN, MN, MC, and C/N) for modeling based on their
importance and explanatory power (Fig. S1).

3.3 Performance of the random forest regression model

We developed an RF regression model using machine learn-
ing techniques to determine grid-level soil β values on
a global scale. The model included nine significant fac-
tors (BNPP, pH, clay, MAT, MAP, TN, MN, MC, and C/N),
as well as the corresponding high-spatial-resolution raster
datasets (Figs. S2–S4). The model performed well, with ad-
justed coefficients of determination (R2) of 0.85, 0.86, and
0.90 for cropland, grassland, and forestland, respectively, and

the RMSE values were all less than 0.01 (Fig. 3a–c). The
predictions and measurements of all samples were also dis-
tributed close to the 1 : 1 line. These validations suggest that
the trained RF model is capable of capturing and predicting
the spatial pattern of soil β values on a global scale.

3.4 Mapping the global grid-level soil β value

We predicted the global soil β value using the RF model with
4 057 524 integrated grid-level, high-spatial-resolution soil
and climate raster datasets (cropland, n= 832827; forest-
land, n= 1695053; and grassland, n= 1529644). The av-
erage values were 0.9716 (95 % CI: 0.9692–0.9738), 0.9762
(95 % CI: 0.9656–0.9831), and 0.9792 (95 % CI: 0.9687–
0.9877) for cropland, grassland, and forestland, respectively,
with coefficients of variation (CVs) of 4.73 %, 1.79 %, and
1.94 % (Fig. 3d–f). The spatial distribution of soil β val-
ues across cropland, grassland, and forest ecosystems reveals
both commonalities and notable differences. High β values
are predominantly distributed in tropical and subtropical re-
gions, including parts of South America, Oceania, and sub-
Saharan Africa, whereas low β values are mainly concen-
trated in temperate regions, particularly in northern and west-
ern Europe and eastern and northern North America. No-
tably, the distribution of high β values varies across ecosys-
tems. High β values are primarily observed in sub-Saharan
Africa, central North America, and southern Oceania in crop-
land (Fig. 3d). For grassland, high β values are mainly con-
centrated in southeastern South America, southern Africa,
and Oceania (Fig. 3e). Forestland exhibited the most exten-
sive distribution of high β values, spanning from southern
South America to central and southern Africa and Oceania
(excluding the central region) (Fig. 3f). Cropland exhibits a
more confined range of low values, mainly in northwestern
Europe, while grassland and forestland display broader areas
of low values, particularly across eastern and northern North
America. These patterns underscore the geographic variabil-
ity of soil β values, reflecting the complex interplay between
environmental and ecological factors shaping these spatial
distributions.

3.5 Spatial variability of the SOC density in subsoil

The estimated values for the global average SOC den-
sity of cropland, grassland, and forestland were 62 Mg ha−1

(95 % CI: 52–73), 70 Mg ha−1 (95 % CI: 57–83), and
97 Mg ha−1 (95 % CI: 80–117), respectively, for the 20–
100 cm layer (Table S1 in the Supplement), with consider-
able spatial variations at the global scale (Fig. 4). The larger
the soil β value, the more rapidly the SOC density decreased
with an increase in soil depth. Spatially, there was geographic
variability in the SOC density depending on the ecosystem.
The higher values exhibited similar spatial patterns across
each ecosystem type and were distributed mainly in northern
and western Europe and northern and eastern North America.
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Figure 2. Integrated analysis of edaphic and climatic determinants of the soil β values. Panels (a)–(i) show the variables affecting soil β val-
ues. MAT denotes mean annual temperature, MAP denotes mean annual precipitation, BNPP denotes belowground net primary productivity,
C/N denotes the ratio of SOC to TN, MC denotes microbial biomass carbon, MN denotes microbial biomass nitrogen, TN denotes soil total
nitrogen, pH denotes soil pH, and clay denotes clay content. Shaded bands indicate 95 % confidence intervals, and the dashed lines represent
the average soil β values.

For cropland, lower SOC density values were predom-
inantly distributed in eastern and southwestern Asia, sub-
Saharan Africa, southern Africa, central North America, and
southern Oceania. In contrast, higher SOC density values
were mainly concentrated in temperate regions, such as parts
of Europe, northern North America, and some regions in
South America (Fig. 4a). For grassland, SOC density showed
significant spatial variation, with lower values primarily dis-
tributed in eastern and southwestern Asia, eastern and south-
ern South America, and Oceania. In contrast, higher values
were concentrated in temperate regions, such as northern
and western Europe and northern North America (Fig. 4b).
For forestland, SOC density displayed clear spatial hetero-
geneity. Lower values were primarily distributed in north-
ern South America, central and southern Africa, northeastern
Africa, and the central region of Oceania, areas often charac-
terized by tropical or subtropical climates with rapid organic
matter decomposition rates (Fig. 4c). In contrast, higher val-
ues were predominantly found in temperate and boreal for-
est regions, including northern and western Europe, northern
North America, and parts of eastern Asia. The spatial varia-

tion in SOC density at multiple depths (20–40, 40–60, 60–80,
and 80–100 cm) was also estimated (Figs. S5–S7), exhibiting
a decreasing trend with increasing depth.

3.6 Uncertainty analysis of subsoil SOC density across
ecosystems

Overall, regions with high uncertainty are concentrated in
tropical and subtropical areas, such as sub-Saharan Africa,
Southeast Asia, the Amazon region of South America, and
parts of Oceania. In contrast, regions with low uncertainty
are primarily located in temperate and boreal areas, includ-
ing northern Europe, northern North America, and northern
Asia. Among them, forestland exhibits slightly higher SOC
density prediction uncertainty (38 %) compared to grassland
(37 %) and cropland (34 %) (Fig. 5).
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Figure 3. Validation of the RF model demonstrated robust performance, with grid-level maps showing the predicted global soil β values.
Panels (a)–(c) reflect the performance of the random forest model as evaluated by the correlation between the observed and predicted
responses of soil β values. Panels (d)–(f) illustrate the predicted spatial variability in soil β values in cropland, grassland, and forestland,
respectively.

4 Discussion

4.1 Comparison of high-resolution SOC dynamics

Global estimations of SOC stocks reported in the literature
exhibit considerable variation. The estimated SOC stocks for
cropland, grassland, and forestland (Table 1) in our study
align closely with those of previous studies (Liu et al., 2021;
Conant, 2010; Dixon et al., 1994). The SOC stock of all

land in the 0–100 cm soil layer was 1418 Pg (95 % CI: 1276–
1577), which was slightly lower than the estimates reported
by Sanderman et al. (2017) and Batjes (1996). However,
we believe that our estimation was not underestimated. This
discrepancy may be due to the overestimation in Sander-
man et al. (2017), which could be attributed to the sub-
optimal quality of the training dataset used in their spatial
prediction models (R2

= 0.54). Earlier assessments (Batjes,
1996) relied on databases that included very few soil pro-
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Figure 4. Grid-level maps illustrating the predicted global subsoil SOC density for the 20–100 cm soil layer. Panels (a)–(c) represent
cropland, grassland, and forestland, respectively. Panel (d) shows the SOC density in soil profiles of cropland, grassland, and forestland.

Figure 5. Grid-level maps illustrating the uncertainty of predicted global subsoil SOC density. Panels (a)–(c) represent cropland, grassland,
and forestland, respectively.

files from regions such as North America, Oceania, or the
northern temperate zones. The subsoil SOC stock of all land
was 803 Pg (95 % CI: 661–962), which was consistent with
other research results (Scharlemann et al., 2014; Hiederer
and Köchy, 2011; Zhou et al., 2024). We found that the sub-
soil contains 57 % of total SOC stocks in the top 0–1 m soil
layer, which is consistent with the percentages cited in previ-
ous works (47 %–55 %) (Lal, 2018; Balesdent et al., 2018).
Overall, this demonstrates the feasibility and accuracy of our
methodology, with the estimations proving to be relatively
accurate.

Similarly to the findings of Tao et al. (2023), our study
reveals a global SOC density pattern with lower values at
low latitudes and higher values at high latitudes. The vertical
migration of organic matter is notably more pronounced in
northern permafrost regions compared to in other areas. For
cropland, consistently with the estimates by Wu et al. (2024),
the spatial variation in relative SOC density across China
shows higher carbon densities in the Northeast Plain, the
Yangtze River basin, and the southeastern hills, while lower
values are observed in the arid regions of northwestern China
(e.g., the Taklamakan Desert) and the North China Plain.
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Table 1. Comparisons of the estimated SOC stocks with other studies.

Global Topsoil (Pg) Subsoil (Pg) Total (Pg) References
area 0–20/30 20/30–100 0–100

(109 ha) (cm) (cm) (cm)

Cropland 58 69 127 Liu et al. (2021)
Cropland 1.20 59 74 (95 % CI: 62–88) 133 (95 % CI: 121–146) This study
Forestland 4.10 359 787 1146 Dixon et al. (1994)
Forestland 5.64 395 547 (95 % CI: 451–660) 942 (95 % CI: 846–1055) This study
Grassland 343 Conant (2010)
Grassland 2.59 161 181 (95 % CI: 148–215) 342 (95 % CI: 308–376) This study
All land 684–724 778–824 1462–1548 Batjes (1996)
All land 699 718 1417 Hiederer and Köchy (2011)
All land 699 716 1416 Scharlemann et al. (2014)
All land 863 961 1824 Sanderman et al. (2017)
All 1360 Zhou et al. (2024)
All land 615 803 (95 % CI: 661–962) 1418 (95 % CI: 1276–1577) This study

SOC denotes soil organic carbon, and 95 % CI refers to the confidence interval.

This pattern aligns well with the trends identified in our
study. The FAO report “Global Assessment of Grassland Soil
Carbon: Current Stocks and Sequestration Potential” aligns
with our findings, highlighting high grassland carbon stocks
in central China, northern Russia, northern Asia, southeast-
ern South America, and central North America. However,
our study also identifies Europe as having significant carbon
stocks. This is mainly because the temperate climate, particu-
larly in northern and western Europe, is humid and mild, pro-
viding favorable conditions for the formation and accumula-
tion of soil organic matter. Unlike croplands and grasslands,
forestlands are long-lasting vegetation types, with SOC being
strongly shaped by local environmental conditions. Zhang
et al. (2024) predicted forest SOC stocks across climatic
zones and soil types, showing higher stocks in Europe, Rus-
sia, and Canada. Mediterranean and temperate regions also
have higher SOC than tropical and subtropical regions, con-
sistently with our findings, though the aforementioned study
only considers surface soil.

Additionally, we observed higher SOC density in boreal
forests and tundra regions, showing spatial variability con-
sistent with the spatial variation in carbon turnover times
reported in other study (Li et al., 2023a), particularly in
northern high-latitude permafrost and tundra areas. This sug-
gests that, in low-temperature environments, longer soil car-
bon turnover times and lower microbial activity reduce the
decomposition rate of soil organic matter, allowing more
SOC to accumulate. The highest SOC density and microbial
C/N ratios were found at high latitudes in tundra and boreal
forests, probably due to the higher levels of organic matter in
soils, greater fungal abundance, and lower nutrient availabil-
ity in cold biomes (Gao et al., 2022).

Our estimated SOC density at 111 Mg ha−1 (95 % CI:
101–122) for cropland (Table S1) was higher than that re-
ported in other studies (Liu et al., 2021) and lower than

that of tropical cropland (Reichenbach et al., 2023). For
forestland, the SOC stock was estimated to be 177 Mg ha−1

(95 % CI: 150–187) for the 0–100 cm soil layer (overall),
which is consistent with the estimate reported by Dixon et
al. (1994) but significantly lower than those observed in
mangroves and tropical forestland (Atwood et al., 2017; Re-
ichenbach et al., 2023). For grassland, it was 132 Mg ha−1

(95 % CI: 119–145) overall, which is much higher than the
estimate of Conant et al. (2017). Finally, on a global scale,
the SOC density of all land for the 0–100 cm soil layer was
estimated to be 136 Mg ha−1 (95 % CI: 123–151), which was
significantly higher than the estimate reported by Hiederer
and Köchy (2011).

4.2 Factors affecting soil β values and spatial variation

MAT was the primary driver of soil β values, exhibiting a sig-
nificant positive correlation. Specifically, with the increase in
MAT, the β value increases, and the decrease in SOC den-
sity with depth becomes smaller (Fig. 2a). This shows that
the higher the β value, the relatively lower the proportion of
SOC stocks on the soil surface (which was consistent with
previous research, e.g., Hartley et al., 2021; Melillo et al.,
2017). It is generally accepted that, in cold and wet regions,
low soil temperatures and/or anaerobic conditions promote
the formation of thick organic horizons and peats, resulting in
the storage of large amounts of SOC (García-Palacios et al.,
2021). Tropical soils have the lowest SOC persistence, while
polar and/or tundra soils and soils dominated by amorphous
minerals exhibit the highest SOC abundance and persistence
(von Fromm et al., 2024). These differences indicate that soil
β values are high in low-latitude regions, such as tropical
rainforest areas, and low in high-latitude regions, such as the
tundra, showing a spatial distribution pattern. Climate warm-
ing may lead to greater SOC losses in surface soils compared
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to deeper layers, especially in high-latitude SOC-rich sys-
tems (Wang et al., 2022a). Experimental results of long-term
warming show that soil respiration is sensitive to temperature
rise (Xu et al., 2015). It could be driven by the changes in the
temperature dependence of microbial process rates (Karhu et
al., 2014). As field experiments have shown, warming can
modify microbial physiology and resource availability (Poe-
plau et al., 2017).

We found a significant negative relationship between soil
β values and MAP. This suggests that higher precipitation
rates are associated with a steeper decrease in SOC den-
sity with increasing depth. This is primarily due to the pro-
nounced positive correlation between MAP and the surface
SOC density (Liu et al., 2023). In wetter climates where
the precipitation exceeds evapotranspiration, there is a strong
relationship between mineral-associated SOC concentration
and persistence due to the humid soil environments that favor
greater root growth and abundance (Heckman et al., 2023).
The higher the intensity of precipitation, the more suscepti-
ble deep-soil carbon is to loss (Sun et al., 2024).

Additionally, BNPP plays a crucial role in the global land
carbon cycle and carbon balance as it is a major source of
SOC. The increase in BNPP, along with greater root exudates
and changes in microbial activity, may lead to new carbon
accumulation (Xiao et al., 2023), resulting in a decreasing
trend in soil β values.

Our results emphasize that not only climate and biologi-
cal factors but also edaphic properties play a critical role in
explaining variations in β values (Fig. S1). The soil C/N ra-
tio and soil clay content both exhibited a similar negative
correlation with the β value. A higher soil C/N ratio may
decelerate the decomposition rate of organic matter, thereby
facilitating an increase in SOC content in warm and arid re-
gions (Spohn et al., 2023), such that the soil β values would
trend downward. Under a soil C/N ratio> 15, warming sig-
nificantly enhances the development of root biomass (Bai et
al., 2023). This could induce a corresponding SOC accumu-
lation. The clay fraction of the soil can absorb litter-derived C
and microbial-derived C, promoting the accumulation of or-
ganic carbon (Hicks Pries et al., 2023).

Our results showed that, for near-neutral pH soils, the
β values tend to be stable. In acidic soils, significant losses of
SOC occur because microbial growth is more severely con-
strained, leading to a reduced efficiency in the decomposition
and utilization of organic matter by microorganisms (Ma-
lik et al., 2018). Salinization and alkalization impede plant
growth, leading to reduced biomass and lower organic mat-
ter input into the soil, causing the soil organic carbon con-
tent and organic carbon pool to remain very low (Li et al.,
2023b). The harsh conditions of saline–alkaline soils hinder
microbial survival and activity, reducing their efficiency in
decomposing and utilizing organic matter. Soil pH had a non-
linear relationships with microorganisms: pH values tend to
be neutral, and the abundance of microorganisms is higher
(Patoine et al., 2022). The combination of these factors ex-

plains the higher β values observed under extreme acidic or
alkaline conditions. Thus, near-neutral pH soils may enhance
their carbon storage potential by improving microbial growth
efficiency and facilitating the channeling of matrix compo-
nents into biomass synthesis.

The effects of TN, MC, and MN on soil β values exhibited
the same trend, which initially increased and then decreased.
The TN stock in the soil exhibits a significant positive cor-
relation with the SOC stock (Feng et al., 2018), leading to a
reduction in the β value in nitrogen-enriched soils. MC had
positive relationships with the SOC content across a large
spatial scale because microbes should be considered to be
not only a controlling factor in the consumption of SOC but
also an influencing factor in the production of SOC (Tao et
al., 2023). Microbial necromass has been identified as a ma-
jor contributor to SOC formation across global ecosystems
(Wang et al., 2021a). Evidence from China shows that mi-
crobial residues contribute a larger proportion of SOC in sub-
soils than in topsoil (Wen et al., 2023). Therefore, in soil pro-
files with high microbial carbon and nitrogen, the soil β value
is smaller, indicating a steeper decrease in SOC density with
increasing depth.

4.3 Challenges and opportunities: deep-soil SOC
sequestration

More and more studies have highlighted the necessity of bet-
ter understanding subsoil SOC dynamics. Biotic controls on
SOC cycling become weaker as mineral controls predom-
inate with depth (Hicks Pries et al., 2023). The topsoil is
rich in carbohydrates and lignin, while the subsoil is rich
in protein and lipids. Furthermore, the decrease rate of the
ratio of the microbially derived carbon to plant-derived car-
bon with SOM content was 23 %–30 % slower in the sub-
soil than in the topsoil (Huang et al., 2023). Warming stim-
ulates microbial metabolic activity in structurally complex
organic carbon, resulting in a larger loss of subsoil poly-
meric SOC compared to in topsoil (Zosso et al., 2023). How-
ever, long-term experiments may not be long enough to quan-
tify SOC dynamics in subsoil; large-scale research methods
and machine learning are particularly important and neces-
sary. Based on measured soil profile data and environmen-
tal variables, Wang et al. (2021b) employed machine learn-
ing methods to assess the SOC stocks and spatial distribu-
tions of subsoil in frozen-soil areas in the third pole region.
The investigation of deep-soil organic carbon is inherently
complex and involves intricate and time-intensive method-
ologies. This complexity results in a paucity of research
data, which consequently introduces considerable uncertain-
ties into model-derived predictions. To avoid underestima-
tion or overestimation of the SOC stocks of an ecosystem, it
is important to consider the subsoil when formulating seques-
tration policies for the whole soil profile (Button et al., 2022)
as the “4 per 1000” approach for the top 30 to 40 cm soil
layer provides an incomplete representation of the soil pro-
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file (Rumpel et al., 2018). It may be essential to sample the
soil to deeper levels (e.g., 0–100 cm) and to incorporate deep
soils into future manipulations, measurements, and models.

In addition, researchers have quantified the contributions
of optimizing crop redistribution, improved management,
and topsoil carbon sequestration to offsetting anthropogenic
greenhouse gas emissions and climate change (Wang et al.,
2022b; Rodrigues et al., 2021; Yin et al., 2023). Agricultural
interventions such as super absorbent polymer application
have been shown to directly enhance soil SOM (+7.5 %) and
total nitrogen (+8.73 %), alongside improvements in water-
stable aggregates (+18.9 %) (Zheng et al., 2023), which are
critical soil properties governing subsoil carbon retention.
However, the ability and consequence of subsoil SOC se-
questration of crop management remain to be further studied.
Conducting global-scale subsoil SOC dynamics studies will
fill the knowledge gap in order to develop appropriate soil C
sequestration strategies and policies to help the world cope
with climate change and to ensure food security (Amelung
et al., 2020; Bossio et al., 2020). As such, it is crucial that
future research efforts focus on SOC sequestration efficiency
in the context of climate change, considering the entire soil
profile.

4.4 Strengths and limitations

Our research establishes a scientific foundation for fur-
ther study of SOC dynamics, sequestration, and emis-
sions reduction across soil profiles, offering significant in-
sights into the matter of achieving Sustainable Development
Goals (SDGs), notably SDG2 (Zero Hunger), SDG13 (Cli-
mate Action), and SDG15 (Life on Land) (https://www.undp.
org/sustainable-development-goals, last access: 30 Septem-
ber 2023). To our knowledge, this is the first study to present
global high-resolution maps illustrating the spatial distribu-
tion of SOC density within soil profiles as derived from soil
β values informed by soil properties and climatic conditions.
We observed pronounced variations in SOC density across
ecosystems, with forestland demonstrating the highest den-
sities, followed by grassland and cropland. However, the ob-
served differences in SOC dynamics across these ecosystems
were primarily attributed to the dominant biogeochemical
properties of the soils (Reichenbach et al., 2023).

In our analysis, we incorporated a broad spectrum of en-
vironmental variables, including climatic factors and soil
physicochemical properties, to examine subsoil SOC dynam-
ics across different ecosystems. The variability decline in
SOC density across soil profiles with depth in most areas
underscores the imperative for refined soil management prac-
tices. Enhancing carbon sequestration in deeper soil horizons
constitutes a promising avenue for future research. For exam-
ple, increasing plant diversity and crop diversification have
reinforced SOC stocks in subsoil, with this benefit amplify-
ing over time (Lange et al., 2023; Xu et al., 2024). Current
research has shed light on certain aspects of subsoil SOC se-

questration mechanisms and turnover dynamics (Luo et al.,
2019; Li et al., 2022). However, implementing targeted poli-
cies, such as incorporating organic materials and biochar,
remains essential for enhancing the SOC sequestration po-
tential of deeper soils (Button et al., 2022). These strategies
could play a critical role in synergistically enhancing soil fer-
tility and mitigating greenhouse gas emissions.

Some important aspects of SOC stocks were not included
in this study. For instance, microbial necromass is a key con-
tributor to SOC accumulation (Zhou et al., 2024). Due to
difficulties in obtaining management data for grasslands and
forestlands, we did not account for potential management-
specific factors in soil β value estimations. For example,
N fertilizer application, irrigation amount, soil tillage prac-
tices, and organic carbon inputs (straw return, crop residues,
and litterfall) may influence the vertical movement of SOC.
Moreover, organic carbon inputs can alter SOC decomposi-
tion rates, particularly in deeper soil layers (Cardinael et al.,
2018).

We also acknowledge that soil layers may not always reach
1 m, especially in mountainous areas. Due to the lack of
global soil thickness data, this limitation may lead to over-
estimation or underestimation of soil carbon storage in some
regions. Focusing on 1 m profiles provides a reasonable ap-
proximation of SOC storage across different ecosystems. Al-
though this approach may not fully capture the variation in
soil thickness in high mountain areas, it enables us to gain
valuable insights into SOC dynamics within the global car-
bon cycle. Future studies will incorporate more detailed soil
thickness data to improve our understanding of SOC distri-
bution.

5 Data availability

The data of “global patterns of soil organic carbon
distribution in the 20–100 cm soil profile for differ-
ent ecosystems: a global meta-analysis” are available
at https://doi.org/10.5281/zenodo.15019078 (Wang et al.,
2025). The file named “Rawdata.xlsx” contains data sourced
from the literature. The file name is “GE_β.tif”, with GE rep-
resenting global ecosystems, including cropland (CL), grass-
land (GL), and forestland (FL). “FL_β.tif” represents the
spatial distribution of β for forestland at 20–100 cm depth.
The file name is “GE_d_SOCD.tif”, where SOCD represents
soil organic carbon density, and d represents soil depth – for
example, “FL_20–100_SOCD.tif” represents the spatial dis-
tribution of SOCD for forestland at 20–100 cm depth.

6 Conclusion

Accurately quantifying the distribution of soil profile SOC
stocks is crucial for carbon sequestration and mitigation.
Herein, machine learning was applied to the β model to
estimate SOC stocks in soil profiles at depths of 20–
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100 cm. The subsoil SOC density values of cropland, grass-
land, and forestland were estimated to be 62 Mg ha−1

(95 % CI: 52–73), 70 Mg ha−1 (95 % CI: 57–83), and
97 Mg ha−1 (95 % CI: 80–117), respectively, with signif-
icant geographic variability across different ecosystems.
Additionally, the global subsoil SOC stock was 803 Pg C
(95 % CI: 661–962) (cropland, grassland, and forestland
were 74 Pg C (95 % CI: 62–88), 181 Pg C (95 % CI: 148–
215), and 547 Pg C (95 % CI: 451–660)), in which an aver-
age of 57 % resided in the top 0–100 cm of the soil profile.
This dataset provides a valuable resource for refining exist-
ing Earth system models and enhancing prediction accuracy.
Furthermore, it offers critical insights into global SOC dy-
namics and the spatial variability of SOC within entire soil
profiles. Our findings also serve as a valuable reference for
decision-makers in developing more effective carbon budget
management strategies.
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