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Abstract. The ocean is one of the largest sinks for anthropogenic carbon dioxide (Canth) and its removal of
carbon dioxide (CO2) from the atmosphere has been valued at hundreds of billions to trillions of US dollars
in climate mitigation annually. The ecosystem impacts caused by planet-wide shifts in ocean chemistry result-
ing from marine Canth accumulation are an active area of research. For these reasons, we need accessible tools
to quantify ocean Canth inventories and distributions and to predict how they might evolve in response to fu-
ture emissions and mitigation activities. Unfortunately, Canth estimation methods are typically only accessible to
trained scientists and modelers with access to significant computational resources. Here, we make modifications
to the transit time distribution approach for Canth estimation that render the method more accessible. We also
release software (BRCScienceProducts, 2025) called “Tracer-based Rapid Anthropogenic Carbon Estimation
version 1” (TRACEv1) that allows users – with one line of code – to obtain Canth and water mass age estimates
throughout the global open ocean from user-supplied values of geographic location, pressure, salinity, temper-
ature, and the estimate year. We use this code to generate a data product of global gridded open-ocean Canth
distributions (TRACEv1_GGCanth; Carter, 2025) that ranges from the preindustrial era through 2500 under a
range of Shared Socioeconomic Pathways (SSPs, or atmospheric CO2 concentration pathways). We estimated
the skill of these estimates by reconstructing Canth in models with known distributions of Canth and transient
tracers and by conducting perturbation tests. In the model-based reconstruction test, TRACEv1 reproduces the
global ocean Canth inventory to within ±10 % in 1980 and 2014. We discuss implications and limitations of the
projected Canth distributions and highlight ways that the estimation strategy might be improved. One finding is
that the ocean will continue to increase its net Canth inventory at least through 2500 due to deep-ocean ventila-
tion, even with the SSP in which intense mitigation successfully decreases atmospheric Canth by ∼ 60 % in 2500
relative to the 2024 concentration. A notable limitation of this and similar projections made with TRACEv1
is that ongoing and potential future warming and changing oceanic circulation patterns with climate change
are not captured by the method. The data products generated by this research are available as MATLAB code
(https://doi.org/10.5281/zenodo.15692788, BRCScienceProducts, 2025) and a spatially and temporally gridded
data product (https://doi.org/10.5281/zenodo.15692788, BRCScienceProducts, 2025).

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.15692788
https://doi.org/10.5281/zenodo.15692788


3074 B. R. Carter et al.: Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE)

1 Introduction

Humans are emitting ∼ 10 PgC as carbon dioxide gas (CO2)
to the atmosphere every year, and a portion of these emis-
sions (∼ 25 %) has entered the ocean (Friedlingstein et al.,
2022). Ocean carbon accumulation mitigates global warming
by slowing atmospheric CO2 accumulation. However – in a
series of chemical processes known as ocean acidification –
the elevated carbon content in seawater also shifts ocean car-
bonate chemistry toward a lower pH and carbonate ion con-
tent and toward a higher hydrogen ion (H+) content and CO2
partial pressure (pCO2). These chemical shifts have varying
and important impacts on marine organisms and potentially
on entire ocean ecosystems (Doney et al., 2009, 2020). It is
important to be able to distinguish between the ocean’s large
natural background dissolved inorganic carbon (DIC) con-
tent and the excess anthropogenic carbon (Canth) if we are to
understand the extent, climate impact, and likely future out-
comes of ocean Canth accumulation.

Ocean Canth is defined as the difference between the DIC
in the modern ocean and the DIC that would be present if
humans had never emitted CO2 (Sabine et al., 2004). It is not
a measurable quantity as defined. Without a direct measure,
Canth must be estimated, and there are numerous approaches
to estimating Canth within the literature, including the follow-
ing: global ocean biogeochemical model (GOBM) simula-
tions (Khatiwala et al., 2013), data-assimilation-based ocean
circulation models coupled with air–sea exchange parameter-
izations (Devries, 2014), approaches that rely on preformed
property estimates and remineralization ratios (Vázquez-
Rodríguez et al., 2009) or empirical relationships (Touratier
and Goyet, 2004; Yool et al., 2010), comparisons of repeated
hydrographic sections (Carter et al., 2019; Gruber et al.,
2019b; Müller et al., 2023), techniques such as the transit
time distribution (TTD) or Green function approaches that
rely on transient tracers of air–sea exchange to infer histories
of atmospheric contact and interior ocean circulation (Khati-
wala et al., 2009; Waugh et al., 2006), and approaches that
combine one or more of these other approaches (Sabine et
al., 2004). Isotopic approaches address the related, although
not identical, question of “how much of the DIC in seawa-
ter is of anthropogenic origin (e.g., Eide et al., 2017)?”. Re-
search continues to improve upon these methodologies and
to better quantify their uncertainties, often using reconstruc-
tions of exactly known model-simulated Canth distributions
(Carter et al., 2019; Clement and Gruber, 2018; He et al.,
2018; Matsumoto and Gruber, 2005; Waugh et al., 2006).

There are several qualities that are desirable for Canth es-
timation strategies. Foremost among these is accuracy, but it
is also helpful for estimation approaches to be (1) accessible,
(2) computationally efficient, and (3) able to return estimates
for the past, present, or future. The importance of these latter
three qualities is outlined in the following:

1. Accessibility. Implementation of most Canth estima-
tion strategies requires nuanced understanding of the
methodology so that decisions can be made about the
parameters used in forward or inverse models or how
and whether to account for various biogeochemical
processes (e.g., calcification, organic matter ballasting,
or iron dynamics and limitation). In addition, many
Canth estimation strategies require the presence of co-
located high-quality measurements of physical and bio-
geochemical properties (e.g., empirical multiple linear
regression Canth change estimates) or transient tracer
content measurements (e.g., TTD or Green-function-
based estimates).

2. Computational efficiency. Some Canth estimation strate-
gies require downloading and employing large sparse
matrices (Davila et al., 2022), whereas others require it-
erative inverse model reconstructions or forward model
simulations to be run with GOBMs (DeVries et al.,
2017; Khatiwala et al., 2013).

3. Able to be estimated for the past, present, or future.
Many Canth estimation techniques are limited to a nar-
row time window. For example, “extended multiple lin-
ear regression” approaches are usually limited to the pe-
riod spanned by repeated shipboard hydrographic mea-
surements (Carter et al., 2019; Gruber et al., 2019a;
Müller et al., 2023). A related problem is the need to
adjust a DIC dataset that was measured across years or
decades to be specific to a single reference year or year
of interest. To make this adjustment, it is important to
know how much the DIC value would have changed due
to Canth accumulation between when it was measured
and the reference year. Simplistic adjustments invoking
transient steady-state (Gammon et al., 1982) Canth accu-
mulation are commonly employed (Carter et al., 2021a;
Clement and Gruber, 2018; Lauvset et al., 2016; Müller
et al., 2023), but they are problematic for larger adjust-
ments that are often associated with longer time gaps.
An example of an application that faces these challenges
is given in Sect. S1 in the Supplement.

Here, we describe, assess, and present results from a new
method that we call “Tracer-based Rapid Anthropogenic
Carbon Estimation version 1”, or TRACEv1, which aims
to provide Canth estimation that meets these needs without
overly compromising on Canth estimate accuracy. TRACEv1
is an approach that retains much of the skill of the more
complex approaches and yet is quick; nearly global; easy
to use; computationally efficient; able to generate plausible
projections over a limited time horizon; and requires only
coordinate information (longitude, latitude, and depth), salin-
ity (S), temperature (T ), the desired year for the estimate, and
(for projections) the assumed Shared Socioeconomic Path-
way (i.e., SSP, or atmospheric CO2 concentration over time).

Earth Syst. Sci. Data, 17, 3073–3088, 2025 https://doi.org/10.5194/essd-17-3073-2025



B. R. Carter et al.: Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE) 3075

In this paper, we present three products. The first is the
TRACEv1 code itself; the code is initially released only for
the MATLAB computing language, although a Python port is
planned. The code contains subroutines that use neural net-
works to remap the preformed property estimates of Carter et
al. (2021b) to the locations and conditions provided by users
calling the TRACEv1 routine. The second is an estimate of
the likely uncertainties in TRACEv1 estimates based on an
analysis of the errors found when the method is trained using
transient tracer information extracted from a GOBM simu-
lation – with a spatial and temporal distribution that mirrors
the availability of CFC-11, CFC-12, and SF6 measurements
in the real ocean – and is used to reconstruct the exactly
known GOBM Canth distributions. The third is a data product
of global Canth from TRACEv1 with varied 10- to 100-year
resolution from 1750 through 2500. This product uses a va-
riety of SSPs for projections after 2015.

2 Methods

First, we describe the conceptual framework for TRACEv1
and explain in detail how it works. Second, we introduce the
observational datasets used to train TRACEv1 and explain
how TTD parameters and preformed properties are empiri-
cally fit and estimated on demand. Finally, we explain how
TRACEv1 is used to generate the TRACEv1_GGCanth prod-
uct (Carter, 2025).

2.1 Conceptual framework and historical context

TRACEv1 emulates the inverse Gaussian (IG) TTD method
for Canth estimation, although with several modifications.
Traditionally, the TTD approach makes assumptions about
the distribution of ages (length of time since seawater was
last in contact with the atmospheric) of the various parcels
of seawater that combine to produce the seawater observed
in the ocean interior. Assumptions are also needed about the
degree of air–sea equilibration with transient tracers. These
assumptions are collectively used to tune the age distribution
to match transient tracer observations, and similar assump-
tions are then used to infer the Canth content that would be
expected for that mixture of seawater from the distribution
of ages and the known history of atmospheric CO2 accumu-
lation (e.g., He et al., 2018). TRACEv1 also follows these
steps. The most important modification is that we reduce the
TTD shape to a single term (α), optimize this term to reflect
transient tracer and modeled ideal age distributions as nor-
mal, and then train a neural network capable of predicting
this term using only physical measurements of seawater and
coordinate information. This allows us to estimate Canth from
a TTD without the need for co-located transient tracer obser-
vations at the time and place where the estimate is desired.

When optimizing α, CFC-11, CFC-12, and SF6 are dom-
inant constraints for younger waters, while water mass ideal
ages (A) (Thiele and Sarmiento, 1990) – taken from a model

that assimilates transient tracer observations and measure-
ments of the long-lived 14C radionuclide – are primarily in-
cluded as a constraint for older water masses. SF6 measure-
ments are particularly strong constraints for the youngest wa-
ters ventilated since the 1990s maxima in CFC-11 and CFC-
12 concentrations, but they are only available for ∼ 30 % of
the measured bottles. All available constraints are used for
optimizing all water parcels, and the strong constraint for
young (old) waters and weak constraint for old (young) wa-
ters provided by transient tracers (A) is a natural result of
how the values and misfits of each constraint vary with the
age of the water mass. The transient tracer constraints there-
fore dominate in younger waters where the transient tracer
measurements are largest, whereas the A constraint domi-
nates in water masses that are older than the advent of mea-
surable atmospheric transient tracer concentrations in the pe-
riod from 1940 to the 1960s. For water parcels older than ∼
1940, there is essentially no sensitivity to the transient tracer
information. TRACEv1 is therefore more of an observation-
based product in the surface ocean and an observation-tuned,
model-based product in the deep ocean.

Several recent developments have enabled TRACEv1.
First, the training data are taken from the recent 2023 up-
date to the Global Data Analysis Project version 2 (GLO-
DAPv2.2023) data product (Lauvset et al., 2024). This data
product contains > 270000 bottle measurements with both
CFC-11 and CFC-12 and > 70000 more measurements with
CFCs and SF6 measurements (Fig. 1); SF6 was first included
in the 2022 GLODAP release (Lauvset et al., 2022). CFC dis-
tributions have long been used to estimate Canth, and oceano-
graphic SF6 measurements are available from many recent
cruises owing to methodological developments by Tanhua
et al. (2004) and advances allowing CFC and SF6 measure-
ments on the same samples (Bullister et al., 2006) imple-
mented by transient tracer teams globally (Erickson et al.,
2023). Second, water mass ideal ages from the recently re-
leased transport matrix solutions of the Ocean Circulation In-
verse Model of John et al. (2020) provide an additional con-
straint for TRACEv1. TRACEv1 uses a preformed property
data product (Carter et al., 2021b) to estimate the composi-
tion of seawater when it was last exchanging CO2 with the
atmosphere. Finally, the approach is assessed against newly
simulated Canth, CFC, and SF6 distributions (Müller, 2023)
that were generated as part of the second Regional Ocean
Carbon Cycle Assessment and Processes effort (RECCAP2;
e.g., DeVries et al., 2023). The simulated CFC and SF6 dis-
tributions (Schwinger, 2024) were not previously published
as part of the RECCAP2 data product or used by the analy-
ses.

2.2 How TRACEv1 works

We begin with a summary of the TRACEv1 functions
and then explain the various steps in greater detail. The
TRACEv1 code comprises the following functions:
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Figure 1. Locations and years of measurements of CFC-11 and CFC-12 in the GLODAPv2.2023 data product (Lauvset et al., 2024). Dark
borders around measurements indicate that SF6 is available alongside CFC-11 and CFC12.

1. It uses a neural network to estimate an age distribution
for seawater from a user-specified location, T , and S,
and it returns the mean age if this is a desired output.

2. TRACEv1 uses a record or projection of the atmo-
spheric CO2 in the years leading up to the date of the de-
sired estimate to determine an anthropogenic CO2 level
for each component of the water mass mixture.

3. The code convolves the age distribution with the com-
ponent’s CO2 history to estimate a component-fraction-
weighted mean atmospheric CO2 for the water parcel.

4. It uses another set of neural networks to estimate the
preformed properties of this water mass mixture from
the user-specified location, T , and S.

5. TRACEv1 estimates the degree of CO2 disequilibrium
expected for the surface ocean when responding to
rapid changes in the atmospheric mole fraction of CO2,
XCO2.

6. The code solves for the Canth distribution as the dif-
ference between the DIC value that corresponds to the
surface ocean equilibration level associated with the
transient XCO2 and the DIC value that corresponds
to a “preindustrial” atmospheric XCO2 of 280 ppm.
TRACEv1 allows users to substitute arbitrary reference
preindustrial XCO2 values to obtain estimates that are
comparable to literature estimates that have used alter-
native baselines, but all calculations provided herein are
obtained using 280 ppm.

Committees of neural networks (henceforth just “neural net-
works”) are used to estimate four pieces of information
from S, T , and location information in a standard TRACEv1
estimate (and a fifth neural network is invoked when T in-
formation is not supplied by the user). The neural networks

are similar in construction to those used by the ESPER_NN
routines (Carter et al., 2021a) and are described in more de-
tail in Sect. S2. While the ESPER_NN routines utilize many
combinations of possible predictors, only S and T are chosen
for the TRACE neural networks because they are among the
most frequently available predictor measurements and be-
cause they collectively represent the density structure of the
ocean. Advection and diffusion along density layers in the
ocean comprise the dominant mechanism by which Canth en-
ters the ocean interior, and variations in density, both spa-
tially and temporally, are therefore expected to correlate with
the interior ocean distribution of Canth. Three of the neu-
ral networks estimate preformed biogeochemical properties
of the seawater (explained below), whereas the fourth is a
parameter related to the TTD construction called α. A fifth
neural network allows T to be estimated from S if T is not
provided as a user input. This is not the recommended use
of TRACEv1; it is recommended that users who invoke this
functionality perform validation of the estimates returned for
their purposes and do not rely on the validation provided in
this paper, which is based on estimates obtained using both T
and S.

Preformed properties are estimates of the properties that
interior ocean seawater mixtures had when they last were in
contact with the atmosphere near the ocean surface. These
are the properties that impacted air–sea gas exchange equi-
librium processes when Canth was last able to change through
contact with the atmosphere. In TRACEv1, preformed total
titration seawater alkalinity content (TA0), preformed dis-
solved inorganic silicate content (Si0), and preformed dis-
solved inorganic phosphate content (P0) are collectively used
with pCO2 as constraints for the carbonate chemistry of sea-
water near the sea surface. These three quantities are es-
timated from three separate neural networks trained using
latitude, longitude, depth, S, and T from the Lauvset et
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al. (2016) global gridded version of the GLODAPv2 data
product as predictor information and the preformed prop-
erty estimates of Carter et al. (2021b), estimated for the
same gridded product, as target/validation data. Errors in
preformed properties are small contributors to the overall
Canth uncertainty (Sect. S3).

The fourth neural network estimates α, which is used to
construct the TTD. The TTD is an evolution of the “water
mass age” concept (Bolin and Rodhe, 1973; Hall and Haine,
2002). While a water mass age is an estimate of the aver-
age length of time since a given parcel of interior ocean
seawater was last at the ocean surface, a TTD comes from
the recognition that interior ocean seawater is better repre-
sented as a mixture of many different water parcels – each
with a different history of atmospheric contact and interior
ocean circulation – than as a single parcel of water with a
single A. One-dimensional pipe flow with diffusion results
in a distribution of ages that can be well approximated us-
ing an inverse Gaussian (IG) age fraction distribution (Pea-
cock and Maltrud, 2006; Waugh et al., 2003) and provides
good agreement with available transient tracer data (Son-
nerup et al., 2013; Stanley et al., 2012; Waugh et al., 2004).
However, there are places in the ocean where comparatively
“young” (i.e., recently ventilated) waters mix with very old
deep waters in appreciable amounts (e.g., Antarctic Interme-
diate Water, which is formed through the mixing of fresh
surface waters near the polar front with upwelling upper Cir-
cumpolar Deep Water; see Naveira Garabato et al., 2009),
and the one-dimensional pipe model age distribution is in-
adequate in these areas (Ito and Wang, 2017; Peacock and
Maltrud, 2006). With this and similar concerns driving in-
novation, many variants on the underlying TTD shape have
been used. However, our limited experimentation with these
variants did not reveal any meaningful improvement over the
simple IG distribution for reconstructing modeled Canth (Hall
et al., 2002; Waugh et al., 2003, 2006); thus, we retain the
simple IG formulation. Given the limited number of options
tested, it is plausible that alternative age distributions could
outperform the distribution fitting terms that we employ for
TRACEv1. This is particularly likely for A estimates, as er-
roneous TTD shapes have been shown to be less problematic
for Canth than for A due to the similarities between the atmo-
spheric growth curves for transient tracers and Canth (Waugh
et al., 2006).

The traditional form of the inverse Gaussian for an arbi-
trary coordinate variable “x′′ is as follows:

f (x)=

√
λ

2πx3 e
−λ(x−µ)2

2xµ2 , (1)

where µ is the mean and λ is the shape parameter. However,
in TTD literature, it is more common to specify this equation
as follows:

(x)=

√
03

4π12x3 e
−0(x−0)2

2x12 , (2)

Figure 2. Three example ventilation-year distributions for a parcel
of water observed in the year 2020. The “young,” “default,” and
“old” mixtures in orange, blue, and yellow have mean ages of∼ 17,
91, and 460 years, respectively. Fractions of a given color add up
to 1 when summed across all years.

where 0 is equivalent to µ and the new shape parameter1 is
related to λ by

λ=
03

212 . (3)

Some consideration has been given in the literature to the
ideal values for 1 and 0 for TTD analyses. Based on the re-
sults of He et al. (2018), we choose a 0 = 1 and 1= 1/1.3
(or ∼ 0.77), and we find in our model-based assessments
that this assumption performs equivalently (within uncertain-
ties) to the common alternative assumption of 0 =1= 1.
The standard form of the IG probability distribution with a
0 = 1and1∼ 0.77 (Eq. 2), or a µ=1 and a λ= 3.4 (Eq. 1),
is evaluated from x = 0.01 to x = 5 (in increments of 0.01)
using the “makedist” function in MATLAB.

The predicted parameter α is used to convert a unitless
IG distribution into an age distribution. This α is used to
identify the ages associated with this IG probability distri-
bution, where the age values assigned to the 500 f (x) values
equal [1 : 500] ·α years. The resulting age–probability distri-
bution is then interpolated to integer ages for the most recent
1000 years. When α is< 2, it becomes impossible to interpo-
late across all 1000 years; however, in these cases, the miss-
ing values correspond to negligible fractional contributions
and are neglected. The sum of these interpolated contribu-
tions usually diverges slightly from 1 due to the discretization
of the continuous probability distribution and the inability to
interpolate to all years, so the non-neglected component frac-
tions are further divided by their sum to ensure that they add
to unity. Thus, when α is a large number, the mean A of the
Gaussian distribution is large (Fig. 2), whereas when α is
smaller, A is smaller.

Once the age distribution is known, the atmospheric CO2
record is convoluted into the age distribution as outlined
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Figure 3. A comparison between surface ocean pCO2 values in the model-based data product of Jiang et al. (2023) and (a) the modeled
atmospheric XCO2 value and (b) the value obtained from Eq. (5). Black 1 : 1 lines are provided for reference, and the colored dots indicate
projected and historical values from four different SSPs.

as follows (Hall et al., 2002): first, the atmospheric record
or projection is interpolated to obtain values for the year
of the desired estimate minus the ages in the distribution.
Then, for each of the (up to) 1000 fractions of the wa-
ter mass, the fraction-weighted mean ages (A) and concen-
trations ([X]) can be computed as fraction-weighted sums.
For example, for gas X with atmospheric concentration [X]
summed over the i = 1 : 1000 years prior to the estimate of
interest, this would be computed as follows:

[X] =

1000∑
i=1

fi[X]i . (4)

For the A calculation, [Xi] is replaced in this equation with
i years. The concentration values reflect complete air–sea
equilibration, which is inconsistent with net ocean uptake
of CO2 from air–sea gas exchange. For example, in the
RECCAP2 model simulations, there is a 108± 4 µatm in-
crease in the surface ocean pCO2 in 2018 relative to the
preindustrial value compared to a 128.72 mol mol−1 change
in the atmospheric XCO2 (DeVries et al., 2023; Müller,
2023). Also, the air–sea CO2 disequilibrium is thought to
vary temporally (He et al., 2018) and be sensitive to the
rate of atmospheric XCO2 change. Therefore, we derive an
empirical relationship between atmospheric XCO2 and the
median model–observation hybrid apparent surface ocean
pCO2 record given by Jiang et al. (2023). A variety of pre-
dictive relationships were tested, and the strongest predictive
relationship (lowest root-mean-square error, RMSE) was ob-
tained for the following:

pCO2,oce.year =XCO2,atm.year− 0.144

·
(
XCO2,atm.year−XCO2,atm.year_minus_65

)
. (5)

Equation (5) suggests that the expected surface ocean
pCO2 value in an arbitrary year pCO2,oce.year can be es-
timated as a function of the atmospheric XCO2 in that
year (XCO2,atm.year_minus_65) and the difference between that
atmospheric value and the value in the atmosphere 65 years
prior (XCO2,atm.year). Applying Eq. (5) to the XCO2 record
before use in TRACEv1 meaningfully reduces the mismatch
between the simulated surface ocean pCO2 and the atmo-
spheric XCO2 (Fig. 3). An additional constant offset of
−5.37 µatm was found in the best-fit relationship (not shown
on the right-hand side of Eq. 5), but this term likely reflects
the water vapor correction between XCO2 and pCO2 and,
potentially, parameterized net model degassing of riverine
carbon. TRACEv1 neglects this constant offset because the
code separately applies the water vapor correction for each
parcel of seawater (Dickson et al., 2007) when converting
between XCO2 and pCO2 and because including this term
would have a nearly identical impact on preindustrial pCO2.

Once water-fraction-weighted mean pCO2 values
pCO2oce. are estimated for a parcel of seawater, the expected
equilibrium DIC value for the water parcel when last at the
ocean surface is calculated using estimated TA0, Si0, and P0.
These calculations are repeated with both the pCO2oce.
and a user-provided preindustrial XCO2 value (default is
280 ppm, adjusted for water vapor), and their difference is
attributed to Canth. During fitting of the α values (described
later), a similar procedure is followed for transient tracer
observations with CFC and SF6 equilibrium constants
(see Warner and Weiss, 1985, and Bullister et al., 2002,
respectively), although without adjustments for incomplete
equilibration because the equilibrium timescales for these
tracers are shorter than for CO2.
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Carbonate chemistry calculations are computed with the
CO2SYS code written for MATLAB (Van Heuven et al.,
2011) and modified herein to increase the tolerance for pH
changes during iteration from 0.0001 to 0.001 when con-
verging on a pH value (to speed up the calculation). Car-
bonate dissociation constants from Lueker et al. (2000) are
used with the total boron calculation from Uppström (1974)
and the KF calculation from Perez and Fraga (1987). S and
T values that are outside the viable range for these carbonate
chemistry constants (S = 19–48 and T = 2–35 °C) are over-
ridden with the nearest viable S and T values. This override
has a minimal impact on most Canth calculations for common
seawater types, but we caution here that TRACEv1 is not in-
tended for use in freshwater or brackish environments. Infor-
mation on computing optimization is provided in Sect. S4.

2.3 Data and model output used to train and run
TRACEv1

The α parameter is fit to the CFC-11, CFC-12, and SF6 par-
tial pressures that would be found in a gas phase in complete
air–sea equilibrium with seawater with the measured com-
position, as well as to A from the Ocean Circulation Inverse
Model (OCIM) transport matrix (John et al., 2020) when the
zero-age boundary layer is set equal to the shallowest layer
in the OCIM model. For the real ocean, the transient tracer
partial pressure values are taken as calculated from discrete
seawater measurements in the GLODAPv2.2023 data prod-
uct (Lauvset et al., 2024). Co-located measurements of salin-
ity and temperature are also extracted from this data product.
For the model reconstruction test, Canth, S, and T are taken
from or computed from the NorESM RECCAP2 simulations
(Müller, 2023). In addition to the standard RECCAP2 out-
puts, this model was also used to simulate CFC-11, CFC-12,
and SF6 through the start of 2015 (Schwinger, 2024). The ap-
proaches used to obtain scattered values from gridded model
output and to obtain scattered ages from the OCIM transport
matrix are given in Sect. S5.

TRACEv1 allows more than nine options for atmospheric
CO2 projections/histories and relies on a single reconstruc-
tion of transient tracers taken from a data product com-
piled by the United States Geological Survey (USGS) Reston
Groundwater Dating Laboratory (see the “Data availability”
section). The atmospheric XCO2 reconstruction starting in
the year 1 and continuing through the year 1000 is taken from
the synthesis by Frank et al. (2010) for all CO2 options. Be-
fore the year 1, all reconstructions are set to a constant value
of xCO2 = 277.14 ppmv, equaling the atmospheric concen-
tration in the year 1. From 1001 and through 1959, all recon-
structions follow the historical concentrations of the SSPs
as defined by Meinshausen et al. (2020), which are iden-
tical over this time range. From 1959 through 2022, the
first option, which is called “historical/linear” and is the de-
fault option if no alternative is specified, uses the Mauna
Loa measurements by Keeling et al. (1976) and Thoning et

al. (1989), and if TRACEv1 is instructed to use this record
to generate an estimate for a year that is after 2022, the
slope from a linear trend fit to the last 10 years of the
historical record is used to project to the year of the de-
sired estimate. The remaining eight options are SSP1-1.9,
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP3-7.0-lowNTCF, SSP4-
3.4, SSP4-6.0, and SSP5-3.4-over, all as defined by Mein-
shausen et al. (2020). The SSPs diverge from each other start-
ing in 2017. Between the years 1959 and 2017, the SSP val-
ues have a small average bias of +0.6 ppmv compared to
the historical Mauna Loa measurements with a root-mean-
square disagreement of 0.8 ppmv. Additional custom concen-
tration pathway options can be added by appending a new
column of atmospheric CO2 concentrations to a plain text file
(CO2TrajectoriesAdjusted.txt) that is read by TRACEv1 and
by entering the number of the new option in the TRACEv1
code (i.e., if a 10th option is added, the CO2 pathway op-
tion for the “AtmCO2Trajectory” input would be 10). How-
ever, any user-provided concentration pathways should be
adjusted by Eq. (5) before appending them to this file.

2.4 Fitting TRACEv1 parameters

The parameters are optimized using a bounded minimum
“search” function (“fminsearchbnd” in MATLAB) with an
initial value of α = 1, an upper bound of α =1000, and a
lower bound of α = 0.001. This function uses a Nelder–
Mead simplex algorithm (Lagarias et al., 2006) with itera-
tive variations in the α term by 5 % to minimize a cost func-
tion. For each iteration of this solver, the j = 3 (i.e., CFC-11,
CFC-12, and SF6) transient tracer constraints and the A are
first calculated as described in Eq. (4). The cost function that
is minimized for this solver (ε2) is the sum of the squared
normalized errors of the three partial pressures and A, or

ε2
=

3∑
j=1

(
pX

j
meas−pX

j

calc

pX
j

ATM

)2

+

(
AOCIM−Acalc

AMax

)2

. (6)

Here, pXjmeas is the measured partial pressure of transient
tracer j extracted from discrete GLODAPv2.2023 product or
(for the model validation experiments) from GOBM output,
pX

j

calc is the value calculated from α and the record of at-
mospheric trace gas concentrations as described above, and
pX

j

ATM_2020 is the atmospheric partial pressure of tracer j
in the year 2020. This third term is included to normalize
the errors to a more comparable scale. Without this term,
the pCFC-12 (SF6) errors would be assigned higher (lower)
weight than the errors in the other two transient tracers due
to their greater (smaller) atmospheric partial pressures. Sim-
ilarly, AOCIM is the interpolated OCIM age, Acalc is the cal-
culated A, and Amax is the ideal age of the oldest grid cell
found in the OCIM age calculations (1354 years).

This process is repeated for the observational record
and for the model output. The version of TRACEv1
that is trained on model output is referred to as
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Figure 4. (a) The time history of atmospheric transient tracer and CO2 concentrations expressed as a percentage of their maximum deviation
through 2020 from their assigned preindustrial values of 0 ppmv for CFC-11, CFC-12, and SF6 and 280 ppmv for CO2.(b) The nine at-
mospheric CO2 concentration pathway options used by TRACEv1, with all but “historical/linear” being SSPs as given by Meinshausen et
al. (2020). Both versions of SSP3-7.0 fall nearly on top of each other on this plot and are assigned the same colors.

TRACEv1_validation_NorESM, and details of this compar-
ison are provided in Sect. S6. The version trained on real-
world observations is referred to as TRACEv1. We generate
10 versions of TRACEv1 in which we retrain TRACEv1 af-
ter perturbing the transient tracer measurements from each
cruise in GLODAPv2.2023 by a cruise-wide relative offset
and each measurement by measurement-specific random per-
turbations. In Sect. S7, we quantify the likely impact of mea-
surement uncertainties in the transient tracer measurements
on the final Canth estimates via Monte Carlo analysis.

2.5 Canth data product creation

We use the gridded, temporally averaged GLODAPv2 data
product (Lauvset et al., 2016) for S, T , latitude, longi-
tude, and depth and vary only the year of the estimate to
equal {1750, 1800, 1850, 1900, 1950, 1980, 1994.5, 2000,
2002, 2007.5, 2010, 2014.5, 2020, 2030, 2050, and 2100}.
Estimates are only made using the historical/linear and SSP1-
1.9 reconstructions prior to 2010 (and we note that the SSPs
are identical over this period). In 2020 and thereafter, esti-
mates are provided for each of the nine CO2 concentration
pathway options separately. The estimates in 1994.5, 2002,
2007, and 2014 are provided for comparison and interoper-
ability with published literature distributions (Gruber et al.,
2019a; Lauvset et al., 2016; Müller et al., 2023; Sabine et al.,
2004).

We anticipate that the small differences between the
1750 and 1850 CO2 concentration estimates could prove use-
ful for reconciling literature estimates of Canth that have been
made to be specific to these two common choices of refer-
ence year. Our Canth definition is specific to the 280 ppmv
atmospheric concentration rather than to a specific year. It is

therefore possible for TRACEv1 to return very small nega-
tive Canth values, particularly for estimates following periods
in which CO2 reached minima of ∼ 277± 1 ppmv in the 1st,
6th, and 18th centuries CE. The last time the atmospheric
CO2 concentration was believed to equal 280 ppmv was 1790
(Frank et al., 2010), and TRACEv1 allows users to specify an
alternative reference concentration.

3 Results and discussion

We discuss the uncertainty assessment and compare
TRACEv1 reconstructions to alternatives, discuss the
TRACEv1 projections through 2500, and highlight some ar-
eas where TRACEv1 is limited and might be improved. We
compare TRACEv1 A estimates to alternatives in Sect. S8.

3.1 Uncertainty estimation

In Sect. S5, we describe the results of our uncertainty assess-
ments from model reconstruction (subscript MR) Canth dis-
tributions. In Sect. S6, we present the results of the
Monte Carlo (subscript MC) analysis. Here, we combine
the results of these analyses to estimate the uncertainty of
TRACEv1 (UTRACEv1) estimates that results from several
sources. The model Canth reconstruction estimates reveal
methodological uncertainties, including the limitations of an
IG TTD and the inaccuracies associated with using a neu-
ral network across a large geographical area, and the un-
certainties that result from potential OCIM A distribution
and preformed property distribution errors. The Monte Carlo
analysis reveals uncertainties that result from random uncer-
tainties and cruise-wide offsets in transient tracer concentra-
tion measurements. We add these uncertainties in quadra-

Earth Syst. Sci. Data, 17, 3073–3088, 2025 https://doi.org/10.5194/essd-17-3073-2025



B. R. Carter et al.: Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE) 3081

ture to obtain the overall uncertainty estimate (±1σ ) for
TRACEv1 (UTRACEv1):

UTRACEv1 =

√
u2

MC+ u
2
MR. (7)

Here, uMC is the Monte Carlo RMSE estimate of
1 µmol kg−1 for Canth and±0.3 % for inventories, and uMR is
the uncertainty estimate from the model reconstruction of
4.4 µmol kg−1 for Canth and 15 % for inventories, conserva-
tively chosen because the model reconstruction reproduces
inventories to within 10 % in 1980 and 2014. The uncer-
tainty appears to grow with the estimate and over time, so
15 % of the estimated Canth is used when this value exceeds
4.4 µmol kg−1. These uncertainty estimates neglect the con-
tribution of uncertainty in the S and T values used in the neu-
ral network to the overall Canth estimate uncertainty, which
we believe to be small relative to UTRACEv1, but we note
that users can conduct perturbation tests if they are supply-
ing particularly uncertain S and T information. UTRACEv1 is
an optional output from TRACEv1. In Sect. S6, we show
that reconstruction errors are significantly larger in marginal
seas with few or no transient tracer measurements and are
also elevated near coasts and in areas of strong upwelling.
UTRACEv1 should be considered an underestimate in these re-
gions. We do not attempt to estimate uncertainty in the op-
tional A TRACEv1 output.

3.2 Canth reconstructions and data product comparisons

The reconstructions and projections from TRACEv1 (Ta-
ble 1) match past anthropogenic inventory estimates obtained
from analyses based on measurements of DIC changes and
distributions (Fig. 5) in 1994 (118(±26) PgC from Sabine et
al., 2004, vs. 127(±19) for TRACEv1), 2007 (118(±26)+
29(±2.5)= 147(±26) PgC from Müller et al., 2023, up-
dating Gruber et al., 2019a, vs. 161(±24) for TRACEv1),
and 2014 (118(±26)+29(±2.5)+27(±2.5)= 174(±26) PgC
from Müller et al., 2023, vs. 182(±27) for TRACEv1). The
agreement with the DIC-based approaches is reassuring, as
there is little overlap in the data or methodologies used to
generate the DIC-based estimates compared to the data and
methods used to obtain the TRACEv1 routines: Müller et
al. (2023) did not rely on transient tracer information, and
the data used in this study are, on average, more recent
than the CFC-11 and CFC-12 information used by Sabine
et al. (2004) (Fig. 1).

The regional distribution of the Canth inventory qualita-
tively matches prior estimates as well, with significantly
higher column inventory estimates in the North Atlantic
(Fig. 6, Table 1). Similarly, there are areas of higher column
inventories generally in the Southern Hemisphere portions of
the other ocean basins, as mode and intermediate waters are
exported northward from the Southern Ocean. Within Fig. 6,
bathymetric features such as the Kerguelen Plateau and the
Mid-Atlantic Ridge are visible when they displace waters

Table 1. TRACEv1 estimates of Canth inventories (in PgC± 1σ
uncertainties) calculated by ocean basin for the specified points in
time. The Atlantic becomes the Arctic at 40° N, whereas the Pacific
transitions at 67° N. The Southern Ocean is defined as the area in
all basins south of 40° S. Anthropogenic inventories are small and
negative in 1750 because of the ∼ 200-year-long period with a <
280 ppmv CO2 atmosphere prior to the industrial era.

Year Pacific Atlantic Indian Arctic Southern Total

1750 −3(±1) −2(±1) −1(±1) −1(±1) −2(±1) −8(±2)
1800 −2(±1) −2(±1) −1(±1) 0(±1) −2(±1) −7(±1)
1850 −1(±1) 0(±1) 0(±1) 0(±1) 0(±1) −1(±1)
1900 4(±1) 4(±1) 2(±1) 2(±1) 4(±1) 18(±3)
1950 15(±2) 14(±2) 7(±2) 6(±1) 14(±2) 56(±9)
1980 25(±4) 24(±4) 13(±2) 9(±2) 24(±4) 95(±14)
1994 35(±5) 32(±5) 17(±3) 11(±2) 32(±5) 127(±19)
2000 39(±6) 35(±5) 19(±3) 13(±2) 35(±5) 140(±21)
2002 40(±6) 37(±6) 20(±3) 13(±2) 37(±6) 147(±22)
2007 44(±7) 40(±6) 21(±3) 15(±2) 40(±6) 161(±24)
2010 47(±7) 42(±6) 22(±4) 15(±3) 42(±6) 168(±25)
2014 50(±8) 45(±7) 24(±4) 16(±3) 46(±7) 182(±27)
2020 56(±8) 50(±8) 27(±4) 18(±3) 50(±8) 201(±30)

that would otherwise contain meaningful quantities of Canth,
and a band of low column inventories can be seen within the
Antarctic Circumpolar Current where old deep waters upwell
to near the ocean surface.

TRACEv1 has a more variable agreement with estimates
based on transient tracer information. The estimates are
higher than – but within uncertainties of – the Green func-
tion fits of Khatiwala et al. (2009) and a TTD-based inven-
tory estimate (Waugh et al., 2006). TRACEv1 estimates of
168(±25) PgC are within uncertainties of the 178 PgC in-
ventory of Davila et al. (2022) calculated in 2010 using the
total matrix intercomparison approach. At 172(±26) PgC,
TRACEv1 estimates are near the OCIM estimates of De-
vries (2014) of 160–166 PgC in 2012, although this not sur-
prising because theA estimates implied by an OCIM solution
were used as a fitting parameter for TRACEv1. The TTD-
based Canth inventory for 2002 in the gridded GLODAPv2
data product of Lauvset et al. (2016) is 179 PgC compared
to a TRACEv1 estimate of 147(±22) PgC in the same year.
In Sect. S9, we show that the main disagreement between
the TRACE estimates and the GLODAPv2 gridded product
(Lauvset et al., 2016) is found in the deep ocean, where GLO-
DAPv2 inventories consistently exceed TRACE inventories
below ∼ 500 m. There are several possible reasons for this
disagreement, but the true cause is unclear.

3.3 Canth inventory projections

The Canth inventory projections (Table 2, Fig. 5b) indicate
that, even if humanity acts to rapidly reduce Canth in the at-
mosphere and manages to bring atmospheric XCO2 down to
337 µatm by the middle of the millennium in line with the
ambitious SSP1-1.9 scenario, the ocean will never – on this
time horizon – cease to take up additional Canth, picking up
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Figure 5. Panel (a) shows the global Canth inventory projected by TRACEv1, with blue shading indicating the uncertainty estimate. Cir-
cles show estimates from literature-data-based Canth distribution estimates, with filled circles indicating estimates rooted primarily in DIC
measurements and open circles indicating estimates rooted primarily in fitting transient tracer distributions. Panel (b) shows projected values
through 2500, using solid lines for various SSPs (as labeled). Thin dotted lines indicate the inventories that would be obtained by projecting
the 2020 estimate using transient steady-state assumptions (Gammon et al., 1982) with the atmospheric CO2 concentrations from the SSPs
with the same line color. Both versions of SSP3-7.0 fall nearly on top of each other on this plot and are assigned the same colors.

Figure 6. Column inventory of Canth mapped for 2020 using
TRACEv1 with the historical/linear atmospheric CO2 pathway.

an additional 5.4 PgC between 2400 and 2500. This builds
on the findings of Koven et al. (2022) and Jones et al. (2016)
using full model simulations through 2300 and suggests that
the impacts of ocean acidification are likely to continue to
spread throughout the ocean depths, even with a highly suc-
cessful carbon management policy. Nevertheless, such action
remains important for preventing ocean acidification, as the
degree of surface and interior ocean acidification depends
strongly on which SSP we follow. This is particularly true
for the well-lit surface euphotic zone that is the base of most
marine food webs: the relative proportion of marine Canth
shifts increasingly from the surface ocean to the ocean depths
over time (Fig. 7a), and this tendency becomes more pro-
nounced the more rapidly and completely that atmospheric

CO2 emissions are curtailed and reversed (Fig. 7b). Indeed,
several SSPs show reduced surface Canth relative to modern
values despite the continued ocean Canth accumulation. An
important caveat is that these findings do not consider the
impacts of changes in heat and freshwater content, circula-
tion, or changes in the ocean’s biological pump; rather, they
only reflect the impact expected from changing atmospheric
XCO2 and the oceanic buffering capacity.

One intended use for TRACEv1 is adjusting the DIC mea-
surement to a reference year. The simple approximation of
a transient steady state (Gammon et al., 1982) has been
used in several recent studies (e.g., Lauvset et al., 2016;
Clement and Gruber 2018; Carter et al., 2021a; Müller et
al., 2023), and our projections show that this assumption per-
forms plausibly for projections over short timescales. How-
ever, we contend that TRACEv1 provides a superior means
of adjusting DIC measurements to be appropriate for a ref-
erence year. For example, the differences between mod-
eled Canth between 1980 and 2014 in NorESM disagree with
the differences between TRACEv1 estimates for those same
years by an average of −0.1(±3.0) µmol kg−1. The statistics
are worse at −1.2(±3.6) µmol kg−1 when modeled differ-
ences are compared instead to the differences between the
1980 Canth values and the 1980 values scaled to 2014 using
transient steady-state assumptions. Thus, both adjustments
are reasonable from 1980 to 2014, but the transient steady-
state adjustment tends to overpredict the change. Also, unlike
TRACEv1, transient steady-state adjustments require an in-

Earth Syst. Sci. Data, 17, 3073–3088, 2025 https://doi.org/10.5194/essd-17-3073-2025



B. R. Carter et al.: Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE) 3083

Table 2. TRACEv1 projections of global ocean Canth inventories (in PgC) until the middle of the millennium if the indicated atmospheric
CO2 concentration pathway is followed.

2020 2030 2050 2100 2200 2300 2400 2500

Historical/linear 201(±30) 236(±35) 315(±47) 545(±82) 1078(±162) 1623(±243) 2132(±320) 2591(±389)
SSP1-1.9 200(±30) 235(±35) 293(±44) 389(±58) 430(±64) 448(±67) 458(±69) 463(±69)
SSP1-2.6 200(±30) 236(±35) 310(±46) 450(±68) 588(±88) 662(±99) 706(±106) 731(±110)
SSP2-4.5 200(±30) 238(±36) 326(±49) 567(±85) 975(±146) 1254(±188) 1417(±213) 1512(±227)
SSP3-7.0 200(±30) 240(±36) 341(±51) 687(±103) 1570(±235) 2290(±343) 2730(±410) 2984(±448)
SSP3-7.0-lowNTCF 200(±30) 240(±36) 341(±51) 683(±102) 1559(±234) 2281(±342) 2725(±409) 2982(±447)
SSP4-3.4 200(±30) 236(±35) 311(±47) 473(±71) 601(±90) 665(±100) 704(±106) 728(±109)
SSP4-6.0 200(±30) 237(±36) 329(±49) 602(±90) 1123(±169) 1504(±226) 1735(±260) 1871(±281)
SSP5-3.4-over 200(±30) 240(±36) 346(±52) 535(±80) 663(±100) 721(±108) 754(±113) 772(±116)

Figure 7. (a) The relative inventory of Canth vs. depth in various years of the historical/linear projection, expressed as the percentage of the
total DIC inventory that is found within each 1 m interval. Here, a shrinking surface value indicates that a greater proportion of the signal is
found at depth, but it does not necessarily imply a lower surface Canth. Panel (b) shows the total inventory in 2500 vs. depth using solid lines
for each of the CO2 concentration pathways employed by TRACEv1, with the 2020 historical/linear inventory plotted as a dashed line for
comparison. Both versions of SSP3-7.0 fall nearly on top of each other on this plot and are assigned the same colors.

dependent estimate of Canth. (For the comparison above, they
were provided the exactly correct model Canth distribution
in the earlier year, although this is never known in the real
ocean.) Finally, the transient steady-state assumption is also
known to break down if the atmosphere ceases to increase in
its tracer concentration exponentially; this occurs by 2500 for
CO2 in all SSPs, although most SSPs reach this point much
sooner (Meinshausen et al., 2020). It can be seen in these
cases that a transient steady state results in large errors in
the projected Canth inventories by mid-millennium and even
projects spurious decreases (Fig. 5b).

3.4 Limitations and future directions

There are several notable limitations of the TRACEv1
method:

1. It presumes fixed circulation and is unable to resolve
most timescales and modes of Canth variability.

2. It shows larger reconstruction errors in regions that lack
training data, which is a common problem for neural
networks and other regression strategies (e.g., Carter et
al., 2021a). As transient tracer measurements with the
strong SF6 constraint are still relatively rare (approxi-
mately 5 % of the GLODAPv2.2023 data product con-
tains all three transient tracer measurements), it is likely
that TRACE will improve as more such measurements
become incorporated. However, version 1 of TRACE
should be used with caution in regions without train-
ing data, and this caution applies to many marginal seas
(Fig. 1 and Fig. S1 in the Supplement).

3. TRACEv1 appears to overestimate Canth in surface wa-
ters where there is meaningful upwelling, although per-
haps not by a larger extent than alternative Canth estima-
tion strategies. This is unfortunate because such surface
waters are frequently found in areas of naturally low pH
that are of interest for ocean acidification research.
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4. The method has not yet been well validated in a high-
resolution model representation of a coastal environ-
ment, so its uncertainties are not well estimated outside
of the open ocean. While the circulation information en-
coded in TRACEv1 has been optimized within a limited
parameter space, it is likely – based on past literature ex-
ploring many options for simplifying the complex dis-
tributions of myriad water types that mix in the ocean
interior – that the comparatively simple single term that
we employ herein to constrain interior ocean age distri-
butions could be meaningfully improved. We leave this
to future work.

5. Furthermore, the TTD approach is limited by the need
for an assumed air–sea disequilibrium and the possibil-
ity that the degree of disequilibrium for transient tracers
varies meaningfully over time and space and between
CFCs and SF6 (Shao et al., 2013; Sonnerup et al., 2015)
and differs from the related term for air–sea CO2 dis-
equilibria, which seems likely due to the slow relax-
ation of CO2 disequilibria (Jones et al., 2014) and the
faster rate of transient tracer equilibration (Wanninkhof,
2014). A common assumption of 100 % equilibration
tends to result in TTD approaches overestimating Canth
(Waugh et al., 2006). We include an empirical relation-
ship intended to deal with this issue but note that its for-
mulation remains somewhat ad hoc and based on model
simulations of surface ocean conditions.

6. TRACEv1 is aimed at resolving the accumulation
of Canth under steady-state circulation. However, it is
possible that it is able to resolve some non-steady-state
components of Canth accumulation when it is called with
time-varying temperature and salinity records as predic-
tors. It is yet untested to what degree this is an effective
strategy for capturing such variability.

We include the version number in TRACEv1 both to signal
that future improvements are likely and to disambiguate the
function from other software routines that might have simi-
lar names. There are several ways that TRACEv1 might be
improved:

1. Some fitting strategies have shown improvements when
the signal of interest is fit to the disagreement between
observations and a model prior, instead of being fit di-
rectly to the signal. This approach could improve esti-
mates if a model prior age distribution can be obtained
and be regridded to global locations of interest in a com-
putationally efficient manner.

2. Further optimization of the shape of the TTD could re-
sult in improved Canth reconstructions.

3. MATLAB is an open-source language, but it is not
freely available. It would therefore further improve the

accessibility of Canth estimates if TRACEv1 were re-
leased in a freely available computing package. Prior
experience suggests that a modest amount of script is
required to convert neural networks from MATLAB to
Python, whereas somewhat less script is required to
transition the code to Julia. This is left to future work.

4 Data availability

The gridded GLODAP product is available at
https://glodap.info/ (GEOMAR and the ICOS Ocean
Thematic Center, 2024). The CFC and SF6 atmo-
spheric record data product was obtained from the
USGS Reston Groundwater Dating Laboratory website:
https://water.usgs.gov/lab/software/air_curve/index.html
(U.S. Department of the Interior and U.S. Geological
Survey, 2025). The TRACEv1_GGCanth product is available
from Zenodo: https://doi.org/10.5281/zenodo.15003059
(Carter, 2025). The NorESM modeled distributions
of transient tracers are also available from Zenodo:
https://doi.org/10.5281/zenodo.14536027 (Schwinger,
2024). TRACEv1 data can be found and freely obtained
at https://doi.org/10.5281/zenodo.15692788 (BRCScience-
Products, 2025).

5 Code availability

TRACEv1 code can be found and freely obtained
at https://doi.org/10.5281/zenodo.15692788 (BRCScience-
Products, 2025).

6 Conclusions

We present a new method called TRACEv1 for rapidly es-
timating the time-varying Canth distribution throughout the
open ocean, including detailed error estimates. TRACEv1 is
available as a function in the MATLAB programming lan-
guage. We further provide a data product with Canth distribu-
tions for a range of years (TRACEv1_GGCanth; Carter, 2025)
on the GLODAPv2 gridded product grid used by Lauvset
et al. (2016). We use this data product to examine how the
Canth distribution varies with depth and time, and we show
that the ocean can be expected to continue to increase its
Canth inventory through 2500 for all SSPs. We find that SSP3-
7.0 results in the largest projected 2500 ocean Canth inventory
of 2984(±448) PgC, and this represents a ∼ 15-fold increase
over the 2020 Canth inventory.

There are several strengths of the TRACEv1 method,
which relies on TTDs to estimate Canth distributions from
a time-evolving atmospheric CO2 trajectory. The method is
easy and quick to implement, shows fidelity to model re-
constructions and agreement with recently published data-
based estimates, and only requires S and T measurements
and spatiotemporal coordinate information to produce an es-
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timate. It also provides means to plausibly adjust collections
of DIC measurements collected over time to a common time
by removing the influences of Canth changes. While the re-
construction fidelity of TRACEv1 estimates were quite high
in a test using model output with exactly known Canth dis-
tributions, we nevertheless believe the primary advantage of
TRACEv1 and the new data product is their accessibility.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-3073-2025-supplement.
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