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 S1. C3/C4 Classification in Eddy Covariance Sites 
We classified eddy covariance sites as C3 or C4 based on species information from site metadata and 

relevant peer-reviewed articles. For sites where such information was unavailable, we referred to a 

C4 plant percentage map (Still et al., 2009). When constructing datasets for model training, we 

removed sites dominated as C4 plant and retained sites with a mixed C3 and C4 vegetation, as well 

as agricultural sites with crop rotations involving C3 and C4 plants. Below we provide a list of sites 

dominated by C3 plants, C4 plants, a mixture of C3/C4 plants, and C3/C4 crop rotations. 

Sites dominated by C3 plants 

AR-SLu, AR-Vir, AT-Neu, AU-Ade, AU-ASM, AU-Cpr, AU-Cum, AU-DaP, AU-DaS, AU-Dry, AU-

Fog, AU-Gin, AU-GWW, AU-How, AU-Lox, AU-RDF, AU-Rig, AU-Rob, AU-Tum, AU-Wac, AU-

Whr, AU-Wom, BE-Bra, BE-Dor, BE-Lcr, BE-Maa, BE-Vie, BR-Sa1, BR-Sa3, CA-Ca1, CA-Ca2, CA-

Ca3, CA-Cbo, CA-Gro, CA-Man, CA-NS1, CA-NS2, CA-NS3, CA-NS4, CA-NS5, CA-NS6, CA-NS7, 

CA-Oas, CA-Obs, CA-Qc2, CA-Qfo, CA-SF1, CA-SF2, CA-SF3, CA-SJ2, CA-TP1, CA-TP2, CA-

TP3, CA-TP4, CA-TPD, CA-WP1, CA-WP2, CA-WP3, CG-Tch, CH-Aws, CH-Cha, CH-Dav, CH-

Fru, CH-Lae, CH-Oe1, CH-Oe2, CN-Cha, CN-Cng, CN-Dan, CN-Din, CN-Du2, CN-Du3, CN-Ha2, 

CN-HaM, CN-Qia, CZ-BK1, CZ-BK2, CZ-Lnz, CZ-RAJ, CZ-Stn, CZ-wet, DE-Akm, DE-Geb, DE-

Gri, DE-Hai, DE-HoH, DE-Hte, DE-Hzd, DE-Kli, DE-Lkb, DE-Lnf, DE-Obe, DE-RuR, DE-RuS, 

DE-RuW, DE-Seh, DE-SfN, DE-Spw, DE-Tha, DE-Zrk, DK-Eng, DK-Fou, DK-Gds, DK-Sor, 

ES-Abr, ES-Agu, ES-Amo, ES-Cnd, ES-LgS, ES-LJu, ES-LM1, ES-LM2, ES-Ln2, FI-Hyy, FI-Jok, 

FI-Ken, FI-Let, FI-Lom, FI-Qvd, FI-Sii, FI-Sod, FI-Var, FR-Aur, FR-Bil, FR-FBn, FR-Fon, FR-Hes, 

FR-LBr, FR-LGt, FR-Pue, GF-Guy, GH-Ank, GL-Dsk, GL-NuF, GL-ZaF, GL-ZaH, IE-Cra, IL-

Yat, IT-BFt, IT-CA1, IT-CA2, IT-CA3, IT-Col, IT-Cp2, IT-Cpz, IT-Isp, IT-La2, IT-Lav, IT-Lsn, IT-

MBo, IT-Noe, IT-PT1, IT-Ren, IT-Ro1, IT-Ro2, IT-SR2, IT-SRo, IT-Tor, JP-MBF, JP-SMF, MY-

PSO, NL-Hor, NL-Loo, PA-SPn, RU-Che, RU-Cok, RU-Fy2, RU-Fyo, RU-Ha1, SD-Dem, SE-Deg, 

SE-Htm, SE-Lnn, SE-Nor, SE-Ros, SE-Svb, SJ-Adv, SJ-Blv, SN-Dhr, US-Atq, US-Bar, US-Bi1, US-

Blo, US-CRT, US-Dk1, US-Dk2, US-Dk3, US-Fmf, US-FR2, US-Fuf, US-GBT, US-GLE, US-Ha1, 

US-Ho1, US-Ivo, US-KS1, US-KS2, US-Lin, US-Los, US-Me1, US-Me2, US-Me3, US-Me4, US-Me5, 

US-Me6, US-Men, US-MMS, US-Mpj, US-Myb, US-NR1, US-Oho, US-ORv, US-OWC, US-PFa, US-

Pnp, US-Prr, US-Rls, US-Rms, US-Rws, US-Ses, US-SRC, US-SRM, US-Sta, US-Syv, US-Ton, US-

Tw1, US-Tw3, US-Tw4, US-Twt, US-Uaf, US-UMB, US-UMd, US-Var, US-Vcm, US-Vcp, US-WCr, 
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US-Wgr, US-Whs, US-Wi0, US-Wi1, US-Wi2, US-Wi3, US-Wi4, US-Wi5, US-Wi6, US-Wi7, US-Wi8, 

US-Wi9, US-Wjs, US-WPT, ZM-Mon 

Sites dominated by C4 plants 

AU-Stp, AU-TTE, IT-BCi, PA-SPs, US-AR1, US-AR2, US-ARb, US-ARc, US-Bi2, US-IB2, US-

LWW, US-Ne1, US-Ro4, US-SRG, US-Tw2, US-Wkg 

Sites with a mixture of C3 and C4 plants 

AU-Emr, AU-Ync, CN-Sw2, FR-EM2, US-ARM, US-Cop, US-KFS, US-Seg 

Sites with rotations of C3 and C4 crops 

BE-Lon, FR-Gri, FR-Lam, US-Ne2, US-Ne3, US-Ro1, US-Ro5, US-Ro6 
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 S2. Note on XGBoost Hyperparameters 

During the nested cross-validation (Main text Section 2.3.3), XGBoost model hyperparameters were 

determined using a randomized search based on 3-fold cross-validation within each training set. This 

process generated a best-fit parameter set for each of the five folds. When generating the global 

product, the final hyperparameters were determined based on a majority vote from the five best-fit 

parameter sets. For the short-term model setups, the XGBoost models were trained with 500 

estimators (parameter “n_estimator” in the XGBoost python API), a learning rate (“learning_rate” of 

0.01, and a subsample ratio of columns/features (“colsample_bytree”) of 0.3 for each tree. For the 

long-term model setups, the XGBoost models used 300 estimators, a learning rate of 0.05, and a 

subsample ratio of columns of 0.3. Note that adding the CO2 features to the models or using NT 

versus DT GPP did not change the selected best-fit parameter sets. 
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Table S1. List of predictors used in different temporal model setup 

Name Source/Dataset Unit Used in 
Short-term Long-term 

Air temperature ERA5-Land K ✓ ✓ 
Skin temperature K ✓ ✓ 
Precipitation m ✓ ✓ 
Precipitation 3-month lag m ✓ ✓ 
VPD kPa ✓ ✓ 
Potential ET m ✓ ✓ 
Surface downwelling solar radiation  J/m2  ✓ 
Surface reflectance Band 1 (red) MCD43C4 - ✓  
Surface reflectance Band 2 (nir) - ✓  
Surface reflectance Band 3 (blue) - ✓  
Surface reflectance Band 4 (green) - ✓  
Surface reflectance Band 5 (SWIR1) - ✓  
Surface reflectance Band 6 (SWIR2) - ✓  
Surface reflectance Band 7 (SWIR3) - ✓  
Normalized Difference Vegetation,Index (NDVI) - ✓  
kNDVI a - ✓  
Enhanced Vegetation Index (EVI) - ✓  
Normalized Difference Water Index,(NDWI) b - ✓  
CIGreen c - ✓  
NIRv d - ✓  
Percentage of snow cover % ✓  
fPAR MCD15A3H (after 2002/07); MOD15A2H 

(before 2002/07) 
- ✓  

LAI - ✓  
NDVI GIMMS NDVI4g -  ✓ 
LAI GIMMS LAI4g -  ✓ 
Daytime land surface temperature MYD11A1 (after 2002/07); MOD11A1 

(before 2002/07)  
K ✓  

Nighttime land surface temperature  K ✓  
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All-sky daily average SIF CSIF mW m-2nm-

1sr-1 
✓  

Photosynthetic Active Radiation (PAR) BESS PAR W/m2 ✓  
Diffuse PAR W/m2 ✓  
Shortwave downwelling radiation W/m2 ✓  
Soil moisture ESACCI Soil Moisture % ✓  
Plant Function Type (one-hot encoding) MCD12Q1 - ✓ ✓ 
Climate zone (one-hot encoding) Koppen-Geiger - ✓ ✓ 
C4 vegetation percentage ISLSCP II C4 Vegetation Percentage %  ✓ 

(only in 
ST_CFE-ML 
and ST_CFE-
Hybrid 
setups) 

✓ 
(only in 
LT_CFE-
Hybrid setup) 

Atmospheric CO2 concentration ESLR  ppm ✓ 
(only in CFE-
ML and CFE-
Hybrid 
setups) 

✓ 
(only in 
LT_CFE-
Hybrid setup) 

a. kNDVI (Camps-Valls et al., 2021) 

b. NDWI (Gao, 1996) 

c. CIgreen (Gitelson, 2005) 

d. NIRv (Badgley et al., 2017) 
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Table S2. Cross-validation performance of ten CEDAR-GPP model setups  

Model Setup Monthly MSC Monthly anomalies Cross-site 
RMSE Bias r2 RMSE Bias r2 RMSE Bias r2 RMSE Bias r2 

ST_Baseline_NT 2.04 -0.08 0.72 1.65 0.01 0.77 1.23 0.00 0.10 1.15 0.02 0.63 
ST_CFE-ML_NT 2.05 -0.08 0.72 1.65 0.01 0.77 1.23 0.00 0.11 1.16 0.02 0.63 
ST_CFE-Hybrid_NT 2.04 -0.08 0.72 1.64 0.00 0.77 1.23 0.00 0.11 1.15 0.01 0.64 
LT_Baseline_NT 2.23 -0.05 0.66 1.85 0.06 0.71 1.26 0.00 0.06 1.29 0.07 0.54 
LT_CFE-Hybrid_NT 2.22 -0.07 0.67 1.84 0.04 0.72 1.26 0.00 0.06 1.28 0.05 0.55 
ST_Baseline_DT 1.95 -0.07 0.71 1.55 0.01 0.78 1.20 0.00 0.10 1.06 0.02 0.66 
ST_CFE-ML_DT 1.95 -0.05 0.72 1.55 0.03 0.78 1.21 0.00 0.10 1.05 0.04 0.67 
ST_CFE-Hybrid_DT 1.94 -0.08 0.72 1.54 0.00 0.78 1.20 0.00 0.10 1.04 0.00 0.67 
LT_Baseline_DT 2.11 -0.04 0.67 1.73 0.06 0.73 1.24 0.00 0.05 1.17 0.06 0.59 
LT_CFE-Hybrid_DT 2.10 -0.02 0.67 1.72 0.08 0.73 1.24 0.00 0.05 1.16 0.09 0.59 

 

Table S3. Sites from the OzFlux FluxNet dataset used for independent validation. 

Site ID IGBP Koppen zone Data range No. of site-months 
AU-ASM SAV Arid 2010-2019 111 
AU-Adr SAV Tropical 2007-2009 19 
AU-Boy SAV Temperate 2017-2019 24 
AU-Cpr SAV Arid 2011-2019 104 
AU-Cum EBF Temperate 2014-2019 71 
AU-Dry WSA Tropical 2010-2019 90 
AU-GWW SAV Arid 2013-2019 83 
AU-Lit SAV Tropical 2015-2019 53 
AU-Rgf CRO Temperate 2016-2019 39 
AU-Stp GRA Arid 2009-2019 114 
AU-War EBF Temperate 2013-2019 53 

 

Table S4. CEDAR-GPP model performance based on independent data from the OzFlux FluxNet 
dataset 

Model Setup R2 RMSE 
Overall MSC Anomalies Cross-site Overall MSC Anomalies Cross-site 

ST_Baseline_NT 0.75 0.77 0.33 0.77 1.27 1.23 0.77 1.00 
ST_CFE-Hybrid_NT 0.75 0.77 0.33 0.77 1.27 1.23 0.77 0.99 
ST_CFE-ML_NT 0.75 0.77 0.33 0.76 1.27 1.24 0.77 1.01 
LT_Baseline_NT 0.74 0.80 0.26 0.77 1.29 1.15 0.81 0.98 
LT_CFE-Hybrid_NT 0.74 0.79 0.26 0.76 1.28 1.16 0.81 1.00 
ST_Baseline_DT 0.73 0.74 0.50 0.69 1.40 1.40 0.67 1.17 
ST_CFE-Hybrid_DT 0.73 0.74 0.50 0.69 1.39 1.40 0.67 1.16 
ST_CFE-ML_DT 0.74 0.74 0.50 0.69 1.38 1.39 0.67 1.16 
LT_Baseline_DT 0.74 0.78 0.43 0.72 1.37 1.29 0.71 1.11 
LT_CFE-Hybrid_DT 0.74 0.77 0.43 0.71 1.38 1.30 0.71 1.13 
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Figure S1. Machine learning model performance in predicting monthly GPP and its 
spatial and temporal variability (DT models only). Scatter plots illustrated relationships 
between model predictions and observations for monthly GPP (a), mean seasonal cycles 
(MSC) (c), monthly anomaly (e), and cross-site variability (g) for ST_CFE-Hybrid_NT 
(left, blue) and LT_CFE-Hybrid_NT (right, green) models. Corresponding bar plots 
show the R2 values for five all ten NT model setups in predicting monthly GPP (b), MSC 
(d), monthly anomaly (f), and cross-site variability (h). 
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Figure S2. Site-level performance of ten CEDAR-GPP model setups in predicting 
monthly GPP, GPP mean seasonal cycle, and monthly anomalies. The distribution of 
model accuracy (R2) across sites is summarized by the boxplots. Each box represents the 
interquartile range (IQR), the line inside the box indicates the median, and the whiskers 
extend to the smallest and largest values within 1.5 times the IQR. Points outside this 
range are plotted as outliers. 
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Figure S3. Performance (R2) of the ST_CFE-Hybrid_DT (blue) and LT_CFE-
Hybrid_DT (green) models on GPP spatiotemporal estimation by plant functional types 
(a) and climate zones (b). The cross-site panels included the number of sites within each 
category. ENF: evergreen needleleaf forest, EBF: evergreen broadleaf forest, DBF: 
deciduous broadleaf forest, MF: mixed forest, SH: shrubland, SA: savanna, GRA: 
grassland, CRO: cropland, WET: wetland. Tr: tropical, Ar: arid, Tp: temperate, Cd: cold, 
Pl: polar. 
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Figure S4. Performance heatmap (R2) of the ten CEDAR-GPP models on GPP 
spatiotemporal estimation by plant functional types. 
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Figure S5. Performance heatmap (R2) of the ten CEDAR-GPP models on GPP 
spatiotemporal estimation by Koppen climate zones. 
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Figure S6. Comparison of observed and predicted GPP (from DT models only) trends 
across eddy covariance flux towers. (a) Aggregated annual GPP anomaly from 2002 to 
2019 and trend lines from eddy covariance (EC) measurements, and three CFE model 
setups (short-term, night-time partitioning) for ST (left) and LT (right) models. The size 
of grey circle markers is proportional to the number of sites. (b) Annual trends from eddy 
covariance measurements and the short-term (ST) CEDAR-GPP model setups. (c) 
Annual trends from eddy covariance measurements and the long-term (LT) CEDAR-
GPP model setups. 
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Figure S7. Comparison of observed and predicted GPP trends from (a) NT models and 
(b) DT models in long-term flux sites. Only sites with at least ten years of data and a 
significant annual trend (p-value < 0.3) are shown. 
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Figure S8. GPP responses to CO2, NIRv, and PAR from the ST_CFE-ML_NT model 
evaluated with (a) the Accumulated Local Effectis (ALE) and (b) the SHAP (SHapley 
Additive exPlanations) explaining approaches. Light green lines in (a) represent ALE 
response curves of 30 model ensembles, and the thick black presents the ensemble mean 
curve. Green dots in (b) correspond to SHAP values of individual samples (i.e. GPP 
observation from one site-month). Black solid lines in (b) are LOESS (local regression) 
curves. 
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Figure S9. Standardized annual GPP anomalies from eddy covariance data and estimated 
by CEDAR-GPP for seven independent (not included in model training and 
development) sites from the OzFlux FluxNet dataset. The results compare three 
CEDAR-GPP model setups – ST_Baseline_NT, ST_CFE-Hybrid_NT, and ST_CFE-
ML_NT. Eddy covariance GPP was partitioned using the Night-time (NT) approach. 
The bottom right inset table lists the annual GPP trends based on Sen’s slopes and the 
Mann-Kendall test. 
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Figure S10. CEDAR-GPP performance in estimating monthly GPP, mean seasonal cycle, 
monthly anomalies, and spatial variations in 11 independent sites from the OzFlux 
FluxNet dataset, which was not included in model training and development. 
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Figure S11. Global patterns of mean annual GPP from CEDAR-GPP product and other 
GPP datasets. 
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Figure S12. Global and regional mean seasonal cycles from CEDAR-GPP short-term 
(ST) (a) and long-term (LT) (b) datasets. Figure S18 shows a map of 11 TransCom regions. 
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Figure S13. Comparison of GPP mean seasonal cycle between different datasets on a 
global scale, specifically within the Northern Hemisphere (20ºN - 90ºN), Southern 
Hemisphere (20ºS - 60ºS), and Tropical regions (20ºN - 20ºS). Monthly means were 
averaged from 2001 to 2018 for all datasets. Dots represent the spatial medians and 
vertical bars indicate the interquartile range (25th to 75th percentiles). 



 21 

 

Figure S14. Spatial patterns of GPP interannual variability from ten CEDAR-GPP 
extracted from 2001 to 2018. 
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Figure S15. Annual GPP trends (a) over 2001 – 2018 from short-term day-time CEDAR 
GPP datasets and (b) over 1982 – 2018 for long-term day-time CEDAR-GPP datasets. 
Hatched areas indicate the GPP trend that is statistically significant at p < 0.05 level under 
the Mann-Kendal test. 
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Figure S16. Global and regional GPP trends from 2001 to 2020 short-term night-time 
CEDAR GPP datasets, BEPS, BESS v2, and PML V2. a) Global annual GPP over time, 
with an inset showing GPP trends. b) GPP trend in 11 TransCom regions. Bars marked 
with a grey dot represent statistically significant trends at p < 0.05 level under the Mann-
Kendal test. Figure S18 shows a map of 11 TransCom regions. 
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Figure S17. Comparison of global annual GPP trend over 1982-2000 and over 2001-
2020 in CEDAR-GPP, FLUXCOM-ERA5, rEC-LUE, and BESS. 
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Figure S18. Map of 11 TransCom land regions. The Atmospheric Tracer Transport 
Model Intercomparison Project (TransCom) was a research initiative for quantifying 
uncertainties in inversion calculations of the global carbon budget, and the regions were 
defined to compare and assess carbon budget at regional to global scales (Gurney et al., 
2002).   
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Figure S19. Maps of GPP trends and uncertainty range for CEDAR-GPP CFE datasets 
(DT only). The first column presents ensemble mean trends, the second column shows 
trends from the mean minus one standard deviation (upper, and third column indicates 
the trend from the mean plus one standard deviation. (a) Trends from the short-term (ST) 
datasets evaluated from 2001 to 2020. (b) Trends from the long-term (LT) dataset 
evaluated from 1982 to 2020. 

  



 27 

 

 

 

Figure S20. Comparison of CO2 sensitivity of LUE with dynamic vs. fixed values of 𝜒, 
i.e. the leaf internal to atmospheric CO2 concentration ratio (ci/ca). The dynamic model 
simulates 𝜒 as a function of air temperature and VPD, whereas the other approach has a 
fixed 𝜒 at the global long-term average (𝜒=0.7). (a) Statistical distribution of ci/ca 
(monthly values) across global eddy covariance towers estimated by the dynamic model. 
(b) Comparison of the direct CO2 fertilization effect (CFE) between the two models. The 
direct CFE is quantified as the ratio between LUE under ambient CO2 levels and LUE at 
a reference CO2 level (the value of year 2001). This ratio corresponds to the (𝜙!"!

# 𝜙!"!
#"# ) 

term in Eq. A8. (c) Aggregated GPP trends across global flux towers over 2002 to 2019 
from eddy covariance data and model estimates. The CFE-Hybrid-fixed model assumes 
a constant ci/ca and the CFE-Hybrid-dynamic model computes ci/ca as a function of air 
temperature and VPD based on an eco-evolutionary optimality theory. 
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