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Abstract. Gross primary productivity (GPP) is the largest carbon flux in the Earth system, playing a crucial
role in removing atmospheric carbon dioxide and providing carbohydrates needed for ecosystem metabolism.
Despite the importance of GPP, however, existing estimates present significant uncertainties and discrepancies.
A key issue is the underrepresentation of the CO2 fertilization effect, a major factor contributing to the increased
terrestrial carbon sink over recent decades. This omission could potentially bias our understanding of ecosystem
responses to climate change.

Here, we introduce CEDAR-GPP, the first global machine-learning-upscaled GPP product that incorporates
the direct CO2 fertilization effect on photosynthesis. Our product is comprised of monthly GPP estimates and
their uncertainty at 0.05° resolution from 1982 to 2020, generated using a comprehensive set of eddy covariance
measurements, multi-source satellite observations, climate variables, and machine learning models. Importantly,
we used both theoretical and data-driven approaches to incorporate the direct CO2 effects. Our machine learning
models effectively predict monthly GPP (R2

∼ 0.72), the mean seasonal cycles (R2
∼ 0.77), and spatial variabil-

ities (R2
∼ 0.63) based on cross-validation at flux sites. After incorporating the direct CO2 effects, the predicted

long-term GPP trend across global flux towers substantially increases from 3.1 to 4.5–5.4 gC m−2 yr−1, which
aligns more closely with the 7.7 gC m−2 yr−1 trend detected from eddy covariance data. While the global patterns
of annual mean GPP, seasonality, and interannual variability generally align with existing satellite-based prod-
ucts, CEDAR-GPP demonstrates higher long-term trends globally after incorporating CO2 fertilization and re-
flected a strong temperature control on direct CO2 effects. The estimated global GPP trend is 0.57–0.76 PgC yr−1

from 2001 to 2018 and 0.32–0.34 PgC yr−1 from 1982 to 2018. Estimating and validating GPP trends in data-
scarce regions, such as the tropics, remains challenging, underscoring the importance of ongoing ground-based
monitoring and advancements in modeling techniques. CEDAR-GPP offers a comprehensive representation
of GPP temporal and spatial dynamics, providing valuable insights into ecosystem–climate interactions. The
CEDAR-GPP product is available at https://doi.org/10.5281/zenodo.8212706 (Kang et al., 2024).
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1 Introduction

Terrestrial ecosystem photosynthesis, known as Gross pri-
mary productivity (GPP), is the primary source of food and
energy for the Earth system and human society (Keenan and
Williams, 2018). Through photosynthesis, terrestrial ecosys-
tems also mitigate climate change, by removing 30 % of an-
thropogenic carbon emissions from the atmosphere each year
(Friedlingstein et al., 2023). However, due to the lack of di-
rect measurements at the global scale, our understanding of
photosynthesis and its spatiotemporal dynamics is limited,
leading to considerable disagreements among various GPP
estimates (Anav et al., 2015; O’Sullivan et al., 2020; Smith
et al., 2016; Yang et al., 2022). Addressing these uncertain-
ties is crucial for improving the predictability of ecosystem
dynamics under climate change (Friedlingstein et al., 2014).

Over the past three decades, global networks of eddy co-
variance flux towers collected in situ carbon flux measure-
ments that allow for accurate estimates of GPP, providing
valuable insights into photosynthesis dynamics under vari-
ous environmental conditions (Baldocchi, 2020; Beer et al.,
2010). To quantify and understand GPP at scales and lo-
cations beyond the ∼ 1 km2 flux tower footprints, machine
learning has been employed with gridded satellite and cli-
mate datasets to upscale site-based measurements and pro-
duce wall-to-wall GPP maps (Dannenberg et al., 2023; Joiner
and Yoshida, 2020; Jung et al., 2011; Tramontana et al.,
2016; Xiao et al., 2008; Yang et al., 2007; Zeng et al.,
2020). This “upscaling” approach provides data-driven and
observation-based quantifications without prescribed func-
tional relations between GPP and its climatic or environmen-
tal drivers. It offers unique empirical constraints of ecosys-
tem carbon dynamics, complementing those derived from
process-based and semi-process-based approaches such as
terrestrial biosphere models or the light-use efficiency (LUE)
models (Beer et al., 2010; Gampe et al., 2021; Jung et al.,
2017; Schwalm et al., 2017). In recent years, the growth of
global and regional flux networks, coupled with increasing
efforts in data standardization, has offered new opportuni-
ties for the advancement of upscaling frameworks, enabling
comprehensive quantifications of terrestrial photosynthesis
(Joiner and Yoshida, 2020; Nelson et al., 2024; Pastorello et
al., 2020).

Effective machine learning upscaling depends on a com-
plete set of input predictors that fully explain GPP dynamics.
Upscaled datasets have primarily relied on satellite-observed
greenness indicators, such as vegetation indices, leaf area in-
dex (LAI), and the fraction of absorbed photosynthetically
active radiation (fAPAR), which effectively capture canopy-
level GPP dynamics related to leaf area changes (Joiner and
Yoshida, 2020; Ryu et al., 2019; Tramontana et al., 2016).
However, important aspects of leaf-level physiology, such
as those controlled by climate factors, are often omitted in
major upscaled datasets, preventing accurate characteriza-
tion of GPP responses to climate change (Bloomfield et al.,

2023; Stocker et al., 2019). In particular, none of the previ-
ous upscaled datasets have considered the direct effect of at-
mospheric CO2 on leaf-level photosynthesis, which is a key
factor contributing to at least half of the enhanced land car-
bon sink observed over the past decades (Keenan et al., 2016,
2023; Ruehr et al., 2023; Walker et al., 2021). This omission
can lead to incorrect inferences regarding long-term trends
in various components of the terrestrial carbon cycle (De
Kauwe et al., 2016).

Multiple independent lines of evidence from atmospheric
inversion (Wenzel et al., 2016), atmospheric 13C / 12C mea-
surements (Keeling et al., 2017), ice core records of carbonyl
sulfide (Campbell et al., 2017), glucose isotopomers (Ehlers
et al., 2015), as well as free-air CO2 enrichment experiments
(FACE) (Walker et al., 2021), suggest a widespread posi-
tive effect of elevated atmospheric CO2 on GPP from site
to global scales. Increasing atmospheric CO2 directly stim-
ulates the biochemical rate or the LUE of leaf-level photo-
synthesis, known as the direct CO2 fertilization effect (CFE).
Enhanced photosynthesis could lead to greater net carbon as-
similation, contributing to an increase in total leaf area. This
expansion, contributing to higher light interception, further
enhances canopy-level photosynthesis (i.e., GPP), which is
referred to as the indirect CFE. The direct CFE has been
found to dominate GPP responses to CO2 compared to the
indirect effect, from both theoretical and observational anal-
yses (Chen et al., 2022; Haverd et al., 2020; Keenan et al.,
2023).

Satellite-based estimates have shown an increasing global
GPP trend in the past few decades, largely attributable to
CO2-induced increases in LAI (Chen et al., 2019; De Kauwe
et al., 2016; Piao et al., 2020; Zhu et al., 2016). However,
previous upscaled GPP datasets, as well as most LUE mod-
els such as the MODIS GPP product, have failed to con-
sider the direct CO2 effects on leaf-level biochemical pro-
cesses (Jung et al., 2020; Zheng et al., 2020). Consequently,
these products likely underestimated the long-term trend of
global GPP, leading to large discrepancies when compared
to process-based models, which typically consider both di-
rect and indirect CO2 effects (Anav et al., 2015; De Kauwe
et al., 2016; Keenan et al., 2023; O’Sullivan et al., 2020).
Notably, recent improvements in LUE models have included
the CO2 response and show improved long-term changes in
GPP globally (Zheng et al., 2020), yet this important mech-
anism is still missing in GPP products upscaled from in situ
eddy covariance flux measurements based on machine learn-
ing models.

To improve the quantification of GPP spatial and tempo-
ral dynamics and provide a robust representation of long-
term dynamics in global photosynthesis, we developed the
CEDAR-GPP1 data product. CEDAR-GPP was upscaled
from global eddy covariance carbon flux measurements us-

1CEDAR stands for upsCaling Ecosystem Dynamics with AR-
tificial intelligence.
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ing machine learning along with a broad range of multi-
source satellite observations and climate variables. In addi-
tion to incorporating direct CO2 fertilization effects on pho-
tosynthesis, we also account for indirect effects via greenness
indicators and include novel satellite datasets such as solar-
induced fluorescence (SIF), land surface temperature (LST),
and soil moisture to explain variability under environmental
stresses. We provide monthly GPP estimations and associ-
ated uncertainties at 0.05° resolution derived from 10 model
setups. These setups differ by the temporal range depending
on satellite data availability, the method for incorporating the
direct CO2 fertilization effects, and the partitioning approach
used to derive GPP from eddy covariance measurements.
Short-term model setups are primarily based on data derived
from MODIS satellites generating GPP estimates from 2001
to 2020, while long-term estimates span 1982 to 2020 us-
ing combined Advanced Very-High-Resolution Radiometer
(AVHRR) and MODIS data. We used two approaches to in-
corporate the direct CO2 fertilization effects, including di-
rect prescription with eco-evolutionary theory and machine
learning inference from the eddy-covariance data. Addition-
ally, we provide a baseline configuration that does not in-
corporate the direct CO2 effects. Uncertainties in GPP es-
timation were quantified using bootstrapped model ensem-
bles. We evaluated the machine learning models’ skills in
predicting monthly GPP, seasonality, interannual variability,
and trend against eddy covariance measurements, and com-
pared the CEDAR-GPP spatial and temporal variability to
existing satellite-based GPP estimates.

2 Data and methods

2.1 Eddy covariance data

We obtained monthly eddy covariance GPP measurements
from 2001 to 2020 from the FLUXNET2015 (Pastorello
et al., 2020), AmeriFlux FLUXNET (https://ameriflux.lbl.
gov/data/flux-data-products/, last access: 2 January 2022),
and ICOS Warm Winter 2020 (Warm Winter 2020 Team,
2022) datasets. All data were processed with the ONE-
FLUX pipeline (Pastorello et al., 2020). Following previ-
ous upscaling efforts (Tramontana et al., 2016), we selected
monthly GPP data with at least 80 % of high-quality hourly
or half-hourly data for temporal aggregation. High-quality
data refers to GPP derived from measured or high-quality
gap-filled net ecosystem exchange (NEE) data. We further
excluded large negative GPP values, setting a cutoff of
−1 gC m−2 d−1. We utilized GPP estimates from both the
night-time (GPP_REF_NT_VUT) and day-time (GPP_REF_
DT_VUT) partitioning approaches. We classified flux tower
sites according to the C3 and C4 plant categories reported in
metadata and related publications when available and used a
C4 plant percentage map (Still et al., 2003) otherwise. This
classification information is included in Sect. S1 in the Sup-
plement. Our analysis encompassed 233 sites, predominantly

located in North America, Western Europe, and Australia
(Fig. 1). A list of the sites is provided in Appendix A. Despite
their uneven geographical distribution, these sites effectively
cover a diverse range of climatic conditions and are represen-
tative of global biomes (Fig. 1c, d). In total, our dataset in-
cluded over 18 000 site-months. Note that we did not include
eddy covariance data before 2001 since it was limited to only
a few sites, with only four sites containing data before 1996.
This scarcity might introduce biases in the machine learn-
ing models, particularly in the relationship between GPP and
CO2, leading to unreliable extrapolations across space and
time in the long-term predictions.

2.2 Global input datasets

We compiled an extensive set of covariates from gridded cli-
mate reanalysis data; multi-source satellite datasets includ-
ing optical, thermal, and microwave observations; and cate-
gorical information on land cover, climate zone, and C3 /C4
classification. The datasets that we compiled offer compre-
hensive information about GPP dynamics and its responses
to climatic variabilities and stresses. Table 1 lists the datasets
and associated variables used to generate CEDAR-GPP.

2.2.1 Climate variables

We obtained air temperature, vapor pressure deficit, precip-
itation, potential evapotranspiration, and skin temperature
from the EAR5-Land reanalysis dataset (Sabater, 2019; Ta-
bles 1, S1). We applied a three-month lag to precipitation, to
represent the root zone water availability. Averaged monthly
atmospheric CO2 concentrations were calculated as an aver-
age of records from the Mauna Loa Observatory and South
Pole Observation stations, retrieved from NOAA’s Earth Sys-
tem Research Laboratory (Thoning et al., 2021).

2.2.2 Satellite datasets

We assembled a broad collection of satellite-based observa-
tions of vegetation greenness and structure, LST, solar ra-
diation, solar-induced fluorescence (SIF), and soil moisture
(Tables 1, S1).

We used three MODIS version 6 products: surface re-
flectance, LAI/fAPAR, and LST. Surface reflectance from
optical to infrared bands (band 1 to 7) was sourced from
the MODIS Nadir BRDF-adjusted reflectance (NBAR) daily
dataset (MCD43C4; Schaaf and Wang, 2015). From these
data, we derived vegetation indices, including NIRv (Bad-
gley et al., 2019), kNDVI (Camps-Valls et al., 2021), NDVI,
enhanced vegetation index (EVI), normalized difference wa-
ter index (NDWI) (Gao, 1996), and the green chlorophyll
index (CIgreen; Gitelson, 2003). We also used snow per-
centages from the NBAR dataset. We used the 4 d LAI
and fPAR composite derived from Terra and Aqua satellites
(MCD15A3H; Myneni et al., 2015a; Yan et al., 2016a, b)
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Figure 1. (a) Spatial distribution of eddy covariance sites used to generate the CEDAR-GPP product. (b) Annual site counts. (c) Site counts
by biomes. ENF: evergreen needleleaf forests; EBF: evergreen broadleaf forests; DBF: deciduous broadleaf forest; MF: mixed forests; WSA:
woody savannas; SAV: savannas; OSH: open shrublands; CSH: closed shrublands; GRA: grasslands; CRO: croplands; WET: wetlands.
(d) Site distributions in the annual temperature and precipitation space. Whittaker biome classification is shown as a reference of natural
vegetation based on long-term climatic conditions. It does not directly indicate the actual biome associated with each site. The base map
in (a) was obtained from the NASA Earth Observatory map by Joshua Stevens using data from NASA’s MODIS Land Cover, the Shuttle
Radar Topography Mission (SRTM), the General Bathymetric Chart of the Oceans (GEBCO), and Natural Earth boundaries. Whittaker
biomes were plotted using the “plotbiomes” R package (Ştefan and Levin, 2018).

from July 2002 onwards and the MODIS 8 d LAI and fPAR
dataset from Terra only (MOD15A2H) prior to July 2002
(Myneni et al., 2015b). We used day-time and night-time
LST from the Aqua satellite (MYD11A1; Wan et al., 2015b),
with the Terra-based LST product (MOD11A1) used after
July 2002 (Wan et al., 2015a). Terra LST was bias-corrected
with the differences in the mean seasonal cycles between
Aqua and Terra following Walther et al. (2022).

We used the PKU GIMMS NDVI4g dataset (Li et al.,
2023b) and PKU GIMMS LAI4g (Cao et al., 2023) datasets
available from 1982 to 2020. PKU GIMMS NDVI4g is a har-
monized time series that includes AVHRR-based NDVI from
1982 to 2003 (with biases and corrections mitigated through
inter-calibration with Landsat surface reflectance images)
and MODIS NDVI from 2004 onward. PKU GIMMS LAI4g
consisted of consolidated AVHRR-based LAI from 1982
to 2003 (generated using machine learning models trained
with Landsat-based LAI data and NDVI4g) and reprocessed
MODIS LAI (Yuan et al., 2011) from 2004 onwards.

We utilized photosynthetically active radiation (PAR), dif-
fusive PAR, and shortwave downwelling radiation from the
BESS_Rad dataset (Ryu et al., 2018). We obtained the

continuous-SIF (CSIF) dataset (Zhang, 2021; Zhang et al.,
2018) produced by a machine learning algorithm trained us-
ing OCO-2 SIF observations and MODIS surface reflectance.
We used surface soil moisture from the ESA CCI soil
moisture combined passive and active product (version 6.1)
(Dorigo et al., 2017; Gruber et al., 2019).

2.2.3 Other categorical datasets

We used plant functional type (PFT) information derived
from the MODIS Land Cover product (MCD12Q1; Friedl
and Sulla-Menashe, 2019). We followed the International
Geosphere-Biosphere Program classification scheme but
merged several similar categories to maximize the number
of eddy covariance sites/observations available for each cate-
gory. Closed and open shrublands are combined into a shrub-
land category. Woody savannas and savannas are combined
into savannas. We generated a static PFT map by taking the
mode of the MODIS land cover time series between 2001
and 2020 at each pixel to mitigate uncertainties from mis-
classification in the MODIS dataset. Nevertheless, changes
in vegetation structure induced by land use and land cover
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Table 1. Datasets used in different model setups to generate the CEDAR GPP product. Refer to Table S1 in the Supplement for a list of
specific variables from each dataset.

Category Dataset Temporal coverage Spatial
resolu-
tion

Temporal
resolu-
tion

Usage in model setups Reference

Short-term Long-term

Climate ERA5-Land 1950–present 0.1° Monthly X X Sabater (2019)

ESRA Global Monitoring
Laboratory Atmospheric
Carbon Dioxide

1976–present – Monthly X (only in
CFE-ML and
CFE-Hybrid
setups)

X (only in
CFE-Hybrid
setup)

Thoning et al. (2021)

Satellite-based
datasets

MODIS Nadir BRDF-adjusted
reflectance (MCD43C4v006)

2000–present 0.05° Daily X Schaaf and
Wang (2015)

MODIS Terra and Aqua
LAI/fPAR (MCD15A3H,
MOD15A2H, v006)

2000–present 500 m 4 d, 8 d X Myneni et al. (2015a,
b)

MODIS Terra and Aqua LST
(MYD11A1, MOD11A1,
v006)

2000–present 1 km Daily X Wan et al. (2015b, a)

BESS_Rad 2000–2020 0.05° Daily X Ryu et al. (2018)

Continuous-SIF (from OCO-2
and MODIS)

2000–2020 0.05° 4 d X Zhang (2021)

ESA CCI Soil Moisture
Combined Passive and Active
v06.1

1979–2021 0.25° Daily X Gruber et al. (2019)

GIMMS LAI4g 1982–2021 0.0833° Half-
month

X Cao et al. (2023)

GIMMS NDVI4g 1982–2021 0.0833° Half-
month

X Li et al. (2023b)

Static
categorical
datasets

MODIS Land Cover
(MCD12Q1v006)

Average status used be-
tween 2001 and 2020

500 m – X X Friedl and
Sulla-Menashe (2019)

Köppen–Geiger Climate
Classification

present 1 km – X X Beck et al. (2018)

C4 percentage map present 1° – X X Still et al. (2003, 2009)

change are reflected in the dynamic surface reflectance and
LAI/fAPAR datasets we used. We used the Köppen–Geiger
main climate groups (tropical, arid, temperate, cold, and po-
lar; Beck et al., 2018). We also utilized a C4 plant percentage
map to account for different photosynthetic pathways when
incorporating CO2 fertilization (Still et al., 2003, 2009). The
C4 percentage dataset was constant over time.

2.2.4 Data preprocessing

We implemented a three-step preprocessing strategy for the
satellite datasets: (1) quality control, (2) gap-filling, and
(3) spatial and temporal aggregation. First, we selected
high-quality data based on the quality control flags of the
satellite products when available. For the MODIS NBAR
dataset (MCD43C3), we used data with 75 % or more high-
resolution NBAR pixels retrieved with full inversions for
each band. For MODIS LST, we selected the best-quality
data from the quality control bitmask as well as data where
retrieved values had an average emissivity error of no more

than 0.02. For MODIS LAI/fAPAR, we used retrievals from
the main algorithm with or without saturation. We used all
available data in ESA-CCI soil moisture due to the presence
of substantial data gaps. In the gap-filling step, missing val-
ues in satellite datasets were temporally filled at the native
temporal resolution, following a two-step protocol adapted
from Walther et al. (2022). Short temporal gaps were first
filled with medians from a moving window, and the re-
maining gaps were filled with the mean seasonal cycle. For
datasets with a high temporal resolution, including MODIS
NBAR (daily), LAI/fPAR (4 d), BESS (4 d), CSIF (4 d), and
ESA-CCI (daily), temporal gaps no longer than 5 d (8 d for
4 d resolution products) were filled with medians of 15 d
moving windows in the first step. An exception is MODIS
LST (daily), for which we used a shorter moving window
of 9 d due to rapid changes in surface temperature. GIMMS
LAI4g and NDVI4g data were only filled with the mean sea-
sonal cycle due to their low temporal resolution (half-month).
This is because vegetation structure could experience signif-
icant changes at half-month intervals, and gap-filling using
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temporal medians within moving windows could introduce
considerable uncertainties and potentially over-smooth the
time series.

Finally, all the datasets were aggregated to a monthly time
step and 0.05° spatial resolution. We employed the conser-
vative resampling approach using the xESMF Python pack-
age (Zhuang et al., 2023). To generate the machine learn-
ing model training data, we extracted values from the nearest
0.05° pixel relative to the site locations within the gridded
dataset.

2.3 Machine learning upscaling

2.3.1 CEDAR-GPP model setups

We trained machine learning models with eddy covariance
GPP measurements as targets and climate/satellite variables
as input features. We created 10 model setups to produce dif-
ferent global monthly GPP estimates (Fig. 2; Table 2). The
model setups were characterized by the temporal range de-
pending on input data availability, the configuration of CO2
fertilization effects, and the partitioning approach used to de-
rive the GPP from eddy covariance measurements.

The short-term (ST) model configuration produced GPP
from 2001 to 2020, and the long-term (LT) configuration
spanned 1982 to 2020. Each temporal configuration uses a
different set of input variables depending on their availabil-
ity. Inputs for the short-term configuration included MODIS,
CSIF, BESS PAR, ESA-CCI soil moisture, ERA5-Land, as
well as PFT and Köppen climate zone as categorical vari-
ables with one-hot encoding. The long-term configuration
used GIMMS NDVI4g and LAI4g data, ERA5-land, PFT
and Köppen climate. ESA CCI soil moisture datasets were
excluded from the long-term model setups due to concerns
about the product quality in the early years when the number
and quality of microwave satellite data were limited (Dorigo
et al., 2015). A detailed list of input features for each setup is
provided in Table S1.

Regarding the direct CFE, we established a “Baseline”
configuration that did not incorporate these effects, a “CFE-
Hybrid” configuration that incorporated the effects via eco-
evolutionary theory, and a “CFE-ML” configuration that in-
ferred the direct effects from eddy covariance data using ma-
chine learning. Detailed information about these approaches
is provided in Sect. 2.3.2. Furthermore, separate models were
trained for GPP target variables from the night-time (NT) and
day-time (DT) partitioning approaches.

Table 2 lists the characteristics of the 10 model setups.
Due to the limited availability of eddy covariance observa-
tions before 2001, we did not apply the CFE-ML approach
to the long-term setups. The CFE-ML model, when trained
on data from 2001 to 2020 with atmospheric CO2 ranging
from 370 to 412 ppm, would not accurately predict GPP re-
sponse to CO2 for the period 1982–2000 when the CO2 levels
were markedly lower (340–369 ppm). This is because ma-

chine learning models, especially tree-based models, could
not extrapolate beyond the range of the training data.

2.3.2 CO2 fertilization effect

We established three configurations regarding the direct CO2
fertilization effects on photosynthesis. In the baseline con-
figuration, we trained machine learning models with eddy
covariance GPP, input climate, and satellite features, but ex-
cluding CO2 concentration. As such, the models only include
indirect CO2 effects from the satellite-based proxies of vege-
tation greenness or structure representing changes in canopy
light interception, and they do not consider the direct effect of
CO2 on leaf-level photosynthetic rates (or LUE). Our base-
line model is therefore directly comparable to other satellite-
derived GPP products that only account for indirect CO2 ef-
fects (Joiner and Yoshida, 2020; Jung et al., 2020).

In the CFE-ML configuration, we added monthly CO2
concentration into the feature set in addition to those incorpo-
rated in the baseline models. Models inferred the functional
relationship between GPP and CO2 from the eddy covariance
data. They thus encompass both CO2 fertilization pathways –
direct effects on LUE and indirect effects from the satellite-
based proxies of vegetation greenness and structure.

In the CFE-Hybrid configuration, we applied biophysical
theory to estimate the response of LUE to elevated CO2, i.e.,
the direct CFE (Appendix B). First, we estimated a refer-
ence GPP, where LUE was not affected by any increase in
atmospheric CO2, by applying the CFE-ML model with a
constant atmospheric CO2 concentration equal to the 2001
level while keeping all other variables temporally dynamic.
Then, the impacts of CO2 on LUE were prescribed onto the
reference GPP estimates using a theoretical CO2 sensitivity
function of LUE according to the optimal coordination the-
ory (Appendix B). The theoretical CO2 sensitivity function
represents a CO2 sensitivity that is equivalent to that of the
electron-transport-limited (light-limited) photosynthetic rate.
When light is limited, elevated CO2 suppresses photorespira-
tion leading to increased photosynthesis at a lower rate than
when photosynthesis is limited by CO2 (Lloyd and Farquhar,
1996; Smith and Keenan, 2020). Thus, the CFE-Hybrid sce-
nario provides a conservative estimation of the direct CO2
effects on LUE. Note that the theoretical sensitivity function
describes the fractional change in LUE due to direct CO2 ef-
fects relative to a reference period (i.e., 2001). Therefore, we
used the CFE-ML model to establish this reference GPP by
fixing the CO2 effects to the 2001 level, rather than simply
using the GPP from the Baseline model in which the direct
CO2 effects were not represented. Long-term trends from the
reference and the Baseline models are consistent.

For both CFE-ML and CFE-Hybrid scenarios, we made
another conservative assumption that C4 plants do not benefit
from elevated CO2, despite potential increases in photosyn-
thesis during water-limited conditions due to enhanced water
use efficiency (Walker et al., 2021). Data from flux tower
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Figure 2. Schematic overview of the CEDAR-GPP model setups.

Table 2. Specifications of the CEDAR-GPP model setups.

Model setup name Temporal range Direct CO2 fertilization effects GPP partitioning method

Configuration Method

ST_Baseline_NT Short-term (ST)
2001–2020

Baseline Not incorporated Night-time (NT)

ST_Baseline_DT Day-time (DT)

ST_CFE-Hybrid_NT CFE-Hybrid Theoretical NT

ST_CFE-Hybrid_DT DT

ST_CFE-ML_NT CFE-ML Data-driven NT

ST_CFE-ML_DT DT

LT_Baseline_NT Long-term (LT)
1982–2020

Baseline Not incorporated NT

LT_Baseline_DT DT

LT_CFE-Hybrid_NT CFE-Hybrid Theoretical NT

LT_CFE-Hybrid_DT DT

sites dominated by C4 plants were removed from our train-
ing set, so the machine learning models inferred CO2 fertil-
ization only from flux tower sites dominated by C3 plants.
When applying models globally, we assumed the reference
GPP values (with constant atmospheric CO2 concentration
equal to the 2001 level) to represent C4 plants, and GPP esti-
mates from CFE-ML or CFE-Hybrid models were applied in
proportion to the percentage of C3 plants in a grid cell.

2.3.3 Machine learning model training and validation

We employed the state-of-the-art XGBoost machine learning
model, known for its high accuracy in regression problems
across various domains, including environmental and ecolog-
ical predictions (Berdugo et al., 2022; Chen and Guestrin,
2016; Kang et al., 2020). XGBoost is a scalable and par-
allelized implementation of the gradient boosting technique
that iteratively trains an ensemble of decision trees, with each
iteration targeted at minimizing the residuals from the last it-
eration. A notable merit of XGBoost is its ability to make

predictions in the presence of missing values, a common is-
sue in remote sensing datasets. The model is also robust to
multi-collinearity between the predictors in our dataset, par-
ticularly for the variables derived from MODIS data.

We used five-fold cross-validation for model evaluation.
Training data was randomly split into five groups (folds),
with each fold held out for testing while the remaining four
folds were used for model training. We imposed two restric-
tions on fold splitting: each flux site was entirely assigned to
a fold to test model performance over unseen locations; the
random sampling was stratified based on PFT to ensure cov-
erage of the full range of PFTs in both training and testing.
Additionally, co-located sites, defined as those within 0.05°
of each other, were also assigned to the same fold, as they
were often set up as a cluster with different treatments. This
approach avoids conflated estimates of model uncertainty,
as these sites are not independent. We also used a nested-
cross-validation strategy, during which we performed a ran-
domized search of hyperparameters using three-fold cross-
validation within the training set. The nested cross-validation
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was aimed at reducing the risk of overfitting and improving
the robustness of the evaluation.

We assessed the models’ ability to capture the tempo-
ral and spatial characteristics of GPP, including monthly
GPP, mean seasonal cycles, monthly anomalies, and cross-
site variability. Model performance was assessed separately
for each model setup (Table 2) and summarized by PFT and
Köppen climate zone. Mean seasonal cycles were calculated
as the mean monthly GPP over the site observation period,
and monthly anomalies were the residuals of monthly GPP
after subtracting mean seasonal cycles. Monthly GPP aver-
aged over years for each site was used to assess cross-site
variability. Goodness-of-fit metrics include RMSE, bias, and
coefficient of determination (R2).

To evaluate the models’ ability to capture long-term GPP
trends, we aggregated the monthly GPP to annual values fol-
lowing Chen et al. (2022), which detected the CO2 fertiliza-
tion effect across global eddy covariance sites. For sites with
at least five years of observations, GPP anomalies were com-
puted by subtracting the multi-year mean GPP from the an-
nual GPP for each site. Anomalies were aggregated across
sites to achieve a single multi-site GPP anomaly per year.
We excluded a site-year if less than 11 months of data was
available and used linear interpolation to fill the remaining
temporal gaps. This resulted in 81 sites used in the GPP trend
evaluation. We used the Sen slope and Mann–Kendall test to
examine the GPP trends from 2002 to 2019, excluding 2001
and 2020, due to the limited number of available sites with
more than five years of data. We further assessed the aggre-
gated annual trend by grouping the sites based on plant func-
tional types and the Köppen climate zones. Categories with
less than six long-term sites available were excluded from the
analysis, which includes EBF and Tropics.

To further analyze GPP responses to CO2 in the CFE-ML
models, we leveraged two explainable machine learning ap-
proaches: ALE (accumulated local effects; Apley and Zhu,
2020; Baniecki et al., 2021) and SHAP (Shapley additive ex-
planations; Lundberg and Lee, 2017). SHAP is a model in-
terpretation method derived from game theory, providing a
value for each feature’s contribution to a prediction, elucidat-
ing how each feature impacts the model’s output in a specific
instance. Conversely, ALE quantifies the average effect of a
feature across the data, isolating its impact by aggregating lo-
cal effects and avoiding the biases associated with correlated
features.

2.3.4 Product generation and uncertainty quantification

In the CEDAR-GPP product we generated GPP estimates
from 10 model setups by applying the model to global grid-
ded datasets (Table 2). GPP estimates were named after the
corresponding model setups. We used bootstrapping to esti-
mate prediction uncertainties. For each model setup we gen-
erated 30 bootstrapped sample sets of eddy covariance data,
which were then used to train an ensemble of 30 XGBoost

models. The bootstrapping was performed at the site level,
and each bootstrapped sample set contained around 140 to
150 unique sites, 17 000 to 19 000 site-months covering all
PFTs. The relative PFT composition in the bootstrapped sam-
ple sites was consistent with the full dataset. Hyperparame-
ters of the XGBoost models used in the final product gen-
eration are described in Sect. S2 in the Supplement. The 30
models trained with bootstrapped samples generated an en-
semble of 30 GPP values. We provided the ensemble GPP
mean and used standard deviation to indicate uncertainties,
for each of the 10 model setups.

2.3.5 Product inter-comparison

We compared the global spatial and temporal patterns of
CEDAR-GPP with other major satellite-based GPP prod-
ucts, including three machine learning upscaled and two
LUE-based datasets. We obtained two FLUXCOM products
(Jung et al., 2020), the latest version of FLUXCOM-RS
(FLUXCOM-RSv006) available from 2001 to 2020 based
on remote sensing (MODIS collection 6) datasets only, as
well as the FLUXCOM-RS+METEO ensemble available
between 1979 to 2018 and based on the climatology of
remote sensing observations and ERA5 forcings (hereafter
FLUXCOM-ERA5). We used FluxSat (Joiner and Yoshida,
2020), available from 2001 to 2019, which is an upscaled
dataset based on MODIS NBAR surface reflectance and
PAR from Modern-Era Retrospective analysis for Research
and Applications 2 (MERRA-2). Importantly, FluxSat does
not incorporate climate forcings. We used the MODIS GPP
product (MOD17), available since 2001, which was gener-
ated based on MODIS fAPAR and LUE as a function of air
temperature and vapor pressure deficit but not atmospheric
CO2 concentration (Running et al., 2015). We also used the
rEC-LUE products, available from 1982 to 2018 and based
on a revised LUE model that incorporated the effect of at-
mospheric CO2 concentration and the fraction of diffuse
PAR on LUE (Zheng et al., 2020). Additionally, to evaluate
GPP trends we further included three process-based models
forced by remote sensing data – BEPS (Leng et al., 2024),
BESSv2 (Li et al., 2023a), and PML V2 (Zhang et al., 2019).
These products estimate GPP by scaling leaf-level biochemi-
cal photosynthesis models to the canopy level, using satellite-
derived vegetation structural variables such as LAI. All three
products incorporate the direct CO2 effects within their bio-
chemical photosynthesis models.

All datasets were resampled to 0.1° spatial resolution, and
a common mask for the vegetated land area was applied.
We evaluated global mean annual GPP, mean seasonal cycle,
interannual variability, and trend among different datasets,
comparing them over a common time period determined
by their data availability. Global total GPP was computed
by scaling the global area-weighted average GPP flux with
the global land area (122.4 million km2) following Jung et
al. (2020). Mean seasonal cycle was defined as in Sect. 2.3.3.
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We used the standard deviation of annual GPP to indicate the
magnitude of interannual variability, the Sen slope to indi-
cate the GPP annual trend, and the Mann–Kendall test for
the statistical significance of trends.

3 Results

3.1 Evaluation of model performance

3.1.1 Overall performance

The short-term and long-term models explain approximately
72 % and 67 %, respectively, of the variation in monthly GPP
across global eddy covariance sites (Fig. 3a). The long-term
models consistently yield lower performance than the short-
term models, likely due to differences in the satellite remote
sensing datasets used, as the short-term models benefited
from richer information from surface reflectance of individ-
ual bands, LST, CSIF, and soil moisture, while the long-term
model only exploited NDVI and LAI. The models with dif-
ferent CFE configurations and target GPP variables (i.e., par-
titioning approaches) have similar performance in predicting
monthly GPP (Fig. 3b, Table S2). All models exhibit minimal
bias of less than 0.1.

Model performance in terms of the different temporal and
spatial characteristics of monthly GPP is variable (Fig. 3c–
h). The models are most successful at predicting mean sea-
sonal cycles, with the short-term and long-term models ex-
plaining around 77 % and 72 % of the variability, respec-
tively (Fig. 3c–d). The short-term and long-term models cap-
ture 63 % and 54 %, respectively, of the spatial variabilities
in multi-year mean GPP across global sites (i.e., cross-site
variability; Fig. 3g–h). However, all models underestimate
monthly anomalies across the sites, with R2 values below
0.12 (Fig. 3e–f). Patterns from the DT setups do not signifi-
cantly differ from those of the NT setups (Fig. S1, Table S2).
Model performance also varies across sites, and models are
more advantageous in explaining mean seasonal cycles than
monthly anomalies in most sites (Fig. S2).

3.1.2 Performance by biome and climate zone

The predictive ability of our models varies across different
PFTs and Köppen climate zones (Fig. 4). Here we present
results from the CFE-Hybrid LT and ST models based on
NT partitioning and note that patterns for the other CFE con-
figurations and the DT GPP were similar (Figs. S3, S4, S5).

Model performance in terms of monthly GPP is highest
for deciduous broadleaf forests, mixed forests, and evergreen
needleleaf forests, with R2 values above 0.76. Model accu-
racies are also high for savannas and grasslands, followed
by croplands and wetlands, with R2 values between 0.48
and 0.76. Model accuracies are lowest in evergreen broadleaf
forests and shrublands, withR2 values as low as 0.13. Across
climate zones, models achieve the highest accuracy in pre-
dicting monthly GPP in cold climates with R2 around 0.73–

0.78, followed by tropics and temperate zones (R2
∼ 0.47–

0.65). The short-term models have the lowest performance
in polar regions with an R2 value of around 0.37, and the
long-term models have the lowest performance in arid re-
gions with an R2 value of 0.28. Interestingly, short-term and
long-term models exhibit substantial differences in arid re-
gions and shrublands marked by strong seasonality and in-
terannual variabilities.

Model performance in terms of mean seasonal cycles
across PFTs and climate zones follows patterns for monthly
GPP, while disparities emerge for performance in terms of
GPP anomaly and cross-site variability (Figs. 4, S3, S4, S5).
The short-term model shows the highest predictive power in
explaining monthly anomalies in arid regions with an R2

value of 0.48, where savanna and shrublands sites are pri-
marily located. Model performance in all other climate zones
is significantly lower. The short-term model also demon-
strates good performance in capturing anomalies in decid-
uous broadleaf forests. The long-term model’s relative per-
formance between PFTs and climate zones is mostly consis-
tent with that of the short-term model, with lower accuracy
in shrublands when compared to the short-term model.

Models demonstrate the highest accuracy in predict-
ing cross-site variability in savannas, grasslands, ever-
green needleleaf forests, and evergreen broadleaf forests
(R2> 0.36) and the lowest accuracy in deciduous broadleaf
forests, mixed forests, and croplands (R2< 0.1). The short-
term model additionally shows good performance in shrub-
lands and wetlands (R2> 0.36), whereas the long-term
model fails to capture any variability for shrublands. In terms
of climate zones, models are most successful at explain-
ing the variabilities within tropical and cold climate zones
(R2> 0.50), the short-term model has moderate performance
in temperature and polar regions (R2

∼ 0.22), and the long-
term model has low performance for both temperate and arid
regions with R2 values below 0.16.

3.1.3 Prediction of long-term trends

Eddy-covariance-derived GPP presents a substantial in-
creasing trend across flux sites between 2002 and 2019
(Figs. 5a, S6a). The eddy covariance GPP from the night-
time partitioning approach indicates an overall trend of
7.7 gC m−2 yr−2. In contrast, the ST_Baseline_NT model
predicts a more modest overall trend of 3.1 gC m−2 yr−2

across the flux sites, primarily reflecting the indirect CO2
effect manifested through the growth of LAI. Both the
ST_CFE-ML_NT and ST_CFE-hybrid_NT models predict
much higher trends of 5.4 and 4.5 gC m−2 yr−2 respec-
tively, representing an improvement from the Baseline model
by 74 % and 45 %, aligning more closely with eddy co-
variance observations. Similarly, the LT_CFE-Hybrid_NT
model shows improved trend estimation compared with the
LT_Baseline_NT model. All trends were statistically signif-
icant (p < 0.05). Aggregated eddy covariance GPP experi-
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Figure 3. Machine learning model performance in predicting monthly GPP and its spatial and temporal variability. Only NT models are
shown; DT results are provided in Fig. S1 in the Supplement. Scatter plots illustrate relationships between model predictions and observations
for monthly GPP (a), mean seasonal cycle (MSC) (c), monthly anomaly (e), and cross-site variability (g) for ST_CFE-Hybrid_NT (left, blue)
and LT_CFE-Hybrid_NT (right, green) models. Corresponding bar plots show the R2 values for five NT model setups in predicting monthly
GPP (b), MSC (d), monthly anomaly (f), and cross-site variability (h).

ences increasing trends of varied magnitudes across different
climate zones and plant functional types (Figs. 5b, c; S6b, c).
While the machine learning models generally do not fully
capture the enhancement in GPP for most categories, the
CFE-ML and/or CFE-hybrid models consistently outperform
the Baseline models in both ST and LT setups. The CFE-ML
setup predicts a higher trend than CFE-hybrid in most cases,
suggesting that the data-driven approach captures more dy-
namics not represented in the theoretical model, which is
based on conservative assumptions regarding the CO2 sen-
sitivity of photosynthesis (see Sect. 2.3.2 and Appendix B).

The choice of remote sensing data (ST vs. LT configurations)
does not lead to substantial differences in the predicted GPP
trend. Most long-term flux sites (at least 10 years of records)
with a significant trend experienced an increase in GPP, and
the CFE-ML and/or CFE-hybrid models align closer to eddy
covariance data than the Baseline models (Fig. S7). Addi-
tionally, we found a considerably higher trend in eddy covari-
ance GPP measurements derived from the day-time versus
night-time partitioning approach, potentially associated with
uncertainties in GPP partitioning methods (Fig. S6). Yet, ma-
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Figure 4. Performance of the ST_CFE-Hybrid_NT (blue) and LT_CFE-Hybrid_NT (green) models on GPP spatiotemporal estimation by
plant functional types (a) and climate zones (b). The cross-site panels include the number of sites within each category. Color indicates
short-term (ST) or long-term (LT) models. ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf
forest; MF: mixed forest; SH: shrubland; SA: savanna; GRA: grassland; CRO: cropland; WET: wetland. Tr: tropical; Ar: arid; Tp: temperate;
Cd: cold; Pl: polar. The performance of DT models is displayed in Fig. S3 in the Supplement.

chine learning model predicted trends are not strongly af-
fected by GPP partitioning methods.

The differences in estimated GPP trends between the
Baseline and CFE models underscore the significant long-
term GPP changes driven by the direct CO2 effect. Using
explainable machine learning approaches (ALE and SHAP)
we further assessed the CFE-ML models for quantifying the
direct CO2 effect. Both approaches reveal a consistently pos-
itive influence of CO2 on GPP, aligning with biophysical the-
ories (Fig. S8). Compared to the effects from light (PAR)
and vegetation structures (e.g., NIRv), the impacts of CO2
are considerably smaller, which explains the minimal differ-
ences in overall model accuracy between the Baseline and
CFE models.

Finally, we evaluated CEDAR-GPP using independent
eddy covariance data (11 sites, Table S3) that was not in-
volved in model training and obtained from the OzFlux
FluxNet dataset (Ozflux, 2024). Among these sites, only
two – AU-Cpr (Tropical) and AU-Stp (Aird) – with more

than five years of records exhibit a GPP trend with p

value less than 0.3. CEDAR-GPP shows strong consistency
with the observed trend (Fig. S9). Additionally, CEDAR-
GPP achieves reasonable accuracy in predicting monthly
GPP (R2

∼ 0.73–0.75), mean seasonal cycle (R2
∼ 0.74–

0.78), and monthly anomalies (R2
∼ 0.26–0.50; Table S4,

Fig. S10), closely aligning with the cross-validation results.

3.2 Evaluation of GPP spatial and temporal dynamics

We compared CEDAR-GPP estimates with other upscaled
or LUE-based datasets regarding the mean annual GPP
(Sect. 3.2.1), GPP seasonality (Sect. 3.2.2), interannual vari-
ability (Sect. 3.2.3), and annual trends (Sect. 3.2.4). CEDAR-
GPP model setups generally show similar patterns in mean
annual GPP, seasonality, and interannual variability, there-
fore, in corresponding sections, we present the CFE-Hybrid
model setups as representative examples for comparisons
with other datasets, unless otherwise stated. Supplementary
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Figure 5. Comparison of observed and predicted GPP (from NT models only) trends across eddy covariance flux towers. (a) Aggregated
annual GPP anomaly from 2002 to 2019 and trend lines from eddy covariance (EC) data, and three CFE model setups (short-term, night-time
partitioning) for ST (left) and LT (right) models. The size of the gray circle markers is proportional to the number of sites. (b) Comparison
of annual GPP trends from eddy covariance measurements and the short-term (ST) CEDAR-GPP model setups by plant functional types
and climate zones. (c) Comparison of annual GPP trends from eddy covariance measurements and the long-term (LT) CEDAR-GPP model
setups by plant functional types and climate zones. In (b) and (c), Categories with fewer than six sites, including Tropics and EBF, are not
shown. White dots on the bars indicate statistically significant trends with p value< 0.1. Results for the DT models are shown in Fig. S3 of
the Supplement.

figures include comparisons involving CEDAR-GPP esti-
mates from all model setups.

3.2.1 Mean annual GPP

Global patterns of mean annual GPP are generally consistent
among CEDAR-GPP model setups, FLUXCOM, FLUXSAT,
MODIS, and rEC-LUE, with few noticeable regional differ-
ences (Figs. 6, S11). Differences among CEDAR-GPP model
setups are minimal and only evident between the NT and DT
setups in the tropics (Figs. 6b–c, S11). CEDAR-GPP short-
term datasets show highest consistency with FLUXSAT in
terms of mean annual GPP magnitudes (2001–2018) and
latitudinal variations, although FLUXSAT presents slightly
higher GPP values in the tropics compared to CEDAR-GPP
(Fig. 6b). Mean annual GPP magnitudes for FLUXCOM-

RS006 and MODIS are lower globally than CEDAR-GPP
and FLUXSAT, with the most pronounced differences ob-
served in the tropical areas. Among the long-term datasets
(CEDAR-GPP LT, FLUXCOM-ERA5, and rEC-LUE), mean
annual GPP (1982–2018) exhibits greater disparities in the
northern mid-latitudes than in the tropics and southern hemi-
sphere (Fig. 6c). CEDAR-GPP aligns more closely with
FLUXCOM-ERA5 than with rEC-LUE, with the latter show-
ing lower annual mean GPP globally, particularly between
20° and 50° N.

3.2.2 Seasonal variability

CEDAR-GPP agrees with other GPP datasets on seasonal
variabilities (average between 2001 and 2018) at the global
scale, characterized by a peak in GPP in July and a nadir be-
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Figure 6. Global distributions of mean annual GPP from CEDAR-GPP and other machine learning upscaled and LUE-based reference
datasets. (a) Global patterns of mean annual GPP from two short-term datasets including ST_CFE-Hybrid_NT, and FLUXCOM-RS006,
and two long-term datasets including LT_CFE-Hybrid_NT, and FLUXCOM-ERA5. (b) Latitudinal distributions of mean annual GPP from
short-term datasets (ST_CFE-Hybrid_NT, FLUXSAT, FLUXCOM-RS006, and MODIS). (c) Latitudinal distributions of mean annual GPP
from long-term datasets (LT_CFE-Hybrid_NT, FLUXCOM-ERA5, and rEC-LUE). Mean annual GPP was computed between 2001 and
2018 for short-term datasets and between 1982 and 2018 for long-term datasets.

tween December and January (Figs. 7, S12). At the global
scale, CEDAR-GPP is most closely aligned with FLUXSAT
in GPP seasonal magnitude and amplitude, while both
FLUXCOM and MODIS display a relatively less pronounced
magnitude.

In boreal and temperate regions of the Northern Hemi-
sphere, all datasets agree on seasonal GPP variation, with
only minor variances in the magnitude of peak GPP. In
Southern Hemisphere temperate regions, datasets demon-
strate similar seasonality, though with greater variability in

peak amplitudes compared to the Northern Hemisphere. The
largest disparities are found in the South American tropi-
cal areas, where seasonal variation is less prominent. Here,
FLUXSAT shows a distinct bi-modal pattern with peaks
in March–April and September–October. CEDAR-GPP and
FLUXCOM-ERA5 aligns with the second peak, but exhibit
a less pronounced first peak. Interestingly, the DT setups of
CEDAR-GPP show slightly higher peaks in March–April in
this region (Fig. S13). MODIS, in contrast, indicates an in-
verse seasonal pattern, with a small peak from June to Au-
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gust. Across all regions, CEDAR-GPP’s seasonality aligns
more closely with FLUXSAT and FLUXCOM-ERA5 than
with other datasets. Differences among the 10 CEDAR-GPP
model setups are minimal, except for small variations in GPP
magnitude in some tropical areas between NT and DT setups
(Fig. S13).

3.2.3 Interannual variability

We found distinct spatial patterns in GPP interannual vari-
ability between upscaled and LUE-based datasets and a high
level of agreement within each category, with the excep-
tion of FLUXCOM-ERA5, which show minimal interan-
nual variability globally (Figs. 8, S14). All datasets agree
on the presence of GPP interannual variability hotspots in
eastern and southern South America, central North Amer-
ica, southern Africa, and western Australia. These hotspots
primarily correspond to arid and semi-arid areas character-
ized by grasslands, shrubs, and croplands (Fig. 9). CEDAR-
GPP is highly consistent with FLUXSAT, and both datasets
also display relatively high interannual variability in the dry
subhumid areas of Europe, predominantly covered by crop-
lands. FLUXCOM-RS006 mirrors the relative spatial pat-
terns of CEDAR-GPP and FLUXSAT, albeit at lower mag-
nitudes. The LUE-based datasets (MODIS and rEC-LUE)
predict a much higher interannual variability than the up-
scaled datasets in the tropical areas, particularly in evergreen
broadleaf forests and woody savannas (Figs. 8, 9). These
datasets also depict slightly higher interannual variability for
other types of forests, including evergreen needleleaf forests
and deciduous broadleaf forests, compared to the upscaled
datasets. The lack of interannual variability in FLUXCOM-
ERA5 is attributable to the use of mean seasonal cycles of
remotely sensed vegetation greenness indicators rather than
their dynamic time series. Ten CEDAR-GPP model setups
present consistent patterns in interannual variability, and dif-
ferences are minimal (Fig. S14).

3.2.4 Trends

Differences in annual GPP trends among CEDAR-GPP
model setups and other upscaled and LUE-based datasets
mainly reflect the variability in the representation of CO2 fer-
tilization effects (Figs. 10, 11, S15). From 2001 to 2018, the
CEDAR-GPP Baseline model setups show spatial variations
in GPP trends consistent with the other upscaled datasets
without direct CO2 fertilization effects, including FLUXSAT
and FLUXCOM-RSv006. In these datasets, substantial in-
creases are seen in southeastern China and India, western
Europe, and part of North and South America. These in-
creases are largely associated with rising LAI due to land use
changes and indirect CO2 fertilization effects, as identified
by previous studies (Chen et al., 2019; Zhu et al., 2016). Al-
though MODIS, which also does not include a direct CO2
fertilization effect, generally agrees with these increasing

trends, it shows a declining GPP in the tropical Amazon and
a stronger positive trend in central South America. After in-
corporating the direct CO2 fertilization effects, both the CFE-
Hybrid and CFE-ML setups predict positive trends in tropical
forests, an observation absent in all other upscaled datasets.
Furthermore, the CFE-Hybrid and CFE-ML models also re-
veal increasing GPP in temperate and boreal forests of North
America and Eurasia. These patterns are also observed in
BESS Vs and BEPS, while PML V2 presents minimal GPP
changes in tropics and substantial reduction in Africa. No-
tably, all datasets agree on a pronounced GPP decrease in
eastern Brazil and minimal changes in Australia.

From 2001 to 2018, a positive trend in global annual
GPP is uniformly detected by all datasets, albeit with vary-
ing magnitudes (Figs. 12a, 13a, S16). The ST_Baseline_NT
model predicts a GPP growth rate of 0.35 (±0.02) Pg C yr−2,
aligning with FLUXCOM-RS, but lower than FLUXSAT
(0.51 Pg C yr−2) and MODIS (0.39 Pg C yr−2). The CFE-
hybrid models estimate a notably faster GPP growth at
0.58 (±0.03) Pg C yr−2, similar to BESS V2 and BEPS,
both around 0.55 Pg C yr−2. The CFE-ML models predict
the highest trend, up to 0.76 (±0.15) Pg C yr−2 from the
ST_CFE-ML_NT model and 0.59 (±0.13) Pg C yr−2 from
the ST_CFE-ML_DT model. PML V2 displays a neutral
trend of 0.08 Pg C yr−1, and rEC-LU demonstrates an overall
decline (0.20 Pg C yr−1).

The LT_Baseline_NT model identifies increasing GPP
trends in large areas of Europe, East and South Asia, and the
Northern Amazon from 1982 to 2018 (Fig. 11). The pattern
from the LT_CFE-Hybrid_NT model aligns closely with the
LT_Baseline_NT model but exhibits a stronger positive trend
in global tropical areas and Eurasian boreal forests. Spatial
patterns of GPP trends from BESS V2 are consistent with
LT_CFE-Hybrid_NT, though with considerably higher mag-
nitudes. FLUXCOM-ERA5 shows overall negative trends in
the tropics. rEC-LUE agrees with CEDAR-GPP in positive
GPP trends in the extratropical areas, but predicts a pro-
nounced negative trend in the tropics. At the global scale,
all the CEDAR-GPP long-term models predict a positive
global GPP trend (Figs. 12b, 13b). The LT_Baseline_ NT
and LT_Baseline_DT models show a trend of 0.13 (±0.02)
and 0.15 (±0.02) Pg C yr−2 respectively, while the LT_CFE-
Hybrid_NT and LT_CFE-Hybrid_DT models double these
rates with 0.33 (±0.02) and 0.31 (±0.03) Pg C yr−2 respec-
tively. BESS V2 predicts the highest trend at 0.61 Pg C yr−2.
rEC-LUE shows a two-phased pattern with a strong increase
in GPP from 1982 to 2000 (0.54 Pg C yr−2), followed by
a decreasing trend after 2001 (−0.20 Pg C yr−2; Fig. S17).
This results in an overall positive change at a rate comparable
to that of the Baseline model. FLUXCOM-ERA5 exhibited a
small negative trend.
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Figure 7. Comparison of global and regional GPP mean seasonal cycle between different datasets on a global scale. Monthly means were
averaged from 2001 to 2018 for all datasets. Geographic boundaries of the 11 TransCom land regions were obtained from the CarbonTracker
(CT2022) dataset and are shown in Fig. S18.

Figure 8. Spatial patterns of GPP interannual variability extracted over 2001 to 2018 for CEDAR-GPP (ST_CFE-Hybrid_NT), FLUXSAT,
FLUXCOM-RS006, MODIS, FLUXCOM-ERA5, and rEC-LUE.
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Figure 9. Comparison of GPP interannual variability (IAV) across global datasets by PFT. Colored dots represent the median IAV, thicker
gray bars indicate the 25 % to 75 % percentiles of IAV distributions, and thinner gray bands show the 10 % to 90 % percentiles.

3.3 GPP estimation uncertainties

We analyzed the spread between the 30 model ensemble
members in CEDAR-GPP as an indicator of uncertainties
in GPP estimations. The spatial pattern of uncertainty in
estimating annual mean GPP largely resembles that of the
mean map (Figs. 14, 6a). The largest model spread is found
in highly productive tropical forests, and this uncertainty
decreases in temperate and cold areas (Fig. 14a). Tropical
ecosystems, with a mean annual GPP between 1000 and
3500 Pg C yr−1, only exhibit a 2 % and 6 % variation within
the model ensemble (Fig. 14b). Ecosystems in the temperate
and cold climates have a smaller annual GPP and proportion-
ally small uncertainties of up to 6 %. However, ecosystems
in arid and polar climates, despite their similarly low GPP,
show higher model uncertainty, reaching 10 % to 40 % of the
ensemble mean.

The estimation uncertainty of GPP trends is generally be-
low 15 % to 20 % in the CEDAR-GPP datasets under the
ST_Baseline and ST_CFE-Hybrid setups (Fig. 14c). How-
ever, in the ST_CFE-ML setup, the estimation increases sub-
stantially, with model spread reaching up to 40 % in tropical
areas. Figure 15 (Fig. S19) further illustrates the trend un-
certainties with the ensemble mean error range based on one
standard deviation. Both the CFE-ML models show large dis-
crepancies between the upper and lower uncertainty ranges,
particularly within the tropics. Additionally, the long-term
models also show a higher uncertainty compared to the short-
term models.

4 Discussion

4.1 Reducing uncertainties in GPP upscaling

Here we examine the three predominant sources of uncer-
tainties in machine learning upscaling of GPP: eddy covari-
ance measurements, input datasets, and the machine learning
model. We discuss strategies used in CEDAR-GPP to reduce
the impacts of these uncertainties and highlight potential fu-
ture research directions.

4.1.1 Eddy covariance data

Uncertainties associated with eddy covariance measurement
and data processing can propagate through the upscaling pro-
cess. CEDAR-GPP was produced using monthly aggregated
eddy covariance data, where the impact of random errors in
half-hourly measurements was minimized due to the tem-
poral aggregation (Jung et al., 2020). Our stringent quality
screening further reduced data processing uncertainties such
as those associated with gap-filling. Yet, the discrepancy in
GPP patterns between the CEDAR-GPP NT and DT setups
is indicative of systematic biases linked to the partitioning
approaches used to derive GPP from the NEE measurements
(Keenan et al., 2019; Pastorello et al., 2020). Interestingly,
the mean annual GPP from the DT setup is slightly higher
than that from the NT setup (Fig. 6), and the DT setup also
predicts a higher GPP trend in the long-term dataset (Fig. 13).
While these discrepancies are relatively small compared to
the predominant spatiotemporal patterns, the separate DT
and NT setups in CEDAR-GPP offer an interesting quantifi-
cation of the GPP partitioning uncertainties over space and
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Figure 10. Annual GPP trend over 2001–2018 for short-term CEDAR-GPP, FLUXCOM-RS006, FLUXSAT, MODIS, BESS, BEPS, and
PML datasets. Hatched areas indicate the GPP trend that is statistically significant at a p < 0.05 level under the Mann–Kendall test.

time, providing insights for future methodology improve-
ments.

The unbalanced spatial representativeness of the eddy co-
variance data constitutes a more significant source of uncer-
tainty, as highlighted by previous studies (Jung et al., 2020;
Tramontana et al., 2015). Effective generalization of machine
learning models requires a substantial volume of training
data that adequately represents and balances varied condi-

tions. In CEDAR-GPP, this issue was mitigated with a large
set of eddy covariance data (∼ 18 000 site-months) integrat-
ing FLUXNET2015 and two regional networks. However,
data availability remains limited in critical carbon exchange
hotspots such as tropics, subtropics, drylands, and boreal re-
gions, as well as in mountainous areas (Fig. 1). Contrary to
widespread perception that sparse training data leads to high
upscaling uncertainties, our findings from the bootstrapped
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Figure 11. Annual GPP trend over 1982–2018 for long-term CEDAR-GPP, rEC-LUE, and BESS datasets. Hatched areas indicate the GPP
trend that is statistically significant at a p < 0.05 level under the Mann–Kendall test.

model spread indicates modest uncertainties in tropical ar-
eas relative to their high GPP magnitude (Fig. 14). This ob-
servation aligns with findings from the FLUXCOM product,
revealing low extrapolation uncertainty in humid tropical re-
gions (Jung et al., 2020). Nevertheless, to fully understand
the upscaling uncertainty, it is essential to evaluate the gen-
eralization or extrapolation errors within the predictor space
and consider the potential limitations of model structures
(van der Horst et al., 2019; Villarreal and Vargas, 2021). Ad-
ditionally, data limitations in mountainous areas and the ab-
sence of topology information in the predictor space in our
models suggest potential uncertainties related to topographi-
cal effects on GPP (Hao et al., 2022; Xie et al., 2023).

Furthermore, our analysis suggests that the estimated
global GPP magnitudes are related to the specific eddy co-
variance GPP data used in upscaling. Notably, global GPP
magnitudes derived from CEDAR-GPP closely align with
those from FLUXSAT, while the estimates from FLUX-
COM were considerably lower (Figs. 6, 12). FLUXSAT used
eddy covariance data from FLUXNET2015, which largely
overlapped with that included in CEDAR-GPP (Joiner
and Yoshida, 2020). FLUXCOM utilized data from the
FLUXNET La Thuile set and CarboAfrica network, which

consists of a distinct set of sites (Tramontana et al., 2016).
The influence from the predictor datasets is minimal since
all three datasets relied on MODIS-derived products. For a
more in-depth evaluation of the impacts of flux site repre-
sentativeness on upscaling, future research directions could
include conducting synthetic experiments with simulations
of ensembles of terrestrial biosphere models.

4.1.2 Input predictors and controlling factors

Upscaled GPP contains inherent uncertainties from the in-
put predictors, including satellite and climate datasets. First,
satellite remote sensing data contains noise resulting from
Sun–Earth geometry, atmospheric conditions, soil back-
ground, and geolocation inaccuracies. The models or algo-
rithms used for retrieving LAI, fAPAR, LST, and soil mois-
ture also contain random errors and systematic biases spe-
cific to certain regions, biome types, or climatic conditions
(Fang et al., 2019; Ma et al., 2019; Yan et al., 2016b).
Moreover, satellite observations frequently contain missing
values due to clouds, aerosols, snow, and algorithm fail-
ure, leading to both systematic and random uncertainties.
In producing CEDAR-GPP, we mitigated these uncertain-
ties through comprehensive preprocessing procedures. Our
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Figure 12. Global annual GPP variations (a) from 2001 to 2018
and (b) from 1982 to 2018.

temporal gap-filling strategy exploits both the temporal de-
pendency of vegetation status and long-term climatology to
reduce biases from missing values. Temporal and spatial ag-
gregation further reduces the remaining data gaps and ran-
dom noises. Nevertheless, considerable uncertainties likely
remain in satellite datasets impacting the upscaled estima-
tions.

A potentially more impactful source of uncertainty is the
mismatch between the footprint of the eddy covariance mea-
surements and the coarse resolution of satellite observations.
While flux towers typically have a footprint of∼ 1 km2 (Chu
et al., 2021), satellite observations employed in CEDAR-
GPP and most other upscaled datasets are at 5 km or lower
resolution. Systematic and random errors could be intro-
duced due to this mismatch, particularly in heterogenous
biomes and areas with a mixture of vegetation and non-
vegetated land covers. One mitigation strategy is to generate
upscaled datasets at a higher spatial resolution (e.g., 500 m).
Alternatively, models could be trained at a high resolution
and applied to the coarse resolution to reduce computation
and storage requirements (Dannenberg et al., 2023; Gaber et
al., 2024). However, this approach does not address inherent
scaling errors in coarse-resolution satellite images (Dong et
al., 2023; Yan et al., 2016a).

Besides the quality of predictors, successful machine
learning upscaling also requires a comprehensive set of fea-
tures representing all controlling factors. For example, the
lack of GPP interannual variabilities in FLUXCOM-ERA5
manifests the importance of incorporating dynamic vegeta-

tion signals from remote sensing in the upscaling frame-
work. CEDAR-GPP used satellite observations from optical,
thermal, and microwave systems, as well as climate vari-
ables thoroughly representing GPP dynamics. In particular,
the inclusion of LST and soil moisture data provides impor-
tant information about resource limitations and stress fac-
tors, which are crucial for certain biomes and/or under spe-
cific conditions (Green et al., 2022; Stocker et al., 2018,
2019). Dannenberg et al. (2023) showed that incorporating
LST from MODIS and soil moisture from the SMAP satellite
datasets substantially improved the machine learning estima-
tion accuracy of GPP in North American drylands. Never-
theless, accurately capturing interannual anomalies remains
challenging for certain biomes, such as evergreen needleleaf
forest, cropland, and wetland (Fig. 4), as acknowledged by
previous studies (Tramontana et al., 2016; Jung et al., 2020).
High prediction uncertainties (Figs. 14, 15) in drylands also
suggest the machine learning models did not sufficiently rep-
resent the mechanisms of water stress and drought responses.
Potential improvement may be achieved by incorporating
datasets related to agricultural management practices (crop
type, cultivar, irrigation, fertilization; Xie et al., 2021), plant
hydraulic and physiological properties (Liu et al., 2021), dy-
namic C4 plant distributions (Luo et al., 2024), root and soil
characteristics (Stocker et al., 2023), and topography (Xie et
al., 2023).

4.1.3 Machine learning models and uncertainty
quantification

The choice of machine learning models and their parame-
terization has been found to have a relatively minor impact
on GPP upscaling uncertainties (Tramontana et al., 2015).
CEDAR used the state-of-the-art boosting algorithm XG-
Boost, which provided high performance given the current
data availability. Further reduction of model uncertainty will
likely rely on additional information, such as increasing the
number of eddy covariance sites or incorporating more high-
quality predictors. Additionally, temporal dependency of car-
bon flux responses to atmospheric controls may also be ex-
ploited with specialized deep neural networks such as recur-
rent neural networks or transformers (Besnard et al., 2019;
Ma and Liang, 2022).

A key challenge, however, is the quantification of un-
certainties in machine learning upscaling (Reichstein et al.,
2019). The limited availability of eddy covariance data hin-
ders a comprehensive assessment of the extrapolation er-
rors; consequently, metrics of predictive performance from
cross-validation are inherently biased. CEDAR derived es-
timation uncertainty for each GPP prediction using a boot-
strapping model ensemble, which naturally mimics the sam-
pling bias associated with flux tower locations. Notably, the
choice of input climate reanalysis datasets could also in-
duce systematic differences in GPP spatial and temporal pat-
terns (Tramontana et al., 2015). As a result, the FLUXCOM
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Figure 13. Global annual GPP trends for the (a) 2001 to 2018 and (b) 1982 to 2018 time periods. Error bars represent the 25 % to 75 %
percentile from the model ensembles of CEDAR-GPP. Dots indicate the minimum and maximum from the model ensembles of CEDAR-GPP.

product generates model ensembles based on different re-
analysis datasets to capture these uncertainties. Additionally,
different satellite datasets of vegetation structural proxies,
such as LAI, also exhibit significant discrepancies (Jiang et
al., 2017). Thus, an ensemble approach combining site-level
bootstrapping with multiple sources of input predictors could
potentially provide a more comprehensive quantification of
uncertainties. Furthermore, tree-based models do not gener-
alize well to unseen conditions, and the uncertainty estimates
derived from bootstrapping of XGBoost models may under-
represent actual biases stemming from limitations in training
data representation. Future work may explore Bayesian neu-
ral networks, which provide uncertainty along with predic-
tions and, at the same time, present high predictive power
comparable to ensemble tree-based algorithms (Ma et al.,
2021).

4.2 Long-term GPP changes and CO2 fertilization effect

CEDAR-GPP was constructed using a comprehensive set
of climate variables and multi-source satellite observations,
thus encapsulating long-term GPP dynamics from both di-
rect and indirect effects of climate controls. In particular,
CEDAR-GPP included the direct CO2 fertilization effect,
which has been shown to dominate the increasing trend
of global photosynthesis (Chen et al., 2022). Incorporating
these effects substantially improved long-term trends of GPP
from site to global scales (Figs. 5, 10, 11, 12, 13). CEDAR’s
CFE-Hybrid setup offers a conservative estimation of the di-
rect CO2 effects by simulating the CO2 sensitivity of light-
limited LUE for C3 plants (Walker et al., 2021). However,
the model does not account for the impacts of nutrient avail-
ability, which could potentially constrain CO2 fertilization
(Peñuelas et al., 2017; Reich et al., 2014; Terrer et al., 2019).
Robust modeling of LUE responses to rising CO2 under var-

ious environmental conditions remains challenging (Wang et
al., 2017). Future work is needed to better understand how
these factors affect the quantification of GPP and its long-
term temporal variations.

The CFE-ML model adopted a data-driven approach to
infer CO2 effects directly from eddy covariance data. This
strategy allows the model to potentially capture multiple
physiological pathways of the CO2 impact evidenced in the
eddy covariance measurements, including the increases of
biochemical rates and enhancements in water use efficiency
(Keenan et al., 2013). The model detects a strong positive
effect of CO2 on eddy-covariance-measured GPP, consistent
with previous studies based on process-based and statistical
models (Chen et al., 2022; Fernández-Martínez et al., 2017;
Ueyama et al., 2020). Moreover, spatial patterns of GPP
trends derived from the CFE-ML model reflected a strong
temperature dependency, aligning with the anticipated tem-
perature sensitivity of photosynthetic biochemical processes
(Keenan et al., 2023). Yet, the considerable ensemble spread
in the CO2 trends from the CFE-ML model and discrepancies
between the CFE setups (Fig. 14) underscores a high level of
uncertainty in the machine learning quantified CO2 effects.

Several limitations should be noted regarding GPP trend
estimation and validation. First, the CFE-ML model may not
fully capture the intricate mechanisms of plant physiologi-
cal responses to CO2. For example, eddy covariance tow-
ers, especially long-term sites, are typically located in ho-
mogeneous and undisturbed ecosystems, not representative
of the full diversity of ecosystems globally. Thus, interac-
tions between CO2 and natural or human-induced distur-
bance, as well as many other stresses, are likely underrepre-
sented in the models. Ultimately, the model’s capacity to ro-
bustly quantify CO2 fertilization is constrained by the scope
and diversity of the eddy covariance data. Additionally, the
use of spatially invariant CO2 data may not fully represent
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Figure 14. CEDAR-GPP estimation uncertainty derived from ensemble spread (standard deviation of 30 model predictions). (a) Spatial
patterns of the absolute standard deviation from ensemble members in estimating the mean annual GPP from 2001 to 2018, using data from
the ST_CFE-Hybrid_NT setup. (b) Relationships between ensemble standard deviation and ensemble mean in mean annual GPP. Colored
contours denote clusters of Köppen climate zones. Dashed lines indicate the ratio between the ensemble standard deviation and the ensemble
mean, with values shown in percentage. (c) Spatial patterns of model uncertainty in GPP long-term trend estimation. Only areas where 90 %
of the ensemble members showed a statistically significant trend (p < 0.05) are shown in the maps. The trend for the short-term datasets (left
column) was computed between 2001 and 2018. The trend for the long-term datasets (right column) was computed between 1982 and 2018.

the actual CO2 variations that plants experience across dif-
ferent environments.

Second, CO2 effects inferred by the CFE-ML models
may be confounded by other factors that correlate with
CO2 over time. Industrialization-induced nitrogen deposition
could synergistically boost GPP alongside CO2 (O’Sullivan
et al., 2019). Technological and management improvements
in agriculture that contribute to a global enhancement of crop
photosynthesis (Zeng et al., 2014) might also be indirectly

reflected in the model estimates. Moreover, interactions with
the other input features that exhibit long-term trends, such as
those induced by non-biological factors (e.g., sensor orbital
drifts), also affect the CO2 effects inference. Additionally,
other factors that could lead to long-term GPP trends (e.g.,
forest aging, disturbances) might also be underrepresented in
our models.

Finally, direct validation of GPP trends is limited, partic-
ularly in tropical regions, constrained by the availability of
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Figure 15. Maps of GPP trends and uncertainty range for CEDAR-GPP CFE datasets (NT only). The first column presents ensemble mean
trends, the second column shows trends from the mean minus 1 standard deviation, and the third column indicates the trend from the mean
plus 1 standard deviation. (a) Trends from the short-term (ST) datasets evaluated from 2001 to 2020. (b) Trends from the long-term (LT)
dataset evaluated from 1982 to 2020. DT datasets were shown in Fig. S19.

long-term records. Detecting and evaluating trends is chal-
lenging and typically requires long monitoring records (e.g.,
over 10 to 15 years), since long-term changes, such as those
induced by CO2, are very small relative to large interannual
variations. Evaluating aggregated GPP trends across multiple
sites presents an alternative approach; however, there were
still insufficient sites in tropical and evergreen broadleaf for-
est areas to robustly validate our estimates for those ecosys-
tems (Fig. 5). Partly due to data limitations, uncertainties in
GPP estimated from bootstrapped samples are very high in
tropical areas (Fig. 14). Thus, trend estimates in these areas
should be interpreted in the context of associated uncertain-
ties and limitations.

Our results also suggest that variations in the estimated
GPP long-term trends from different products are largely re-
lated to the representation of CO2 fertilization. Products that
do not consider the direct CO2 effect, including our Baseline
models, FLUXSAT, FLUXCOM, and MODIS, show mini-
mal long-term changes in tropical GPP, while the CEDAR
CFE-ML and CFE-Hybrid models demonstrate significant
GPP increases aligning with predictions from the terrestrial
biosphere models (Anav et al., 2015). FLUXCOM-ERA5,
not accounting for dynamic changes in vegetation structures
and CO2, does not capture either direct or indirect CO2 fertil-
ization, resulting in a slight negative GPP trend attributable to

shifted climate patterns. Notably, rEC-LUE exhibits contrast-
ing trends before and after circa 2000, primarily attributed to
changes in vapor pressure deficit, PAR, and LAI, while the
direct CO2 fertilization effect remains consistent (Zheng et
al., 2020). The CEDAR CFE-ML and CFE-Hybrid models
align well with two process-based models forced with re-
mote sensing data which consider direct CO2 effects (BESS
and BEPS). Nevertheless, considerable differences between
CEDAR-GPP and other remote sensing products that in-
clude direct CO2 effects (rEC-LUE and PML V2) warrant
more in-depth investigations into long-term GPP responses
to changes in atmospheric CO2 and climate patterns.

Lastly, quantifications of GPP trends and their causes re-
main highly uncertain from site to global scales. Trend detec-
tion is often complicated by data noise and interannual vari-
ability, thus requiring long-term records which are limited
in certain areas, biomes, and environmental conditions, such
as tropics, polar regions, and wetlands, as well as ecosys-
tems with regular or anthropogenic disturbances (Baldocchi
et al., 2018; Zhan et al., 2022). Moreover, isolating the effect
of CO2 is challenging, as it is confounded by other factors
such as forest regrowth, land cover change, and disturbances,
which also significantly impacts long-term GPP variations.
To this end, continued efforts in expanding ecosystem flux
measurements and standardizing data processing present new
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opportunities to assess ecosystem productivity responses to
changing climate conditions (Delwiche et al., 2024; Pas-
torello et al., 2020). Future research could also leverage novel
machine learning techniques, such as knowledge-guided ma-
chine learning (Liu et al., 2024) and hybrid modeling that
combines process-based and machine learning approaches
(Kraft et al., 2022; Reichstein et al., 2019).

5 Data availability

The CEDAR-GPP product, comprising 10 GPP datasets,
can be accessed at https://doi.org/10.5281/zenodo.8212706
(Kang et al., 2024). These datasets were generated at a spa-
tial resolution of 0.05° and monthly time steps. Each dataset
includes an ensemble mean GPP (“GPP_mean”) and an en-
semble standard deviation (“GPP_std”). Data are formatted
in netCDF with the following naming convention: “CEDAR-
GPP_<version>_<model setup>_<YYYYMM>.nc”.

The CEDAR GPP product offers GPP estimates derived
from 10 different models. Models are characterized by
(1) temporal coverage, (2) configuration of CO2 fertilization,
and (3) GPP partitioning approach (Table 2). We provide a
structured approach to selecting the most appropriate dataset
for research or applications.

1. Study period considerations. The short-term (ST) setup
is ideal for studies focusing on periods after 2000.
These models are constructed using a broader range
of explanatory predictors, offering higher precision and
smaller random errors. The long-term (LT) datasets
should be used for research assessing GPP dynamics
over a longer time period (before 2001). It is important
to note that trends from the ST and LT datasets are not
directly comparable, as they were derived from different
satellite remote sensing data.

2. CO2 fertilization effect configurations. The CFE-Hybrid
and CFE-ML setups are preferable when assessing tem-
poral GPP dynamics, especially long-term trends. The
CFE-Hybrid setup includes a hypothetical trend from
the direct CO2 effect, while CFE-ML is purely data-
driven and does not make any specific assumption about
the sensitivity of photosynthesis to CO2. Averaging the
CFE-Hybrid and CFE-ML estimates is acceptable, with
the difference between them reflecting the uncertainty
surrounding the direct CO2 effect. Note that the Base-
line setup should not be used to study long-term GPP
dynamics, especially those induced by elevated CO2.
The Baseline setup may be useful to compare with other
remote-sensing-derived GPP datasets that do not con-
sider the direct CO2 effect. Differences between these
setups regarding mean GPP spatial patterns and sea-
sonal and interannual variations are considered to be
minor.

3. GPP partitioning methods. We recommend using the
mean value derived from both the “NT” (night-time)
and “DT” (day-time) data. The difference between these
two provides insight into the uncertainties arising from
the partitioning approaches used in GPP estimation
from eddy covariance measurements.

Finally, like other upscaled or remote-sensing-based GPP
datasets, CEDAR-GPP should not be regarded as “obser-
vations” but rather as model estimates informed by remote
sensing and ground-based data. The extent of assumptions or
structural constraints varies across such datasets. CEDAR-
GPP, particularly in its CFE-Baseline and CFE-ML config-
urations, is entirely data-driven and incorporates no explicit
assumptions regarding the biological and environmental pro-
cesses underlying photosynthesis, apart from the generic
assumptions inherent in machine learning models. Conse-
quently, the usage and interpretation of this dataset should
be carefully framed within the context of the input eddy co-
variance and environmental data as well as their limitations.

6 Code availability

The code for upscaling and generating global GPP datasets
can be accessed at https://doi.org/10.5281/zenodo.8400968
(Kang, 2024).

7 Conclusions

We present the CEDAR-GPP product generated by upscaling
global eddy covariance measurements with machine learning
and a broad range of satellite and climate variables. CEDAR-
GPP comprises four long-term datasets from 1982 to 2020
and six short-term datasets from 2001 to 2020. These datasets
encompass three configurations regarding the incorporation
of direct CO2 fertilization effects and two partitioning ap-
proaches to derive GPP from eddy covariance data. The ma-
chine learning models of CEDAR-GPP demonstrated high
capability in predicting monthly GPP, its seasonal cycles, and
spatial variability within the global eddy covariance sites,
with cross-validated R2 between 0.56 to 0.79. Short-term
model setups consistently outperformed long-term models
due to considerably more and higher-quality information
from multi-source satellite observations.

CEDAR-GPP advances satellite-based GPP estimations,
as the first upscaled dataset that considered the direct bio-
chemical effects of elevated atmospheric CO2 on photosyn-
thesis, which is responsible for an increasing land carbon
sink over the past decades. We show that incorporating this
effect in our CFE-ML and CFE-Hybrid models substantially
improved the estimation of GPP trends at eddy covariance
sites. Global patterns of long-term GPP trends in the CFE-
ML setups show a strong temperature dependency consis-
tent with biophysical theories. However, trend estimation
and validation remain particularly challenging in data-scarce
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regions, such as the tropics, emphasizing the need for en-
hanced data availability and methodological advancements.
Beyond trends, global spatial and temporal GPP patterns
from CEDAR generally align with other satellite-based GPP
datasets.

In conclusion, CEDAR-GPP, informed by global eddy co-
variance measurements and a broad range of multi-source
remote sensing observations and climatic variables, offers a
comprehensive representation of global GPP spatial and tem-
poral dynamics over the past four decades. The different CO2
fertilization configurations integrated in CEDAR-GPP offer
new opportunities for understanding global ecosystem pho-
tosynthesis’s response to increases in atmospheric CO2 along
different pathways over space and time. CEDAR-GPP is ex-
pected to serve as a valuable tool for benchmarking process-
based modeling and constraining the global carbon cycle.

Appendix A

Table A1. List of eddy covariance sites.

Site ID IGBP Data range Citation

AR-SLu MF 2010–2011 Garcia et al. (2016)
AR-Vir ENF 2010–2012 Posse et al. (2016)
AT-Neu GRA 2002–2012 Wohlfahrt et al. (2016)
AU-Ade SAV 2010–2014 Beringer and Hutley (2016a)
AU-ASM WSA 2007–2009 Cleverly et al. (2016)
AU-Cpr SAV 2010–2014 Meyer et al. (2016)
AU-Cum EBF 2012–2014 Pendall et al. (2016)
AU-DaP GRA 2007–2013 Beringer and Hutley (2016b)
AU-DaS SAV 2008–2014 Beringer and Hutley (2016g)
AU-Dry SAV 2008–2014 Beringer and Hutley (2016c)
AU-Emr GRA 2011–2013 Schroder et al. (2016)
AU-Fog WET 2006–2008 Beringer and Hutley (2016d)
AU-Gin WSA 2011–2014 Macfarlane et al. (2016)
AU-How WSA 2001–2014 Beringer and Hutley (2016e)
AU-RDF WSA 2011–2013 Beringer and Hutley (2016f)
AU-Rig GRA 2011–2014 Beringer et al. (2016a)
AU-Tum EBF 2001–2014 Woodgate et al. (2016)
AU-Wac EBF 2005–2008 Beringer et al. (2016b)
AU-Whr EBF 2011–2014 Beringer et al. (2016c)
AU-Wom EBF 2010–2014 Arndt et al. (2016)
AU-Ync GRA 2012–2014 Beringer and Walker (2016)
BE-Bra MF 2001–2020 Warm Winter 2020 Team (2022)
BE-Dor GRA 2011–2020 Warm Winter 2020 Team (2022)
BE-Lon CRO 2004–2020 Warm Winter 2020 Team (2022)
BE-Maa CSH 2016–2020 Warm Winter 2020 Team (2022)
BE-Vie MF 2001–2020 Warm Winter 2020 Team (2022)
BR-Sa1 EBF 2002–2011 Saleska (2016)
BR-Sa3 EBF 2001–2004 Goulden (2016a)
CA-Ca1 ENF 2001–2002 Black (2023a)
CA-Ca2 ENF 2001–2010 Black (2023b)
CA-Ca3 ENF 2001–2010 Black (2018)
CA-Cbo DBF 2001–2003 Staebler (2022)
CA-Gro MF 2003–2014 McCaughey (2022)
CA-Man ENF 2001–2008 Amiro (2016a)
CA-NS1 ENF 2002–2005 Goulden (2022a)
CA-NS2 ENF 2001–2005 Goulden (2022b)
CA-NS3 ENF 2001–2005 Goulden (2022c)
CA-NS4 ENF 2002–2005 Goulden (2016b)
CA-NS5 ENF 2001–2005 Goulden (2022d)
CA-NS6 OSH 2001–2005 Goulden (2022e)
CA-NS7 OSH 2002–2005 Goulden (2016c)
CA-Oas DBF 2001–2010 Black (2016a)
CA-Obs ENF 2001–2010 Black (2016b)
CA-Qc2 MF 2008–2010 Margolis (2018)
CA-Qfo ENF 2003–2010 Margolis (2023)
CA-SF1 ENF 2003–2006 Amiro (2016b)
CA-SF2 ENF 2003–2005 Amiro (2023)
CA-SF3 OSH 2003–2006 Amiro (2016c)
CA-SJ2 ENF 2003–2007 Barr and Black (2018)
CA-TP1 ENF 2003–2014 Arain (2016b)
CA-TP2 ENF 2003–2007 Arain (2016c)
CA-TP3 ENF 2003–2014 Arain (2016d)
CA-TP4 ENF 2003–2017 Arain (2016a)
CA-TPD DBF 2012–2014 Arain (2016e)
CA-WP1 WET 2003–2009 Flanagan (2018a)
CA-WP2 WET 2004–2006 Flanagan (2018b)
CA-WP3 WET 2004–2006 Flanagan (2018c)
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Table A1. List of eddy covariance sites.

Site ID IGBP Data range Citation

CG-Tch SAV 2006–2009 Nouvellon (2016)
CH-Aws GRA 2006–2020 Warm Winter 2020 Team (2022)
CH-Cha GRA 2005–2020 Warm Winter 2020 Team (2022)
CH-Dav ENF 2001–2020 Warm Winter 2020 Team (2022)
CH-Fru GRA 2005–2020 Warm Winter 2020 Team (2022)
CH-Lae MF 2004–2020 Warm Winter 2020 Team (2022)
CH-Oe1 GRA 2002–2008 Ammann (2016)
CH-Oe2 CRO 2004–2020 Warm Winter 2020 Team (2022)
CN-Cha MF 2003–2005 Zhang and Han (2016)
CN-Cng GRA 2007–2010 Dong (2016)
CN-Din EBF 2003–2005 Zhou and Yan (2016)
CN-Du2 GRA 2007–2008 Chen (2016c)
CN-Ha2 WET 2003–2005 Li (2016)
CN-HaM GRA 2002–2004 Tang et al. (2016)
CN-Qia ENF 2003–2005 Wang and Fu (2016)
CN-Sw2 GRA 2011–2012 Shao (2016)
CZ-BK1 ENF 2004–2020 Warm Winter 2020 Team (2022)
CZ-BK2 GRA 2006–2012 Sigut et al. (2016)
CZ-KrP CRO 2014–2020 Warm Winter 2020 Team (2022)
CZ-Lnz DBF 2015–2020 Warm Winter 2020 Team (2022)
CZ-RAJ ENF 2012–2020 Warm Winter 2020 Team (2022)
CZ-Stn DBF 2010–2020 Warm Winter 2020 Team (2022)
CZ-wet WET 2006–2020 Warm Winter 2020 Team (2022)
DE-Akm WET 2009–2020 Warm Winter 2020 Team (2022)
DE-Geb CRO 2001–2020 Warm Winter 2020 Team (2022)
DE-Gri GRA 2004–2020 Warm Winter 2020 Team (2022)
DE-Hai DBF 2001–2020 Warm Winter 2020 Team (2022)
DE-HoH DBF 2015–2020 Warm Winter 2020 Team (2022)
DE-Hte WET 2009–2018 Drought 2018 Team (2020)
DE-Hzd DBF 2010–2020 Warm Winter 2020 Team (2022)
DE-Kli CRO 2004–2020 Warm Winter 2020 Team (2022)
DE-Lkb ENF 2009–2013 Lindauer et al. (2016)
DE-Lnf DBF 2002–2012 Knohl et al. (2016)
DE-Obe ENF 2008–2020 Warm Winter 2020 Team (2022)
DE-RuR GRA 2011–2020 Warm Winter 2020 Team (2022)
DE-RuS CRO 2011–2020 Warm Winter 2020 Team (2022)
DE-RuW ENF 2012–2020 Warm Winter 2020 Team (2022)
DE-Seh CRO 2007–2010 Schneider and Schmidt (2016)
DE-SfN WET 2012–2014 Klatt et al. (2016)
DE-Spw WET 2010–2014 Bernhofer et al. (2016)
DE-Tha ENF 2001–2020 Warm Winter 2020 Team (2022)
DK-Eng GRA 2005–2007 Pilegaard and Ibrom (2016)
DK-Sor DBF 2001–2020 Warm Winter 2020 Team (2022)
ES-Abr WSA 2015–2020 Warm Winter 2020 Team (2022)
ES-Agu OSH 2006–2019 Warm Winter 2020 Team (2022)
ES-Amo OSH 2007–2012 Poveda et al. (2016)
ES-LgS OSH 2005–2020 Reverter et al. (2016)
ES-LJu WSA 2014–2020 Warm Winter 2020 Team (2022)
ES-LM1 WSA 2014–2020 Warm Winter 2020 Team (2022)
ES-LM2 OSH 2007–2009 Warm Winter 2020 Team (2022)
FI-Hyy ENF 2001–2020 Warm Winter 2020 Team (2022)
FI-Jok CRO 2001–2003 Lohila et al. (2016)
FI-Ken ENF 2018–2020 Warm Winter 2020 Team (2022)
FI-Let ENF 2009–2020 Warm Winter 2020 Team (2022)
FI-Lom WET 2007–2009 Aurela et al. (2016a)
FI-Qvd CRO 2018–2020 Warm Winter 2020 Team (2022)
FI-Sii GRA 2016–2020 Warm Winter 2020 Team (2022)
FI-Sod ENF 2001–2014 Aurela et al. (2016b)
FI-Var ENF 2016–2020 Warm Winter 2020 Team (2022)
FR-Aur CRO 2005–2020 Warm Winter 2020 Team (2022)
FR-Bil ENF 2014–2020 Warm Winter 2020 Team (2022)

Table A1. List of eddy covariance sites.

Site ID IGBP Data range Citation

FR-FBn MF 2008–2020 Warm Winter 2020 Team (2022)
FR-Fon DBF 2005–2020 Warm Winter 2020 Team (2022)
FR-Gri CRO 2004–2020 Warm Winter 2020 Team (2022)
FR-Hes DBF 2014–2020 Warm Winter 2020 Team (2022)
FR-Lam ENF 2001–2008 Warm Winter 2020 Team (2022)
FR-LBr WET 2017–2020 Berbigier et al. (2016)
FR-LGt CRO 2005–2020 Warm Winter 2020 Team (2022)
FR-Pue EBF 2001–2014 Ourcival et al. (2016)
FR-Tou GRA 2018–2020 Warm Winter 2020 Team (2022)
GF-Guy EBF 2015–2015 Warm Winter 2020 Team (2022)
GH-Ank EBF 2011–2014 Valentini et al. (2016a)
GL-NuF WET 2008–2014 Hansen (2016)
GL-ZaF WET 2009–2011 Lund et al. (2016a)
GL-ZaH GRA 2001–2014 Lund et al. (2016b)
IL-Yat ENF 2001–2020 Warm Winter 2020 Team (2022)
IT-CA1 DBF 2011–2014 Sabbatini et al. (2016a)
IT-CA2 CRO 2011–2014 Sabbatini et al. (2016b)
IT-CA3 DBF 2011–2014 Sabbatini et al. (2016c)
IT-Col DBF 2001–2014 Matteucci (2016)
IT-Cp2 EBF 2012–2020 Warm Winter 2020 Team (2022)
IT-Cpz EBF 2001–2008 Valentini et al. (2016b)
IT-La2 ENF 2001–2002 Cescatti et al. (2016)
IT-Lav ENF 2003–2020 Warm Winter 2020 Team (2022)
IT-Lsn OSH 2016–2020 Warm Winter 2020 Team (2022)
IT-MBo GRA 2003–2020 Warm Winter 2020 Team (2022)
IT-Noe CSH 2004–2014 Spano et al. (2016)
IT-PT1 DBF 2002–2004 Manca and Goded (2016)
IT-Ren ENF 2001–2020 Warm Winter 2020 Team (2022)
IT-Ro1 DBF 2001–2008 Valentini et al. (2016c)
IT-Ro2 DBF 2002–2012 Papale et al. (2016)
IT-SR2 ENF 2013–2020 Warm Winter 2020 Team (2022)
IT-SRo ENF 2001–2012 Gruening et al. (2016)
IT-Tor GRA 2008–2020 Warm Winter 2020 Team (2022)
JP-MBF DBF 2004–2005 Kotani (2016a)
JP-SMF MF 2002–2006 Kotani (2016b)
MY-PSO EBF 2003–2009 Kosugi and Takanashi (2016)
NL-Hor GRA 2004–2011 Dolman et al. (2016a)
NL-Loo ENF 2001–2018 Drought 2018 Team (2020)
PA-SPn DBF 2007–2009 Wolf et al. (2016)
RU-Che WET 2002–2005 Merbold et al. (2016)
RU-Cok OSH 2003–2013 Dolman et al. (2016b)
RU-Fy2 ENF 2015–2020 Warm Winter 2020 Team (2022)
RU-Fyo ENF 2001–2020 Warm Winter 2020 Team (2022)
RU-Ha1 GRA 2002–2004 Belelli et al. (2016)
SD-Dem SAV 2007–2009 Ardö et al. (2016)
SE-Deg WET 2001–2020 Warm Winter 2020 Team (2022)
SE-Htm ENF 2015–2020 Warm Winter 2020 Team (2022)
SE-Lnn CRO 2014–2018 Drought 2018 Team (2020)
SE-Nor ENF 2014–2020 Warm Winter 2020 Team (2022)
SE-Ros ENF 2014–2020 Warm Winter 2020 Team (2022)
SE-Svb ENF 2014–2020 Warm Winter 2020 Team (2022)
SJ-Adv WET 2013–2014 Christensen (2016)
SN-Dhr SAV 2010–2013 Tagesson et al. (2016)
US-ARM CRO 2004–2018 Biraud et al. (2022)
US-Atq WET 2003–2008 Zona and Oechel (2016a)
US-Bar DBF 2005–2017 Richardson and Hollinger (2023)
US-Blo ENF 2001–2007 Goldstein (2016)
US-Cop CRO 2011–2013 Bowling (2016)
US-CRT GRA 2001–2007 Chen and Chu (2023)
US-Dk1 GRA 2004–2008 Oishi et al. (2016a)
US-Dk2 DBF 2004–2008 Oishi et al. (2016b)
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Table A1. List of eddy covariance sites.

Site ID IGBP Data range Citation

US-Dk3 ENF 2004–2008 Oishi et al. (2016c)
US-Fmf WSA 2005–2008 Dore and Kolb (2023a)
US-FR2 ENF 2005–2010 Litvak (2016)
US-Fuf ENF 2005–2010 Dore and Kolb (2023b)
US-GBT ENF 2001–2003 Massman (2016a)
US-GLE ENF 2005–2014 Massman (2016b)
US-Goo GRA 2002–2006 Meyers (2016)
US-Ha1 DBF 2001–2012 Munger (2016)
US-Ho1 ENF 2012–2018 Hollinger (2016)
US-Ivo WET 2004–2007 Zona and Oechel (2016b)
US-KFS GRA 2009–2017 Brunsell (2022)
US-KS2 CSH 2003–2006 Drake and Hinkle (2016)
US-Los WET 2001–2014 Desai (2016a)
US-Me2 DBF 2001–2017 Law (2022)
US-Me3 ENF 2003–2017 Law (2016a)
US-Me5 ENF 2004–2009 Law (2016b)
US-Me6 ENF 2001–2002 Law (2016c)
US-MMS ENF 2010–2014 Novick and Phillips (2022)
US-Mpj OSH 2008–2017 Litvak (2021)
US-Myb WET 2011–2014 Sturtevant et al. (2016)
US-Ne1 ENF 2001–2014 Suyker (2016a)
US-Ne2 CRO 2001–2013 Suyker (2016b)
US-Ne3 CRO 2001–2013 Suyker (2016c)
US-NR1 CRO 2001–2013 Blanken et al. (2016)
US-Oho DBF 2004–2013 Chen et al. (2023)
US-PFa MF 2001–2014 Desai (2016b)
US-Prr ENF 2010–2016 Iwahana et al. (2016)
US-Rls CSH 2014–2017 Flerchinger (2023)
US-Rms CSH 2014–2017 Flerchinger (2022a)
US-Ro1 CRO 2004–2016 Baker et al. (2022)
US-Rws OSH 2014–2017 Flerchinger (2022b)
US-Seg MF 2008–2014 Litvak (2023a)
US-Ses WSA 2004–2014 Litvak (2023b)
US-SRC GRA 2007–2017 Kurc (2016)
US-SRM OSH 2007–2017 Scott (2016a)
US-Sta OSH 2005–2009 Ewers and Pendall (2016)
US-Syv MF 2001–2014 Desai (2016c)
US-Ton WSA 2001–2014 Baldocchi and Ma (2016)
US-Tw1 WET 2011–2017 Valach et al. (2021)
US-Tw4 WET 2014–2017 Eichelmann et al. (2023)
US-Twt CRO 2009–2014 Baldocchi (2016)
US-Uaf DBF 2007–2017 Ueyama et al. (2018)
US-UMB DBF 2008–2017 Gough et al. (2023)
US-UMd ENF 2003–2017 Gough et al. (2022)
US-Var GRA 2001–2014 Baldocchi et al. (2016)
US-Vcm ENF 2008–2017 Litvak (2023c)
US-Vcp ENF 2007–2017 Litvak (2023d)
US-WCr DBF 2001–2014 Desai (2016d)
US-Whs WET 2011–2013 Scott (2016b)
US-Wi3 OSH 2007–2014 Chen (2016a)
US-Wi4 DBF 2002–2004 Chen (2016b)
US-Wjs ENF 2002–2005 Litvak (2022)
US-WPT SAV 2007–2017 Chen and Chu (2016)
ZM-Mon DBF 2007–2009 Kutsch et al. (2016)

Appendix B: CO2 sensitivity function of light-use
efficiency

In the CFE-Hybrid model, the direct CO2 fertilization effect
was prescribed onto machine learning-estimated GPP at a

reference CO2 level using a theoretical CO2 sensitivity func-
tion of LUE. The sensitivity function, which describes the
fractional change in LUE due to CO2 relative to the refer-
ence period, is described below.

The light-use efficiency (LUE) model (Pei et al., 2022) of
GPP states that

GPP= APAR×LUE= PAR× fAPAR×LUE, (B1)

where PAR is the photosynthetic active radiation, fAPAR is
the fraction of PAR that the plant canopy has absorbed, and
APAR is the absorbed PAR. Eco-evolutionary theory, specif-
ically the optimal coordination hypothesis, predicts that the
electron-transport-limited (light-limited) (Aj ) and Rubisco-
limited (Ac) rates of photosynthesis converge on the time
scale of physiological acclimation, which is of the order of
a few weeks (Harrison et al., 2021; Haxeltine and Prentice,
1996; Wang et al., 2017). Thus, at a monthly time scale, we
assume that

A= Ac = Aj , (B2)

where A is the gross photosynthetic rate, here equivalent to
GPP.

In the following, we derive our sensitivity function based
on Aj , which has a smaller response to CO2 than Ac, thus
providing conservative estimates of the direct CO2 fertiliza-
tion effect (Walker et al., 2021). According to the Farquhar,
von Caemmerer, and Berry (FvCB) model (Farquhar et al.,
1980),

Aj = ϕ0I
ci −0

∗

ci + 20∗
, (B3)

where ϕ0 is the intrinsic quantum efficiency of photosynthe-
sis, I is the absorbed PAR (I = APAR), ci is the leaf-internal
partial pressure of CO2, and 0∗ is the photorespiratory com-
pensation point that depends on temperature:

0∗ = r25e
1H (T−298.15)

298.15 RT , (B4)

where r25 = 4.22 Pa is the photorespiratory point at 25 °C,
1H is the activation energy (37.83× 103 J mol−1), T is the
air temperature in Kelvin, and R is the molar gas constant
(8.314 J mol−1 K−1). We denote the atmospheric CO2 con-
centration as ca, and χ is the ratio of leaf internal and external
CO2, so

ci = χca. (B5)

Combining Eqs. (B1), (B3), and (B5), and assuming
Eq. (B2), LUE can be written as

LUE= ϕ0
ci −0

∗

ci + 20∗
= ϕ0

χca−0
∗

χca+ 20∗
. (B6)

We can therefore show that under constant absorbed light (I
or APAR), the sensitivity of GPP to CO2 is proportional to
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that of LUE,

∂GPP
∂ca

=

∂ϕ0I
χca−0

∗

χca+20∗

∂ca
= I

∂LUE
∂ca

. (B7)

Thus, from Eq. (B7) we can express the actual GPP at time t
and a CO2 level cta as the product of a reference GPP with a
CO2 level c0

a and the ratio between actual and reference LUE
(B8–9). We denote the actual GPP as time t as GPPt

ca=cta
, and

the reference GPP at time t as GPPt
ca=c0

a
.

GPPt
ca=cta

GPPt
ca=c0

a

=

LUEt
ca=cta

LUEt
ca=c0

a

=

χcta−0
∗

χcta+20∗

χc0
a−0

∗

χc0
a+20∗

=
φtCO2

φ
t0
CO2

(B8)

GPPtca=cta
= GPPt

ca=c0
a
×
φtCO2

φ
t0
CO2

(B9)

The reference GPP represents the GPP value at time t if the
CO2 were at the level of a reference level, while all other fac-
tors, such as PAR, fAPAR, temperature, and other environ-
mental controls, remain unchanged. Here, the CO2 impacts
on LUE depend on atmospheric CO2 (ca), χ , and air tem-
perature. We fixed χ to the global long-term average value
of 0.7 typical for C3 plants (Prentice et al., 2014; Wang et
al., 2017). We further tested a dynamic model that quantified
χ as a function of air temperature and vapor pressure deficit
following an eco-evolutionary theory across global flux sites
(Keenan et al., 2023). The estimated χ had a mean and me-
dian of 0.7 and a standard deviation of 0.04 (Fig. S20a). Dif-
ferences in the direct CO2 effect between the dynamic and
fixed χ approaches were minimal, with an R2 of 0.99 and
a slope of 0.99 from a least squares linear regression line
(Fig. S20b). GPP trends across flux towers were also highly
consistent between the two approaches, with a difference of
less than 0.1 gC m−2 yr−2 (Fig. S20b, c). Since these results
indicated that χ is relatively stable, we used the fixed χ ap-
proach to produce the CEDAR-GPP dataset.

In the CFE-Hybrid model, we estimated the reference GPP
by fixing the CO2 at the level of the year 2001 while keeping
all other variables dynamic in the CFE-ML model. Then the
actual GPP can be estimated following Eq. (B9). Fixing CO2
values to the 2001 level, the start year of eddy covariance
data used in model training, essentially removed the effects
of CO2 inferred by the CFE-ML model.
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