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Abstract. Determining the large-scale RuBisCO carboxylation maximum rate (Vc,max25) in relation to leaf age
is essential for evaluating the photosynthetic capacity of canopy leaves in global forests. Young leaves (≤ 180 d),
which exhibit higher Vc,max25 compared to old leaves (> 180 d), are key to controlling the seasonality of leaf
photosynthetic capacity in tropical and subtropical evergreen broadleaved forests (TEFs). Nevertheless, quan-
tifying the leaf photosynthetic capacities of different ages across TEFs remains challenging, especially when
considering continuous temporal variations at continental scales. In this study, we propose a novel methodology
that leverages neighborhood pixel analysis with nonlinear least-squares optimization to derive the Vc,max25 of
young leaves at 0.25° spatial resolution. This approach utilizes satellite-based solar-induced chlorophyll fluores-
cence (SIF) products spanning the period from 2001 to 2018, which were reconstructed using both TROPOMI
(Tropospheric Monitoring Instrument) SIF and MODIS reflectance data (RTSIF). Validations against in situ ob-
servations demonstrate that the newly developed Vc,max25 products accurately capture the seasonality of young
leaves in South America and subtropical Asia, with correlation coefficients of 0.84, 0.66, and 0.95, respectively.
The Vc,max25 of the young leaves simulated from the RTSIF-derived gross primary production (GPP) is effec-
tively correlated (R> 0.51) with that dissolved from the global Orbiting Carbon Observatory-2 (OCO-2)-based
SIF (GOSIF) GPP. Furthermore, the gridded Vc,max25 dataset for young leaves successfully detects the green-up
regions during the dry seasons in the tropics. Overall, this study presents the first satellite-based Vc,max25 dataset
specifically targeting photosynthetically efficient young leaves, providing valuable insights for modeling large-
scale photosynthetic dynamics and carbon cycles in TEFs. Herein, we provide the Vc,max25 time series derived
from RTSIF GPP as the primary dataset, supplemented by GOSIF-derived and FLUXCOM products. These
Vc,max25 products are available at https://doi.org/10.5281/zenodo.14807414 (Yang et al., 2025).
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1 Introduction

The maximum carboxylation rate (Vc,max) is a critical leaf
trait that strongly influences seasonal variations in canopy
photosynthesis across tropical and subtropical evergreen
broadleaved forests (TEFs; Chen et al., 2022a; Wu et al.,
2018). This relationship stems from the high correlation be-
tween Vc,max and nitrogen-related plant functional traits (Lu
et al., 2020; Dechant et al., 2020), including leaf nitrogen
and chlorophyll content (Lu et al., 2020). However, leaf ni-
trogen content varies substantially at a large scale due to
the influence of multiple biotic and abiotic factors (Quebbe-
man and Ramirez, 2016), such as leaf lifespan (Onoda et al.,
2017), leaf temperature (Verheijen et al., 2013), light inten-
sity (Hikosaka, 2014), and species (Evans, 1989). Leaf ni-
trogen content inversion from remote sensing data at a large
scale remains challenging (Knyazikhin et al., 2013), hinder-
ing accurate mapping of Vc,max at regional to global scales.

The Vc,max at 25° (hereafter denoted as Vc,max25) serves
as a benchmark in most ecosystem models for simulating
various Vc,max values at different temperatures. For instance,
the Farquhar–von Caemmerer–Berry (FvCB) leaf photosyn-
thetic model, widely adopted for simulating plant photosyn-
thesis across ecosystems (Farquhar et al., 1980; Sun et al.,
2015), relies on Vc,max25 as a key parameter in determining
leaf photosynthetic capacity. However, Vc,max25 varies con-
siderably among tree species, with even 2-fold to 3-fold dif-
ferences observed within the same species (Orndahl et al.,
2022). Research on this issue remains limited and incon-
clusive, largely due to the complex interplay of seasonal
constraints such as water availability and light, which af-
fect leaf flushing and shedding processes across different cli-
matic zones (Brando et al., 2010; Yang et al., 2021). Recent
advances have led to the development of two independent
satellite remote sensing approaches for estimating Vc,max25
at a global scale. The first approach to deriving Vc,max25 is
via leaf chlorophyll content (LCC) (Luo et al., 2019; Lu
et al., 2020), as chlorophyll harvests light and provides en-
ergy for reactions in the Calvin–Benson–Bassham (CBB) cy-
cle of photosynthesis (Luo et al., 2019). Moreover, chloro-
phyll harvests light energy and powers reactions in the CBB
cycle (Luo et al., 2019), and Vc,max25 exhibits strong coor-
dination with LCC as plants optimize their photosynthetic
nitrogen resources (Croft et al., 2020; Xu et al., 2022a, b).
This LCC-based method enables reliable Vc,max25 estimation
across various spatiotemporal scales. The second approach
estimates Vc,max25 using solar-induced chlorophyll fluores-
cence (SIF) (Mohammed et al., 2019), which serves as a ro-
bust proxy for global gross primary production (GPP) map-
ping (Mohammed et al., 2019; Frankenberg et al., 2011).
Both LCC-derived and SIF-derived Vc,max25 products present
distinct advantages and limitations. Notably, multispectral
satellite data can retrieve LCC at significantly higher spatial
and temporal resolutions than SIF measurements (Chen et al.,
2022a). Nevertheless, LCC retrieval from remote sensing

data is susceptible to uncertainty in the vegetation structural
parameters employed in the derivation (Luo et al., 2019).
Converting LCC into Vc,max25 relies on empirical relation-
ships for different plant functional types (PFTs), introducing
substantial uncertainties (Chou et al., 2020; Croft et al., 2017;
Houborg et al., 2013; Houborg et al., 2015). In comparison,
while SIF directly correlates with photosynthetic rates, most
satellite-based SIF products suffer from relatively coarse spa-
tial and temporal resolutions (Liu et al., 2024; Chen et al.,
2022a). A recent study demonstrated that TROPOMI (Tro-
pospheric Monitoring Instrument) SIF data, characterized by
high spatial and temporal resolutions, exhibit a linear rela-
tionship with GPP and contain robust signals for Vc,max25
(Chen et al., 2022a). Consequently, TROPOMI SIF has been
employed extensively for modeling photosynthesis across
various ecosystems (Yang et al., 2023).

TEFs account for 40 %–50 % of the carbon sinks in global
forest ecosystems, playing a vital role in the global carbon
cycle (Yang et al., 2023; Lu et al., 2021). Despite TEFs main-
taining a perennial canopy cover, they exhibit pronounced
seasonal variability in photosynthetic activity (Wu et al.,
2016). This seasonality is primarily attributed to shifts in
canopy leaf age structure (Chen et al., 2021; Chen et al.,
2022a), which are predominantly driven by climatic season-
ality (Li et al., 2021b; Yang et al., 2021). Recent studies have
revealed that young leaves (≤ 180 d) generally exhibit higher
Vc,max25 than old ones (> 180 d), thereby dominating the
seasonal dynamics of leaf photosynthetic capacity in TEFs
(Locke and Ort, 2014; Wu et al., 2016). Consequently, accu-
rately mapping the seasonality of Vc,max25 in young leaves
is essential for modeling tropical and subtropical photosyn-
thesis at continental scales. However, current satellite-based
approaches face challenges in distinguishing Vc,max25 across
leaf age cohorts, which is primarily due to the complex inter-
actions between climate drivers and leaf phenology (Jensen
et al., 2015; Song et al., 2020). These limitations hinder the
seasonal characterization of the Vc,max25 of young leaves.
Additionally, Earth system models (ESMs) often struggle to
capture the seasonal variations in Vc,max25 across different
leaf age categories (Atkin et al., 2014; Ali et al., 2016). A key
unresolved challenge remains the insufficient understanding
of how seasonal changes in water and light availability regu-
late leaf emergence and shedding patterns.

To address the aforementioned gaps in mapping the
Vc,max25 of young leaves, we categorized the canopy foliage
of TEFs into two distinct leaf age groups: young (≤ 180 d)
and old (> 180 d) leaves. We then proposed a novel neighbor-
based approach to estimate the maximum carboxylation rate
(Vc,max25) for a young leaf cohort by assuming a constant
for the older cohort (Yang et al., 2023). This assumption is
supported by previous research indicating that Vc,max25 in
old leaves exhibits minimal variation over time (Chen et al.,
2019; Albert et al., 2018). This study aims to achieve three
key objectives: (1) develop a global gridded dataset cap-
turing the seasonal variability of Vc,max25 in young leaves
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Figure 1. Tropical and subtropical evergreen broadleaved forests (TEFs) and in situ observation sites. The TEFs are determined as those
labeled as evergreen broadleaf forest (EBF) from the MODIS land cover maps at a 0.05° spatial resolution. The red dots are in situ observation
sites of Vc,max25.

across TEFs from 2001 to 2018, (2) validate the dataset
against ground-based measurements and dissolved Vc,max25
data from GOSIF-derived GPP datasets, and (3) analyze the
spatiotemporal patterns of Vc,max25 in young leaves across
TEFs. The resulting Vc,max25 dataset enhances our under-
standing of tropical and subtropical phenology by quantify-
ing the photosynthetic seasonality of young leaves. Further-
more, it provides valuable insights for refining tropical phe-
nological models within ESMs.

2 Materials and methods

2.1 Study area

The studied TEFs were identified by selecting pixels marked
as EBF (evergreen broadleaf forest; Sulla-Menashe et al.,
2018) on MODIS MCD12C1 land cover maps at 0.05° spa-
tial resolution (see Fig. 1). TEFs in South America are the
largest tropical rainforests in the world and are mainly lo-
cated at 18° N–22° S and 40–90° W, followed by TEFs in
tropical Africa (12° N–12° S, 2.5–37.5° E). TEFs in tropical
Asia are mainly located in the Malay Archipelago, the Asian
Peninsula, and northern Australia (30° N–14° S, 85–155° E).

2.2 Data sources for mapping the Vc,max25 of young
leaves

The continental-scale GPP (referred to as RTSIF-derived
GPP) at a resolution of 0.125° and spanning the period from
2001 to 2018 was derived from TROPOMI SIF data accord-
ing to the relationships between SIF and GPP delineated by
Chen et al. (2021), which used a constant value of 15.343 to
transform the SIF into the GPP (see Sect. 2.4.1). Monthly
meteorological data, including the air temperature (Tmean)
from the ERA5-Land dataset (Zhao et al., 2020), the va-
por pressure deficit (VPD) from ERA5-Land (Yuan et al.,
2019), and downward shortwave solar radiation (SW) pro-
vided by the Breathing Earth System Simulator (BESS; Ryu
et al., 2018), were used to calculate the Michaelis–Menton
constant for carboxylase (Kc), the Michaelis–Menton con-
stant for oxygenase (K0), the CO2 compensation point (0∗),

dark respiration (Rd), and thus the An parameter according
to the equations in Table S1 in the Supplement. All of the
datasets were collected and harmonized to a spatial resolu-
tion of 0.125°. Further details regarding the satellite and in-
put data are provided in Table 1.

2.3 Data for validating the Vc,max25 of young leaves

The Vc,max25 of young leaves and canopy-averaged leaves
from in situ observations was collected to validate the
Vc,max25 seasonality simulated from RTSIF-derived GPP us-
ing the proposed model (Table S2). Field measurements
of monthly Vc,max25 for young leaves and canopy-averaged
leaves were conducted at the Santarem Primary Forest
Ecosystem Research Station (BR-Sa1) during August and
December 2012 (Albert et al., 2018). Annual Vc,max25 ob-
servations for canopy-averaged leaves were acquired over a
12-month period from 2004 to 2016 at the Guyaflux For-
est Ecosystem Research Station (GF-Guy) (Wang et al.,
2022), from 2003 to 2009 at the Dinghushan Forest
Ecosystem Research Station (CN-Din) (https://fluxnet.org/
data/fluxnet2015-dataset/, last access: 1 July 2025), and
in November 2012 at the Mbam–Djerem National Park 3
(MDJ-03) (Ferreira Domingues et al., 2015). The Vc,max25
of young leaves and canopy-averaged leaves for the BR-Sa1
site was obtained directly from the literature, whereas for the
three remaining sites only the existing literature was avail-
able, which reported only the Vc,max25 of canopy-averaged
leaves. To evaluate the simulated Vc,max25 of young leaves,
the dissolved method (see Sect. 2.5.1) was used to derive
the true values of Vc,max25 for young leaves, based on a
monthly leaf-age-dependent leaf area index (Lad-LAI) prod-
uct (Yang et al., 2023). Furthermore, gross primary produc-
tion retrieved from Orbiting Carbon Observatory-2 (OCO-
2) solar-induced chlorophyll fluorescence data (referred to
as GOSIF-derived GPP) at a spatial resolution of 0.05° for
the period 2001–2018 and gross primary production data re-
trieved from eddy covariance flux tower measurements (re-
ferred to as FLUXCOM GPP) at a spatial resolution of 0.5°
for the period 2001–2013 were used to evaluate the uncer-
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Table 1. Data sources for mapping the Vc,max25 of young leaves across tropical and subtropical evergreen broadleaved forests.

Data name (abbreviation) Source Usage Spatial resolution Temporal Temporal coverage
resolution

Temperature (Tmean) ERA5-Land Calculate the Kc, K0,
0∗, and Rd for An.

0.1°× 0.1° Monthly 01/2001–12/2018

Shortwave solar radiation (SW) BESS Calculate the Je for An. 0.05°× 0.05° Monthly 01/2001–12/2018

Vapor pressure deficit (VPD) ERA5-Land Calculate the Ci for An. 0.1°× 0.1° Monthly 01/2001–12/2018

Solar-induced chlorophyll fluores-
cence (RTSIF)

TROPOMI SIF RTSIF-derived GPP 0.05°× 0.05° Monthly 01/2001–12/2018

Gross primary production from
OCO-2 solar-induced chlorophyll
fluorescence (GOSIF)

GOSIF GOSIF-derived GPP 0.05°× 0.05° Monthly 01/2001–12/2018

Gross primary production from
eddy covariance flux tower
measurements (FLUXCOM)

FLUXCOM FLUXCOM GPP 0.5°× 0.5° Monthly 01/2001–12/2013

Leaf-age-dependent leaf area index
(Lad-LAI)

Yang et al. (2023) Dissolved Vc,max25
from GOSIF-derived
GPP

0.25°× 0.25° Monthly 01/2001–12/2018

tainty of the proposed model in simulating the monthly grid-
ded Vc,max25 of young leaves (Table 1).

2.4 Methods for simulating the Vc,max25 of young leaves

Figure 2 shows the practical procedures applied to pro-
duce the seasonal dynamic product of the Vc,max25 of young
leaves. The leaf demographic-identical (LDO) hypothesis
proposes that the leaf cohorts can be classified into three cat-
egories on the basis of their growth, development, and lifes-
pan: young leaf (less than 60 d), mature leaf (between 60 and
180 d), and old leaf (more than 180 d) (Wu et al., 2017b).
To ensure comparability between the observations and sim-
ulations and to simplify the calculations, we categorized the
leaf area index and the corresponding net CO2 assimilation
rate (An) into two groups based on leaf age: those with a
leaf age of more than 180 d were considered “old”, and those
with a leaf age of less than 180 d were considered “young”
(Chen et al., 2020). Since the total GPP of the leaf cohorts
remained constant and the leaf cohorts were composed of
leaves of different ages, we calculated the total GPP as the
sum of the GPPs of each leaf age cohort. The total GPP was
simulated using the FvCB photochemical model by combin-
ing the LAI groups (young leaf LAIY and old leaf LAIO;
Eq. 1) and the corresponding net assimilation rates of CO2
(young leaf An,sat_Y and old leaf An,sat_O; Eq. 1) (Farquhar
et al., 1980):

GPPtotal = LAIY×An,sat_Y+LAIO×An,sat_O, (1)

where LAIY represents the LAI of young leaves (≤ 180 d)
and LAIO represents the LAI of old leaves (> 180 d).An,sat_Y
and An,sat_O represent the net CO2 assimilation rates of

young and old leaves, respectively. The sum of LAIY and
LAIO was set as the total canopy LAI. GPPtotal refers to the
total gross primary production of the canopy.

The gridded GPP data over all of the TEFs were derived
from SIF (denoted as RTSIF-derived GPP) using a linear
SIF–GPP regression model (see Sect. 2.4.1), which was es-
tablished based on in situ GPP from 76 eddy covariance
(EC) sites (Chen et al., 2022b). The majority of the TEFs re-
tain leaves year-round, and their total LAI shows marginally
small spatial and seasonal changes (Wu et al., 2016; Fig. S1).
Therefore, previous modeling studies have assumed a con-
stant value for the total LAI in TEFs (Cramer et al., 2001;
Arora and Boer, 2005; De Weirdt et al., 2012). Based on this,
we collected observed seasonal LAI dynamics in TEFs from
the previously published literature, which showed a con-
stant value of LAI at around 6.0 (Fig. S1; Table S3). Conse-
quently, we streamlined the data to assume that the seasonal
LAI was broadly equivalent to 6.0 in TEFs. This assump-
tion was also found by Yang et al. (2023) to be reasonable
in the region of the TEFs. The Vc,max25 values for old leaves
were set to 20 µ mol m−2 s−1 according to previous ground-
based observations (Chen et al., 2020; Zhou et al., 2015) in
our method. The An,sat_O can be calculated according to the
FvCB biochemical model (Farquhar et al., 1980; Bernacchi
et al., 2003; see Sect. 2.4.2). An,sat_Y can be expressed as a
function of Vc,max25 for young leaves (see Sect. 2.4.2). Con-
sequently, only the LAIY and Vc,max25 of young leaves re-
main as the final parameters to be solved in Eq. (1).

The complexity of the model is evident due to the two pa-
rameters that needed to be solved. To overcome the challenge
of the calculation, we assumed that the four adjacent pixel
points had homogeneous PFTs and consistent leaf age co-
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Figure 2. Procedures for mapping the Vc,max25 of young leaves using a neighbor-based approach.

horts. The LAI and Vc,max25 of young leaves were estimated
using nonlinear least squares and constraints on the basis
of the GPP values with the 4 neighboring pixels according
to Eq. (1). The optimal Vc,max25 was determined by mini-
mizing the residual while satisfying the positivity constraint
(i.e., Vc,max25> 0). The input gridded dataset consisted of
the GPP obtained from the RTSIF and climatic data such
as Tmean, VPD, and SW. The spatial resolution of these data
was homogeneously resampled to 0.125°, resulting in a spa-
tial resolution of 0.25° for the map of the output Vc,max25
of young leaves. To further validate the robustness and re-
liability of our neighborhood pixel method, we conducted
a sensitivity analysis by systematically varying the number
of neighborhood pixels, ultimately generating the Vc,max25
product with 0.5° spatial resolution. In the optimization pro-
cess, a mean Vc,max25 value was determined by assuming that
the leaf cohort was completely young. A reasonable adjust-
ment for the Vc,max25 of the young leaf value was then de-
termined based on the previously published literature (Chen
et al., 2021; Yang et al., 2023) and the initial value. Impor-
tantly, the difference between the finely optimized Vc,max25
of young leaves and the initial value could often be signifi-
cant and outside the margin of error. Therefore, an appropri-
ate adjustment for the Vc,max25 of the young leaf value needs
to be determined carefully (He et al., 2019). All of the anal-
yses were performed using MATLAB (R2 version).

2.4.1 Calculating the GPP (RTSIF-derived GPP) from
TROPOMI SIF

SIF is a widely used proxy for canopy photosynthesis (Yang
et al., 2015; Dechant et al., 2020). Here, we used a long-
term reconstructed TROPOMI SIF dataset (RTSIF; Chen
et al., 2022b) to estimate GPP seasonality. Previous analy-
ses showed that RTSIF was strongly linearly correlated with
EC GPP and used 15.343 as a transformation coefficient
to convert RTSIF into GPP (Chen et al., 2022b). We col-
lected seasonal GPP data observed at four EC sites from the
FLUXNET2015 tier-1 dataset (Table S4; Pastorello et al.,
2020) and validated the Chen et al. (2022b) simple SIF–
GPP relationship (Fig. S2). The results confirmed the robust-
ness of the Chen et al. (2022b) simple SIF–GPP relationship
for estimating the GPP seasonality in TEFs (R> 0.49). De-
spite the potential overestimation (Fig. S2a) or underestima-
tion (Fig. S2d) of the magnitudes, the RTSIF-derived GPP
mostly captured the seasonality of the EC GPP at all four
sites (dphase< 0.29).

2.4.2 Calculating the net CO2 assimilation rate

The net CO2 assimilation rate is a significant parameter char-
acterizing the photosynthetic rate. According to the FvCB
biochemical model, the net CO2 assimilation rate (An) de-
pends on the most limiting conditions for photosynthesis
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(RuBisCO saturationAc, RuBP saturationAj, or TPU satura-
tionAp) and the intensity of dark respiration (Rd) (Bernacchi
et al., 2013). The net CO2 assimilation rate (eitherAn,sat_Y or
An,sat_O) can be expressed by the following equation:

An =min(AcAjAp)−Rd. (2)

(1) Calculation of Ac

When the CO2 pressure is low (Ci< 300 µmolmol−1), the
net photosynthesis rate is mainly constrained by the activity
and quantity of the carboxylase RuBisCO. The RuBisCO-
limited photosynthetic rate Ac can be calculated using the
following equation at a limited carboxylation rate:

Ac = Vc max×
Ci−0

∗

Ci+Kc× (1+ O
K0

)
, (3)

where 0∗ represents the CO2 compensation point and Ci is
the intercellular CO2 pressure. Kc, K0, O, and 0∗ are esti-
mated based on the leaf temperature using Eq. (4) to calcu-
late their values at the given temperature, which is used for
conversion from their values at 25°:

P = P25× e
(Tk−298.15)×1Hp
r×Tk×298.15 , (4)

where P is the parameter at each temperature that varies
with temperature, including the Michaelis constant for O2
(K0), the Michaelis constant for CO2 (K0), the intercel-
lular concentration (O), and the CO2 compensation point
(0∗). P25 denotes the constant temperature dependence pa-
rameter at 25 °C (Bernacchi et al., 2001); specifically, Kc,
K0, 0∗, and O at 25 °C are equal to 404.9 µmolmol−1,
278.4 mmolmol−1, 42.75 µmolmol−1, and 210 mmolmol−1,
respectively.1Hp is the activation energy and varies with the
temperature and parameters. r is the standard gas constant
(8.314 Jmol−1 K−1). Tk is the leaf temperature (K).

Using the stomatal conductance model, the internal CO2
concentration (Ci, Eq. 5) was estimated to depend on the at-
mospheric CO2 concentration instead of the ambient relative
moisture (Xu et al., 2017; Lin et al., 2015; Medlyn et al.,
2011):

Ci = 380×

1−
1

1.6×
(

1+ 3.77
√

VPD

)
 , (5)

where Ci represents the internal CO2 concentration.

(2) Calculation of Aj

When the concentration of CO2 is high, leaf photosynthesis
is constrained by RuBP regeneration. The photosynthetic rate
(Aj) is then limited by electron transport and calculated using
the following equation:

Aj = J ×
Ci−0

∗

4× (Ci+ 2×0∗)
, (6)

where J is the electron transport rate for leaf photosynthesis.
It is a quadratic function of the full electron transfer rate (Je)
and the maximum electron transfer rate (Jmax) (Luo et al.,
2001; Bernacchi et al., 2013). The maximum electron trans-
port rate (Jmax), the maximum carboxylation rate (Vc,max25),
and the CO2 compensation point in the absence of mitochon-
drial respiration (0∗) were used to determine the Michaelis–
Menten constants for oxygenation and carboxylase. For the
detailed calculation process, please refer to Eqs. (7–(9):

J =
Je+ Jmax−

√
(Je+ Jmax)2− 4× Je× Jmax× θ

2× θ
, (7)

Je = PARtotal× ∂ ×ϕ× κ, (8)

Jmax = Jmax,25× e

(( 25−Topt
8

)2
−

(
Tk−273.15−Topt

8

)2
)
, (9)

where Jmax denotes the maximum electron transfer rate at
a given temperature and varies with temperature. Jmax,25 is
the maximum electron transfer rate at 25°C and is usually
1.67×Vc,max25 in TEFs. Topt is the optimum temperature for
electron transfer. Je is a function of canopy photosyntheti-
cally active radiation (PARtotal) and can be calculated by in-
putting SW and LAI. For details, please refer to Weiss and
Norman (1985) and Ryu et al. (2018). θ , ∂ , ϕ, and 8 are
constants and equal to 0.7, 0.85, 0.5, and 0.85, respectively
(Xu et al., 2017; Yang et al., 2023). κ is a function of the op-
timal temperature, which represents the maximum quantum
efficiency of Photosystem II (PSII) photochemistry.

(3) Calculation of Ap

The rate of photosynthesis is limited by the export of triose
phosphate. Ap represents the photosynthetic capacity to ex-
port or utilize the photosynthetic products for the different
LAI cohorts, as determined by multiple field observations:

Ap = c×Vc,max25. (10)

The ratio of the interior foliar CO2 concentration to
the environmental CO2 concentration was fixed at 0.5 for
C3 species and 0.7 for C4 species based on previous investi-
gations (Fabre et al., 2019; Mcclain and Sharkey, 2019; Yang
et al., 2016).

2.5 Methods for evaluating the simulated Vc,max25 of
young leaves

This study assessed the proposed algorithms in three ways:
(1) monthly in situ Vc,max25 observations obtained from the
literature, (2) annually dissolved Vc,max25 from the GOSIF-
derived GPP, and (3) a monthly Lad-LAI product covering
the entire TEF region, derived from the RTSIF product of
Yang et al. (2023). However, in situ Vc,max25 observations
of young leaves remain scarce, with only one site (BR-Sa1;
see Sect. 2.3) providing monthly Vc,max25 data. To com-
pensate for the lack of ground-based validation, a seasonal
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Vc,max25 of canopy-averaged leaves was collected from three
additional sites (GF-Guy, MDJ-03, and CN-Din), and the
Vc,max25 of young leaves at these sites was estimated using
the dissolved method (see Sect. 2.5.1) based on the Lad-LAI
product (Yang et al., 2023). To evaluate the efficiency and re-
liability of the newly proposed methodology, we compared
the gridded Vc,max25 of young leaves simulated from RTSIF-
derived GPP using the proposed method with that estimated
from GOSIF-derived GPP and the Lad-LAI product using
the dissolved method. To investigate the reliability of the
neighborhood-based subdivision technique, we conducted a
comparative analysis for the Vc,max25 of young leaves derived
from RTSIF-derived GPP using 2× 2 (0.25° resolution) and
4× 4 (0.5° resolution) neighboring pixels. To assess the un-
certainties stemming from the estimation of gross primary
production, we incorporated two additional GPP products,
GOSIF-derived and FLUXCOM GPP (Jung et al., 2019;
Yang et al., 2023), along with the original RTSIF-derived
GPP, resulting in three distinct versions of the Vc,max25 of
young leaf products.

2.5.1 Dissolved method for evaluating the Vc,max25 of
young leaves

The total GPP can be expressed as the sum of the GPPs of
the young and old cohorts. The GPP of each leaf age co-
hort is a function of the corresponding LAI cohort and the
net CO2 assimilation rate. In accordance with related stud-
ies, the Vc,max25 of old leaves is presumed to be a constant
value (Chen et al., 2020). When the LAI of different leaf ages
is known, only the Vc,max25 of the young leaves remains un-
known in Eq. (1). The value of the Vc,max25 of the young
leaves can be determined by solving the aforementioned
Eq. (1). This method involves dividing GPP into young
and old cohorts according to leaf age, with the Vc,max25 of
young leaves being solved directly using the Lad-LAI prod-
uct, hence the term “dissolved method”. At present, there is
a lack of available data on the ground Vc,max25 of different
leaf ages. The dissolved method is employed to validate the
reasonableness of the proposed algorithm.

2.5.2 K -means method for classification

We analyzed the spatial patterns of Vc,max25 across TEFs
using the K-means clustering analysis. The K-means al-
gorithm is an iterative algorithm that tries to partition the
dataset into K predefined distinct non-overlapping sub-
groups (clusters) where each data point belongs to only one
group (Ikotun et al., 2023). It tries to make the intra-cluster
data points as similar as possible while also keeping the clus-
ters as different as possible. It assigns data points to a clus-
ter such that the sum of the squared distance between the
data points and the cluster’s centroid (the arithmetic mean
of all data points that belong to that cluster) is at the min-
imum. Intra-cluster homogeneity increases as variation de-

creases, indicating greater similarity between the constituent
data points. The way the K-means algorithm works is as fol-
lows:

1. Specify the number of clusters K .

2. Initialize centroids by first shuffling the dataset and then
randomly selectingK data points for the centroids with-
out replacement.

3. Iterate until convergence (i.e., cluster assignments re-
main unchanged between iterations).

4. Compute the sum of the squared distance between the
data points and all centroids.

5. Assign each data point to the closest cluster (centroid).

6. Compute the centroids for the clusters by taking the av-
erage of all points that belong to each cluster.

2.5.3 Random forest regression

Random forest (RF) is a widely used ensemble learning
method that constructs multiple decision trees through boot-
strapped sampling of the training data and aggregates their
predictions to enhance model robustness in regression tasks
(Yang et al., 2022). This method is particularly effective
in capturing nonlinear relationships and interactions among
predictor variables, making it well-suited to complex eco-
logical datasets. In this study, we employed RF regression
to identify the dominant climatic drivers of tropical forest
dynamics across the entire tropical region as well as within
three major tropical forest regions. The model was trained
using climate variables as predictors and Vc,max25 of young
leaves as dependent variables. We utilized the feature im-
portance scores derived from RF to rank the influence of
three climatic variables on forest dynamics across different
regions, providing insights into the spatial heterogeneity of
climate–forest interactions.

2.5.4 Precision evaluation index

Both the root mean square error (RMSE, Eq. 11) and Pear-
son’s correlation coefficient (R, Eq. 12) were employed to
evaluate the model capabilities:
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, (14)

LCS= 2SDSSDm(1−R), (15)

where N is the total number of points extracted from
the Vc,max25 products simulated from RTSIF-derived GPP,
Vi and Ui represent the monthly simulated and observed
Vc,max25 in situ measurements, and V and U are the mean
values of the simulated and observed Vc,max25 in situ mea-
surements. Moreover, the continental Vc,max25 simulated
from the proposed model was compared with that dissolved
from the GOSIF-derived GPP and Lad-LAI in TEFs. SDS,
SDm, and LCS represent the standard deviation of the simula-
tion, the standard deviation of the measurement, and the lack
of correlation weighted by the standard deviations (phase-
related difference dphase), respectively.

2.6 Quality control (QC) for the young leaf Vc,max25
product

We provided information on data QC along with the Vc,max25
of a young leaf product (Fig. S3). In the QC system (Ta-
ble S5), data quality was divided into four levels: Level 1
represents the highest quality; Level 2 and Level 3 represent
good and acceptable quality, respectively; and Level 4 should
be used with caution. This QC product was generated based
on Pearson’sR and the RMSE, which were obtained by com-
paring the seasonal Vc,max25 estimated from RTSIF-derived
and GOSIF-derived GPP.

3 Results

3.1 Validation of the gridded Vc,max25 seasonality of
young leaves using in situ observations

The seasonality of the simulated mean Vc,max25 for both
canopy leaves and young leaves was evaluated with in situ
measurements at four sites: the CN-Din site in southern
China (23.17° N, 112.54° E), the MDJ-03 site in Congo
(5.98° S, 12.87° E), and the BR-Sa1 (2.86° S, 54.96° W) and
GF-Guy (5.28° N, 52.93° W) sites in South America. Over-
all, the estimated mean Vc,max25 of canopy-averaged leaves
(black line) ranged from 20 to 60 µmolm−2 s−1, and their

seasonal fluctuations agreed well with the in situ mean
Vc,max25 (red dots) (Fig. 3). In contrast, the Vc,max25 of
young leaves (green line) exhibited higher values compared
with that of canopy-averaged leaves, ranging from 40 to
80 µmolm−2 s−1. This finding is consistent with previous
studies where young leaves were more photosynthetically ef-
fective than old leaves (Urban et al., 2008; Albert et al., 2018;
Menezes et al., 2022). Specifically, our simulations can cap-
ture the seasonal patterns of Vc,max25 across different sites
well. At the BR-Sa1 site, the estimates were correlated well
with the observed mean Vc,max25 for all leaves (R= 0.85)
and young leaves (R= 0.84), both of which increased dur-
ing the dry season (between approximately June and Decem-
ber) (Fig. 3a and b). At the GF-Guy site, the in situ mean
Vc,max25 of all canopy leaves showed considerable seasonal-
ity, while the Vc,max25 of young leaves remained more stable
(Fig. 3c). Our estimations also performed well in simulat-
ing the Vc,max25 of all canopy leaves (R= 0.95) and that of
young leaves (R= 0.66) (Fig. 3d). In contrast, at the CN-
Din site in subtropical Asia, Vc,max25 for canopy-averaged
leaves and young leaves increased during the wet season pe-
riod, with the highest precipitation occurring in June or July
(Fig. 3e). This is similar to the MDJ-03 site, where Vc,max25
for all canopy leaves and young leaves also increased dur-
ing the wet season period but with larger seasonal variations.
Our model showed the best simulations of Vc,max25 of young
leaves at the CN-Din site (canopy-averaged leaves:R= 0.84;
young leaves:R= 0.95). Nevertheless, many more long-term
in situ measurements are needed to determine the reliability
of these time series fluctuations.

Then, we analyzed the spatial patterns of Vc,max25 across
TEFs using theK-means clustering analysis. Results showed
that Vc,max25 for young leaf cohorts had evident seasonal dy-
namics, bringing influences on canopy photosynthesis. Fig-
ure S4 shows the time series fluctuations in Vc,max25 for the
young leaves in 10 individual regions, as clustered using K-
means analysis. Results show that the amplitude of Vc,max25
for young leaves is smaller in regions closer to the Equator
and larger in regions farther away from the Equator.

3.2 Validation of the Vc,max25 of young leaves simulated
from RTSIF-derived GPP against that dissolved
from GOSIF-derived GPP

The Vc,max25 of young leaves simulated from RTSIF-derived
GPP demonstrated significant correlations (R ranges from
0.51 to 0.87) with those dissolved from GOSIF-derived
GPP (Fig. 4). Across the Amazon, more than 69.78 % of
the pixels have a high EBF fraction (> 90 %). The spa-
tial clustering pattern aligns with the onset of the dry sea-
son (Tang and Dubayah, 2017), suggesting that the clus-
tering analysis effectively differentiates between climate re-
gions within the Amazon. The relatively homogeneous en-
vironmental conditions across these subregions create sim-
ilar plant growth environments, leading to a more con-
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Figure 3. Validations of simulated seasonal Vc,max25 for all canopy leaves and young leaves with in situ observations. The green lines and
green dots are the seasonal Vc,max25 of young leaves simulated from RTSIF-derived GPP and in situ observations, respectively. The black
dotted line and red dots are the Vc,max25 of canopy-averaged leaves from the simulations and in situ observations, respectively. Simulated
Vc,max25 was denoted as the Vc,max25 of young leaves simulated from RTSIF-derived GPP using the new proposed method.

strained range of Vc,max25 values and pronounced cluster-
ing effects in subregions A1–A5. Notably, subregion A3, lo-
cated in the northwestern Amazon near coastal and moun-
tainous areas, forms two distinct clustering zones. Sta-
tistical analysis revealed strong seasonal correlations be-
tween the Vc,max25 values of young leaves simulated from
RTSIF-derived and GOSIF-derived GPP, with R> 0.80 oc-
cupying 91.68 % (Fig. 5a–c) and RMSE < 11.59 occupy-
ing 91.68 % (Fig. 5d–f) of the TEFs. The K-means spa-
tial clustering analysis revealed strong agreement between
the Vc,max25 of young leaves simulated by RTSIF-derived
and GOSIF-derived GPP at the low latitudes (Amazon R1:
R= 0.90; Amazon R2: R= 0.94; Amazon R4: R= 0.87;
Amazon R5: R= 0.77; Congo R6: R= 0.91; Congo R7:
R= 0.97; Asia R8: R= 0.86; Asia R9: R= 0.84; Fig. S5)
compared to higher-latitude areas (Amazon R3: R= 0.60;
Amazon R10: R= 0.50; Fig. S5). This latitudinal gradi-
ent was similarly reflected in RMSE values, with lower er-
rors in equatorial regions (Amazon R1: RMSE= 1.78; Ama-
zon R2: RMSE= 2.17; Amazon R4: RMSE= 4.67; Congo
R6: RMSE= 3. 26; Congo R7: RMSE= 4.73; Asia R8:
RMSE= 3.38; Asia R9: RMSE= 5.86; Fig. S6) than in
higher-latitude zones (Amazon R5: RMSE= 14.85; Amazon
R10: RMSE= 6.92; Fig. S6).

3.3 Comparison of the seasonal Vc,max25 of young
leaves with the leaf age product

While field measurements have identified distinct seasonal
patterns in the Vc,max25 of young leaves across TEFs, the
sparse distribution of observation sites hinders comprehen-
sive assessment of these variations. To address this issue,
we conducted K-means clustering analysis of simulated
Vc,max25 maps to evaluate their spatial coherence relative to
the leaf age product developed by Yang et al. (2023).

The spatial distribution of the clustered Vc,max25 of young
leaves, derived from satellite vegetation signals (Fig. 6a–
c), closely aligned with the climate-based classifications
of Chen et al. (2021) (Fig. 6d–f). These patterns showed
strong correspondence to the Lad-LAI clusters based on en-
dogenous climate variables reported by Yang et al. (2023)
(Fig. 6g–i). Collectively, these results demonstrate similar
spatial clustering patterns. In the middle (R2) and north-
ern (R3) Amazon (Fig. 7a), the seasonal variation in the
Vc,max25 of young leaves (Fig. 8b and c) was consistent
with that of the BR-Sa1 and GF-Guy sites, where young
leaves increase during the dry seasons. Moreover, the sea-
sonality of the Vc,max25 of young leaves in subtropical Asia
(Fig. 8f) mirrored patterns observed at the CN-Din site,
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Figure 4. Comparisons of the Vc,max25 of young leaves simulated from RTSIF-derived GPP against that dissolved from GOSIF-derived
GPP.

where young leaves conversely increase during the wet sea-
sons. The Vc,max25 of young leaves peaked in July in subre-
gion R10, which was located between subregions R8 and R9,
where the Vc,max25 of young leaves exhibited a bidirectional
phenology (Fig. 8j). The four equatorial subregions (R1, R2,
R7, and R8) exhibited distinct phenological patterns com-
pared to areas near the tropics of Capricorn and Cancer.
These equatorial regions demonstrated significantly damp-
ened seasonal variation in the Vc,max25 of young leaves, with
characteristic bidirectional peaks occurring in March and
August (Fig. 8a, d, e, and g). This bimodal pattern contrasts
sharply with the unimodal seasonality observed in regions far
from the Equator, which is consistent with previous findings
by Li et al. (2021a).

3.4 Partial correlations between the seasonal Vc,max25
of young leaves and individual climatic factors

To assess the climatic controls on Vc,max25 of young leaves,
we performed spatial partial correlation analyses of cli-
mate drivers such as VPD, Tmean, and SW (Fig. 9), pre-
viously established as critical determinants of leaf phenol-
ogy in TEFs (Yang et al., 2023, 2021; Li et al., 2021a).
The Vc,max25 of young leaves exhibited a strong correlation
with the three climate drivers (Fig. 9). We then analyzed the
relative importance of the three climate drivers in influenc-
ing Vc,max25 using the machine learning model of the RF
method (Fig. 10 and Sect. 2.5.3). Shortwave radiation ex-
hibited particularly notable positive correlations (R> 0.34)
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Figure 5. The root mean square error (RMSE) and correlation coefficient (R) between the Vc,max25 of young leaves derived from RTSIF-
derived GPP and that dissolved from GOSIF-derived GPP.

with Vc,max25 across almost all of the regions, with the ex-
ception of subregion Amazon R4 (R= 0.17) (Fig. S8), and
the shortwave radiation was also the most contributing factor
(Fig. 10a). This underscores the dominant role of radiation
in regulating canopy photosynthesis in TEFs. Although sea-
sonal temperature fluctuations were modest (Fig. S7), likely
due to minor temperature gradients, Tmean still exhibited a
positive correlation with the Vc,max25 of young leaves. How-
ever, at the global scale, Tmean had the least influence com-
pared to VPD and SW (Fig. 10a). Notably, in the Asia re-
gion, Tmean emerged as the primary driver of Vc,max25 vari-
ability and showed a strong positive correlation in subre-
gion Asia R10 (R= 0.88, Fig. S8). Notably, VPD and Tmean
exhibited negative correlations with Vc,max25 across Congo,
with VPD showing a strong negative relationship in subre-
gion Congo R7 (R=−0.70) and with Tmean in subregion
Congo R6 (R=−0.64) (Fig. S8). These two factors primar-
ily governed the spatial variability of Vc,max25 across Congo
(Fig. 10c). This variability stems primarily from the canopy
turnover patterns, where leaf aging during rainy seasons re-
verses during dry periods (Li et al., 2021a; Yang et al., 2023,
2021). As a result, the seasonality of leaf photosynthetic ca-
pacity tended to show an inverse trend in the seasonality of
leaf age, as expected by Chen et al. (2020).

3.5 Evaluating potential uncertainties in the Vc,max25 of
young leaves

The seasonal variations in the Vc,max25 of young leaves us-
ing 4× 4 neighboring pixels were closely aligned with those

observed in the 0.25° products utilizing a grid of 2 pixels by
2 pixels (Fig. S9). Results showed a highly linear correla-
tion between the simulated 0.25° resolution and 0.5° reso-
lution (R> 0.99), which was consistent with the RMSE be-
ing maintained below 0.66 (Fig. 11). This evidence demon-
strates that the neighbor-based decomposition approach reli-
ably generates consistent Vc,max25 products across different
spatial scales.

Three distinct versions for the gridded Vc,max25 of
young leaf products from RTSIF-derived and GOSIF-derived
GPP and FLUXCOM GPP at various spatial resolutions
(Figs. S10–S12) were produced in this study. While mi-
nor differences existed among these products, they showed
strong spatial consistency (Fig. 12) and high similarity in
geographic distribution patterns (R: 0.87–0.96, P < 0.001;
Fig. 13). All three GPP-derived Vc,max25 products exhib-
ited consistent seasonal patterns across the 10 subregions
(Fig. 12). Validation against in situ measurements demon-
strated that the RTSIF-derived product achieved optimal
performance, showing both the highest correlation with
(R= 0.85) and minimal deviation from (RMSE= 13.69)
ground observations (Fig. 13). These results collectively in-
dicate that the Vc,max25 of young leaf products reliably cap-
tures photosynthetic seasonality across the 10 subregions.

4 Discussion

Tropical forests, marked by no obvious seasonal shifts in
greenness but distant variations in leaf age cohorts (Wu et al.,
2016; Chen et al., 2020; Chavana-Bryant et al., 2017), show
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Figure 6. Comparison of the subregions of the Vc,max25 of young leaves (a–c) with that of climatic factors classified by the K-means
clustering analysis (d–f) of Chen et al. (2021) and that of the leaf-age-dependent leaf area index product (Lad-LAI) (g–i) developed by Yang
et al. (2023).

Figure 7. Spatial maps of R between the monthly simulated Vc,max25 and the Lad-LAI developed by Yang et al. (2023).

a distinct leaf phenology compared with temperate and bo-
real forests. Young leaves are the main leaf cohort for influ-
encing photosynthesis (Oliveira et al., 2023; Sharma et al.,
2017; Menezes et al., 2022), as photosynthetic capacity de-
clines with leaf aging (Menezes et al., 2022; Wang et al.,
2020). Understanding the leaf age–photosynthesis relation-
ships is therefore critical for assessing plant growth, ecosys-
tem productivity, and carbon cycling in evergreen forests (Al-

bert et al., 2018). The leaf maximum carboxylation capacity
(Vc,max25) serves as a key parameter for modeling photosyn-
thetic CO2 absorption in ESMs. However, most ESMs typi-
cally employ static or annual mean Vc,max25 values for each
plant functional type (Stocker et al., 2020; Atkin et al., 2015).
This empirical practice causes uncertainties in tropical for-
est biomes, which are characterized by their extensive plant
functional diversity (Echeverría-Londoño et al., 2018; Spicer
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Figure 8. Seasonality of the simulated Vc,max25 of young leaves in comparison with the Lad-LAI developed by Yang et al. (2023).

et al., 2022) and variable photosynthetic capacity (Piao et al.,
2019; Wu et al., 2017a). Furthermore, the Vc,max25 varies
substantially within species due to leaf age, ambient growth
temperatures, and the availability of water and nutrients (Ste-
fanski et al., 2020; Lu et al., 2022; Crous et al., 2022). Pho-
tosynthesis seasonality in tropical evergreen forests is thus
impacted by the replacement of old leaves with younger
and more photosynthetically active foliage (Wu et al., 2016;
Chen et al., 2020; Chavana-Bryant et al., 2017). These find-
ings underscore the importance of accurately quantifying
the leaf age and integrating the leaf age information into
Vc,max25 estimation to enhance simulation of the leaf CO2
assimilation in tropical forests. Currently, there are no com-
prehensive continental-scale data available on the leaf-age-
dependent Vc,max25 variations throughout tropical evergreen
forests. This data gap remains because of the insufficient field
observations for adequate mapping (Hakala et al., 2019) and
limitations in ESMs that rely on uncertain climatic parame-
ters (Brunner et al., 2021). These challenges hinder the ap-
plication of remote sensing and land surface models (LSMs)
for accurately modeling the seasonality of large-scale photo-
synthesis (Krause et al., 2022).

This study presents a novel continental-scale monthly
gridded Vc,max25 of young leaves. The newly developed
dataset was validated at four sites (CN-Din in southern
China, MDJ-03 in Congo, and BR-Sa1 and GF-Guy in
South America) using the field measurements of Vc,max25.
We assessed the reliability of the gridded Vc,max25 of young

leaves across all of the TEFs through pixel-by-pixel val-
idation against GPP-derived estimates using the dissolved
method and leaf age data from Yang et al. (2023). The re-
sults reveal substantial age-dependent variation in Vc,max25
(40–90 µmolm−2 s−1), consistent with the ranges reported
for tropical and subtropical regions in current ESMs (Rogers,
2014). These findings highlight the necessity of incorporat-
ing leaf age information into future ESM designs. Moreover,
the Vc,max25 estimates successfully captured the dry season
canopy greening patterns to the north of the Equator, demon-
strating prominent advances in our ability to promptly moni-
tor the photosynthetic capacity in tropical forests. Both direct
and indirect evaluations confirm the robustness of these new
photosynthetic products. In equatorial regions with high an-
nual rainfall and minimal dry seasons, canopy phenology ex-
hibits subtler variations compared to forests near the tropics
of Capricorn and Cancer (Yang et al., 2021). The new pho-
tosynthetic product successfully captures the characteristic
bimodal patterns of Vc,max25 with limited seasonal amplitude
in these areas. To convert the SIF data into GPP, a constant
coefficient was used, and Vc,max25 was assumed to be uni-
formly distributed across all tropical evergreen forests, po-
tentially introducing further uncertainties. This assumption
was reflected in the mean squared deviation (MSD) assess-
ment, where the bias component was predominant, especially
near the Equator. Nevertheless, the impact of this on the sea-
sonality of photosynthesis was minimal because the phase-
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Figure 9. Spatial maps of R between the SIF-simulated monthly Vc,max25 and vapor pressure deficit (VPD, a–c), air temperature (Tmean, d–
f), and downward shortwave solar radiation (SW, g–i).

dependent component of the RMSE remained relatively in-
significant.

The LDO hypothesis categorizes the leaf cohorts into three
distinct age classes: new leaves (from 1 to 60 d), mature
leaves (from 60 to 180 d), and old leaves (more than 180 d),
with corresponding mean Vc,max25 values as reported by Wu
et al. (2016). To enhance comparability between observa-
tions and models, we further grouped leaves into two age
classes. Leaf ages of more than 6 months are classified as a
distinct old leaf class, while leaf ages of less than 6 months
are combined into a single young leaf class. Menezes et al.
(2022) reported that mature leaves (60–180 d) exhibited the
highest average Vc,max25, whereas older leaves (234–612 d)
showed lower values (30.4± 1.2). Young leaves displayed a
23 % higher Vc,max25 than old leaves, with minimal varia-
tion in the latter. Notably, the link between the older leaves
and Vc,max25 remains poorly understood in TEFs due to lim-
ited field data (Chen et al., 2020). To address these simu-
lation challenges, we treated the Vc,max25 of old leaves as
a static value, potentially introducing errors into photosyn-
thetic performance predictions. This simplification may also

affect the accuracy of Vc,max25 and GPP seasonality in ESMs
(De Weirdt et al., 2012). Moreover, additional uncertainties
stem from assumptions that neglect the spatial and tempo-
ral variations driven by the plant functional type diversity,
which shifts with seasonal climate anomalies and high het-
erogeneity in diverse forest ecosystems. These generaliza-
tions could also introduce inaccuracies when simulating sea-
sonal variations in Vc,max25. Reflecting the inherent variabil-
ity in photosynthetic behavior across leaf ages, the data re-
vealed two distinct responses: (1) certain species, such as
P. tomentosa and P. caimito, exhibited marked reductions in
Vc,max25 with age, whereas (2) others, such as M. angularis
and V. parviflora, maintained consistent Vc,max25 values after
reaching their peak. Menezes et al. (2022) identified a modest
but significant correlation between the Vc,max25 and leaf age
due to these divergent patterns. Variations in the photosyn-
thetic capacity at the ecosystem level could be influenced by
species composition and the distribution of plant functional
groups within forests. Furthermore, the seasonal fluctuations
in Vc,max25 of young leaves are closely associated with both
plant growth strategies and environmental factors. Higher
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Figure 10. Climatic drivers of spatial variations in the average Vc,max25 of young leaves across the TEFs (a) and three major tropical
forest regions (b–d). Contributions (∅) of three climate factors to the multiyear average Vc,max25 used the random forest (RF) algorithm.
R2 represents the coefficient of determination between the simulated and observed Vc,max25. RMSE indicates the root mean standard error.
Partial dependence plots (PDPs) show the relationships between three climate drivers (Tmean, K; SW, Wm−2; VPD, hPa) and Vc,max25.
Relations for each pixel are displayed in black lines, and relations on the regional average are shown in red lines.

Figure 11. Scatterplots between the simulated Vc,max25 of young leaves using the 2× 2 (0.25° resolution) and 4× 4 (0.5° resolution)
neighboring pixels in the abovementioned 10 clustered subregions.
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Figure 12. Seasonality of the simulated Vc,max25 of young leaves derived from RTSIF, GOSIF, and FLUXCOM GPP in the 10 clustered
subregions.

Figure 13. Comparison of Vc,max25 values derived from three GPP products (i.e., GPPRTSIF, GPPGOSIF, and GPPFLUXCOM) and in situ
observations. (a) R. (b) RMSE.

Vc,max25 values in young leaves during the early growing
season may reflect an adaptive strategy for quickly estab-
lishing photosynthetic capacity, which is especially benefi-
cial in competitive environments like tropical and subtropical
forests. These seasonal variations directly impact a plant’s
carbon uptake capacity, potentially leading to increased car-

bon sequestration within plant biomass and influencing at-
mospheric CO2 concentrations, which could create feedback
loops within the climate system.

In summary, we present a novel approach to developing a
gridded dataset that incorporates leaf age sensitivity into the
photosynthesis parameters for TEFs at a continental scale.
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While some uncertainties persist, we provide a monthly grid-
ded Vc,max25 of a young leaf dataset. This innovation facili-
tates comprehensive phenological modeling in ESMs, which
typically operate at coarser resolutions. These improvements
substantially enhance our ability to monitor and mechanisti-
cally interpret the spatiotemporal variations in the Vc,max25 of
young leaves, providing essential data for the parameteriza-
tion and assessment in ESMs. Furthermore, as remote sens-
ing technologies advance, we anticipate that the enhanced
temporal and spatial resolutions of RTSIF-derived GPP will
facilitate more accurate mapping of photosynthesis products
in future studies.

5 Data availability

The 0.25° time series Vc,max25 data from 2001 to
2018 are presented in this paper as the main dataset.
We also provided another two versions of Vc,max25
generated from the GOSIF-derived GPP and FLUX-
COM GPP, respectively. The three datasets are avail-
able at https://doi.org/10.5281/zenodo.14807414 (Yang
et al., 2025). These datasets are compressed in Geo-
Tiff format, with a spatial reference of WGS84.
Each file in these datasets is named as follows:
“Vcmax25_{GPP source} derived_{YYYYMM}.tif”.

6 Conclusions

This study developed a novel monthly gridded dataset of
Vc,max25 in combination with ontogeny-dependent leaf age
changes. The new Vc,max25 of young leaves performs rea-
sonably well in validation against three independent datasets,
i.e., (1) in situ observations of the monthly Vc,max25 records,
(2) the Vc,max25 product dissolved from the GOSIF-derived
GPP, and (3) the leaf-age-dependent leaf area index prod-
uct. Our results demonstrate that the seasonal dynamics in
Vc,max25 of young leaves are governed by distinct climate
phenology regimes across tropical and subtropical evergreen
broadleaved forests. Specifically, in the central and south-
ern Amazon, the Vc,max25 of young leaves decreased dur-
ing dry season onset (approximately February) but increased
during wet season onset (approximately June). Conversely,
the Vc,max25 of young leaves in subtropical Asia exhibited a
peak during the wet season (June or July), coinciding with
maximum rainfall. Near the Equator, the Vc,max25 of young
leaves showed a bimodal seasonality with very slight varia-
tions. The Vc,max25 of young leaf products offers valuable in-
sights into the adaptations of tropical and subtropical forests
to the ongoing climate change while also serving to improve
phenology parameterization in land surface models (LSMs).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-3293-2025-supplement.
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