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Abstract. Forest age is crucial for both carbon cycle modeling and effective forest management. Remote sens-
ing provides crucial data for large-scale forest age mapping, but existing products often suffer from a low spatial
resolution (typically 1000 m), making them unsuitable for most forest stands in China, which are generally
smaller than this threshold. Recent studies have generated static forest age products for 2019 (CAFA V1.0)
(Shang et al., 2023a) and 2020 (Cheng et al., 2024) at a 30 m spatial resolution. However, their low tem-
poral resolution limits their applicability to track multiyear forest carbon changes. This study aims to gener-
ate China’s annual forest age dataset (CAFA V2.0) at a 30 m resolution from 1986 to 2022, utilizing forest
disturbance monitoring and machine learning techniques. Forest disturbance monitoring, which typically has
lower uncertainty compared to machine learning approaches, is primarily employed to update annual forest
age. The modified COLD (mCOLD) algorithm, which incorporates spatial information and bidirectional mon-
itoring, was used for forest disturbance monitoring. For undisturbed forests, forest age was estimated using
machine learning models trained separately for different regions and forest cover types, with inputs includ-
ing forest height, vegetation indices, climate, terrain, and soil data. Additionally, adjustments were made for
underestimations in the Northeastern and Southwestern regions of China identified in CAFA V1.0 using addi-
tional reference age samples and region-specific and forest-type-specific models. Validation, using a randomly
selected 30 % of two reference datasets, indicated that the mapped age of disturbed forest exhibited a small
error of ± 2.48 years, while the mapped age of undisturbed forest from 1986 to 2022 had a larger error of
±7.91 years. The generated 30 m annual forest age dataset can facilitate forest carbon cycle modeling in China,
offering valuable insights for national forest management practices. The CAFA V2.0 dataset is publicly available
at https://doi.org/10.6084/m9.figshare.24464170 (Shang et al., 2023b).
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1 Introduction

Forest age, defined as the average age within a forest pixel
(Shang et al., 2023a), is a key factor influencing both car-
bon sequestration and emission (Zhang et al., 2015) and de-
termining long-term trends in forest carbon balance (Chen
et al., 2000, 2003; He et al., 2012; Kurz and Apps, 1999;
Zhang et al., 2013, 2014). Ignoring the influence of forest
age on carbon sequestration can result in a 13 %–20 % error
in simulated forest carbon sinks, a discrepancy closely ap-
proximating the impact of climate change (Bellassen et al.,
2011). Hence, accurately delineating forest age is essential
for both effective forest management and precise carbon cy-
cle modeling (Lin et al., 2023; Shang et al., 2023a).

Field measurements and surveys can accurately obtain
forest age by extracting tree cores or utilizing records of
the planting year. However, this method is time-consuming,
labor-intensive, and costly when applied to large-scale forest
age mapping (Lin et al., 2023). Moreover, the age measured
for individual trees may not represent the average age of the
entire stand, limiting its applicability for comprehensive for-
est age mapping (Besnard et al., 2021; Racine et al., 2014;
Véga and St-Onge, 2008). In contrast, remote sensing pro-
vides continuous and repetitive observations of the Earth’s
surface, enabling large-scale forest age mapping (Vastaranta
et al., 2016; Yang et al., 2020).

Many studies have utilized remote sensing for forest age
mapping, and the methods that they have used can be
categorized into two types (Shang et al., 2023a): forest-
height-based methods (hereafter “height-based methods”)
and forest-disturbance-monitoring-based methods (hereafter
“disturbance-based methods”). Height-based methods begin
by establishing a relationship between tree height and for-
est age using ground sample data, and they then use lidar
tree height data to estimate forest age (Zhang et al., 2014,
2017). This relationship is often modeled using stand growth
equations (Lin et al., 2023). Considering that forest growth is
also influenced by environmental factors such as climate and
terrain (Li et al., 2023; Lin et al., 2023), some studies em-
ploy machine learning techniques to construct intricate mod-
els using tree height, climate, and terrain data for forest age
mapping (Besnard et al., 2021; Diao et al., 2020; Shang et
al., 2023a; Zhao et al., 2021). However, current methods still
exhibit significant uncertainties ranging from 12 to 48 years
(Shang et al., 2023a). This is primarily due to the variability
in the relationship between tree height and forest age, which
not only correlates with climate and terrain factors but also
varies with forest cover types (Lin et al., 2023). Therefore, in-
corporating forest cover type, alongside tree height, climate,
and terrain considerations, may be an effective approach to
improving the accuracy of forest age mapping.

Disturbance-based methods primarily utilize forest dis-
turbance monitoring algorithms to identify the years when

forests regrow after disturbances, estimating forest age ac-
cordingly (Xiao et al., 2023). Compared to height-based
methods, disturbance-based methods typically result in lower
uncertainties when estimating forest age (Shang et al.,
2023a), but this method type is limited to estimating age
within forest disturbance areas only. Commonly used for-
est disturbance monitoring algorithms include LandTrendr
(Kennedy et al., 2010), CCDC (Zhu and Woodcock, 2014),
and COLD (Zhu et al., 2020). Among these, the CCDC and
COLD algorithms detect forest disturbances using all avail-
able time-series data, showing superior performance over
LandTrendr, which relies on annual composite data for dis-
turbance monitoring (Qiu et al., 2023). COLD, as an im-
proved version of CCDC, enhances the accuracy of forest
disturbance monitoring (Zhu et al., 2020). However, as a
single-pixel time-series forest disturbance monitoring algo-
rithm, COLD may omit forest disturbances within specific
areas (Ye et al., 2023), potentially leading to significant bi-
ases in forest age estimation. Therefore, to improve the ac-
curacy of forest age mapping, it is urgent to integrate spatial
information into forest disturbance monitoring.

Several forest age products have been developed for China
(Zhang et al., 2017, 2014; Xiao et al., 2023; Shang et al.,
2023a; Cheng et al., 2024; Besnard et al., 2021). Early stud-
ies produced three sets of forest age products with a spa-
tial resolution of 1000 m for the years 2005 and 2010 using
a height-based method (Zhang et al., 2014, 2017; Besnard
et al., 2021). However, the 1000 m resolution averages for-
est stands within each pixel, leading to overestimations of
young forests and underestimations of old forests. In recent
years, driven by the demand for precise simulation of for-
est carbon dynamics and the availability of high-resolution
remote-sensing data, several high-resolution forest age prod-
ucts have been successfully generated. For example, Xiao et
al. (2023) estimated the forest age in disturbance areas across
China at a 30 m resolution in 2020 using the CCDC distur-
bance monitoring algorithm. Cheng et al. (2024) combined
machine learning algorithms based on tree height, climate,
and terrain with the LandTrendr disturbance monitoring al-
gorithm to obtain forest age data for China in 2020. Our
previous work (Shang et al., 2023a) utilized machine learn-
ing algorithms and the COLD disturbance monitoring algo-
rithm to estimate the nationwide forest age at a 30 m reso-
lution in 2019 (CAFA V1.0). Compared to earlier products
that used a height-based method alone, integrating a height-
based method to estimate forest age with a disturbance-based
method for updating forest age significantly enhances reli-
ability. However, significant discrepancies still exist among
current forest age products, which provide data for single
years only, thus overlooking substantial changes in forest
age before and after disturbances. These omitted changes
can have a large impact on forest carbon modeling. When
using single-year forest age data, process-based ecosystem
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models often underestimate the forest carbon uptake prior to
the most recent forest disturbance and fail to account for the
carbon release from multiple forest disturbances, leading to
substantial uncertainties in forest carbon modeling (Zhang et
al., 2025; Yu et al., 2020). In contrast, long-term forest age
products can capture these carbon dynamics, making them
more valuable for forest carbon modeling and forest man-
agement (Zhang et al., 2025; Chorshanbiyev et al., 2024).
Therefore, it is urgent to generate long-term, high-resolution
forest age products to support research on China’s carbon
neutrality (Besnard et al., 2021; Schumacher et al., 2020; Yu
et al., 2020).

This study aims to generate an annual forest age dataset for
China (CAFA V2.0) from 1986 to 2022 at a 30 m resolution
using the modified COLD (mCOLD) forest disturbance mon-
itoring algorithm and a machine learning method. The forest
age in 2019 was regarded as the baseline to update the an-
nual forest age, which was derived using forest-cover-type-
specific machine learning models trained with inputs derived
from forest height, vegetation indices, climate, terrain, and
soil data. The mCOLD algorithm, which incorporates spatial
information and bidirectional monitoring, was employed for
forest disturbance monitoring from 1986 to 2022. The age of
disturbed forests was updated by the years since the distur-
bance. The mapped forest age was validated using two ref-
erence datasets: one comprising 12 328 interpreted reference
forest disturbance datasets in China and another consisting
of 5304 forest field survey samples in China. The generated
30 m annual forest age dataset can facilitate forest carbon cy-
cle modeling in China, offering valuable insights for national
forest management practices.

2 Study area and data

2.1 Study area

The study area is China’s forest region (Fig. 1), which has the
largest afforested area globally. From 2000 to 2017, China
accounted for 25 % of the global net increase in leaf area,
with forestation contributing 42 % of this increase (Chen et
al., 2019). China is typically divided into six regions (Shang
et al., 2023a): North China (N), which has a forest coverage
of 21.09 %; Northwestern China (NW), which has a forest
coverage of 8.21 %; Northeastern China (NE), which has a
forest coverage of 41.59 %; South China (S), which has a for-
est coverage of 44.63 %; East China (E), which has a forest
coverage of 40.64 %; and Southwestern China (SW), which
has a forest coverage of 25.75 %. The forest cover in China
can be broadly classified into five types: evergreen broad-
leaved forest (EBF), deciduous broad-leaved forest (DBF),
evergreen coniferous forest (ENF), deciduous coniferous for-
est (DNF), and mixed forest (MF). Deciduous forests dom-
inate in the northern regions of China, whereas evergreen
forests dominate in the southern regions of China. DBF dom-
inates in the N and NE regions, particularly in the provinces

of Liaoning, Jilin, Heilongjiang, Hebei, and Shanxi (Zhang
et al., 2021a). These areas have a climate characterized by
cold winters and warm summers, creating favorable condi-
tions for the growth of DBFs. EBF is primarily distributed
in the E and S regions, including the provinces of Zhejiang,
Fujian, Jiangxi, Guangdong, Guangxi, and Hainan, where
a warm, humid climate with abundant rainfall supports the
growth of evergreen species. ENF is concentrated in the SW
region, including parts of Sichuan, Yunnan, and Tibet, where
mountainous terrain, high elevations, and a cool and moist
climate favor evergreen conifer species. DNF is less com-
mon, primarily found in the NE region, particularly in the
Greater Khingan and the Lesser Khingan mountains. MF is
also sparsely distributed, typically occurring in transitional
zones or areas with complex ecological conditions, such as
the Changbai Mountains in the NE region and the Hengduan
Mountains in the SW region. These MFs, containing both
coniferous and broad-leaved species, play a crucial role in
maintaining ecosystem balance and supporting biodiversity.

2.2 Data

2.2.1 Landsat data

Landsat Collection 2 Tier 1 surface reflectance data were
used for forest age mapping via two processes: (1) estimating
the age of disturbed forests through forest disturbance mon-
itoring and (2) modeling the age of undisturbed forests us-
ing machine learning methods combined with forest height
data. For mapping the age of undisturbed forests or forests
before disturbance, forest height data may not be available
from China’s existing forest height products (see Sect. 2.2.3
for details). In such cases, Landsat data should be used to
retrieve forest height.

This version of Landsat data includes all available images
from Landsat 5–8 for the period from 1986 to 2022, featur-
ing multi-spectral bands, such as blue (B), green (G), red (R),
near-infrared (NIR), shortwave infrared 1 (SWIR1), and
shortwave infrared 2 (SWIR2), and quality assessment (QA)
bands. These bands are essential for forest disturbance moni-
toring, forest height mapping, and age mapping. Preprocess-
ing was conducted using the QA band (QA_PIXEL) by ap-
plying bitwise operations to identify clouds and shadows in
the image according to the QA descriptions (Zhu et al., 2015)
and then filtering out pixels affected by clouds and shad-
ows (Zhang et al., 2024). A time-series filter (Shang et al.,
2022) was also used for screening the outliers in the Landsat
time-series data. For forest disturbance monitoring, the sur-
face reflectance of the six spectral bands was employed us-
ing the mCOLD algorithm (Shang et al., 2025). In addition
to surface reflectance, two vegetation indices, the normalized
difference vegetation index (NDVI) and the near-infrared re-
flectance of vegetation (NIRv), were utilized for forest height
and age mapping. NDVI is an approximate indicator of veg-
etation greenness (Zeng et al., 2022; Zhu et al., 2016), while
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Figure 1. Spatial distribution of China’s forest cover types in 2019 over six defined regions. The forest cover types were merged from three
forest cover type products (Shang et al., 2023a): GLC_FCS30 (Zhang et al., 2021c) at a 30 m resolution, GLASS-GLC (Liu et al., 2021)
at a 30 m resolution, and ESA CCI LC (ESA, 2017) resampled to a 30 m resolution from a 300 m resolution. The abbreviations used in the
figure are as follows: EBF – evergreen broad-leaved forest; DBF – deciduous broad-leaved forest; ENF – evergreen coniferous forest; DNF
– deciduous coniferous forest; MF – mixed forest; N – North China; NE – Northeastern China; E – East China; S – South China; SW –
Southwestern China; NW – Northwestern China.

NIRv serves as an approximate indicator of vegetation pro-
ductivity (Badgley et al., 2017; Shang et al., 2023a).

2.2.2 Reference samples

The reference forest age samples (Fig. 2a) were utilized for
forest age mapping and validation of undisturbed forests
from 1986 to 2022. This dataset comprises two components:
(1) 3121 samples obtained from field surveys conducted
within the framework of the “Strategic Priority Project of
Carbon Budget” (SPPCB) project (Fang et al., 2018) and
(2) 2183 samples derived from literature reviews (Luo et
al., 2014; Cook-Patton et al., 2020). Each forest survey plot
within SPPCB provides key attributes relevant to age map-
ping, such as the forest age, forest cover type, survey loca-
tions, and survey dates. For each region and forest type, 70 %
of the reference forest age samples were randomly chosen for
model training, whereas the remaining 30 % of samples were
reserved for validation.

The reference forest disturbance samples (Fig. 2b) were
used to validate the ages of forests disturbed at least once
between 1986 and 2022. The age of these samples was de-
rived from the number of years since the disturbance event.
The reference forest disturbance samples were interpreted
through analysis of time-series images from Google Earth,

PlanetScope, Sentinel-2, or Landsat 5/7/8, with each event
confirmed by at least two clear-sky images taken before and
after the disturbance (Qiu et al., 2023; Shang et al., 2025).
The interpretation of reference forest disturbance samples
was performed in three stages. Initially, samples were di-
vided into sets of 1000 samples, with each of the 13 ex-
perts independently interpreting three sets. This ensured that
each set was reviewed by at least three experts. For each set,
samples unanimously identified by three experts (consistency
rate 43 %–81 %) were accepted as final. In the second stage,
samples identified by two experts were reviewed by a fourth
expert, while those with no consensus were reviewed by both
a fourth and fifth expert. Samples confirmed by at least three
experts were accepted as final. In the final stage, remaining
unconfirmed samples were voted on by all experts, with those
receiving over 50 % of the votes being accepted as final. A
total of 12 328 forest disturbance samples were interpreted,
with 4168 samples having at least one forest disturbance. Of
these, 2157 samples experienced a single disturbance event
between 1986 and 2022, 1274 points had two disturbances,
and 737 points were disturbed more than twice.
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Figure 2. Spatial distribution of reference samples for forest age mapping and validation. Panel (a) shows the reference forest age samples,
while panel (b) displays the reference forest disturbance samples.

2.2.3 Forest extent and forest cover type data

The China Land Cover Dataset (CLCD; Yang and Huang,
2021) was used to indicate the dynamic forest extent of
the forest age product. This dataset provides annual land
cover information, including forest cover extent, for China
from 1985 to 2022 at a 30 m spatial resolution, generated
using Landsat imagery and random forest (RF) classifiers.
It also has a comparable reliability to the Global Forest
Change (GFC) dataset of Hansen et al. (2013) in terms of
indicating forest changes (Yang and Huang, 2021). More-
over, several studies have demonstrated that the CLCD offers
higher accuracy than other land cover products across China
(Zhang et al., 2022; Ji et al., 2024).

A merged forest cover type dataset (Fig. 1) was used for
forest age mapping, as forest age mapping requires forest
cover types as inputs, which were not provided by the CLCD
product. This dataset was merged from three forest cover
type products (Shang et al., 2023a): GLC_FCS30 from 1985
to 2022 (Zhang et al., 2021c) at a 30 m resolution, GLASS-
GLC from 1985 to 2020 (Liu et al., 2021) at a 30 m resolu-
tion, and ESA CCI LC from 1992 to 2019 (ESA, 2017) re-
sampled to a 30 m resolution from a 300 m resolution. There
were four merging rules: first, a forest type was designated if
at least two products identified the same forest cover type;
second, if all three products had different types, the type
from GLC_FCS30 was used, as it closely matched China’s
ninth forest resource report; third, if GLC_FCS30 indicated
non-forest, the type from GLASS-GLC was used due to its
higher spatial resolution compared with ESA CCI; finally,
if both GLC_FCS30 and GLASS-GLC indicated non-forest,
the type from ESA CCI was utilized. The merged dataset and

the three forest cover type datasets were validated against the
field forest cover type data from the SPPCB project (Fang et
al., 2018), and the accuracy of the merge dataset improved
significantly. Specifically, the kappa coefficient (κ) of the
merged dataset was 3.2 % higher than that of GLC_FCS30,
6.31 % higher than that of GLASS-GLC, and 8.4 % higher
than that of ESA CCI LC.

2.2.4 Forest height data

Two forest height products with the same forest definition at
a 30 m spatial resolution for the year 2019 (Potapov et al.,
2021; Liu et al., 2022) were employed to map the age of
undisturbed forests. Potapov et al. (2021) utilized machine
learning methods with Landsat data and Global Ecosystem
Dynamics Investigation (GEDI) footprint forest height data
to generate a global forest canopy height map at a 30 m spa-
tial resolution for the year 2019 (shortened to “Potapov’s
forest height product”), while Liu et al. (2022) developed a
neural-network-guided interpolation (NNGI) method to de-
rive China’s forest height map at a 30 m spatial resolution
for 2019 (shortened to “Liu’s forest height product”), using
Landsat data along with GEDI and ICESat-2 footprint for-
est height data. Due to consideration of topographic influ-
ences and high-quality control standards, Liu’s forest height
product exhibited higher accuracy but had a smaller forest
extent in China than Potapov’s forest height product (Liu
et al., 2022). Therefore, this study primarily used Liu’s for-
est height product. When Liu’s forest height product was
missing compared with the forest extent identified in CLCD,
Potapov’s forest height product was used as a substitute.
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Table 1. Descriptions of the vegetation, terrain, climate, and soil data used for forest age mapping.

Data type Data name Resolution Years Data sources References

Vegetation Forest height map 30 m 2019 Published data Liu et al. (2022) and Potapov et al. (2021)
Forest height 30 m 1986–2019 GEDI and Landsat data This study
NDVI 30 m 1986–2019 Landsat data This study
NIRv 30 m 1986–2019 Landsat data This study

Terrain Slope 30 m 2020 NASA DEM Uuemaa et al. (2020)
Aspect 30 m 2020 NASA DEM Uuemaa et al. (2020)

Climate Highest annual temperature 1 km 1986–2022 Published data Peng et al. (2019)
Lowest annual temperature 1 km 1986–2022 Published data Peng et al. (2019)
Mean annual temperature 1 km 1986–2022 Published data Peng et al. (2019)
Annual temperature range 1 km 1986–2022 Published data Peng et al. (2019)
Highest annual precipitation 1 km 1986-2022 Published data Peng et al. (2019)
Lowest annual precipitation 1 km 1986–2022 Published data Peng et al. (2019)
Mean annual precipitation 1 km 1986–2022 Published data Peng et al. (2019)
Annual precipitation range 1 km 1986–2022 Published data Peng et al. (2019)

Soil Soil type 250 m 2021 SoilGrids (V2.0) Poggio et al. (2021)

For forest pixels with missing forest heights from both
the Liu and Potapov forest height products (0.32 % of pix-
els, based on the forest extent in CLCD), forest height
was estimated using a machine learning method (detailed in
Sect. 3.2.2) that integrates Landsat data, climate data, ter-
rain data, and GEDI footprint forest height data. The input
Landsat data consist of surface reflectance from Landsat 5,
7, and 8 and two calculated vegetation indices (NDVI and
NIRv). The input data from GEDI, launched by NASA in
December 2018 and covering the Earth’s land surface from
51.6° N to 51.6° S (Dubayah et al., 2020), primarily include
the L2A relative height data, which have demonstrated the
best performance with respect to global forest height map-
ping (Potapov et al., 2021).

2.2.5 Other data

The vegetation, terrain, climate, and soil data used for map-
ping forest age are summarized in Table 1. Aside from forest
height and cover type data, vegetation data also include two
vegetation indices, NDVI and NIRv, calculated from Landsat
data. Terrain data mainly include the slope and aspect calcu-
lated from 30 m resolution NASA DEM data, chosen due to
their extensive use and the fact that they comprise one of the
most prevalent global DEM products across diverse applica-
tions (Su et al., 2015). Climate data include temperature and
precipitation, which are further divided into the following
eight variables: highest annual temperature (HAT), lowest
annual temperature (LAT), mean annual temperature (MAT),
annual temperature range (ATR), highest annual precipita-
tion (HAP), lowest annual precipitation (LAP), mean annual
precipitation (MAP), and annual precipitation range (APR).
These variables are all relevant to forest growth, as they influ-
ence various aspects of forest health and development, such
as tree physiology, species distribution, and overall ecosys-

tem productivity (Leuschner and Ellenberg, 2017; Chapin
et al., 2011). These climate variables were extracted from a
dataset of monthly precipitation and temperature at a 1 km
resolution for China spanning the period from 1901 to 2023
(Peng et al., 2019). This dataset was derived from global Cli-
matic Research Unit (CRU) and WorldClim climate datasets
and data from 496 observation stations using the delta-
space downscaling method (Peng et al., 2019). Soil type data
were obtained from the SoilGrids 2.0 product, which applies
machine learning to soil observations from approximately
240 000 global locations, using over 400 environmental co-
variates related to vegetation, terrain, climate, geology, and
hydrology to map global soil properties at a 250 m resolution
(Poggio et al., 2021).

3 Methods

3.1 Forest age mapping

Forest age mapping was divided into two parts: disturbed
forests and undisturbed forests. For disturbed forests, age
was primarily determined based on forest disturbance mon-
itoring. For undisturbed forests, random forests were used
to map forest age based on vegetation, terrain, climate, and
soil data. Figure 3 shows the flowchart of forest age map-
ping, and this process comprised three steps: mapping the
age of disturbed forests through forest disturbance monitor-
ing (Sect. 3.2.1), retrieving the forest height for undisturbed
forests (Sect. 3.2.2), and mapping the age of undisturbed
forests using random forests (Sect. 3.2.3).

Annual updates of forest age were based on the forest age
in 2019 and the dates of detected forest disturbance (Fig. 4),
with the age resetting to 0 in the disturbance year. For areas
with no forest disturbance between 1986 and 2022 (Fig. 4a),
the age for each year can be updated based on the number
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Figure 3. The flowchart of China’s annual forest age mapping from 1986 to 2022. There process was comprised of three steps: mapping
the age of disturbed forests using forest disturbance monitoring (Step 1), retrieving the forest height for undisturbed forests (Step 2), and
mapping the age of undisturbed forests using random forests (Step 3).

of years since 2019. For areas with a forest disturbance af-
ter 2019 (Fig. 4b), the age for years before 2019 can be up-
dated based on the number of years since 2019, while the
age for years after disturbance can be updated based on the
number of years since the disturbance year. For areas with
one (Fig. 4c) or more than one (Fig. 4d) occurrence of for-
est disturbance before 2019, the age for years before the first
forest disturbance should be mapped based on the retrieved
forest height and other data using random forests, while the
age for years after each disturbance can be updated based on
the number of years since the disturbance year.

3.1.1 Mapping the age of disturbed forests through
forest disturbance monitoring

Forest disturbances were detected using the mCOLD algo-
rithm (Shang et al., 2025). The original COLD algorithm
employs a time-series model to predict multi-band surface re-
flectance (Zhu et al., 2020). It then uses the χ2 distribution to
quantify the differences between the multi-band predictions
and observations, referred to as the change magnitude. For-
est disturbances are confirmed based on two criteria (Zhu et
al., 2020): a change magnitude criterion (a change magnitude

calculated from the χ2 distribution corresponding to 0.99)
and a timing criterion (at least six observations).

There were three modifications in mCOLD. First, spatial
information was incorporated into forest disturbance moni-
toring. Due to differences in forest types and locations, ad-
jacent pixels may exhibit varying change magnitudes from
the same disturbance, and an algorithm with a uniform stan-
dard for disturbance confirmation may result in omissions.
To avoid omissions, the data-adapted iterative steering ker-
nel regression (DISKR) algorithm (Takeda et al., 2007) was
used to incorporate spatial information from adjacent pixels
within a window to enhance forest disturbance monitoring
(Shang et al., 2025).

Second, the timing criterion for confirming a forest distur-
bance was revised from requiring at least six observations to
meeting both a minimum of six observations and a minimum
disturbance duration. This adjustment was made to account
for the varying density of valid Landsat time-series observa-
tions across different locations, as data density can be twice
as high in overlapping areas compared to non-overlapping
areas (Zhang et al., 2021b). Relying solely on the number
of observations could lead to inconsistencies in the timing
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Figure 4. Conceptual diagram of annual forest age updates. Panel (a) shows the situation with no forest disturbance between 1986 and 2022,
panel (b) shows the situation with a forest disturbance after 2019, panel (c) shows the situation with one forest disturbance before 2019, and
panel (d) shows the situation with more than one forest disturbance before 2019. If there is at least one disturbance before 2019, the forest
height before the first disturbance should be retrieved to map forest age.

of detected disturbances. By incorporating the duration crite-
rion, this modification could address potential discrepancies
and improve the temporal consistency of detected forest dis-
turbances (Shang et al., 2022).

Last, forest disturbance monitoring was revised from a
unidirectional approach (tracking from past to present) to
a bidirectional approach (incorporating both past-to-present
and present-to-past tracking). In unidirectional tracking, de-
tecting early forest disturbances was often less accurate than
detecting later ones due to the typically fewer observations
available for building a reliable time-series model to de-
tect the early disturbance (Zheng et al., 2022). Bidirectional
monitoring addresses this issue by transforming early distur-
bances in the past-to-present tracking into later disturbances
in the present-to-past tracking. This method ensured suffi-
cient data for developing a more accurate time-series model
for both early and late disturbances, thereby enhancing the
overall accuracy of disturbance monitoring (Shang et al.,
2025).

3.1.2 Forest height retrieval for undisturbed forests

Random forests with boosting trees, which can minimize
biases and improve overall model performance (Jahan et
al., 2021), were employed to estimate forest height in areas
where forest height data were unavailable. The GEDI foot-
print forest height served as the training dataset for the for-
est height models, with the screening process following the

methodology outlined by Liu et al. (2022). Specifically, for
each GEDI footprint, six relative heights including RH75,
RH80, RH85, RH90, RH95, and RH100 were selected. To
reduce the influence of outliers, the maximum and mini-
mum values were excluded, and the average of the remain-
ing four relative height values was used to represent the rela-
tive height for each footprint. Furthermore, the quality of the
samples was further ensured by filtering them using eleva-
tion data. TanDEM-X and SRTM elevation values recorded
in the GEDI dataset were compared, and any samples with
an elevation difference greater than 10 m were discarded.

To reduce the discrepancy between the retrieved forest
height and the 2019 forest height products, the input factors
for the tree height model were based on the study by Liu et
al. (2022), incorporating DEM, slope, aspect, temperature,
precipitation, and NDVI data. Additionally, this study ex-
panded the input factors by incorporating Landsat 8 surface
reflectance and the calculated NIRv vegetation index, which
approximates forest productivity (Badgley et al., 2019). This
resulted in a total of 13 input factors used in the tree height
model. The models were constructed separately for differ-
ent environmental conditions and forest types across China.
Specifically, six regions (East, South, North, Northeastern,
Northwestern, and Southwestern China) and five forest types
(EBF, ENF, DBF, DNF, and MF) were considered. Each
model was trained using 70 % of the filtered GEDI footprint
forest height samples, with the remaining 30 % used for val-
idation. As no GEDI footprint forest height samples were
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available prior to 2019, the forest height retrieval for years
before 2019 at a specific forest type and region utilized the
same model as 2019 but with varied inputs corresponding to
their respective years. These forests, which required height
retrieval, covered only a small portion of the total forest pix-
els, with an average of 0.42 % (see details in Sect. 5.2).

In addition to estimating forest height in areas where for-
est height data were unavailable, forest height was also es-
timated for randomly selected samples in regions where the
2019 forest height product was available. This allowed for
an evaluation of the differences between the estimated and
product-based forest heights and their impact on forest age
mapping (see details in Sect. 5.2).

3.1.3 Mapping the age of undisturbed forests using
random forests

Random forests with boosting trees (Jahan et al., 2021) were
also selected to map the age of undisturbed forests. This ma-
chine learning method showed the highest overall accuracy
in forest age mapping at a 30 m spatial resolution among 5
stand growth equations and 12 machine learning methods
(Lin et al., 2023). The model used 15 inputs (Table 1): vege-
tation factors (forest height, NDVI, and NIRv), terrain factors
(slope and aspect), climate factors (HAT, LAT, MAT, ATR,
HAP, LAP, and MAP), and one soil factor (soil type). Tree
height was selected due to its dominant role in forest age
mapping (Lin et al., 2023), while the NDVI and NIRv (Eqs. 1
and 2) could reflect forest greenness and productivity. Terrain
factors such as slope and aspect also affected forest growth
(Lang et al., 2010). Temperature and precipitation were in-
cluded, as forest growth is sensitive to climatic conditions
(Besnard et al., 2021). Soil type was also considered for its
effect on vegetation growth. The NDVI and NIRv were cal-
culated as follows:

NDVI=
NIRRef−REDRef

NIRRef+REDRef
, (1)

NIRv= NIRRef ·NDVI. (2)

Here, NIRRef represents the surface reflectance at the near-
infrared band, while REDRef represents the surface re-
flectance at the red band.

Given the regional and forest cover type heterogeneity
across China, this study divided the model construction into
six regions and five forest cover types. An RF model was de-
veloped for each forest cover type within each region. In re-
gions where certain forest cover types had fewer than 30 sam-
ple points, those regions were merged, resulting in a total of
22 forest age models. This stratified approach aims to en-
hance the accuracy of forest age mapping, as forest types
can also influence the accuracy of forest age mapping (Lin
et al., 2023). For each forest cover type within a region, 70 %
of the randomly selected reference forest age samples were
used for model training, while the remaining 30 % were used

Table 2. Parameters of the forest age mapping models for different
regions and forest cover types. The abbreviations used in the table
are as follows: EBF – evergreen broad-leaved forest; DBF – decidu-
ous broad-leaved forest; ENF – evergreen coniferous forest; DNF –
deciduous coniferous forest; MF – mixed forest; N – North China;
NE – Northeastern China; E – East China; S – South China; SW –
Southwestern China; NW – Northwestern China.

Model (region Minimum No. No. of
and forest leaf size of trees features
type)

NW-DNF 5 150 13
NW-ENF 5 150 14
NW-DBF 5 150 14
NW-EBF/MF 5 100 14
SW-DNF/MF 5 200 15
SW-ENF 5 100 12
SW-DBF 10 100 15
SW-EBF 10 150 15
S-DNF/MF 20 100 15
S-ENF 5 100 14
S-DBF 5 150 14
S-EBF 10 100 14
E-DNF/MF 20 50 14
E-ENF 10 100 15
E-DBF 10 100 14
E-EBF 10 100 15
NE-DNF 20 100 13
NE-DBF 20 100 15
NE-EBF/ENF/MF 5 200 14
N-DNF 10 200 14
N-DBF 5 150 14
N-EBF/ENF/MF 5 150 15

for validation. To mitigate the effects of autocorrelation be-
tween the input factors, this study proposed an automatic it-
erative selection mechanism, aimed at reducing autocorrela-
tion by minimizing the number of input factors. The process
began by using all input factors to estimate forest age, fol-
lowed by extracting the contribution weights of each factor.
Factors with a contribution weight of less than 0.5 % were re-
moved. The remaining factors were then used to re-estimate
forest age. This iterative process was repeated three times,
with factors contributing less than 0.5 % being excluded in
each iteration, and the final model after three iterations was
used for forest age estimation. In addition to input feature
screening, we also performed sensitivity analysis to deter-
mine the optimal thresholds for the minimum leaf size and
number of trees for each model. The minimum leaf size was
varied from 5 to 30, with an interval of 5, while the number
of trees was adjusted from 50 to 300, with an interval of 50.
The optimal thresholds were identified as those correspond-
ing to the minimum root-mean-square error (RMSE) of the
mapped forest age (Table 2).
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The absolute mean SHapley Additive exPlana-
tions (SHAP) values were calculated to indicate the
importance of each input factor, as SHAP values have been
widely used to explain the significance of various inputs
in machine learning models (Lundberg and Lee, 2017;
Lundberg et al., 2018). By evaluating the contribution of
each input factor to the model, SHAP values can rank the
importance of these factors: the higher the SHAP value, the
greater the contribution of the factor to the model (Sun et
al., 2023). The importance of each input factor for forest age
mapping is discussed in Sect. 5.1.

3.2 Validation methods

This study used the coefficient of determination (R2) and
RMSE as two validation metrics (Lin et al., 2023) to reflect
the accuracy of the mapped forest age. These metrics were
calculated as follows:

RMSE=

√√√√ 1
N

N∑
i=1

(
Xi −X

′

i

)2
, (3)

R2
= 1−

N∑
i=1

(
Xi −X

′

i

)2
N∑
i=1

(
Xi −X

)2 , (4)

where N represents the number of reference samples, i rep-
resents the ith sample, Xi represents the forest age of the
reference sample, X′i represents the mapped forest age, and
X represents the average value of the reference forest age.
Higher R2 values and lower RMSE values indicate better ac-
curacy of forest age mapping. The RMSE was considered a
more indicative measure than theR2 value because, while the
R2 value shows the degree of data dispersion and can be high
even with large deviations, the RMSE directly measures the
deviation between mapped and reference forest ages, provid-
ing a clearer indication of the accuracy (Lin et al., 2023).

The mapped forest ages were validated in two parts:
disturbed forests and undisturbed forests. For disturbed
forests, the validation was performed using a 30 % subset
of randomly selected reference forest disturbance samples
(Fig. 2a); for undisturbed forests, validation was based on
a 30 % subset of randomly selected reference forest age
samples (Fig. 2b). In addition to nationwide validation, we
specifically assessed the mapped forest ages in the NE and
SW regions, where significant improvements were made in
forest age mapping in the CAFA V2.0 product. Furthermore,
as the age of undisturbed forests was mapped using separate
RF models for different forest types, Sect. 5.3 discusses the
accuracy differences in forest age mapping among different
forest cover types.

3.3 Uncertainty analysis

The uncertainty analysis primarily focused on the mapped
ages of undisturbed forests in 2019 using a height-based
method, as a disturbance-based method generally has lower
uncertainties in mapping forest ages compared to a height-
based method (Shang et al., 2023a). The uncertainties of the
mapped forest ages mainly stem from the models and their
inputs. Among the model inputs, forest height has the most
significant impact on forest age mapping (see Sect. 5.1 for
details). Therefore, we concentrated solely on the uncertainty
of input forest height in forest age mapping. The evaluation
of the differences between the estimated and product-based
forest heights and their impact on forest age mapping is dis-
cussed in Sect. 5.2. To assess the uncertainties of the age
mapping models, we kept the inputs constant while varying
the forest heights estimated by forest stand growth equations.
Based on Zhang’s forest stand growth equations in China
(Zhang et al., 2014), we calculated the relative forest heights
for the years 2017, 2018, 2020, and 2021, according to the
region and forest types. These forest heights were then used
as inputs to map forest ages, and their standard deviation was
calculated to represent the uncertainties.

4 Results

4.1 China’s annual forest age at a 30 m resolution
from 1986 to 2022

A dynamic forest age dataset (CAFA V2.0) covering the
whole of China from 1986 to 2022 (Shang et al., 2023b),
with a spatial resolution of 30 m, was generated by integrat-
ing forest disturbance mapping and random forests meth-
ods. Figure 5 illustrates the distribution of forest ages for
the year 2019, alongside comparisons with data from 1986,
2000, 2010, and 2022. This forest age dataset indicates that
China’s forest age structure predominantly consists of young
and middle-aged forests, with an average forest age of 58.1±
7.3 years in 2019. Old forests were predominantly found in
the Northeastern, Northwestern, and Southwestern regions
of China. These areas, characterized by high mountains and
minimal human interference, were largely comprised of nat-
ural and secondary forests. In contrast, forests disturbed at
least once during the period from 1986 to 2022 exhibited
younger ages, generally below 37 years. Such forests were
mainly concentrated in the southeastern and central south-
ern regions, where human disturbances were more prevalent.
Furthermore, in the northeast, there were also young forests
that had regenerated after extensive forest fires, such as the
devastating forest fire that occurred on 6 May 1987 (Cahoon
et al., 1991). This fire caused varying degrees of damage
across a vast area of China, impacting more than 1× 106 ha
of forests.

According to the 2020 map of China’s planted and nat-
ural forests (Cheng et al., 2024), natural forests were older
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Figure 5. Spatial distribution of China’s forest age in 2019 and other selected years (1986, 2000, 2010, and 2022) in the CAFA V2.0 dataset.

than planted forests, with average ages of 69.9± 12.8 and
48.4± 6.9 years, respectively. Regional variations were ev-
ident, with the age gap between natural and planted forests
ranging from 3.5 to 20.2 years. Southwestern China had the
oldest natural forests (91.1± 21.6 years) and planted forests
(74.8± 18.1 years), while East and South China showed
lower average ages due to higher disturbance frequencies.

The temporal dynamics of China’s forest ages were pri-
marily influenced by both forest loss disturbances (such as
forest fire, harvest, and other disturbances) and forest gain
disturbances (such as afforestation and reforestation), which
mainly led to a reduction in China’s average forest age.
From 1987 to 2022, the age reduction caused by forest dis-
turbances showed a decreasing trend, with an average age
reduction of −0.105± 0.027 years. However, in 1987, 2008,
and 2021, the forest age reduction caused by disturbances
was significant, indicating that there were more forest distur-
bances in these 3 years.

The uncertainty analysis was performed on the mapped
ages of undisturbed forests in 2019 (Fig. 6). In most regions,
the mapped forest age in 2019 exhibited relatively low uncer-
tainty, with an average uncertainty of 8.7 years across China.
However, the Southwestern region displayed higher uncer-
tainty, exceeding 40 years in Tibet and certain mountainous
areas of Sichuan Province. This elevated uncertainty may be
attributed to the heightened sensitivity of age mapping mod-
els to forest height in the Southwestern region (see Sect. 5.1
for details). Additionally, the significant increase in forest
height with age, as described by the forest stand growth equa-
tions in these areas (Zhang et al., 2014), further contributed to
the increased uncertainty. Despite these regional variations,

the mapped forest age in 2019 was generally stable and char-
acterized by small uncertainties.

4.2 Validation of the forest age maps

The mapped forest age in 2019 was validated using a
30 % subset of two separate reference datasets (Fig. 7): one
comprising 12 328 interpreted reference forest disturbance
datasets and the other consisting of 5304 forest field sur-
vey samples in China. For undisturbed forests, the field-
surveyed age was transformed from the survey year to 2019
by adding the difference in years. For disturbed forests, the
reference age in 2019 was determined by calculating the
number of years since the last disturbance. Validation re-
sults indicated that the mapped age of disturbed forest ex-
hibited a small error of ±2.48 years, while the mapped age
of undisturbed forest from 1986 to 2022 had a relatively
large error of ±7.91 years. Compared to version 1.0, the
RMSE of CAFA V2.0 forest age for disturbed forests de-
creased by 1.15, whereas for undisturbed forests, the RMSE
decreased by 0.49.

The enhancement in age accuracy for disturbed forests
stemmed primarily from refining the forest disturbance mon-
itoring algorithm. Figure 8 presents two typical examples
of the mapped forest ages from forest disturbance monitor-
ing using COLD, LandTrendr, and mCOLD. In both cases,
mCOLD mapped a more accurate extent of the forest dis-
turbances, and its results were used to mask the outputs of
other algorithms. The first example pertains to a forest fire
that occurred in 2010. Both COLD and LandTrendr detected
the disturbance, but their detected extents were inaccurate
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Figure 6. Spatial distributions of the uncertainty of mapped forest age in 2019.

Figure 7. Validation of China’s forest age mapping in the CAFA V2.0 dataset. Panel (a) shows the age validation of forests disturbed at least
once from 1986 to 2022, whereas panel (b) displays the age validation of undisturbed forests. The sizes and colors of the circles represent
the number of samples at that location.

with significant omissions. This resulted in substantial over-
estimations of forest age, which was derived using height-
based methods. The second example involves a forest fire
that took place in the winter. COLD identified the disturbance
with an incomplete extent, whereas LandTrendr missed the
disturbance entirely. Consequently, significant overestima-
tions existed in the forest age products derived from these
two algorithms. In comparison, mCOLD demonstrated su-
perior performance with respect to identifying the full ex-
tent of the forest disturbances compared to LandTrendr and

COLD. As a result, forest age mapping accuracy improved
notably for disturbed forests using mCOLD, particularly in
the Northeastern and Southwestern regions of China, where
the RMSE values decreased by 0.71 and 1.9, respectively
(Fig. 9a and c).

The improvement in age accuracy for undisturbed forests
was achieved through separate modeling for different re-
gions and forest cover types, as well as enhancements in
the reference forest age samples used for model training. In
version 1.0, forest ages tended to be underestimated in the
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Figure 8. Typical examples of the mapped forest age in 2019 using forest disturbance monitoring. The first example is a forest fire that
occurred in March 2010, while the second example is a forest fire that happened in January 2017. Panels (a) and (e) present Landsat RGB
composite images after forest disturbance on 10 March 2010 and 8 February 2017, respectively. Panels (b) and (f) show the mapped forest
age using COLD (Shang et al., 2023a). Panels (c) and (g) present the mapped forest age (calculated by deducting 1 year from the 2020 forest
age) using LandTrendr (Cheng et al., 2024). Panels (d) and (h) show the mapped forest age using mCOLD.

Northeastern and Southwestern regions of China due to lim-
ited reference samples, although this issue was substantially
improved in CAFA V2.0. As depicted in Fig. 9, the RMSE
values decreased by 3.21 and 1.96, respectively (Fig. 9b
and d). In conclusion, CAFA V2.0 represents a significant
enhancement in the accuracy of forest age mapping across
China.

4.3 Comparisons with previous forest age products

The dynamic forest age dataset (CAFA V2.0) was compared
with four existing static forest age products, including two at
a 1000 m resolution for the years 2005 (Age2005) (Zhang et
al., 2014) and 2010 (Age2010) (Besnard et al., 2021) and two
at a 30 m resolution for the years 2019 (Age2019) (Shang et
al., 2023a) and 2020 (Age2020) (Cheng et al., 2024). Fig-
ure 10 illustrates the spatial distributions of these four for-
est age products and the age differences between them and
the CAFA V2.0 product. Overall, the spatial patterns of for-
est age in CAFA V2.0 align with the other four products,
with older forests predominantly located in the Northeastern,
Northwestern, and Southwestern regions of China. Signifi-
cant forest age differences (≥ 30 years) are also observed in

these regions, especially in areas affected by forest distur-
bances. The average forest age was 43.1± 9.5 years (within
the 95 % confidence interval) for Age2005, while the corre-
sponding value for CAFA V2.0 in 2005 was 45.8±8.1 years
(Fig. 11a). For 2010, Age2010 had an average forest age
of 45.3± 6.2 years, while CAFA V2.0 showed an age of
49.6± 7.9 years (Fig. 11b). For 2019, Age2019 had an aver-
age forest age of 53.2±8.3 years, while CAFA V2.0 showed
an age of 58.1±7.3 years (Fig. 11c). Similarly, for 2020, the
average ages for Age2020 were 57.3±10.1 years, compared
to 59.2± 8.5 years for CAFA V2.0 (Fig. 11d).

The four existing static forest age products were also vali-
dated using the same 30 % subset of reference forest age sam-
ples (Fig. 12). It should be noted that Age2005, Age2010,
and Age2020 lacked forest age values for certain reference
samples. These samples are displayed in Fig. 11 with a for-
est age of 0, but they are excluded from the fitting line and
the calculations of the R2 and RMSE values. All four for-
est age products showed higher RMSE values compared to
the CAFA V2.0 product, including our previous static forest
age product, Age2019, which had an RMSE of 10.29 years.
Age2020 exhibited the highest RMSE at 19.31 years, likely
due to young forests impacted by disturbances that were

https://doi.org/10.5194/essd-17-3219-2025 Earth Syst. Sci. Data, 17, 3219–3241, 2025



3232 R. Shang et al.: China’s annual forest age dataset at a 30 m spatial resolution from 1986 to 2022

Figure 9. Comparison of forest age mapping in Northeastern and Southwestern China between the V1.0 and V2.0 forest age products.
Panels (a) and (b) show Northeastern China, whereas panels (c) and (d) show Southwestern China. Panels (a) and (c) are comparisons of
forest age mapping with at least one disturbance between 1986 and 2022, whereas panels (b) and (d) are comparisons of forest age mapping
without disturbances between 1986 and 2022.

omitted by the LandTrendr forest disturbance monitoring al-
gorithm (Qiu et al., 2023) but inaccurately classified as old
forests with high ages in Age2020. Except for those dis-
turbed forests, Age2020 demonstrated reasonable forest age
mapping accuracy. The CAFA V2.0 forest age product had
the lowest RMSE of 7.91 years, owing to the modified for-
est disturbance monitoring and improvements in age map-
ping of undisturbed forests, particularly in Northeastern and
Southwestern China, where additional reference samples and
region- and forest-cover-type-specific models were applied.

5 Discussions

5.1 Contributions of different input factors to forest age
mapping

A total of 15 input factors were utilized to map the age of
undisturbed forests across six regions and five forest cover
types in China. To investigate the contribution of each fac-
tor to the model, we first calculated the absolute mean SHAP
value and then calculated its ratio in all mean SHAP values
for each forest cover type (Fig. 13). A larger ratio of abso-
lute mean SHAP value indicates a greater impact of that fac-
tor on forest age mapping. The results revealed that forest
height was the dominant factor and contributed more than

20 % to forest age mapping for most forest types, aligning
with previous findings (Lin et al., 2023; Cheng et al., 2024).
This was because forest height is a key indicator of forest
structure, which reflects the maturity and biomass of the for-
est (Shugart et al., 2010). Two terrain factors, slope and as-
pect, generally ranked second or third, suggesting that indi-
vidual terrain factors had a larger impact on forest age map-
ping than individual climate factors. For the NIRv, NDVI,
and the eight climate factors, there were no clear patterns
across the five forest cover types. Most of these factors rank
in the middle to lower positions, and the differences in the
absolute mean SHAP values among the climate factors were
minimal. However, there were some regional and forest cover
type exceptions. For example, the lowest annual temperature
contributed 21 % to forest age mapping for deciduous broad-
leaved forests in East China, likely because low temperatures
limit the growth of certain tree species and affect vegetation
composition and distribution (Gazol et al., 2022). In the case
of evergreen coniferous forests in Northwestern China, mean
annual precipitation contributed 20.9 % to forest age map-
ping. Precipitation is critical for supporting evergreen vegeta-
tion growth in this region, as it ensures both the productivity
of evergreen forests and the stability of the ecosystem (Duan
et al., 2019). Soil type, on the other hand, did not have a sig-
nificant impact, aligning with findings by Cheng et al. (2024),
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Figure 10. Comparisons of the CAFA V2.0 forest age with previous forest age products. Panels (a), (b), (c), and (d) are the age products
in 2005, 2010, 2019, and 2020 from Zhang et al. (2014), Besnard et al. (2021), Shang et al. (2023a), and Cheng et al. (2024), respec-
tively. Panels (e), (f), (g), and (h) are the differences between the CAFA V2.0 forest age and the abovementioned four forest age products,
respectively.

Figure 11. Box plots of CAFA V2.0 forest age and four previous forest age products in China. Panels (a), (b), (c), and (d) are Zhang et
al. (2014), Besnard et al. (2021), Shang et al. (2023a), and Cheng et al. (2024), respectively.

who suggested that soil type plays a relatively minor role in
forest age mapping.

5.2 The impact of different forest height retrievals on
age mapping

Forest height retrieval was necessary for age mapping in
two situations: first, when forest height data were unavail-
able from the two forest height products in 2019, and sec-
ond, when at least one disturbance occurred before 2019.
Figure 4a presents the histogram of the percentage of pixels
requiring forest height retrieval each year from 1986 to 2019.
All years had percentages below 0.8 %, with an average of
0.42 %, indicating that only a small portion of the total pix-

els required height retrieval. It should be noted that the forest
height retrieval used in this study differed from the 2019 for-
est height products, as the models were trained on different
samples and input factors, potentially introducing uncertain-
ties into forest age mapping. To assess the impact of vary-
ing forest height retrieval methods, 50 % of the validation
samples were randomly selected to compare forest age map-
ping based on the retrieved forest height in this study and
the 2019 forest height product. Differences in forest height
were observed between the two methods, which resulted in
an RMSE of 5.92 years in forest age mapping (Fig. 14b).
However, as 99.58 % of pixels did not require forest height
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Figure 12. Validation of the four forest age products using the same 30 % subset of reference forest age samples compared with the
CAFA V2.0 product. Panels (a), (b), (c), and (d) are the forest ages of Age2005, Age2010, Age2020, and Age2019 generated by Zhang
et al. (2014), Besnard et al. (2021), Cheng et al. (2024), and Shang et al. (2023a), respectively. Blue represents the CAFA V2.0 product,
whereas yellow represents the four products. An age of 0 in Age2005, Age2010, and Age2020 indicates no available forest age in these
products for the validated reference samples, and these values were excluded from the fitting line and the calculations of the R2 and RMSE.
To maintain consistency, the validation of the CAFA V2.0 product also excluded these reference samples.

retrieval, we believe that the impact of these differences on
forest age mapping in CAFA V2.0 is negligible.

5.3 Importance of forest age mapping for different forest
cover types

The ages of undisturbed forests were mapped using separate
RF models for different forest cover types in this study, as
different forest cover types exhibited varying growth patterns
and responses to environmental factors (Körner, 2007; Baz-
zaz, 1996). To demonstrate its applicability, we compared the
forest age mapping with and without forest cover type clas-
sifications (Fig. 15), using the same input factors, training
samples, and validation samples. Results indicated that clas-
sifying forest cover types led to an overall increase in the R2

value of 0.07 and a decrease in the RMSE of 1.44. The ac-
curacy for each forest type was also higher than that without
forest cover type classification, with the accuracy for DNF
increasing the most (as its RMSE decreased by 3.77). There-

fore, classifying forest cover types was essential for improv-
ing the accuracy of national forest age mapping.

5.4 Limitations and future modifications

There were also some limitations in mapping forest age in
CAFA V2.0. First, the year of disturbance may not always
coincide with the year when forests are replanted or begin to
recover. In this study, it was assumed that the forest age was
0 in the year of disturbance and that it was 1 in the following
year. However, delays in replanting or natural recovery after a
disturbance could result in slight deviations in forest age esti-
mates. The mCOLD forest disturbance monitoring algorithm
can identify both the date of disturbance (t_break) and the
date when vegetation recovery begins (t_start). As t_break is
determined with higher accuracy compared to t_start (Shang
et al., 2025), it was used in this study for forest age map-
ping. To assess the potential impact of this assumption, the
time interval between t_break and t_start was calculated for
reference forest disturbance samples. Results showed that
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Figure 13. Contributions of different input factors to forest age mapping for five forest cover types. The following abbreviations are used in
the figure: EBF – evergreen broad-leaved forest; DBF – deciduous broad-leaved forest; ENF – evergreen coniferous forest; DNF – deciduous
coniferous forest; MF – mixed forest; N – North China; NE – Northeastern China; E – East China; S – South China; SW – Southwestern
China; NW – Northwestern China; FH – forest height; NDVI – normalized difference vegetation index; NIRv – near-infrared reflectance of
vegetation; DEM – digital elevation model; SLO – slope; ASP – aspect; HAT – highest annual temperature; LAT – lowest annual temperature;
MAT – mean annual temperature; ATR – annual temperature range; HAP – highest annual precipitation; LAP – lowest annual precipitation;
MAP – mean annual precipitation; APR – annual precipitation range; ST – soil type.

Figure 14. The percentages of pixels needing forest height retrieval from 1986 to 2019 (a), comparisons of forest age mapping using
the retrieved forest height versus forest height product in 2019 (b), and the spatial distribution of the survey years of samples used for
comparison (c).

88.78 % of reference samples had an interval of less than
1 year, 8 % had an interval of 1–2 years, and 3.22 % had an
interval of more than 2 years. These findings suggest that us-
ing the disturbance year instead of the actual recovery year
only has a minor impact on forest age mapping. Furthermore,

planted young trees may already be older than 1 year, which
could partially offset the discrepancies caused by the time
difference between the disturbance year and recovery year in
forest age mapping.
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Figure 15. Comparisons of the forest age mapping with and without forest cover type classifications. Panel (a) is evergreen broad-leaved
forest, panel (b) is deciduous broad-leaved forest, panel (c) is evergreen coniferous forest, panel (d) is deciduous coniferous forest, panel (e) is
mixed forest, and panel (f) is all forest.

Second, the number of reference forest age samples is lim-
ited. The reference forest age samples used in this study
include 3121 samples obtained from SPPCB field surveys
(Fang et al., 2018) and an additional 2183 samples obtained
via a literature review (Luo et al., 2014; Cook-Patton et al.,
2020). However, the samples, particularly those derived from
the literature, were collected by various researchers using dif-
ferent methods to estimate forest age. This methodological
variation may introduce some degree of bias into the final
forest age mapping. Additionally, differences in the sample
distribution across regions and forest cover types may also
contribute to uncertainties in forest age estimation. Further-
more, due to the limited samples, especially in the northwest-
ern region, the ages of some very old trees may be underes-
timated. Most of these trees are found in high-altitude areas
without competition from other vegetation (Liu et al., 2019),

and their coverage is often smaller than the 30 m resolution
of Landsat pixels, resulting in their higher ages being aver-
aged out. Therefore, future work should focus on collecting
more field-based forest age reference samples to minimize
the uncertainties in forest age mapping caused by the refer-
ence sample limitations.

Third, the varied plot sizes of reference samples may in-
fluence forest age mapping, particularly for the 2183 samples
derived from a literature review. While SPPCB samples had
consistent plot sizes (primarily 1000 m2), the plot sizes of the
literature-derived samples varied. To assess these impacts,
we analyzed spatial heterogeneity using a 100 m× 100 m
window – much larger than the SPPCB plot size – with for-
est height standard deviation (SD) as the key metric. The re-
sults indicated that 89.1 % of samples had low heterogene-
ity (SD< 2 m), corresponding to a mean forest age map-
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ping difference of 5.7 years, which was smaller than the
mapping error of 7.91 years for undisturbed forests. Mod-
erate heterogeneity (SD 2–3 m) affected 7.33 % of samples,
causing a comparable difference of 8.3 years. High hetero-
geneity (SD> 3 m) was found in 3.67 % of samples, lead-
ing to relatively larger differences of 13.3 years. Although
96.33 % of samples had low to median heterogeneity with
acceptable mapping errors, the identified high-heterogeneity
samples (3.67 %) caused relatively larger mapping errors of
13.3 years. Therefore, future studies should consider filtering
out high-heterogeneity samples in forest age mapping.

Fourth, some of the input factors used in estimating the age
of undisturbed forests with the boosted-RF model may ex-
hibit autocorrelation, potentially introducing biases into the
forest age estimation. This study employed a total of 15 in-
put factors for forest age mapping, including three vegeta-
tion factors, three topographic factors, eight climate factors,
and one soil factor. There may be some degree of autocor-
relation within each category of input factors. To mitigate
the effects of autocorrelation, this study proposed an auto-
matic iterative selection mechanism for input factors, exclud-
ing those contributing less than 0.5 % in each, and ultimately
using the final model obtained after three iterations for forest
age estimation. A comparison of the accuracy of forest age
estimations with and without the automatic iterative mecha-
nism showed that the mechanism slightly improved estima-
tion accuracy, thereby reducing the impact of autocorrelation
among input factors to some extent.

Fifth, other input data may also affect the forest age map-
ping. For instance, the original spatial resolutions of the cli-
mate and soil data were larger than 30 m, and these dis-
parities in spatial resolution were likely to introduce uncer-
tainty. However, due to the high spatial similarities of cli-
mate and soil within a small area, minimal variations are
expected among nearby pixels. Moreover, the contributions
of these input factors to forest age mapping were relatively
small (Sect. 5.1). Therefore, their impact on the accuracy of
forest age mapping would not be significant.

Finally, due to data limitations, some input factors that
could potentially enhance forest age estimation accuracy
were not included in this study, such as the diameter at breast
height (DBH), forest density, site index, and soil fertility
(Chen et al., 2019; Lin et al., 2023; Wylie et al., 2019). Our
previous research in Fujian Province has shown that incor-
porating factors like DBH, forest density, and site index can
improve forest age estimation accuracy to some extent (Lin
et al., 2023). However, as these data are not available on a na-
tional scale, they were excluded from this study. As remote-
sensing technologies continue to evolve, it is likely that these
factors will eventually become estimable (Li et al., 2024;
Socha et al., 2020; Fan et al., 2018), further improving the
accuracy of forest age mapping.

6 Data availability

China’s Annual Forest Age (CAFA V2.0) dataset at a 30 m
spatial resolution from 1986 to 2022 is publicly available at
https://doi.org/10.6084/m9.figshare.24464170 (Shang et al.,
2023b).

7 Code availability

The codes are available from the first and corresponding au-
thors upon request.

8 Conclusions

This study generated China’s annual forest age
dataset (CAFA V2.0) at a 30 m resolution from 1986
to 2022, combining forest disturbance monitoring and
machine learning techniques. Forest disturbance monitoring,
which has lower uncertainty than machine learning, was
used to update the annual forest age, employing the modified
COLD (mCOLD) algorithm and considering the spatial
variation within the disturbance area and bidirectional
time-series tracking. For undisturbed forests, the forest
age was estimated using machine learning models tailored
to different regions and forest types, incorporating forest
height, vegetation indices, climate, terrain, and soil data.
Adjustments were made for underestimations in Northeast-
ern and Southwestern China identified in CAFA V1.0, with
additional reference samples and region-specific and forest-
type-specific models. Validation showed that the mapped
age of disturbed forests had a small error of ±2.48 years,
whereas undisturbed forests had a relatively large error of
±7.91 years. The generated 30 m annual forest age dataset
can facilitate forest carbon cycle modeling in China, offering
valuable insights for national forest management practices.
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