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Abstract. Cultivated pastures have rapidly developed across the Tibetan Plateau over the past several decades,
raising concerns about grassland degradation. Accordingly, considerable attention is paid to the protection of
Tibetan grassland ecosystems. However, high-resolution spatial distribution of cultivated pastures on the Ti-
betan Plateau remains poorly understood, primarily due to the difficulty in discriminating cultivated pastures
from other land cover types using remote sensing techniques. The absence of such information hinders efficient
agricultural and livestock husbandry management, making it challenging to support ecological protection and
restoration efforts. Here, we mapped the cultivated pastures on the Tibetan Plateau at a 30 m resolution for the
years 1988 to 2021 using Landsat data from the Google Earth Engine (GEE) cloud computing platform. We
built a random forest (RF) binary classification model with inputs of the spectral–temporal metrics of Landsat
data acquired in the growing season, as well as ancillary topographic data. The model was trained using carefully
selected training samples and was validated against 2000 independent random reference points in two pilot study
regions with different climates and landscapes. The model achieved an overall accuracy of 97.05 %± 0.4 % and
an F1 spatial consistency score of 82.51 %± 14.22 % (precision: 90.04 %± 6.18 %; recall: 76.74 %± 9.91 %),
suggesting high confidence in mapping the distribution of cultivated pastures on the plateau. Using the RF model,
we then produced a dataset of cultivated-pasture maps for the years from 1988 to 2021 for Qinghai Province and
the Tibet Autonomous Region on the Tibetan Plateau, covering 77 % of the plateau. At both the province and
county levels, the cultivated-pasture areas estimated in this study matched well with government statistics for
recent years. The area of cultivated pastures on the Tibetan Plateau experienced a significant expansion from
0.46 Mha in 1988 to 1.57 Mha in 2021, with an average annual growth of 33.5± 2.5 Kha. To our knowledge,
we are the first to map cultivated pastures on the Tibetan Plateau, and our RF binary classification approach
holds promise in identifying cultivated pastures in other regions of the world, which could prove to be invaluable
for scientists, policymakers, ecological conservation practitioners, and herdspeople. The dataset is available on
Zenodo at https://doi.org/10.5281/zenodo.14271782 (Han et al., 2024).
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1 Introduction

Grasslands on the Tibetan Plateau play essential roles in car-
bon, water, and nutrient cycles (Chen et al., 2022; Piao et
al., 2020; Wang et al., 2022a; Zhang et al., 2022b), in main-
taining biodiversity (He et al., 2024), in mediating energy
balances (Chang et al., 2021), and in supporting the liveli-
hoods of millions of pastoralists (Fuglie et al., 2021; Hou
et al., 2021). However, under the joint influence of climate
change (He et al., 2020; Yao et al., 2022; Zhang et al., 2020)
and human activity (Ding et al., 2022; Li et al., 2021; Zhang
et al., 2022b), Tibetan grasslands face serious degradation
problems (Bardgett et al., 2021; Wang et al., 2022c; Zhu et
al., 2023). Numerous ecological restoration measures have
been implemented in the past 2 decades to address the prob-
lem of grassland degradation on the plateau (Bardgett et al.,
2021; Li et al., 2020; Zhu et al., 2023) and to improve the
welfare of Tibetan pastoral communities (Fuglie et al., 2021;
Hou et al., 2021). The establishment of cultivated pastures,
which is common in western developed countries (Vroey et
al., 2022), is encouraged in developing countries as one of
these efforts (Wang and Zhang, 2023).

Cultivated pastures are also known as tame grasslands or
pastures (Fisher et al., 2018; McInnes et al., 2015), agri-
cultural grasslands (Zalite et al., 2016), green-fodder lands
(Yang et al., 2021), or planted pastures (Parente et al., 2017).
Cultivated pastures primarily cultivate alfalfa, silage corn,
forage oat, ryegrass, or similar crops. The vegetation spec-
tral signals of these cultivated pastures are similar to those
of conventional croplands during peak growing seasons.
However, cultivated pastures are generally harvested before
reaching full maturity to optimize nutrient retention and to
maintain palatability. As a result, the duration of vegetation
growth in cultivated pastures is shorter compared to crop-
lands. This discrepancy may lead to noticeable differences in
vegetation spectral signals between conventional croplands
and cultivated pastures at the end of the growing season
(Ashourloo et al., 2018; Yang et al., 2021).

Mapping cultivated pastures on the Tibetan Plateau is im-
portant for the following reasons. Firstly, cultivated pastures
provide substantial amounts of forage for livestock, the main
economic income of Tibetan pastoralists (Fuglie et al., 2021;
Hou et al., 2021). Secondly, cultivated pastures are essen-
tial for the ecological conservation and restoration efforts in
this ecologically fragile area through reducing grazing pres-
sure on natural grasslands (Kumar et al., 2019; Fang et al.,
2016). Thirdly, encouraging cultivated pastures on the Ti-
betan Plateau has led to considerable changes in land use
and land cover. These cultivated pastures, if well planned,
can have significant impacts on ecosystem services and bio-
diversity conservation (Chen et al., 2021; Dong et al., 2022);
if not well planned, they will result in ecosystem degradation
that will be difficult to restore in these extreme environments.

Satellite remote sensing is an essential tool for mapping
cultivated pastures (McInnes et al., 2015; Ashourloo et al.,
2018; Fisher et al., 2018; Yang et al., 2021; Wang et al.,
2022b). For example, McInnes et al. (2015) used MODIS
data to discriminate native and non-native grasslands in a dry
mixed prairie in Canada, with an overall accuracy of 73 %, as
assessed by independent validation. Ashourloo et al. (2018)
identified alfalfa fields in Iran and the United States using
Landsat time series data, and the overall accuracy reached
above 90 % by means of cross-validation, although their
method did not require a very dense number of valid obser-
vations. Lidar data have been used to distinguish cultivated
grasslands from natural grasslands, as in one study in south-
western Saskatchewan, Canada, with an overall accuracy of
96 % being achieved (Fisher et al., 2018). Satellite remote
sensing has also been used to map pastoral lands in China.
Yang et al. (2021) used Landsat data during the growing sea-
son to map green-fodder fields in the northeastern Tibetan
Plateau in 2010, 2015, and 2019 and achieved overall accu-
racies of 94.2 %, 93.1 %, and 96.6 %. They found that the
green-fodder lands in northeastern Tibetan Plateau expanded
from 16.3 km2 in 2010 to 136.1 km2 in 2019, 7.35 times the
initial area. Wang et al. (2022b) identified oat pastures in
Shandan County of Gansu Province using Sentinel-2 data
from 2019 to 2021, with an overall accuracy of 98 %, as as-
sessed by cross-validation. They found that the area of cul-
tivated oat pastures decreased from 347.8 km2 in 2019 to
318.9 km2 in 2021.

While a number of studies have mapped cultivated pas-
tures (Ashourloo et al., 2018; Fisher et al., 2018; McInnes
et al., 2015; Wang et al., 2022b; Yang et al., 2021), many
have mapped cultivated pastures that grow certain types of
tame grass species, such as alfalfa (Ashourloo et al., 2018),
oat (Wang et al., 2022b) and rapeseed (Yang et al., 2021);
few studies have focused on the mapping of general culti-
vated pastures, especially in the harsh environments on the
Tibetan Plateau. The temporal evolution of the distribution of
cultivated pastures on the Tibetan Plateau, which is of great
interest to policymakers and researchers, remains poorly un-
derstood.

Therefore, the aims of the study are (1) to develop a
method for mapping general cultivated pastures using satel-
lite remote sensing data, (2) to clarify important technical
details for successful mapping of general cultivated pastures
on the Tibetan Plateau, and (3) to understand the temporal
evolution of the spatial distribution of cultivated pastures on
the Tibetan Plateau.

2 Study region

The Tibetan Plateau spans from 73°29′ to 104°40′ E and from
25°59′ to 40°04′ N, with an average elevation of over 4000 m
(Fig. 1). The region has a continental plateau climate, with
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Figure 1. The land cover types of the study region and the distribution of the pilot study regions in Qinghai and Tibet. The land cover
data source is the Resource and Environment Science and Data Center (http://www.resdc.cn/, last access: 30 March 2025) of the Chinese
Academy of Sciences. The binary classification model for mapping cultivated pastures was trained and validated in the pilot study regions.

an annual mean temperature of 2.0 °C and an annual mean
precipitation of 373.5 mm (Zhang et al., 2023). The grow-
ing season lasts from April to October (Wang et al., 2020).
The land cover types include grasslands, deserts, croplands,
and forests (Fig. 1). The Tibetan Plateau is the habitat of
over 50 million Tibetan sheep and 13 million yaks (Cheng
et al., 2016), which rely on natural grasslands and culti-
vated pastures for their forage. The dominant native grass
species in this region mainly include Stipa aliena, Carex
przewalskii, and Kobresia deasyi (Jia et al., 2019). The culti-
vated grass species are Elymus nutans, Medicago sativa, Poa
crymophila, Lolium perenne, Avena sativa, and Zea mays
(Fig. 2). Our study region is geographically limited to Qing-
hai and Tibet, which, together, comprise approximately 77 %
of the Tibetan Plateau.

During the summer of 2021, we conducted a field cam-
paign in Qinghai Province and the Tibet Autonomous Re-
gion on the Tibetan Plateau. We traveled 4280 km and visited
the counties of Gonghe, Xinghai, Tongde, Guinan, Guide,
Kangma, Linzhou, Sajia, Dangxiong, Longzi, and Nanmulin.
These counties are referred to as the pilot study regions in
Qinghai Province and the Tibet Autonomous Region (Fig. 1).

3 Methods

We used surface reflectance (SR) data from the Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+),

and Operational Land Imager (OLI) sensors on board the
Landsat satellites (Wulder et al., 2022) to map cultivated pas-
tures on the Tibetan Plateau. The mapping algorithm classi-
fied the spectral–temporal metrics of each pixel into two cat-
egories: cultivated pasture and other. The other category in-
cludes natural grasslands, forests, croplands, deserts, and wa-
terbodies. The random forest (RF) (Breiman, 2001) method
was used as the classification algorithm. Since we were in-
terested in the identification of cultivated pastures rather than
other land cover types, the RF model was designed as a bi-
nary classification model. The random forest binary classi-
fication model used in this study was trained with represen-
tative land cover type samples carefully selected during the
field campaign or with the aid of high-spatial-resolution im-
ages on Google Earth. The inputs into the binary classifi-
cation model were the spectral–temporal metrics of Landsat
visible and infrared bands, spectral indices, and ancillary to-
pographical information. The binary classification algorithm
was implemented on the Google Earth Engine (GEE; Gore-
lick et al., 2017) cloud computing platform using the geo-
science data stored on it.

3.1 Data

To map cultivated pastures on the Tibetan Plateau, we used
the surface reflectance (SR) data from the Landsat 5, 7, and
8 satellites (Roy et al., 2014) in the visible and infrared bands
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Figure 2. Photographs of the cultivated pastures visited in the 2021 field campaign on the Tibetan Plateau. (a) Dahurian wildrye (Elymus
nutans), (b) alfalfa (Medicago sativa), (c) annual bluegrass (Poa crymophila), (d) ryegrass (Lolium perenne), (e) oat (Avena sativa), and
(f) silage corn (Zea mays).

in the years from 1988 to 2021. Globally, the Landsat 5 TM
data were available from March 1984 to June 2013, the Land-
sat 7 ETM+ data were available from April 1999, and the
Landsat 8 OLI data were available from February 2013. The
band settings of OLI are different from those of TM and
ETM+, and so we used a conversion procedure (Roy et al.,
2016) to convert the SR of TM and ETM+ into that of OLI.
This way, the RF binary classification model trained with the
Landsat 8 data from 2021 as inputs can be applied to histori-
cal periods when TM or ETM+ data were available.

The Landsat data have a spatial resolution of 30 m and a
temporal frequency of 16 d (Wulder et al., 2019). The Land
Surface Reflectance Code (LaSRC; Vermote et al., 2018) was
used to perform atmospheric correction. The data also in-
clude quality assessment (QA) fields produced with the CF-
Mask method (Zhu and Woodcock, 2014), labeling clouds,
cloud shadows, snow, water, and pixel saturation. We used
Landsat data from the growing season (April to October) on
the Tibetan Plateau as there is little vegetation signal during
the non-growing season (Wang et al., 2020). The QA fields
in the Landsat data were used to mask out clouds, cloud
shadows, snow, and pixel saturation. Although the nomi-
nal temporal frequency of Landsat data is 16 d, the actual
valid observations tend to have a temporal frequency of more
than 16 d due to cloud, cloud shadow, and snow interference.
Moreover, due to the side-overlapping of Landsat scenes,
some locations have more valid observations compared to
others. There were more valid Landsat observations in recent
years than in earlier years (Fig. S1 in the Supplement). The
striping patterns in Fig. S1 arise from the overlapping paths
of Landsat swaths (Zhang et al., 2022a).

In addition to the SR, we also used seven spectral indices
including the normalized difference vegetation index (NDVI;
Tucker, 1979), the enhanced vegetation index (EVI; Liu and
Huete, 1995), the normalized burn ratio (NBR; López Gar-
cía and Caselles, 1991), the normalized difference built-up
index (NDBI; Zha et al., 2003), the normalized difference
phenology index (NDPI; Wang et al., 2017), the normalized
difference water index (NDWI; Gao, 1996), and the modified
normalized difference water index (MNDWI; Xu, 2006). Us-
ing these spectral indices can expedite the land cover classifi-
cation efficiency at both the training and classification stages.

Topography can affect the growth conditions of grasses.
Cultivated pastures are typically located on flat terrains to fa-
cilitate the use of automated machinery for ploughing and
harvesting; hence, topography features may be useful in
identifying cultivated pastures. In our study region, we char-
acterized the topography using the Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) data (Farr et
al., 2007), which had a spatial resolution of 30 m. The RF bi-
nary classification model’s inputs included slope, aspect, and
hill shade derived from elevation.

3.2 Spectral–temporal metrics

Remotely sensed vegetation spectrums are characterized by
high reflectance in near-infrared wavelengths and low re-
flectance in visible wavelengths (Tian et al., 2023). Dur-
ing the peak growing season, many vegetation types exhibit
similar spectral features (Zeng et al., 2022). We used satel-
lite remote sensing data throughout the growing season be-
cause vegetation has different phenological profiles due to
species composition and human management (Dong et al.,
2016; Parente et al., 2017). We used some key metrics from
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Table 1. Summary of the type, number, and area of the cultivated pastures visited during the 2021 summer field campaign in the pilot study
regions.

Cultivated-pasture type Number of Number of Area
polygons pixels (ha)

Qinghai Province

Dahurian wildrye (Elymus nutans) 41 40 016 3601.4
Miscanthus (Elymus sibiricus) 8 6931 623.8
Annual bluegrass (Poa crymophila) 8 3748 337.3
Ryegrass (Lolium perenne) 4 3027 272.4
Guinea grass (Roegneria grandiglumis) 2 1083 97.5
Oat (Avena sativa) 18 28 388 2554.9
Total 81 83 193 7487.3

The Tibet Autonomous Region

Oat (Avena sativa) 62 13 666 1229.9
Alfalfa (Medicago sativa) 33 2223 200.1
Silage corn (Zea mays) 10 1539 138.5
Dahurian wildrye (Elymus nutans) 9 482 43.4
Total 114 17 910 1611.9

among all spectral–temporal data to reduce the computa-
tion burden while maintaining accuracy (Parente et al., 2019,
2017; Parente and Ferreira, 2018; Wang et al., 2022b; Yang
et al., 2021). Specifically, we used three descriptive statisti-
cal metrics, namely the 25 %, 50 %, and 75 % quantiles of
remote sensing data during the growing season instead of
the complete time series of all available Landsat data dur-
ing the growing season (Aghighi et al., 2018; Moon et al.,
2021). We referred to these descriptive statistical metrics
of remote sensing data as spectral–temporal metrics. The
spectral–temporal metrics inherently contain vegetation phe-
nological information that can be used to classify land cov-
ers. The quantiles were used as independent input variables
in the random forest classification model and did not in-
teract with one another. As is standard with random forest
models, the importance of each input variable is determined
during the training process and is subsequently applied uni-
formly across all pixels in the classification. In summary, we
used the 25 %, 50 %, and 75 % quantiles of the time series
of all available Landsat visible and infrared SR, specifically
seven spectral indices (i.e., NDVI, EVI, NBR, NDBI, NDPI,
NDWI, and MNDWI), in the growing season.

3.3 The training samples

In the pilot study region of Qinghai Province, we visited
81 cultivated pastures. Of these, 40 were Dahurian wildrye
(Elymus nutans) fields, 11 were miscanthus (Elymus sibiri-
cus) fields, 6 were annual bluegrass (Poa crymophila) fields,
4 were ryegrass (Lolium perenne) fields, 2 were Guinea grass
(Roegneria grandiglumis) fields, and 18 were oat (Avena
sativa) fields. In the pilot study region of the Tibet Au-
tonomous Region, we visited 114 cultivated pastures. Of

these fields, 62 were oat pasture (Avena sativa), 33 were
alfalfa (Medicago sativa), 10 were silage corn (Zea mays),
and 9 were Dahurian wildrye (Elymus nutans). The detailed
number and area of the visited cultivated pastures are listed
in Table 1 and shown in Fig. 3a and c. The boundaries of
the visited cultivated pastures were recorded using a hand-
held global positioning system (GPS) device. Figure 3a and c
show the spatial distribution of the two land cover categories
(cultivated pasture and other) in the pilot study regions used
to train the RF binary classification model. The number and
area of the training polygons for cultivated pasture and other
are summarized in Table 2.

3.4 The government statistics data

China Agricultural Press in Beijing published the annual
China Pratacultural Statistics (e.g., Li and Wang, 2017), in
which the areas of cultivated pastures were reported at the
province level. The area of cultivated pastures at the province
level were summed from the county-level areas of cultivated
pastures, which were from the county-level governments’
cultivated-pasture census data. However, the areas of culti-
vated pastures at the county level were not reported in the
annual China Pratacultural Statistics.

From 2010 to 2017, the annual China Pratacultural Statis-
tics considered all grasslands having undergone interventions
by humans, i.e., cultivated pastures, including purely cul-
tivated pastures and grasslands improved by human activi-
ties (i.e., seed sowing and grazing prohibition). From 2001
to 2009 and from 2018 to 2021, the annual China Prata-
cultural Statistics only considered grasslands with ploughing
and seed-sowing management practices to be cultivated pas-
tures. The statical caliber in the years from 2010 to 2017 was
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Figure 3. The spatial distribution of the training polygons and the validation points in the pilot study regions. The training polygons (a, c)
were recorded during the 2021 field campaign, and the 1000 independent random validation points (b, d) in each pilot study region were
labeled with the aid of high-resolution images on Google Earth.

Table 2. Summary of the training polygons in the pilot study regions.

Region Land cover Number of Number of Area
category polygons pixels (ha)

Qinghai Province
Cultivated pasture 81 83 193 7487.4
Other 465 144 818 13 033.6
Total 546 228 011 20 521.0

The Tibet Autonomous Region
Cultivated pasture 114 17 910 1611.9
Other 1429 31 537 2838.3
Total 1543 49 447 4450.2

more reasonable and agreed with our definition of cultivated
pastures.

Furthermore, we collected some county-level statistics
data (13 counties in Qinghai and 12 counties in Tibet) for
the areas of cultivated pastures for 2021 from the Qinghai
Province Bureau of Forestry and Grassland, as well as from
the Bureau of Agriculture and Rural Affairs of the Tibet

Autonomous Region. We collected these county-level statis-
tics data for comparison with the areas of cultivated pastures
mapped through remote sensing.
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3.5 The binary classification algorithm

An RF binary classification model was used to identify culti-
vated pastures in the study region (Fig. 4). The classification
model consisted of 500 trees and used the spectral–temporal
metrics of the remote sensing data (SR in the seven Landsat
visible and infrared bands: NDVI, EVI, NBR, NDBI, NDPI,
NDWI, and MNDWI) in the growing season, as well as the
ancillary topographic data, as inputs. The RF binary classifi-
cation model was trained using the training polygons shown
in Fig. 3a and c. The training process using the GEE plat-
form took 10 min. The RF binary classification model gen-
erated the likelihood of each pixel belonging to the two land
cover categories (cultivated pasture and other) and classified
the pixel into the land cover category with the higher likeli-
hood.

The RF binary classification model was assessed in
the pilot study regions using the validation points (refer
to Sect. 3.6). When the classification’s overall accuracy was
not satisfactory (less than 90 %), the model was adjusted
by refining the training polygons by excluding cultivated-
pasture polygons with possible mixed-pixel problems until
the overall accuracy was over 95 %.

3.6 Accuracy assessment and area estimation

To evaluate the accuracy of the cultivated-pasture mapping,
we used 1000 randomly selected independent validation
points in the pilot study region of Qinghai Province and an-
other 1000 in the pilot study region of the Tibet Autonomous
Region, as shown in Fig. 3b and d. Independent validation
was used rather than cross-validation to avoid overestimat-
ing the accuracy of classified land cover maps (Foody, 2002;
Friedl et al., 2000). Two authors independently labeled the
land cover type of each validation site as either being cul-
tivated pastures or not using high-spatial-resolution images
on Google Earth. To visualize the spatial extent of a valida-
tion site, a 30 m radius buffer circle with the validation site
as the center was introduced. The authors used field knowl-
edge gained during the 2021 campaign to label the valida-
tion sites. For instance, forage production companies in the
pilot study regions typically managed cultivated pastures us-
ing heavy mechanical machines. As a result, tractor furrows
were present, but field ridges were not. In contrast, many field
ridges were visible in conventional croplands managed by
small household farmers.

When both interpretations agreed, the identified land cover
category was assigned to the validation point. In cases when
the two interpretations did not agree, a third author was in-
vited to resolve the conflict. The land cover category deter-
mined by the three coauthors was then assigned to the vali-
dation point. The labeled independent random validation ref-
erence points are illustrated in Fig. 3b and d and summarized
in Table 3.

Table 3. Summary of the labeled independent random validation
points in the pilot study regions in Qinghai Province and the Tibet
Autonomous Region.

Region Land cover Number of
category points

Qinghai Province
Cultivated pasture 77
Other 923
Total 1000

The Tibet Autonomous Region
Cultivated pasture 16
Other 984
Total 1000

The overall, producer’s, and user’s accuracies of the
trained RF binary classification model in the pilot study re-
gions were calculated. Since this was a binary classification,
the F1 spatial consistency score (based on precision and re-
call) was also calculated. The kappa coefficient was not re-
ported since it has been proven to be unsuitable for assess-
ing land cover maps’ accuracy (Foody, 2002). To compute
the uncertainties of the overall accuracy, producer’s accu-
racy, user’s accuracy, and F1 spatial consistency score, we
used the method described in Yang et al. (2024). In addition,
we computed the areas of cultivated pastures in each of the
pilot study regions and the uncertainties using the method
described in Olofsson et al. (2014).

In this study, our primary objective was to assess the qual-
ity of the final cultivated-pasture dataset rather than the per-
formance of the classification model per se. Therefore, we
employed an independent validation approach using a sep-
arate set of reference data instead of cross-validation. This
approach is better suited to evaluating the accuracy and reli-
ability of the dataset itself.

4 Results

4.1 The maps of cultivated pastures in the pilot study
regions in 2021

Figures 5a and 6a show the extent of cultivated pastures in
the pilot study regions in 2021, when the field campaign was
conducted. In the pilot region in Qinghai Province, cultivated
pastures were mainly distributed around Qinghai Lake and
in valleys with favorable hydrothermal conditions. In the pi-
lot study region in the Tibet Autonomous Region, cultivated
pastures were primarily located in low-altitude regions such
as Shigatse, Lhasa, Shannan, Nyingchi, and Chamdo. Fig-
ures 5b and 6b show the number of valid Landsat OLI obser-
vations during the 2021 growing season in the pilot study
regions. The RF binary classification model generated the
likelihood of each pixel belonging to one of two land cover
categories: cultivated pasture and other. The land cover cat-
egory with the higher likelihood was assigned to the pixel
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Figure 4. Overview of the method for mapping cultivated pastures on the Tibetan Plateau.

grid. For instance, Figs. 5c and 6c illustrate the likelihood of
each pixel belonging to the cultivated-pasture category.

The areas of cultivated pastures in the pilot study regions
were estimated (Fig. 7a). In the pilot study region in Qing-
hai Province, cultivated pastures covered 0.422± 0.03 Mha,
and in the pilot study region of the Tibet Autonomous Re-
gion, they covered 0.058± 0.03 Mha. In addition, Figs. 5
and 6 provide close-ups illustrating the boundaries of cul-
tivated pastures. The distinct boundaries between cultivated
pasture and other suggested that our RF binary classification
method could effectively identify cultivated pastures.

4.2 Accuracy of the mapping method

The likelihood of cultivated pastures being classified as cul-
tivated pasture was way higher than the likelihood of pas-
tures being classified as other in the pilot study regions
of both Qinghai Province and the Tibet Autonomous Re-
gion (Fig. S2). As assessed by our independent random val-
idation sites, the cultivated-pasture map in Fig. 5a has an
overall accuracy of 96.5 %± 0.5 % and an F1 spatial con-
sistency score of 80 %± 12 %, and the land cover map in
Fig. 6a has an overall accuracy of 99.2 %± 0.3 % and an
F1 spatial consistency score of 85 %± 14 % (Table 4). In
the Qinghai Province pilot study region, the producer’s ac-
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Figure 5. Mapped cultivated pastures in the Qinghai Province pilot study region in 2021. (a) Despite displaying a similar spectrum to natural
grasslands during the peak growing season, cultivated pastures were identified by the RF binary classification model. (b) The number of
good observations from Landsat OLI in the pilot study region in 2021. Close-up views of the three regions (A, B, and C) are shown in the
right panel. In particular, region B had fewer than five good observations, but this did not prevent the RF binary classification algorithm from
identifying cultivated pastures there. (c) The likelihood of each 30 m grid being classified as cultivated pasture in the pilot study region. The
likelihood was calculated by the RF binary classification algorithm.

curacy (92.3 %± 2.9 %) was higher than the user’s accuracy
(71.0 %± 4.6 %) for cultivated pastures (Fig. 7b), indicating
a higher commission error than omission error. In the pilot
study region of the Tibet Autonomous Region, the user’s ac-
curacy (95.6 %± 3.1 %) was higher than the producer’s ac-
curacy (88.2 %± 4.6 %) for cultivated pastures (Fig. 7b), in-
dicating a higher omission error than commission error. To
evaluate the overall accuracy of the cultivated-pasture map-
ping, we combined the validation points from Qinghai and

Tibet, resulting in an accuracy of 97.05 %± 0.4 % and an
F1 spatial consistency score of 82.51 %± 14.22 % (preci-
sion: 90.04 %± 6.18 %; recall: 76.74 %± 9.91 %). In the pi-
lot study regions where the climates and landscapes differ
substantially, the overall accuracies of our cultivated-pasture
mapping method were both higher than 95 %, indicating that
we could use the mapping method to map cultivated pastures
on the Tibetan Plateau.
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Figure 6. Mapped cultivated pastures in pilot study region of the Tibet Autonomous Region in 2021. The panel descriptions are the same as
those of Fig. 5.

Figure 7. The areas and classification accuracies of the mapped cultivated pastures in the pilot study regions in Qinghai Province and the
Tibet Autonomous Region.

The importance rankings of input variables in the trained
random forest models for classifying cultivated pastures re-
vealed consistent patterns across Qinghai and Tibet (Table 5).
In both regions, elevation emerged as the most influential
variable, contributing 30.1 % and 28.4 % of the model im-

portance in Qinghai and Tibet, respectively. Vegetation in-
dices such as NDVI, EVI, NDWI, and NDPI also played ma-
jor roles, collectively accounting for a substantial portion of
the variable importance in both regions. For instance, NDVI
contributed 14.7 % in Qinghai and 18.2 % in Tibet. Spectral
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Table 4. The error matrix for the cultivated-pasture maps in the pilot study regions in Qinghai Province and the Tibet Autonomous Region.

Category Cultivated pasture Other User’s accuracy

Qinghai Province
Cultivated pasture 0.134 0.036 71.0 %± 4.6 %
Other 0.011 0.819 99.3 %± 0.3 %
Producer’s accuracy 92.3 %± 2.9 % 96.8 %± 0.5 % 96.5 %± 0.5 %

Tibet Autonomous Region
Cultivated pasture 0.002 0.002 95.6 %± 3.1 %
Other 0.001 0.995 99.4 %± 0.2 %
Producer’s accuracy 88.2 %± 4.6 % 99.8 %± 0.2 % 99.2 %± 0.3 %

Table 5. The importance of each input variable in the trained random forest models for classifying cultivated pastures in Qinghai and Tibet.

Index Importance Index Importance Index Importance Index Importance

Qinghai

Elevation 30.1 % B3 8.3 % B7 0.8 % Aspect 0.1 %
NDVI 14.7 % B5 5.4 % B4 0.6 % B1 0.1 %
EVI 12.0 % NBR 3.1 % NDBI 0.4 %
NDWI 10.6 % MNDWI 2.8 % B6 0.4 %
NDPI 9.1 % B2 1.2 % Slope 0.3 %

Tibet

Elevation 28.4 % B2 7.6 % NDBI 1.1 % B7 0.2 %
NDVI 18.2 % B4 4.8 % Slope 0.5 % Aspect 0.1 %
EVI 12.3 % B3 3.3 % B6 0.5 %
NDPI 9.8 % B5 2.6 % B1 0.3 %
NDWI 8.3 % NBR 1.8 % MNDWI 0.2 %

Figure 8. Comparison of the areas of cultivated pastures mapped using remote sensing with those from the government statistics at the
county level for 2021 in (a) Qinghai Province and (b) the Tibet Autonomous Region. The government statistics of cultivated-pasture areas
were from the Qinghai Forestry and Grassland Bureau and the Tibet Autonomous Region Agriculture and Rural Affairs Department.

bands (e.g., B2, B3, B4, B5) had moderate to low impor-
tance, while topographic variables such as slope and aspect,
along with certain indices like NDBI and MNDWI, showed
relatively minor contributions. These findings underscore the
critical role of both topography and vegetation dynamics in
distinguishing cultivated pastures on the Tibetan Plateau.

We also compared the area of cultivated pastures mapped
using remote sensing with those from the government statis-
tics. In the government statistics reports on grasslands
in 2021, there were 13 county-level summaries of the area
of cultivated pastures in Qinghai Province and 12 county-

level summaries of the area of cultivated pastures in the Tibet
Autonomous Region (Table S1 in the Supplement). We com-
pared these with the areas of cultivated pastures mapped us-
ing remote sensing data (Fig. 8). Our estimates using remote
sensing data matched well with those from the government
statistics.
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Figure 9. The maps of cultivated pastures in Qinghai Province and the Tibet Autonomous Region on the Tibetan Plateau from 1988 to 2021
(selected years are displayed for brevity, and the whole time series can be found in Fig. S3).

4.3 The spatial and temporal distribution of cultivated
pastures on the Tibetan Plateau

Using the Landsat data from 1988 to 2021 over the Tibetan
Plateau, we mapped the annual distribution of cultivated
pastures in Qinghai Province and the Tibet Autonomous
Region (Fig. 9). Generally, cultivated pastures mainly ap-
peared in certain regions on the plateau. (1) In Qinghai
Province, the regions are the Qinghai Lake area (the coun-
ties of Gangcha, Haiyan, Huangyuan, Gonghe, Guide, Dulan,
and Wulan), the Qilian Mountain area (the counties of Qilian
and Menyuan), the Three-River Headwaters area (the coun-
ties of Guinan, Tongde, Xinghai, Maqin, Dari, and Jiuzhi),
and the Yushu area. (2) In the Tibet Autonomous Region,
the regions are northern Tibet (the counties of Bange, Nima,
Dinqing, Naqu, and Gaize); southeastern Tibet (the coun-
ties of Longzi, Qunar, and Basu); and the watersheds of the
rivers Yarlung Tsangpo, Lhasa, and Nianchu (the counties
of Gongga, Linzhou, Dangxiong, Kangma, Nanmuling, and
Saga). The cultivated pastures in Qinghai were more clus-
tered, while in Tibet they were more dispersed.

Cultivated pastures in Qinghai Province existed longer
than in the Tibet Autonomous Region (Fig. 10). In Qing-
hai Province, many cultivated pastures existed for more than
20 years, from 1988 to 2021, especially around the Qinghai

Lake. In the Tibet Autonomous Region, cultivated pastures
were generally in existence for less than 10 years. Some of
the cultivated pastures were established in very recent years,
coinciding with the introduction of regional farming policies
promoting the development of cultivated pastures (Fig. S4).

There were government statistics data for cultivated pas-
ture areas at the province level in Qinghai Province and the
Tibet Autonomous Region from 2001 to 2021. But only in
the years from 2010 to 2017 did the government’s statisti-
cal caliber of cultivated pastures roughly align with our def-
inition of cultivated pastures, and the cultivated pasture ar-
eas reported by government statistics were reasonably close
to those mapped using remote sensing from 2010 to 2017
(Fig. 11). Since the statistical criteria for cultivated pas-
tures used by local governments do not fully align with our
definition, we focused the comparison between our results
and government statistics at the county level on correlation
metrics rather than absolute or relative errors (Fig. 8 and
Table S1). The coefficients of determination were 0.75 for
Qinghai and 0.77 for Tibet, indicating the reliability of our
results.

The average area of cultivated pastures on the plateau
from 1988 to 2021 was approximately 1.0 Mha, with ∼
0.7 Mha in Qinghai and ∼ 0.3 Mha in Tibet. From 1988
to 2021, there was an increasing trend in the area of cul-
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Figure 10. The number of years that cultivated pastures existed in each 30 m grid in Qinghai Province and the Tibet Autonomous Region
from 1988 to 2021.

tivated pastures on the plateau based on our mapping re-
sults using remote sensing data (Fig. 11a), and the increas-
ing trend was mostly due to the expansion of cultivated pas-
tures in Qinghai (Fig. 11b and c). The increasing rate of
the area of cultivated pastures on the Tibetan Plateau was
33.5± 2.5 Kha yr−1. In most counties of Qinghai Province
and the Tibet Autonomous Region, cultivated-pasture areas
did not change much from 1988 to 2021 (Fig. 12). Culti-
vated pastures expanded substantially in Gonghe, Gangcha,
Guinan, and Xinghai, while they contracted notably in Karuo
and Luolong (Table S2).

5 Discussion

In this study, with decent accuracy, we successfully mapped
the distribution of cultivated pastures on the Tibetan Plateau
for the first time. Compared to previous efforts aimed at map-
ping only certain types of cultivated pastures (Parente et al.,
2019; Wang et al., 2022b; Yang et al., 2021), this method
could map general cultivated pastures.

5.1 The method for cultivated-pasture mapping

A distinctive feature of our mapping method is the use of
spectral–temporal metrics derived from remote sensing time
series data rather than the complete time series of all valid

observations during the growing season. While prior studies
(e.g., Wang et al., 2022b) have relied on dense time series
data to characterize vegetation dynamics, our approach con-
denses these data into a set of statistical descriptors (e.g., me-
dian, maximum, minimum, standard deviation) of key vege-
tation indices. These spectral–temporal metrics serve as com-
pact representations of phenological patterns and temporal
variability in vegetation reflectance, which are especially in-
formative in distinguishing cultivated pastures from other
land cover types. This strategy reduces data dimensionality
and computational load while retaining the essential tempo-
ral information relevant for classification, thereby enhancing
both efficiency and accuracy.

Another critical strength of our approach lies in the vol-
ume and structure of the training data. Our dataset was built
from training polygons collected through extensive fieldwork
rather than from isolated training points. Polygons offer a
more comprehensive sampling of spectral variability within
each land cover type and provide more training samples to
the classifier, improving generalizability. In contrast, previ-
ous studies (e.g., Wang et al., 2022b) often used sparse point-
based training data, which may not adequately capture the
heterogeneity of cultivated pasture across large regions.

Furthermore, we chose to use remote sensing data from
a single growing season rather than multi-year composite
datasets (e.g., Potapov et al., 2022). This decision was in-
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Figure 11. The time series of cultivated-pasture areas based on re-
mote sensing and the government statistics data for (a) the Tibetan
Plateau, (b) Qinghai Province, and (c) the Tibet Autonomous Re-
gion. The red dots in the China Pratacultural Statistics time series
correspond to the years when the cultivated-pasture statistical cal-
iber aligned with our definition of cultivated pasture in the remote
sensing mapping efforts.

formed by the unique land management practices on the Ti-
betan Plateau, where inter-annual crop rotation is prevalent
among cultivated pastures. Although multi-year composites
are useful in mitigating atmospheric noise such as cloud con-
tamination, they risk introducing classification errors due to
the temporal inconsistency of land cover resulting from rota-
tion. By focusing on a single year, we ensure that the remote
sensing signatures align with the actual land cover state at the
time of classification.

Finally, we implemented an independent validation strat-
egy based on an external reference dataset (Yang et al.,
2021) rather than relying on internal cross-validation. While
cross-validation is common in remote sensing applications
(Ashourloo et al., 2018; Wang et al., 2022b), it can lead to
over-optimistic accuracy estimates if the same spatial sam-
ples are used for both training and validation (Friedl et al.,

2000; Foody, 2002). By separating the training and validation
datasets, our assessment provides a more realistic and con-
servative estimate of classification performance, especially
across diverse pasture types.

5.2 Accuracy assessment of mapped cultivated
pastures

The accuracy assessment of the binary classification model
is essential in the cultivated-pasture mapping practice (Olof-
sson et al., 2014; Stehman and Foody, 2019). In this study,
the RF binary classification model demonstrated a good abil-
ity to identify cultivated pastures, with an overall accuracy
of 97.05 %± 0.4 % and an F1 spatial consistency score of
0.83±0.14. This was superior to a recent study mapping the
spatial extents of green-fodder lands in the northeastern Ti-
betan Plateau using Landsat data with overall accuracies of
94.2 %, 93.1 %, and 96.6 % in 2010, 2015, and 2019 (Yang
et al., 2021). The cultivated-pasture mapping accuracy ob-
tained in this study (overall accuracy of 97.05 %± 0.4 %)
was close to that reported by Wang et al. (2022b). Wang et
al. (2022b) solely mapped oat pastures at the county scale
at Shandan Racecourse in the northeastern Tibetan Plateau,
with an overall accuracy of 98 %. Our results were also better
than another effort at mapping native and non-native grass-
lands using MODIS NDVI time series data in Canada, which
achieved an overall accuracy of 73 % (McInnes et al., 2015).

We found that the differences in the spatial fragmentation
of cultivated pastures in Qinghai Province and the Tibet Au-
tonomous Region could affect the accuracy of the cultivated-
pasture maps. During our field visits, we noticed that the
spatial distribution of cultivated pastures in the Tibet Au-
tonomous Region was much more fragmented and dispersed
than in Qinghai Province. In Qinghai Province, the cultivated
pastures were sometimes in the shape of long stripes and
were next to conventional croplands, which might cause the
mixed-pixel problem and lower the identification accuracy
of cultivated pastures (user’s accuracy of 71.0 %± 4.6 % in
Qinghai vs. user’s accuracy of 95.6 %± 3.1 % in Tibet) since
the spectral characteristics of conventional croplands and
cultivated pastures are very similar during the peak growing
season (Yang et al., 2021; Wang et al., 2022b).

5.3 Comparison of the mapped cultivated pasture areas
with government statistics

We found that the areas of cultivated pastures identified
through remote sensing were comparable to the areas of cul-
tivated pastures reported in government statistics for Qinghai
and Tibet (e.g., Li and Wang, 2017). For example, in 2021,
the year for which we trained the RF binary classification
model for cultivated pastures on the Tibetan Plateau, we
mapped 1.57 Mha of cultivated pastures in Qinghai and Ti-
bet, while the area of cultivated pastures in 2017 reported in
the government statistics was 1.640 Mha. We used the statis-
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Figure 12. Trend of cultivated-pasture areas from 1988 to 2021 in each county of Qinghai Province and the Tibet Autonomous Region.
Cultivated pastures expanded substantially in Gonghe, Gangcha, Guinan, and Xinghai, while they contracted notably in Karuo and Luolong.

tics data of cultivated pastures for 2017 because this was the
year in which the statical caliber used by the annual China
Pratacultural Statistics agreed most closely with our defini-
tion of cultivated pastures.

The time series of the area of cultivated pastures on the
Tibetan Plateau mapped through remote sensing from 1988
to 2021 was likely to be driven by the implementation of eco-
logical and agricultural policies (Fig. S4; Schils et al., 2022;
Zhou et al., 2020). However, the time series of the area of cul-
tivated pastures on the Tibetan Plateau reported in the annual
China Pratacultural Statistics did not exhibit any correlation
with the implementation of ecological and agricultural poli-
cies and was severely distorted by the shift in the statistical
caliber of cultivated pastures within it. The areas of cultivated
pasture reported in the annual China Pratacultural Statistics
for the years from 2010 to 2017 were substantially higher
than those for the remaining years (Fig. 9); nevertheless, they
were close to the remote sensing estimates for the period
from 2010 to 2017. The time series of the areas of cultivated
pastures mapped by remote sensing from 1988 to 2021 on
the Tibetan Plateau was more realistic than the government
statistics data. A sharp increase in the area of cultivated pas-
tures for Qinghai is reported in the 2013 government statis-
tics (Fig. 11b), suggesting a potential shift in the statistical
criteria for cultivated pastures that year. In contrast, our re-
sults show a more gradual increase, which likely reflects a

more consistent and accurate representation of the actual ex-
pansion of cultivated pastures on the Plateau. Our findings
indicate that government statistics warrant further scrutiny in
future policy development related to cultivated pastures.

The increasing trend in the area of cultivated pastures es-
timated through remote sensing in this study agrees with a
previous relevant regional study of cultivated-pasture map-
ping on the Tibetan Plateau. Yang et al. (2021) found a rapid
expansion of green-fodder lands in the northeastern Tibetan
Plateau from 1.63 Kha in 2010 to 13.61 Kha in 2019.

5.4 Limitations and future prospects

Time series of cultivated-pasture maps on the Tibetan Plateau
were produced for the first time; nevertheless, the mapping
method and the maps had several limitations and could be
improved in future.

1. The remote sensing data used in this study were Land-
sat data with a spatial resolution of 30 m. While Land-
sat data have been widely utilized for land cover clas-
sification, the 30 m spatial resolution may be insuffi-
cient for accurately capturing cultivated pastures with
dimensions smaller than 30 m. Specifically, long and
narrow cultivated pastures, often found on the Tibetan
Plateau, may not be well-represented in the 30 m reso-
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lution map. In some cases, these small patches were ad-
jacent to conventional croplands, leading to mixed-pixel
problems. When the proportion of cultivated pastures in
these mixed pixels was less than 50 %, the pixels were
typically classified as croplands. This issue could poten-
tially be alleviated with higher-spatial-resolution data,
such as Sentinel-2 imagery, which has a spatial resolu-
tion of 10 m and became available in 2015 (Phiri et al.,
2020). However, we opted not to use Sentinel-2 data as
our focus was on the long-term spatial distribution of
cultivated pastures on the Tibetan Plateau.

2. We employed quantile metrics of the remote sens-
ing time series for cultivated-pasture classification, a
method that has proven to be successful in capturing
cultivated-pasture dynamics. The input features derived
from these metrics were more effective compared to
those used in previous studies, such as that of Wang
et al. (2022b), which relied on monthly NDVI, EVI,
NDPI, SR, and SAVI (soil-adjusted vegetation index)
data for select months. While the latter approach uti-
lized limited spectral information, our method incorpo-
rated a broader range of spectral indices, thus enhancing
the overall classification accuracy.

3. As with many optical remote sensing studies, our re-
search was affected by atmospheric disturbances such
as cloud cover and cloud shadows, which can reduce the
number of valid observations, particularly in certain re-
gions and time periods. While we incorporated all avail-
able Landsat data during the growing season, the quality
and density of the time series varied spatially and tem-
porally, which may have impacted the consistency of the
analysis.

4. To manage the computational burden associated with
processing extensive time series data, we utilized de-
scriptive statistical metrics (i.e., 25 %, 50 %, and 75 %
quantiles) of the remote sensing data for the growing
season. While this approach helped maintain classifica-
tion accuracy while reducing computation time, it may
have resulted in the loss of finer temporal phenological
details that could be captured through the analysis of the
full time series.

5. The random forest (RF) algorithm, which we employed
for binary classification, is a powerful method known
for its ability to handle complex relationships in the
data. However, its performance depends heavily on the
quality and representativeness of the training data. We
are confident that the large volume of training data col-
lected during extensive fieldwork, which encompassed
a variety of cultivated-pasture types, contributed signif-
icantly to model performance.

6. Although we validated the cultivated-pasture maps
for 2021 in two pilot study regions with different cli-

mates, landscapes, soil properties, and ecological con-
ditions and observed a good match with government
statistics at both the county and provincial levels, the
validation of maps spanning from 1988 to 2021 could
benefit from further feedback. Additional validation ef-
forts by other researchers or practitioners in different
regions and under varying local conditions could pro-
vide important insights for refining and improving the
cultivated-pasture mapping methodology.

6 Data availability

The cultivated-pasture maps generated in this study can be
accessed at https://doi.org/10.5281/zenodo.14271782 (Han
et al., 2024). All maps are at a 30 m (∼ 0.00027°) spatial
resolution under the EPSG:4326 (WGS84) spatial reference
system.

7 Conclusions

Cultivated pastures are crucial forage sources for livestock
on the Tibetan Plateau. Additionally, they have significant
implications for the region’s ecological conservation and
restoration efforts. In this study, we mapped cultivated pas-
tures from 1988 to 2021 on the Tibetan Plateau using satel-
lite remote sensing data for the first time. The mapping
method performed satisfactorily, with an overall accuracy
of 97.05 %± 0.4 % and an F1 spatial consistency score
of 82.51 %± 14.22 % (precision: 90.04 %± 6.18 %; recall:
76.74 %± 9.91 %). At both the province and county levels,
the cultivated-pasture area estimated in this study matched
well with government statistics. The area of cultivated pas-
tures on the Tibetan Plateau experienced a notable increasing
trend from 1988 to 2021 at a rate of 33.5±2.5 Kha yr−1. The
cultivated-pasture mapping method can be adopted to iden-
tify cultivated grasslands in other regions of the world.
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