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Abstract. We present top-down global gridded emissions of NOx for the year 2022. This dataset is constructed
from retrievals of tropospheric vertical column densities (VCDs) of NO2 by the TROPOspheric Monitoring
Instrument (TROPOMI) spaceborne instrument associated with winds and atmospheric composition data from
ECMWF reanalyses, using an improved version of a mass-balance atmospheric inversion. The dataset has a spa-
tial resolution of 0.0625°× 0.0625°, and delivers a detailed overview of the distribution of emissions. It allows
the identification of intense area sources, such as cities, and isolated emitters, such as power plants or cement
kilns, but does not correctly represent biomass burning. At global level, the emissions obtained are consistent
with the EDGARv6.1 bottom-up inventory, although there are differences at regional level, particularly in emerg-
ing countries and countries with low observation densities. The emissions of the three largest emitting countries,
China, the United States and India, are 6 %, 14 %, and 4% lower than EDGAR estimates, respectively. Uncertain-
ties remain high, and a quantitative analysis of emissions over several averaging periods indicates that averaging
emissions uniformly across the year may be sufficient to obtain estimates consistent with annual averages, in
regions of the world with high retrieval densities. This dataset is designed to be updated with a low latency to
help policymakers monitor emissions and implement energy savings and clean air quality policies. The data can
be accessed at https://doi.org/10.5281/zenodo.13758447 as monthly files (Rey-Pommier et al., 2025).

1 Introduction

Air pollution is one of the leading causes of premature
death in the world. Public health policies, implemented at
the scale of countries, regions, or cities, often aim to reduce
the exposure to several pollutants, such as nitrogen oxides
(NOx =NO+NO2). Such mitigation plans therefore require
a precise knowledge of the emitters, as well as a monitoring
of their emission levels over time. Data on NOx emissions are
therefore fundamental for monitoring the implementation of
air quality policies. In addition, because NOx is mainly pro-
duced during the combustion of carbon fuels at high temper-
atures, such data can also be, in conjunction with NOx/CO2
ratios, derived at the scale of industrial sectors and countries,

a tool to measure progress towards carbon neutrality. Grid-
ded emissions with high spatial and temporal resolution are
therefore of great scientific and political value. Many such
datasets are emission inventories, i.e. bottom-up models in
which emissions are calculated on the basis of known sec-
toral activities and allocated in time and space, combined
with specific emission factors by sector and, possibly, by
country. These inventories provide valuable information on
long-term trends and large-scale emission budgets, but they
suffer from several weaknesses. They hardly represent daily
or weekly variations, their activity data may be outdated,
and some sources may be misallocated or unknown, which
is common in many developing countries. In addition, uncer-
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tainties surrounding rapidly changing emission factors and
the generally low temporal resolution of activity data limits,
in certain circumstances, the realism of such bottom-up in-
ventories. Finally, they have a data lag of at least 3 years,
which limits their potential as monitoring tools.

In this context, increasing efforts have been made to over-
come the weaknesses of the inventories in order to obtain
independent emission datasets that are homogeneous from
one country to another. Such datasets are of the top-down
type: they use direct observations of pollution and result from
the inversion of an atmospheric chemistry-transport model
(CTM) in which these atmospheric observations are assimi-
lated. The observation data may be in situ measurements or
satellite retrievals.

In previous studies, we used a method for detecting
and quantifying NOx emissions from daily observations of
NO2 columns by the TROPOspheric Monitoring Instrument
(TROPOMI), onboard the Sentinel 5P satellite. This method,
developed for the countries of the Eastern Mediterranean and
Middle East region, is based on a two-dimensional (2D) sim-
plification of atmospheric chemistry and transport, and does
not require the direct use of a full three-dimensional (3D)
CTM. Here, we extend the emissions domain to the whole
world for the year 2022, and provide a dataset of averaged
NOx emissions at a resolution of 0.0625°× 0.0625°. We
analyse the results by pinpointing emitters and distinguishing
between point sources, generally corresponding to isolated
industrial facilities, and diffuse/area sources, generally cor-
responding to megacities. We also compare the results with
the bottom-up inventory EDGARv6.1 and assess their relia-
bility using different average horizons.

This article is structured as follows: Sect. 2 details the
method used throughout this study, its improvements and
simplifications since its previous uses, and the input data in
its implementation. Section 3 presents the global NOx emis-
sions dataset and analyses the different types of emitters.
It also compares the results obtained with the EDGARv6.1
bottom-up inventory, and analyses different time horizons
for averaging daily emissions in order to obtain representa-
tive results. Section 4 analyses the applicability limits of the
method and highlights sources of uncertainty.

2 Methods

2.1 Input data

2.1.1 TROPOMI NO2 column densities

NO2 can be observed from space with satellite instruments
based on its strong absorption features in the 400–465 nm
wavelength region (Vandaele et al., 1998). By comparing ob-
served spectra with a reference spectrum, the amount of NO2
in a portion of the atmosphere between the instrument and
the surface can be derived. TROPOMI, onboard the Euro-
pean Space Agency’s (ESA’s) Sentinel-5 Precursor (S-5P)

satellite, is one of those instruments (Veefkind et al., 2012).
This instrument has a large swath width (approx. 2600 km),
combined with the 15 d orbit cycle of the satellite, leading
to a revisit time of 1 d for every point of the Earth in the
absence of clouds. Moreover, these daily measurements are
always collected during the middle of the day, the satel-
lite crossing the sunlit Equator at approximately 13:30 lo-
cal time (LT). The high spatial resolution of the instrument
(up to 3.5 km× 5.5 km since 6 August 2019) allows observ-
ing fine-scale structures of NO2 pollution, such as hotspots
within medium-size cities or plumes from power plants and
industrial facilities. Tropospheric vertical column densities
(VCDs, or simply “columns”) are provided after retrieval of
total slant column densities using the differential optical ab-
sorption spectroscopy method (Platt and Stutz, 2008). VCDs
represent the integrated number of NO2 molecules per sur-
face unit between the surface and the tropopause at the corre-
sponding vertical. An algorithm also supplies an air mass fac-
tor, which is the ratio between slant and VCDs. This factor is
derived from the knowledge of many physical quantities such
as the vertical distribution of the absorber but also the view-
ing angle and the albedo of the observed surface. It comprises
a significant part of the uncertainty in NO2 measurements
(Boersma et al., 2004; Lorente et al., 2019), which becomes
non-negligible in a polluted atmosphere. Each TROPOMI re-
trieval is also associated with a quality assurance value qa,
which ranges from zero (no data) to unity (high-quality
data). We selected NO2 retrievals with qa values greater than
qa,lim= 0.75, which correspond to clear-sky conditions (Es-
kes et al., 2022). Here, we use TROPOMI NO2 retrievals in
2022 (OFFL product using processor version 2.5.0, product
version 2.3.1 and 2.4.0 before and after November 2022, re-
spectively). To limit effects due to the product of processor
version changes, other years are not studied.

2.1.2 Meteorological and air composition fields

Horizontal wind is taken from the ERA5 data archive, pro-
vided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). Both components have a horizontal
resolution of 0.25°× 0.25° gridded on 37 vertical pressure
levels (Hersbach et al., 2020). We vertically average wind
fields using the first two vertical levels, at 975 and 1000 hPa,
except for representing ground winds, for which the last level
at 1000 hPa is used. ECMWF also produces a reanalysis for
air composition, under the Copernicus Atmospheric Moni-
toring Service (CAMS). It provides analyses and forecasts
for reactive gases, greenhouse gases, and aerosols. These pa-
rameters are gridded on 25 vertical pressure levels with a hor-
izontal resolution of 0.4°× 0.4° and a temporal resolution
of 3 h (Huijnen et al., 2016). Here, concentrations of NO2,
NO, OH, as well as temperature, are taken from CAMS to
represent chemical processes in our model. Fields are verti-
cally averaged using the first two vertical levels, at 950 and
1000 hPa.
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2.1.3 Elevation data

For computing altitude gradients, we use the Global Multi-
resolution Terrain Elevation Data (GMTED2010, Danielson
and Gesch, 2011) in its 0.0625°× 0.0625° resolution ver-
sion provided by the TEMIS data portal (https://temis.nl/
data/gmted2010/, last access: 3 July 2025). This version is
derived from the original higher-resolution GMTED product
(available at 30, 15, and 7.5 arcsec) to conveniently match
coarser spatial scales. Elevation data are re-gridded on the
TROPOMI grid, before calculation of the corresponding gra-
dient to derive a corrective “topography-wind” value that is
detailed in Sect. 2.2.2.

2.2 The mass-balance inversion

2.2.1 Main principle

The flux-divergence method is a mass-balance inversion
model calculating the emissions of a given trace gas
from observations of the corresponding vertical tropospheric
columns, which is particularly well suited to data with high
spatial resolution. In the case of NO2, this approach was pi-
oneered by Beirle et al. (2019). It has subsequently been im-
plemented differently by other researchers, in different cir-
cumstances under simplified forms or, on the contrary, more
complex ones (Lama et al., 2020; Rey-Pommier et al., 2022;
de Foy and Schauer, 2022; Sun, 2022). The flux-divergence
method is based on the conservation of mass principle, which
makes it possible to calculate emission densities at the pixel
scale as a function of a transport term and a sink term. By
noting C the local concentration of NO2 and w = (u,v,w)
the mean wind at the time of measurement, the correspond-
ing emissions EC are expressed as

EC =
∂C

∂t
+ div(Cw)+ SC, (1)

where SC is the sink term expressing the loss of NO2 due to
chemical reactions. Assuming that the vertical variations in
concentration are small compared with the horizontal varia-
tions, and considering that most NO2 remains confined close
to the ground, the previous equation can be rewritten in terms
of tropospheric columns �, which enables, in steady state,
the computation of emissions per surface area E, as

E =
∂(�u)
∂x
+
∂(�v)
∂y
+ S�, (2)

where S� is the sink term expressed by the surface unit
andD = ∂(�u)

∂x
+
∂(�v)
∂y

is the horizontal advection (transport)
term. The assumption of a stationary state and a pollutant
close to the ground means that the temporal and vertical di-
mensions of the problem can be ignored, resulting in a purely
2D calculation of emissions. The corresponding reduction
in complexity means that inversions can be performed very
quickly compared with the conventional use of full-fledged

3D CTMs and without a priori knowledge on emissions.
While useful, these simplifications come with inherent uncer-
tainties, the main sources of which are the input tropospheric
columns, wind direction, and atmospheric composition. Note
also that, far from strong and localised sources, the underly-
ing assumptions of stationarity and pollution containment are
no longer valid.

Finally, the NO2 production can be converted into
NOx emissions. Performing this conversion accounts for the
portion of NOx , mainly emitted as NO, which is not con-
verted into NO2 by reaction with ozone. The reformation
of NO by the photolysis of NO2 during the day leads to
an equilibrium between the two compounds. The ratio L=
[NOx]/[NO2] usually varies between 1.2 and 1.4, depending
on local conditions; NOx emissions are therefore calculated
as

ENOx = LE. (3)

In most urbanised areas, daytime NO concentrations fre-
quently exceed 20 ppb. Under such conditions, this ratio is
stabilised in a few minutes (Graedel et al., 1976; Seinfeld
and Pandis, 2006). As this time is shorter than the inter-
mesh transport time scale, the effect of stabilisation time on
the overall emission composition can be justifiably ignored.
Here, it is near emission sources that the stationary hypothe-
sis may not be applicable, in which case the value of L could
be significantly higher than 1.4. The implications of this ne-
glect are discussed in Sect. 4.1.

2.2.2 Refined version

In order to consider only anthropogenic pollution located
close to the ground, it is necessary to remove any signal of
natural emissions from the tropospheric columns provided
by TROPOMI. In the absence of anthropogenic sources,
the NO2 columns that are observed constitute a tropo-
spheric background �b. At the global scale, this background
is mostly due to soil emissions in the lower troposphere
(Yienger and Levy, 1995; Hoelzemann et al., 2004). In the
upper troposphere, NO2 sources include lightning, convec-
tive injection, and downwelling from the stratosphere (Ehhalt
et al., 1992). We remove the background by calculating the
first tercile in a 200 pixel× 430 pixel zone around each pixel
(along× across track, i.e. approx. 700 km× 2360 km). We
assume that this zone is sufficiently large whatever the con-
sidered pixel so that this tercile corresponds to the typical lo-
cal value for this background. The large across-track distance
is chosen for two reasons. First, it limits the influence of low-
quality observations and intermediate pollution levels on the
background estimate, which can inflate the estimation when
performed on a smaller domain and prevent the detection of
smaller emitters. Second, it minimises the mixing of pixels
with varying NO2 backgrounds due to distinct climatic and
geographical conditions, such as between arid and temper-
ate regions. Such variations are less pronounced across-track
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than along-track. In addition, the overpass of Sentinel-5P
around 13:00 LT, when diurnal NOx variations are minimal,
limits the mixing of pixels with backgrounds corresponding
to different LTs. After calculation of the background, it is
subtracted from the vertical tropospheric column density, and
the resulting lower tropospheric vertical density�′ =�−�b
is used in the flux-divergence method. Pixels with columns
lower than the calculated background have a corrected col-
umn reduced to �′ = 0. Such assumption can be challenged
above macro-regions for which soil emissions and wildfires
result in high NO2 values observed by TROPOMI. High tro-
pospheric backgrounds can also arise from localised paths of
long-range transport of reactive nitrogen (Zhai et al., 2024)
or around shipping lanes, where exhaust emissions directly
increase NO2 levels and may also enhance lightning activity
that produces additional NOx (Thornton et al., 2017). The
neglect of such effects is highlighted in Sect. 4.1.

We represent the sink term S� by considering only the
chemical loss of NO2 due to its reaction with the hydroxyl
radical (OH). This reaction follows first-order kinetics, and
the sink term can be expressed as S� = kOH+NO2 [OH]�′,
where kOH+NO2 is the reaction rate, the value of which is
given by Burkholder et al. (2020). This is equivalent to com-
puting a mixed lifetime τ = 1/(kOH+NO2 [OH]). This lifetime
generally ranges between 1 and 14 h in mid-latitude regions
and reaches higher values in polar and subtropical zones.
Two global maps of lifetimes for winter and summer, com-
puted with this method, are added in the Supplement. In
many studies, this quantity is kept uniform and constant in
the use of the flux-divergence method (Beirle et al., 2019;
de Foy and Schauer, 2022), because it is justified by a rel-
atively small domain of interest. Here, a singularity of our
version of the flux-divergence method is to account for the
temporal variability of OH, which is primarily driven by the
amount of UV radiation from the stratosphere, but also for its
spatial variability, since OH can also be influenced by NOx
through a nonlinear relationship (Valin et al., 2011). In this
respect, our sink term is heavily reliant on the NOx sources
accounted for in CAMS data. Neglecting a source, or mises-
timating the order of magnitude of its NOx emissions results,
therefore, in an incorrect OH field, the bias of which depends
on the amplitude of the neglect. Similarly, the coarse reso-
lution in CAMS data (0.4°× 0.4°) can fail to represent the
particular conditions within downwind power plant plumes,
leading to an incorrect estimation of the real OH budget. We
regard these effects as less pronounced compared to those
that would result in representing a constant lifetime for NO2
which oversimplifies and misrepresents temporal and spa-
tial dynamics by representing all situations the same way,
whether they represent emitters or not.

Additionally, systematic artefacts concerning advection
processes were reported over regions with complex topogra-
phies, particularly when high tropospheric VCDs are ob-
served over mountainous regions. These high values can hin-
der the identification and quantification of point sources, pos-

sibly due to inaccurate mean wind fields over mountains. A
study by Sun (2022) shows that these patterns can also be
caused by 3D transport effects which have been ignored in
the simplified 2D approach (as has been described so far).
A topography-wind V term can be introduced in Eq. (5) in
order to correct for this effect using ground wind wg, the to-
pography gradient ∇z0, and an inverse scale height Xe as
follows:

V =Xe�
′wg · ∇z0, (4)

where we choose a uniform and constant value of
Xe= 0.3 km−1. Although this value is approximately one or-
der of magnitude lower than that used by Beirle et al. (2023),
it corresponds to the approximate mean inverse scale height
calculated by Sun (2022) in which a variability for Xe was
allowed by fitting its value through linear regressions on the
basis of selected observations. While we acknowledge that
choosing a single value for Xe is a simplification, we note
that performing the fit of its value would require an arbitrary
selection of the cells used for that fit. We therefore compute
the following equation to estimate NOx emissions:

ENOx = L
(
∂(�′u)
∂x

+
∂(�′v)
∂y

+ kOH+NO2 [OH]�′+Xe�
′wg · ∇z0

)
. (5)

Following de Foy and Schauer (2022), we perform the cal-
culation of derivatives directly on the original TROPOMI
grid (along-track and across-track) to better handle pixels
with low-quality or no data, resulting in lower discontinuities
in the calculated transport term. To do so, we re-grid the wind
field on the TROPOMI grid and linearly interpolate the esti-
mates at the satellite timestamp. We do the same for all other
parameters that are concerned for the calculation of the sink
term (concentrations of OH, NO and NO2, and temperature).
Emissions are thus calculated on the TROPOMI grid and are
then re-gridded on a regular north-south/east-west grid with
a 0.0625°× 0.0625° resolution.

Finally, the accuracy of TROPOMI retrievals can be com-
promised by challenges in estimating the air mass factor or
local effects, particularly in specific vertical distribution sce-
narios (Griffin et al., 2019; Lorente et al., 2019; Judd et al.,
2020). The latest versions of TROPOMI (v2.x) showed VCD
values higher than those of earlier versions (v1.x), with bi-
ases up to 40 %, depending on pollution levels and seasonal
variations (Van Geffen et al., 2022). Additionally, the CTM
TM5, which is integrated into the operational TROPOMI
product, tends to underestimate pollution near the ground,
while overestimating NO2 concentrations at higher altitudes
over the sea (Latsch et al., 2023; Rieß et al., 2023). To com-
pensate for such effects, studies like that of Goldberg et al.
(2022) or Beirle et al. (2023) corrected the used VCDs by
changing the corresponding vertical sensitivity over emit-
ters. In this study, we do not perform such adjustment, while
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Figure 1. General overview of the mass-balance inversion.

recognising it could constitute a further step in the improve-
ment of our dataset. In Fig. 1, we summarise the functioning
of our method.

2.3 EDGAR bottom-up inventory

Many high-resolution datasets for air quality exist at global
(Benkovitz et al., 1996; Granier et al., 2019) or regional scale
(Kuenen et al., 2022; He, 2012). Here we compare our av-
eraged emissions for the year 2022 to NOx emissions pro-
vided by The Emissions Database for Global Atmospheric
Research (EDGARv6.1) for 2018. It is a global inventory
providing 0.1°× 0.1° gridded emissions of greenhouse gases
and air pollutants at the monthly scale, covering different sec-
tors (Crippa et al., 2020). It is based on activity data of differ-
ent nature (population, industrial processes, energy produc-
tion, fossil fuel extraction, agricultural outputs, etc.) derived
from the International Energy Agency (IEA) and the Food
and Agriculture Organization (FAO), and the emission fac-
tors corresponding to each of the covered sectors. National
and regional information on technology mix data provide a
better characterisation of these emission factors. End-of-pipe
measurements are also used for correcting purposes. The ver-
sion 6.1 of the inventory covers the years 1970–2018.

3 Technical validation

3.1 Spatial distribution of the global NOx emissions

The global map of the averaged NOx emissions for 2022
is shown on Fig. 2, while Fig. 3 zooms over seven macro-
regions that cover most of the emitters over land and sea.
Emissions are represented as density, i.e. by surface unit.
All the analyses carried out in this study are based on the
displayed domain, i.e. between latitudes 65° S and 65° N.
This discards frequent outliers above these latitudes, result-
ing from monthly and annual estimates based on too few ob-
servations. Significant regional differences appear on these
maps. The highest values are concentrated in developing ar-
eas such as eastern China, India, and the Middle East. High
values are also found in Europe, Russia, and the United
States, where they correspond to megacities and industrial
areas. Transport emissions can also be highlighted where
they provide the highest share of emissions, i.e. on highways
and shipping lanes which appear in various regions. South
America, Oceania, and sub-Saharan Africa display low or
zero emissions except in a small number of cities and in-
dustrial sites. Wildfires, which are frequent in rainforests and
savannas (Mebust and Cohen, 2013; Castellanos et al., 2014;
Ossohou et al., 2019; Opacka et al., 2022), display quasi-
zero emissions in Amazonia and low emissions in the Congo
basin. Wildfire emissions might be underestimated due to in-
correct estimates of lifetime, in particular in tropical regions
where sinks other than the reaction with OH are important.
Other such sinks are developed in Sect. 4.1. Note that, at a
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Figure 2. TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method. The seven frames
correspond to macro-regions whose emissions are specifically shown in Fig. 3. Publisher’s remark: please note that the above figure contains
disputed territories.

lower temporal scale, wildfire emissions display an annual
variability. The example of the fires in the Congo basin is
studied in the Supplement, with high emissions during sum-
mer (JJA). It is thus possible that a large number of smaller
wildfires, occurring during other seasons, are too small to
be correctly observed from space, as shown by other studies
(Ramo et al., 2021; Khairoun et al., 2024).

Generally speaking, the map highlights the industrialised
areas, revealing the world’s main megacities where several
sources of emissions (traffic, power, residential) are mixed.
Some industrial facilities and large power plants also ap-
pear. Emissions are correctly resolved in most regions of the
world. The observed spread of emissions over 2 to 3 pixels
(i.e. about 12 to 20 km) farther away from the exact location
of the corresponding emitters is due to the turbulent spread of
emissions, which is not considered in our method. Finally, we
note that emissions in mid- and high-latitude regions (beyond
approximately 40° from the Equator) are noisy, due to an av-
eraging over a smaller number of clear-sky days throughout
the year. On average, countries such as Egypt, Niger, and
Saudi Arabia are observed for approximately 70 % of the
time with a quality flag higher than qa,lim= 0.75, while Ire-
land, Canada, and Finland are observed for less than 20 % of
the time. This uneven sampling is also present in tropical re-
gions where rainfall is frequent, as there is no measurement
during cloudy scenes. Countries such as Gabon, Indonesia, or
Peru are observed for less than 30 % of the year with quality
flags higher than the threshold. In some cases, this low den-
sity of observations prevents emissions from intense sources
from being quantified correctly at the monthly scale; this is
discussed in Sect. 3.4.

The statistical distribution of emissions is shown in Fig. 4.
Four different regimes of emissions can be distinguished in
the red curve (note the log-log scale):

– Very low values of emission densities (less than approx-
imately 0.02 Pmolec.cm−2 h−1), in practice at places
where there are almost no emissions in reality. Note
that, as the calculated fluxes represent averaged emis-
sions, such pixels can also represent places where high
emissions occurred, but only during a small portion of
the year, as is the case in regions where wildfires fre-
quently occur.

– Residual emission densities (between approximately
0.02 and approximately 0.2 Pmolec.cm−2 h−1), for
which it is difficult to determine the corresponding
source.

– Low emission densities (between approximately 0.2
and approximately 2 Pmolec.cm−2 h−1), generally high
enough to be associated with an emitter, but too low
for a reliable quantification to be possible unless heavy
averaging. The upper limit corresponds approximately
to the emission densities observed on smaller power
plants.

– High emission densities (higher than
2 Pmolec.cm−2 h−1), where the signal-to-noise ra-
tio is high enough to quantify emissions when enough
observations are averaged.

Figure 4 also shows negative values (blue curve), even
though negative emissions are physically impossible. They
appear in practice because the transport term, which includes
a derivative, can be negative. In calculated emission den-
sities, negative pixels of low absolute value are as numer-
ous as positive pixels of the same amplitude; they corre-
spond to numerical noise and are found in pollution-free
zones where the sink term is virtually zero. Higher values
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Figure 3. TROPOMI-derived mean daytime NOx emission rates in 2022 estimated with the flux-divergence method for North America,
South America, sub-Saharan Africa, Europe and North Africa, East Asia, Oceania, the Middle East, and Central Asia. Publisher’s remark:
please note that the above figure contains disputed territories.
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Figure 4. Distribution of positive and negative TROPOMI-inferred NOx emissions for year 2022. Four regimes can be distinguished (the
values defining the thresholds between these regimes are given as order of magnitudes).

for negative pixels are less frequent: we count approximately
five times fewer pixels with emission densities lower than
−0.2 Pmolec.cm−2 h−1 than pixels with emission densities
higher than 0.2 Pmolec.cm−2 h−1 (yellow and red parts of
the graph in Fig. 4). The locations where such high values are
observed for negative pixels correspond to areas close to an-
thropogenic sources of NOx , but in situations for which the
absolute transport term has been overestimated or the sink
term has been underestimated. Such negative emissions are
limited to rare cases, such as Tehran, which is discussed in
Sect. 4.2.

3.2 Diffuse sources and point sources

The assimilation of high-resolution observations with the
flux-divergence method holds a significant potential for pin-
pointing emissions at small scale. As a consequence, it re-
veals the difference between sources that emit pollutants
from a localised area, called point sources, from diffuse
sources emitting pollutants over a wider area, such as sprawl-
ing urban regions like megacities. While the extent of the
observed NO2 pollution created by a point source is primar-
ily determined by advection and turbulent mixing, the spread
of the pollution for a diffuse source is above all determined
by the spatial extent of the source itself. Point sources are
therefore characterised by a dominance of the transport term,
while diffuse sources (the term “area sources” is also used)
exhibit a balance or dominance of the sink term (Beirle et al.,
2019). Within the flux-divergence method, these two types of
sources can be identified differently; the main sources of un-

certainty come from wind angle in the case of a point source,
and from the OH concentration in the case of sink term for
a diffuse source. Because this distinction remains qualitative,
to classify a detected source as one or the other type, arbitrary
thresholds must be defined, concerning the number of pixels
above a certain value of emissions, or the share of the trans-
port term within the emissions in Eq. (5). Here, we catalogue
all sources in the averaged emissions map for 2022. First,
we define a source as a cluster of at least 3 contiguous pix-
els above the value of 2 Pmolec.cm−2 h−1. We then classify
these sources as “point” or “diffuse” according to the num-
ber of pixels in the detected cluster, point sources being the
clusters comprising 3 to 9 pixels, and diffuse sources those
with more than 10 pixels. We detect 436 point sources and
323 diffuse sources, whose locations are displayed in Fig. 5.
The statistical distribution of the emitters, as well as their de-
tailed location, are provided in the Supplement and in Rey-
Pommier et al. (2025).

3.2.1 Diffuse sources

Most point sources correspond to facilities such as power
stations, cement kilns, or mining sites. They can also corre-
spond to concentrated urban areas. Conversely, most diffuse
sources correspond to urban areas of megacities, whether
they comprise industrial facilities within their extent or not.
Exceptions concern mega-emitters like the Medupi and Ma-
timba power plants in South Africa, mentioned in various
articles (Reuter et al., 2019; Hakkarainen et al., 2021; Cus-
worth et al., 2023) or the Ain Sokhna industrial area in Egypt,
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Figure 5. Location of different point sources in blue (between 3 and 9 contiguous pixels above 2 Pmolec.cm−2 h−1) and diffuse sources in
red (more than 10 contiguous pixels) for 2022. Publisher’s remark: please note that the above figure contains disputed territories.

Table 1. List and location of the 20 diffuse sources with highest TROPOMI-inferred NOx emissions (expressed as NO2), and corresponding
size of the cluster and main sector responsible for the emissions.

Number of pixels Latitude Longitude Mean emission density Output Emitter
in cluster (° N) (° E) (Pmolec.cm−2 h−1) (t h−1)

2623 37.617 116.030 2.818 217.89 Beijing urban area, China
836 31.283 120.354 3.771 100.21 Shanghai urban area, China
443 35.557 51.321 6.939 93.05 Tehran urban area, Iran
554 −26.407 28.738 4.217 77.79 Gauteng coal region, South Africa
417 22.796 113.626 3.691 52.78 Shenzhen and Hong-Kong urban area, China
364 29.648 31.129 4.064 47.84 Cairo and Beni Suef urban area, Egypt
302 29.585 47.872 4.496 43.95 Kuwait City urban area, Kuwait
171 24.650 46.791 5.708 33.01 Riyadh urban area, Saudi Arabia
198 32.775 44.301 5.223 32.36 Baghdad urban area, Iraq
255 41.124 123.005 4.281 30.60 Anshan urban area, China
347 39.339 110.659 2.933 29.31 Ordos mining region, China
169 25.251 55.348 4.790 27.23 Dubai urban area, United Arab Emirates
193 37.162 126.822 4.425 25.30 Seoul urban area, South Korea
157 32.583 51.602 4.796 23.62 Ispahan urban and industrial area, Iran
124 21.112 39.313 4.886 21.03 Djeddah urban area, Saudi Arabia
220 37.320 112.088 3.131 20.39 Shanxi urban area, China
177 55.706 37.508 5.121 19.02 Moscow urban area, Russia
101 24.120 82.744 5.461 18.73 Jogi Chaura industrial zone, India
158 39.327 106.809 4.116 18.72 Wuhai/Hainan industrial zone, China
83 −12.183 −76.853 6.101 18.41 Lima urban area and Pachamac mines, Peru

already mentioned in Rey-Pommier et al. (2022). In both
cases, such groups of industrial facilities exhibit particularly
high emissions over more than 10 pixels and are detected as
diffuse sources. Figure 6 displays the emissions of diffuse
sources corresponding to megacities: Baghdad (32.3 th−1,
198 pixels), Istanbul (15.4 th−1, 127 pixels), Mexico City
(17.6 th−1, 114 pixels), Moscow (19.0 th−1, 177 pixels),
Riyadh (33.0 th−1, 171 pixels), and Shanghai (100.2 th−1,
836 pixels). City cores are denoted with dashed lines, and

generally correspond to areas where emissions are largely
above the cluster-detection threshold. Table 1 lists the 20 dif-
fuse sources with the highest emissions.

These six diffuse sources differ greatly from one another:
Baghdad, Mexico City, and Riyadh are very dense and iso-
lated, allowing their emissions to stand out from the rest of
the hotspots, while Moscow and Istanbul are less dense, re-
sulting in lower emission densities. The Shanghai urban area
has a large spatial extent, and the associated cluster extends
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Figure 6. Map of mean daytime TROPOMI-inferred NOx emissions for 2022 (expressed as NO2) for six megacities (diffuse sources),
clockwise: Baghdad, Istanbul, Moscow, Shanghai, Riyadh, and Mexico City. The approximate boundaries of the city cores are denoted with
dashed lines and the approximate location of power plants and other industrial facilities are denoted with circles and squares, respectively,
except for Shanghai (unavailable data).
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Table 2. Analysis of the number of point sources detected as a function of the threshold applied for cluster detection, and the number of point
sources whose fit with a 2D-Gaussian was of acceptable quality (R2> 0.4). Countries with at least 5 point sources with one of the thresholds
are displayed.

Threshold value 2 Pmolec.cm−2 h−1 3 Pmolec.cm−2 h−1 4 Pmolec.cm−2 h−1

Number of point sources 436 287 163
Point sources with R2> 0.4 237 179 111
China 23 23 17
India 38 33 23
Russia 29 20 9
United States 17 4 3
Türkiye 8 5 2
Iran 7 8 9
Saudi Arabia 4 6 5
Japan 2 5 4
Australia 3 5 1
Germany 6 1 1
Iraq 6 4 2
Mexico 7 5 3
Kazakhstan 0 6 1

over an area much wider than the city limits. Finally, it should
be noted that Moscow and Shanghai experience many cloudy
days, resulting in a fairly low level of averaging, leading to
numerical noise that is visible on the maps. Many industrial
facilities near city centres do not have high emissions, possi-
bly due to an irregular production throughout the year, with
high-activity periods covered by clouds.

3.2.2 Point sources

With a manual verification of the 436 detected point sources,
we identify 48 outliers, 26 of which being points in places
totally empty from any anthropogenic activity, and 22 points
in areas with anthropogenic activity but without significant
source (no facility of significant size). Most of these outliers
are located in high-latitude regions, with 29 of them being
located north to the 50° N parallel.

Because a threshold has been introduced to detect emit-
ters, classified sources are isolated from each other. For
many of them, emissions peak within the associated cluster.
With a threshold set at 2 Pmolec.cm−2 h−1, the correspond-
ing signal-to-noise ratio is generally high enough to perform
peak-fitting around the source, enabling accurate emission
derivation. While this method works well for most point
sources, it is not directly applicable to many diffuse sources.
Since the observed spread of emissions around a source is
caused by turbulent diffusion, a 2D-Gaussian function is ap-
plied to fit the detected sources within a 15 pixel× 15 pixel
zone around the maximum emission density within the clus-
ter. Three examples are shown for the city of Medina, Saudi
Arabia, the Sohar Industrial zone, Oman and the Western
Mountain power plant, and Libya on Fig. 7. Note that these
locations correspond to sources well-isolated from other in-

dustrial activities, in countries with frequent cloud-free con-
ditions that allowed an averaging over a high number of days
in 2022.

We acknowledge the fact that the value of
2 Pmolec.cm−2 h−1 (corresponding to 37 kgh−1 for a
pixel at 60° N or 60° S, to 74 kgh−1 for a pixel at the
Equator) to mark the limit between high and low emissions
is arbitrary, as other values for this threshold could be
used. For instance, the Beijing cluster, listed in Table 1,
with a size of 2623 pixels, is broken down into 35 smaller
clusters (13 diffuse sources and 22 point sources) when
changing the threshold from 2 to 3 Pmolec.cm−2 h−1. These
new clusters represent better urban sprawling around the
various megacities and industrial facilities in Eastern China.
However, in the same region, three point sources disappear
when performing this threshold change. To determine the
sensitivity of the point source and diffuse source detection
and classification method, we carry out the detection by
changing this threshold from 2 to 3 and 4 Pmolec.cm−2 h−1.
A comparative map is displayed in the Supplement. The
point sources and diffuse sources are identified, and a fit with
a 2D-Gaussian is carried out on point sources to estimate
better emissions by accounting for the Gaussian nature of
turbulent diffusion around the source. We then count the
number of point sources with a fit of correct quality (with
a correlation coefficient R2 higher than 0.4). The results
are listed in Table 2 for the different thresholds, and we
compare the countries with the most point sources. Note that
among the 48 outliers identified in the detected point sources
with the threshold of 2 Pmolec.cm−2 h−1, only 11 reached a
value of R2 higher than 0.4.

As seen with the example of Beijing, moving to a higher
threshold can reduce the number of point sources by not
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Figure 7. Calculated mean daytime NOx emissions in 2022 (expressed as NO2) for different sources (a–c) and fitted emissions using a
2D-Gaussian function (d–f) for the city of Medina, Saudi Arabia (a), the Sohar Industrial Zone, Oman (b) and the Western Mountain power
plant, Libya (c).
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including some emitters with lower emissions, but it can
also increase the number of detected point sources by re-
ducing the number of pixels corresponding to the cluster
and moving certain emitters from the “diffuse source” cat-
egory to the “point source” category. For example, with
a limit of 2 Pmolec.cm−2 h−1, the group of the Ras Laf-
fan power stations in Qatar does not appear as a point
source because its emissions are associated with a greater
cluster, corresponding to a diffuse source which includes
the nearby Doha megacity. Conversely, with limits of 3 or
4 Pmolec.cm−2 h−1, these power plants appear as a point
source, and a good quality Gaussian fit provides their to-
tal emissions of 1.66 th−1, close to the value of 1.86 h−1

reported for the 4-year average between 2019 and 2022 in
Rey-Pommier et al. (2023). Finally, we note that, lower-
ing the threshold to 1 Pmolec.cm−2 h−1 also reduces the
number of diffuse sources because several nearby urban ar-
eas become linked by residual emission zones into a sin-
gle, larger, diffuse source. Conversely, lowering the thresh-
old detects a very large number of point sources, but many
of these additional points are outliers. In the rest of the
study, we therefore choose to keep the lowest value of the
threshold, i.e. 2 Pmolec.cm−2 h−1, to optimise the number
of correct emitters we work with. These emitters account
for a total output of 2303 th−1 (352 th−1 for point sources
and 1951 th−1 for diffuse sources). This represents approx-
imately 17 % of all emissions with densities higher than
0.2 Pmolec.cm−2 h−1 (with a total output of 14 335 th−1).
As urban areas with more than 1 million inhabitants gather
around 16 % of the global population (Zimmer et al., 2023),
this share of emissions from point and diffuse sources seems
consistent with the detection limit of the flux-divergence
method using TROPOMI retrievals, as urban areas lower
than 1 million inhabitants are generally not detected as dif-
fuse sources here.

The full list of the 436 point sources and 323 diffuse
sources are given in Supplement. This list can be compared
with the catalogue provided by Beirle et al. (2023). Of the
237 point sources for which the Gaussian fit is of correct
quality (with R2> 0.4), 137 also appear in their catalogue.
For these points, we generally obtain higher emissions (with
a median of 441 t h−1 and an average of 487 th−1 in our
case, whereas they have a median of 303 th−1 and an aver-
age of 353 th−1). The two datasets have no particular reason
to exhibit any clear correlation because they concern differ-
ent years, and because their approach focused on monthly
averages, while ours presents annual averages. For example,
a site designated as a point source by Beirle et al. (2023)
might not be detected if averaged over a whole year, espe-
cially if it stays inactive during certain periods. For instance,
their catalogue shows 187 occurrences where the signal of
NOx emissions was significant for 6 months out of 12, and
348 occurrences for 5 months.

3.3 National and regional outputs and comparison with
bottom-up emissions

We perform an analysis of emissions at the scale of coun-
tries by comparing them to the NOx emissions provided by
EDGARv6.1 for 2018. For our TROPOMI-inferred emis-
sions, we calculate the total mean NOx output, represent-
ing daytime emissions for 2022, for each country using
country masks at the 0.0625°× 0.0625° resolution. To avoid
any overestimation of the total output due to a very high
number of pixels with very low emissions, we exclude
from the calculation pixels with emission densities below
0.2 Pmolec.cm−2 h−1. For emissions in EDGARv6.1, we
sum the gridded emissions, representing monthly averages in
2018, for all sectors covered by the inventory and calculate
the average flux for the year 2018. The output for each coun-
try is calculated using country masks at the 0.1°× 0.1° res-
olution. In both cases, we include pixels that directly touch
coastlines because marine regions close to the shore receive
the spread of anthropogenic emissions due to turbulent dif-
fusion. This can result in overestimating total emissions for
smaller countries, especially those with low emission den-
sities. In order not to account for such outliers, we exclude
countries with a population lower than 300 000 inhabitants
or with an area less than 1000 km2 from our analysis. This
concerns many insular countries in the Caribbean and the
Pacific, as well as micro-states like Andorra or Singapore.
Overseas territories are considered together with their main-
land country. Figure 8 shows the country-wise comparison,
covering 165 countries, and Table 3 lists a comparison at the
scale of eight different macro-regions: Europe, North Amer-
ica and the Caribbean, South America, the Middle East and
North Africa, former USSR countries, Oceania, sub-Saharan
Africa, and the rest of Asia. For each macro-region, differ-
ences are evaluated with the relative bias for the total region,
and the mean absolute error (for which each country has the
same weight). The use of these different metrics enables us
to assess the performance of the method on a large scale with
respect to an inventory, while simultaneously evaluating its
performance on a smaller scale to identify systematic effects
that might offset each other at the larger scale.

TROPOMI-inferred emissions are generally close to
EDGAR estimates for high-income countries, which gener-
ally have localised and powerful sources, or countries with
a majority of sources located in areas with high observation
densities. As a consequence, the macro-regions that perform
best with both metrics are Europe, North America and the
Caribbean, the Middle East and North Africa, and the rest
of Asia. At the scale of countries, TROPOMI-inferred emis-
sions are close to EDGAR estimates for the three largest
emitting nations, i.e. China, the United States, and India, with
TROPOMI-inferred emissions 6 %, 14 %, and 4 % lower
than EDGAR estimates, respectively. These three countries
account for 45 % of global estimated emissions. However,
for the fourth highest emitting country, Russia, we estimate
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Figure 8. Comparison between TROPOMI-inferred daytime NOx emissions for 2022 (expressed as NO2) and mean emissions from
EDGARv6.1 in 2018 for all countries, classified by macro-regions.

Table 3. Comparison between TROPOMI-inferred daytime NOx emissions for 2022 (expressed as NO2) and mean emissions from
EDGARv6.1 in 2018 for macro-regions. For each macro-region, the relative bias between total TROPOMI-inferred emissions and total
EDGAR emissions is calculated. The mean absolute bias for all countries of these macro-regions is also calculated.

Region TROPOMI 2022 EDGAR 2018 Relative bias Mean absolute error
(t h−1) (t h−1) VS EDGAR VS EDGAR

(weighted average) [%] (unweighted average) [%]

Sub-Saharan Africa 660 712 −7.4 95.0
Rest of Asia 4584 5482 −16.4 54.4
Europe 830 1092 −24.0 40.3
Middle East and North Africa 1531 1125 36.1 52.1
North America and the Caribbean 1690 1944 −13.1 48.8
Oceania 92 282 −67.5 62.9
South America 514 762 −32.5 61.8
Former USSR 1268 856 48.2 77.4

Total 11 168 12 254 −8.8 64.7

Earth Syst. Sci. Data, 17, 3329–3351, 2025 https://doi.org/10.5194/essd-17-3329-2025



A. Rey-Pommier et al.: Global gridded NOx emissions using TROPOMI observations 3343

emissions 52 % higher than in EDGAR. This difference can
be due to the low density of observations for major emitters
in Russia, leading to the estimation of monthly emissions
on the basis of only a few estimates. To illustrate this, the
monthly emissions of the two largest Russian cities, Moscow
and Saint Petersburg, are studied in the Supplement. In ex-
treme cases, such key emitters can have no estimates at all
for months, making the calculation of the annual average
representative of only a part of the year, even when its or-
der of magnitude is correct. Generally speaking, large dif-
ferences between our top-down estimates and EDGAR emis-
sions are found for many countries that also have low obser-
vation densities for this reason. Without prior knowledge of
the annual emission profiles in these countries, these biases
cannot be corrected, leading to a systematic misestimation of
total emissions.

The other countries for which the difference between our
TROPOMI-inferred emissions and EDGAR estimates is sig-
nificant are low-income countries. For such countries, it is
possible that most sources are too small to be detected with
our method, resulting in an underestimation of emissions.
Countries for which TROPOMI-inferred estimates are lower
than EDGAR estimates by more than an order of magnitude
are Guinea-Bissau, Equatorial Guinea, Togo, Guinea, Gabon,
Montenegro, El Salvador, Liberia, Ivory Coast, and Myan-
mar. Of all these countries, only Montenegro and Gabon
are not considered low-income countries. Conversely, al-
though no country has TROPOMI-inferred estimates higher
than EDGAR estimates by more than an order of magnitude,
notable biases exist. In this respect, largest differences are
found in central Asia (ratios of 3.8 for Kyrgyzstan, 3.2 for
Uzbekistan, 3.4 for Tajikistan), in central and southern Africa
(ratios of 5.6 for Zambia, 4.7 for Democratic Republic of
Congo, 4.0 for Eswatini, 4.1 for Mozambique, 3.0 for An-
gola), and Yemen (ratio of 3.2). For these countries, it is
also possible that the corresponding EDGAR estimates are
imprecise, due to the incomplete or outdated nature of the
reported sources in these countries. The presence of many
sub-Saharan African countries with extreme differences be-
tween TROPOMI-inferred and EDGAR estimates explains
why the macro-region has the highest mean absolute error
despite having the lowest total relative bias.

At the global scale, our TROPOMI-inferred daytime emis-
sions for all considered countries (i.e., excluding emissions
which take place at sea and smaller countries) reach a total
value of 11 168 th−1. This value is consistent with that of
EDGAR at 12 254 t h−1, i.e approximately 107 Mt per year,
and lower than the value of 123 Mt calculated by Stocker
(2014) for global anthropogenic emissions in 2000 (which
include shipping and aircraft emissions). If the lower value
can be interpreted as a reduction of NOx emissions between
the two dates, it is also possible that our emissions are un-
derestimated due to biased-low columns in the TROPOMI
NO2 operational product (Verhoelst et al., 2021). We detail
this uncertainty in Sect. 4.2. We should also note that our

TROPOMI-inferred emissions only represent daytime emis-
sions taken around 13:30 LT for each pixel, which are gener-
ally lower during mid-day than other times of the day, when
pollution peaks in the early morning and late afternoon are
reported for traffic in most cities (Menut et al., 2012; Gold-
berg et al., 2019). For the power sector, emissions at 13:30
are generally similar to the daily mean for power plants used
for electricity baseload, but for power plants whose purpose
is to meet peak demand, the mid-day emissions can largely
differ from the daily mean. For other sectors such as cement,
it is difficult to assess whether mid-day emissions are higher
than the daily average, since cement production can be driven
by factors that are more irregular than those driving power
generation or traffic.

A source of underestimation can also come from the
threshold used to filter out emissions. Here, the limit used
of 0.2 Pmolec.cm−2 h−1 makes it possible to eliminate resid-
ual emissions that are difficult to attribute to a source. This
filtering also eliminates pixels with negative emissions that
are physically impossible. Nevertheless, as negative emis-
sions may represent NOx incorrectly distributed spatially
in the transport term due to errors in the wind field, cal-
culating the sum of emissions without the use of thresh-
olds may be important for identifying countries and regions
where the flux-divergence method is limited. In this case,
total emissions reach 14 835 th−1, which corresponds to an
increase of 32.8 % compared to the total with the applica-
tion of the threshold. This estimate is therefore higher than
the total EDGAR budget. The differences between the two
estimates vary greatly by macro-region: it rises to 149.6 %
for sub-Saharan Africa, 126.7 % for Oceania, and 95.5 %
for South America. The increase is moderate in the Mid-
dle East and North Africa region and the North America and
the Caribbean, (41.7 % and 33.3 %, respectively). The differ-
ence between the two estimates is the lowest in former USSR
countries, Europe and the rest of Asia (increases of 16.4 %,
14.1 % and 12.1 %, respectively). The trends observed pre-
viously regarding the reasons for the discrepancy between
the TROPOMI-inferred estimates and EDGAR remain un-
changed.

3.4 Temporal distribution and averaging size

The results presented so far concern daytime emissions av-
eraged on the entire year 2022. They therefore show a cer-
tain potential for mapping the sources of pollution, quantify-
ing the corresponding emissions and characterising their type
(by size and country or region). Several studies have shown
the possibility to characterise a weekly cycle of NOx emis-
sions (Stavrakou et al., 2020; Rey-Pommier et al., 2022).
The use of geostationary satellites, such as the Geostation-
ary Environment Monitoring Spectrometer (GEMS) in East
Asia (Kim et al., 2020), the Tropospheric Emissions Mon-
itoring of Pollution (TEMPO) in North America (Zoogman
et al., 2017), and Sentinel-4 (planned in June 2025) in Eu-
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Figure 9. NOx emissions for eight different urban areas (diffuse sources), averaged over a period of 24, 84, 168, 252, and 336 d, evenly
distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except the first one of
24 d. Masses are expressed as NO2.

Figure 10. NOx emissions for six different industrial facilities (diffuse sources), averaged over a period of 24, 84, 168, 252, and 336 d,
evenly distributed throughout the year. The proportion of weekend days and weekdays is identical in all the averaging sets except for the first
set of 24 d. Masses are expressed as NO2.

rope (Gulde et al., 2017), could also be used to characterise
the daily cycle of emissions, leading to a significant improve-
ment of forecasting capabilities. In our case, TROPOMI can
only monitor pollution on a daily basis provided that re-
trievals are of high quality, and the analyses presented so far
could theoretically be carried out at this temporal resolution.
In the Supplement, we monitor the daily emissions of the
Zaporizhia thermal power plant in Ukraine, whose activity
was altered following the ongoing conflict in the country that
started in February 2022. However, this type of monitoring
remains rare and is more indicative of order-of-magnitude
variations rather than precise emission estimates. In prac-
tice, the high sensitivity of the method to wind direction
and the low signal-to-noise ratio around sources at high lat-
itudes leads to daily emission maps that are very noisy in
most cases, making it difficult to precisely monitor activity

at this temporal resolution. In general, averaging is therefore
required to reduce noise effects and limit the uncertainties
associated to emission estimates. Here, we try to evaluate
what level of averaging is necessary to limit noise effects
and allow a monitoring of emissions. To this end, we con-
sider the average daily emissions obtained for 2022 (i.e. over
a maximum of 52 weeks) to be the most accurate estimate
of daytime emissions. We compare this maximum averag-
ing value with averages based on a smaller number of esti-
mates. We compare the emissions of various emitters, calcu-
lated with an averaging period of 12, 24, 36, and 48 weeks.
Figure 9 shows the results for eight urban areas, but with dif-
ferent latitudes, populations, levels of development and en-
ergy mixes: Ankara (Türkiye), Cape Town (South Africa),
Madrid (Spain), Portland (Oregon, United States), Chagua-
nas (Trinidad and Tobago), Saint Petersburg (Russia), Manila
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(Philippines), and Muscat (Oman). Portland and Manila are
urban areas classified as a point sources. Figure 10 shows the
results for six industrial facilities, which are all point sources
located in Egypt, Australia, Mexico, Chile, India, and Ger-
many. The sources were chosen for their relative isolation
from other emitters. Calculated emissions correspond to the
sum of pixels around the source with densities greater than
2 Pmolec.cm−2 h−1. There are two pitfalls to be avoided in
this comparison:

– The first pitfall would be not to account for the seasonal
cycle of emissions, which is very pronounced in some
cases, and to compare chronological averages. For ex-
ample, comparing the first 12 weeks of the year with the
first 24 weeks of the same year would not make sense in
terms of the difference with emissions averaged over the
whole year, because in the first case, emissions would
essentially be calculated in boreal winter, whereas in the
second case, emissions would be included during spring
and summer. To avoid this seasonal bias, emissions av-
eraged over 12 weeks correspond to an average over the
first week of each of the 12 months of 2022, emissions
averaged over 24 weeks correspond to the first 2 weeks
of these same 12 months, and so on.

– The second pitfall would be not to account for the
weekly cycle of emissions. NOx emissions are generally
lower at weekends due to a reduction in human activity
in most areas (i.e. on Saturday and Sunday, or Friday
and Saturday in most Arabian and North-African coun-
tries). It is therefore necessary to ensure that the propor-
tion of weekend days and weekdays in each of the av-
erages calculated remains the same, hence the interest
in averaging by weeks (these proportions are therefore
2/7 and 5/7, respectively). We also carry out a fifth set
of averaging over 24 d, i.e. 2 d per month. Since the sea-
sonal effect (first pitfall) is generally stronger than the
weekly bias (second pitfall), we therefore choose to re-
tain the principle of selecting the same number of days
in each month, even if it means making comparisons be-
tween averages where the weekend and weekday rates
differ from 2/7 and 5/7. This last averaging set will be
indicated as “irregular”.

In the case of urban areas, the different averages uniformly
distributed over time show a similarity in the emissions cal-
culated over the time horizons for Ankara, Muscat, Cape
Town, and Madrid. For these cities, the low cloud cover al-
lows a high density of observations and optimal averaging.
The 84 d averaging, and to some extent the 24 d irregular
averaging, seems sufficient for monitoring emissions. This
is not the case for the other urban areas studied, for which
the observation density is lower, such as Manila, Saint Pe-
tersburg, and Chaguanas. For these cities, a monitoring per-
formed with an averaging below 168 d (or even 252 d in the
case of Manila) is therefore limited by noise effects. The limit

case is Portland, which has the larger difference between
84 and 336 d averagings. This is due to a limited number of
observations over a small urban area which are not compen-
sated by high emissions like other point sources shown on
Fig. 10. For those point sources, similar emissions are ob-
served after an 168 d averaging. In some cases, a 24 d av-
eraging is also sufficient, while in others it is not. The rep-
resentativeness of emissions on such a low level of averag-
ing should be considered with caution, as emissions from
industrial plants are always more irregular than those from
cities, with the exception of power stations used for baseload
electricity generation. The averages over 84 d presented here
represent emissions that include several days of activity and
several moments of inactivity.

Overall, this analysis seems to indicate that tracking emis-
sions from point sources or diffuse sources using the flux-
divergence method requires an averaging effort to limit the
noise obtained in the daily emissions. This averaging effort,
which is made more difficult for smaller sources, increases
with the density of observations, is of about a month in coun-
tries with frequent high-quality observations, but of about a
year quarter in regions with low observation densities, such
as tropical regions and high-latitude regions.

4 Uncertainties and assessment of results

4.1 Model uncertainties

Our top-down emissions are calculated here using a flux-
divergence model, based on a simplified calculation of a
transport term, a sink term, and a conversion factor from NO2
to NOx . This simplicity reduces the computation time to cal-
culate emissions and the dependence on external datasets, at
the cost of increased model uncertainties. Here, although a
topography-wind term has been introduced in this article to
refine the transport term, the sink term remains simple and
only represents the reaction between NO2 and OH. While
this reaction is the first contributor of NOx loss, other sinks
may be significant. For instance, organic peroxy radicals can
oxidise NOx to form peroxy nitrates, making the correspond-
ing sink important in the presence of VOCs (Stavrakou et al.,
2013), especially in biomass fires. In different conditions, the
formation of peroxyacetyl nitrate from NO2 (Moxim et al.,
1996), can also contribute to a significant share of the NOx
loss. The vertical averaging of is also made simple here, and
although the sink term varies little with the thickness of the
layer within which the temperature and OH concentration are
calculated (Rey-Pommier et al., 2022), this assumes the OH
field is correctly represented. This assumption may be in-
correct if large NOx emitters are not taken into account, as
this would distort the corresponding NO2 field and the subse-
quent OH field. A possible improvement to our dataset could
be to compare the columns calculated from the TROPOMI
observations with the NO2 column represented by CAMS
and correct outliers detected from this comparison. Another
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refined version could infer directly the effective NOx life-
time from the NO2 observations themselves, as suggested by
Laughner and Cohen (2019).

Another model uncertainty comes from the calculation of
the conversion of NO2 production to total NOx . The majority
of NOx is emitted in the form of NO, which is not observed
from space. A common assumption is that NO is rapidly
transformed into NO2 through its reaction with ozone, reach-
ing a stationary state within a few minutes. Numerous stud-
ies (Beirle et al., 2019; de Foy and Schauer, 2022) assumed
a photostationary state in typical urban conditions and used
a ratio of 1.32 based on Seinfeld and Pandis (2006). Here,
the values of this ratio calculated from CAMS data did not
differ significantly from this value. However, the photosta-
tionary state is a hypothesis which is potentially not verified
on the scale of a NOx source such as a power plant stack.
Li et al. (2023b) calculated values of this conversion ratio
correlated with the combustion temperature and energy effi-
ciency for sources in China that are highly intensive in energy
such as power plants, and found a median value of 3.3. Bi-
ases in the calculation of the NOx : NO2 ratio can also arise
in highly polluted environments, in which the Leighton rela-
tionship used to calculate this ratio is no longer valid. In par-
ticular, OH can also react with VOCs and form oxygenated
VOCs. Further studies estimating this ratio at various spatial
and temporal scales would thus provide a better implementa-
tion of our model.

4.2 Data uncertainties

The NO2 column densities are the main input quantity in
our estimation of NOx emissions, making the its calcula-
tion within the TROPOMI product the first element to ex-
amine when considering the data uncertainties in our esti-
mates. Columns are calculated from measurements of solar
backscattered radiation and comparison with a specific UV-
visible band using the differential optical absorption spec-
troscopy method, before being assimilated to derive a tropo-
spheric vertical component. The corresponding uncertainty
under polluted conditions is dominated by the sensitivity of
satellite observations to air masses near the ground, and is
expressed through the calculation of the tropospheric air-
mass factor (AMF). To assess the significance of such ef-
fects, vertical profiles within the TROPOMI product can be
replaced by any other profile information, resulting in a new
retrieved tropospheric NO2 column. Douros et al. (2023) re-
placed the a priori TROPOMI OFFL NO2 profile by high-
resolution air quality forecasts for Europe. As compared to
the standard TROPOMI NO2 data, this new product was
found to be biased-low by 5 % to 12 % for most European
cities. The AMF can be replaced: for instance, Lama et al.
(2022) re-calculated the AMF by replacing the tropospheric
AMF of the original TROPOMI OFFL product by an AMF
taken from WRF-Chem simulations. Similarly, Beirle et al.
(2023) re-calculated the AMF above different emitters from

the corresponding averaging kernel based on a peak profile
at plume height to better reflect the distribution of NO2 close
to ground, which resulted in an AMF correction of approxi-
mately 1.61. Here, we did not perform any such corrections,
and we consider a relative uncertainty for the column of
30 % (Boersma et al., 2004) for pixels corresponding to non-
urbanised areas. For pixel corresponding to cities, S-5P vali-
dation activities which indicate that TROPOMI tropospheric
NO2 columns are systematically biased low by higher rates
(Verhoelst et al., 2021), and a higher relative uncertainty of
50 % is used. Such biases seem to run counter to our com-
parison with the catalogue by Beirle et al. (2023), for which
this change in sensitivity was performed but leading to emis-
sions generally lower than ours. A more detailed analysis of
the concerned emitters seems necessary to better understand
the parameters that have the largest effect on the vertical sen-
sitivity of TROPOMI retrievals and our inversion model.

Other data uncertainties can arise from other parameters
that play a crucial role in the estimation of advection and
chemistry effects. An accurate representation of the wind is
critical to estimate the transport term correctly. For a given
plume, the poor representation of wind speed leads to an
under or overestimation of transport, but the correct orien-
tation of positive and negative values around the source re-
mains. However, an incorrect representation of the wind di-
rection, such as a non-alignment with the main direction of
the plume, fails to represent a correct orientation of posi-
tive and negative values. The estimation of the transport term
thus significantly relies heavily on the representation of the
wind angle. Higher errors are therefore expected to be high
in regions having winds that vary rapidly in time, or regions
with complex horizontal wind variations, such as mountain-
ous regions. In particular, situations where sub-grid scale-
phenomena occur, not accounted for in ERA5 wind fields,
might display even higher errors in the estimation of trans-
ported NOx . For instance, Tehran, Iran, has an extremely
complex topography, and in the calculated emissions, the
transport term is particularly high compared with the sink
term, with high and unrealistic negative values on large
scales around the Tochal mountain immediately to the north
of the city. Other megacities such as Seoul, South Korea, Jed-
dah, Saudi Arabia, Chittagong, Bangladesh, also exhibit un-
realistically high values for the transport term. In addition,
these values are not compensated by the topography-wind
term, for which an inverse scale height of Xe= 0.3 km−1 is
used based on Sun (2022). For this term to be sufficient to
compensate for the negative values observed, a higher in-
verse scale height would be required. Such observation is
consistent with Beirle et al. (2023), who used empirical val-
ues of Xe up to 2 km−1 and reduced the amplitude of the
negative patterns observed for Los Angeles, United States,
Tehran, Iran, and Seoul, South Korea. Underestimations of
the topography-wind term may also result from the use of a
relatively coarse, post-processed version of the topographic
field, which smooths out finer-scale elevation gradients that
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would be better captured in the original higher-resolution
GMTED data. Finally, errors in the estimation of emissions
can also come from an incorrect estimate of the air composi-
tion when calculating the sink term. The NO2 lifetime relies
heavily on the representation of the OH concentration field,
which varies with NOx itself through a nonlinear mechanism.
An incorrect representation of the sink term can occur at the
scale of a plume by not capturing this relationship due to an
incorrect knowledge of emitters on the ground. This can also
be due to the 0.4°× 0.4° resolution of CAMS that do not al-
ways capture the NO2 gradients adequately in plumes near a
known emitter (Valin et al., 2011; Li et al., 2023a). For the
OH concentration, a relative uncertainty of 30 % has been
used (Huijnen et al., 2019), representing the largest compo-
nent of absolute uncertainty apart from the vertical columns.
Large errors in the annual cycle of OH, and therefore in the
sink term, can thus be expected. As a consequence, an incor-
rect estimate of wind angle and OH concentration can lead to
unrealistically high emissions, or even negative emissions.

5 Data availability

The monthly NOx emission maps can be accessed
at https://doi.org/10.5281/zenodo.13758447 (Rey-Pommier
et al., 2025). Data are made available as emission grid maps
as .nc files with emissions expressed in petamolecules per
square centimetre per hour (Pmolec.cm−2 h−1). Conversion
factors to mass terms (expressed as NO2, NO or N) are in-
cluded. The lists of diffuse and point sources are also pro-
vided.

6 Conclusion

In this study, we present a global quantification of NOx emis-
sions by performing a mass-balance inversion based on the
flux-divergence method, based. This approach offers a rapid
alternative to traditional 3D inversion methods using chem-
ical transport models. The foundation of this method lies in
the observation of tropospheric VCDs of NO2 provided by
TROPOMI. Our methodology incorporates several compo-
nents in the calculation of emissions: a transport term driven
by horizontal wind, a sink term largely driven by OH concen-
trations, and a topography-wind correction term. The emis-
sions calculated represent mean daytime fluxes for the year
2022, allowing us to map emissions on a global scale. The
results highlight that the primary sources of NOx emissions
are industrialised and developing countries. Our emission es-
timates are consistent with global estimates, as well as the
EDGARv6.1 inventory, though notable discrepancies are ob-
served at the national level, particularly in former USSR
countries and sub-Saharan Africa. In addition, we performed
a pinpointing of emitters by distinguishing between diffuse
sources, typically large metropolitan areas with extensive
spatial distribution, and point sources, generally isolated in-

dustrial facilities with emissions that often exhibit a Gaussian
spread; 436 diffuse sources and 323 point sources are iden-
tified. Significant uncertainties remain, especially in regions
where OH is not the only source of NOx removal, regions
where wind representation is inaccurate, and regions where
TROPOMI data exhibit substantial biases. Nonetheless, this
work demonstrates the feasibility of annual NOx emission
monitoring with reduced latency and fewer misallocation is-
sues compared to traditional inventories. Our approach en-
ables the monitoring of emissions at the monthly scale in
regions with high observation densities, that usually corre-
spond to dry, mid-latitude countries. Conversely, the effect
of numerical noise, combined with low-observation densi-
ties, restricts such monitoring to a higher averaging period
of up to months, generally in tropical and high-latitude re-
gions. Efforts should be made to further develop this method
to provide a near real-time monitoring tool with a higher tem-
poral resolution for these regions. The results of this study
were obtained from the calculation of daily NOx emissions
in 2022 and their annual average.
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