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Abstract. Since 1950, anthropogenic activities have altered the climate, land cover, soil properties, channel
morphologies, and water management in the river basins of Europe. This has resulted in significant changes
in hydrological conditions. The availability of consistent estimates of river flow at the global and continental
levels is a necessity for assessing changes in the hydrological cycle. To overcome limitations posed by ob-
servations (incomplete records, inhomogeneous spatial coverage), we simulate river discharge for Europe for
the period 1951–2020 using a state-of-the-art hydrological modelling approach. We use the new European set-
up of the OS LISFLOOD model, running at 1 arcmin (≈ 1.8 km) with 6-hourly time steps. The hydrological
model is forced by climate reanalysis data (ERA5-Land) that are bias-corrected and downscaled to the model
resolution with gridded weather observations. The model also incorporates 72 surface field maps represent-
ing catchment morphology, vegetation, soil properties, land use, water demand, lakes, and reservoirs. Inputs
related to human activities are evolving through time to emulate societal changes. The resulting Hydrologi-
cal European ReAnalysis (HERA) provides 6-hourly river discharge for 282 521 river pixels with an upstream
area > 100 km2. We assess its skill using 2448 river gauging stations distributed across Europe. Overall, HERA
delivers satisfying results (median KGE′ = 0.55), despite a general underestimation of observed mean discharges
(mean bias=−13.1 %), and demonstrates a capacity to reproduce statistics of observed extreme flows. The
performance of HERA increases through time and with catchment size, and it varies in space depending on
reservoir influence and model calibration. The fine spatial and temporal resolution results in an enhanced per-
formance compared to previous hydrological reanalysis based on OS LISFLOOD for small- to medium-scale
catchments (100–10 000 km2). HERA is the first publicly available long-term, high-resolution hydrological re-
analysis for Europe. Despite its limitations, HERA enables the analysis of hydrological dynamics related to
extremes, human influences, and climate change at a continental scale while maintaining local relevance. It also
creates the opportunity to study these dynamics in ungauged catchments across Europe. The HERA hydrolog-
ical reanalysis and its climate and dynamic socio-economic inputs are available via the JRC data catalogue:
https://doi.org/10.2905/a605a675-9444-4017-8b34-d66be5b18c95 (Tilloy et al., 2024).
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1 Introduction

In the last century, Europe has experienced a growth in its
population, economy, and urbanized area (Li et al., 2021; Pa-
protny and Mengel, 2023). Recent decades have also wit-
nessed a rapid rise in global air temperature that is at-
tributable to anthropogenic activities (IPCC, 2023). These
evolving conditions have significantly changed flows in Eu-
ropean streams and rivers (Barker et al., 2019; Gudmunds-
son et al., 2021; Vicente-Serrano et al., 2019; Wang et al.,
2024), leading to multiple challenges for hydrological sci-
ences related, for example, to long-term variability, climate
change, extremes, or human alterations of the water cycle
(Blöschl et al., 2019a). In order to assess the impacts of these
changes, hydrologists need consistent, reliable, and long hy-
drological series. Observations, despite continuous improve-
ments (Blöschl et al., 2019b; Ekolu et al., 2022), can hamper
the analysis of pan-European long-term trends due to sparse
spatial distributions in some regions and temporal discon-
tinuities. One option for overcoming these limitations is to
rely on a suite of models (climate, hydrological, and land
use) to simulate past hydrological conditions and interpret
changing dynamics in the hydrological cycle in connection
with rapidly changing human systems (e.g. Richards and
Gutierrez-Arellano, 2022). This article introduces the Hydro-
logical European ReAnalysis (HERA) for the period 1951–
2020, providing consistent estimates of river flow for Euro-
pean rivers at high spatial and temporal resolution.

Hydrological models are essential tools for understanding
and characterizing processes related to the water cycle (e.g.
flood and drought forecasting). In the past 3 decades, there
have been efforts to develop models that are able to simu-
late hydrological processes at a large scale (continental to
global scales). A myriad of these global hydrological mod-
els (GHMs), differing in their conceptualization, now exist
(Beck et al., 2017; Sood and Smakhtin, 2015; Kauffeldt et al.,
2016; Prudhomme et al., 2011). The nature of GHMs implies
that they are usually run at a coarse spatial resolution (e.g.
0.5°), limiting their relevance for local and regional water re-
source problems (Sood and Smakhtin, 2015). Nonetheless,
the development of GHMs has been fuelled by continuous
improvements in remote sensing technologies and process-
ing power (Yang et al., 2021). Remote sensing technologies
provide high-resolution input for hydrological models, such
as land use and vegetation properties. The advancements in
computational capabilities have allowed us to refine the spa-
tial and temporal scale of hydrological models, enabling a
more accurate representation of surface and sub-surface pro-
cesses and reducing modelling uncertainties (Wood et al.,
2011). In this context, HERA falls within a global effort
towards the development of hyper-resolution (1 km and be-
low) land surface and hydrological models at the continental
(Hoch et al., 2023; O’Neill et al., 2021) and global (Hanasaki
et al., 2022) scales.

A key hindrance to simulating past river flows has been the
availability of meteorological inputs for hydrological mod-
els. Of the potential inputs, climate reanalysis offers sev-
eral advantages: temporal coverage (typically spanning sev-
eral decades) and a large number of variables (e.g. precipi-
tation, wind speed, or temperature) that are physically con-
sistent with a homogeneous spatio-temporal resolution. The
reanalysis data are outputs of climate models calibrated on
observed data worldwide (Brönnimann et al., 2018). Here
we use ERA5-Land, the land component of ERA5 (Muñoz-
Sabater et al., 2021). One main advantage of ERA5-Land
compared to ERA5 is its horizontal resolution, which is 9 km
globally, compared to 31 km in ERA5. This enhanced reso-
lution is obtained by downscaling meteorological variables
from ERA5. The temporal resolution is hourly as in ERA5.
Nonetheless, reanalysis data are obtained from short-term
model forecasts and can be affected by forecast errors (Pfahl
and Wernli, 2012). Variables produced in ERA5 are averages
over grid cells. This averaging combined with the relatively
coarse resolution of ERA5/ERA5-Land often smooths local
extremes (Donat et al., 2014; Tilloy et al., 2022). To tackle
this issue, we downscale and bias-correct ERA5-Land with a
gridded observational dataset, EMO-1 (Thiemig et al., 2022)
(Sect. 2.2).

In the context of the European Flood Awareness System
(EFAS), an operational system for European flood monitor-
ing and forecasting (https://www.efas.eu, last access: 2 De-
cember 2024), there have been recent efforts to develop more
detailed surface fields (e.g. land use or vegetation) (Choulga
et al., 2024) and observational climate inputs (Thiemig et al.,
2022) at a spatial resolution of 1 arcmin (1′, 0.0167°, typ-
ically 1.5–3 km2 over Europe). These developments have
come with improvements in the OS LISFLOOD hydrological
model underpinning EFAS. OS LISFLOOD is a spatially dis-
tributed grid-based hydrological and channel routing model
which was initially developed for flood forecasting and flood
risk assessment (Burek et al., 2013). However, it is also able
to model effects of land use change, climate change, and river
regulation measures and has been used in a wide range of hy-
drological applications, such as mapping populations under
water stress in relation to how much water is reserved for the
environment (Vanham et al., 2021) and projecting droughts
in view of climate change (Cammalleri et al., 2020b). It is
also used in the generation of the GLOFAS-ERA5 hydrolog-
ical reanalysis (Harrigan et al., 2020).

Therefore, this article brings together improvements from
diverse fields (i.e. remote sensing, climate modelling, ma-
chine learning, and hydrology) to generate a state-of-the-
art hydrological reanalysis for a European domain that cov-
ers EU27 countries, the UK, Switzerland, Iceland, Nor-
way, and the Balkan countries (Serbia, Montenegro, Bosnia-
Herzegovina, Kosovo, North Macedonia, and Albania) over
the past 70 years. HERA aims to reproduce as accurately
as possible the evolution of the hydrological landscape of
Europe by using the latest development of OS LISFLOOD
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(improvements in processing speed, spatial and temporal
resolution, and calibration), which is also used in the gen-
eration of the latest EFAS v5.0 reanalysis (1991–2022)
(Decremer et al., 2023) (Sect. 2.1). Climate inputs are de-
rived from ERA5-Land and are bias-corrected and down-
scaled to 1 arcmin to improve the representation of extremes
(Sect. 2.2). We generated dynamic socio-economic inputs
(water demand, land use, and reservoir maps) to capture the
effect of human activities on the water cycle (Sect. 2.3).
These developments make this dataset the first publicly
available long-term pan-European hydrological reanalysis
that takes into account the evolving socio-economic condi-
tions that have altered the hydrological cycle since 1951. In
Sect. 3, we assess the performance of HERA against obser-
vations from 2448 river gauges in Europe.

2 Method

The modelling framework developed to generate the HERA
dataset is presented in a flowchart in Fig. 1. The framework
is organized around the OS LISFLOOD hydrological model
that is used to simulate river discharge. For this run, we use
calibrated parameters for the European setting of OS LIS-
FLOOD developed by ECMWF in the context of the EFAS
v5.0 calibration (CEMS-Flood online documentation, 2023).
We first introduce OS LISFLOOD and its calibration pro-
cedure (Sect. 2.1). Figure 1 also displays the main input of
OS LISFLOOD: high-resolution climate inputs (Sect. 2.2)
and state-of-the-art static (Sect. 2.3.1) and dynamic socio-
economic maps (Sect. 2.3).

2.1 Hydrological modelling

2.1.1 The OS LISFLOOD model

Here, we simulate sub-daily continuous streamflow time se-
ries over Europe by means of the OS LISFLOOD model
(Burek et al., 2013; Van Der Knijff et al., 2008). This is
a spatially distributed, semi-physical rainfall-runoff model
combined with a routing module for river channels (Dot-
tori et al., 2022). The model has been developed by the
Joint Research Centre (JRC) since the late 1990s and is used
operationally for large-scale flood forecasting in EFAS and
the Global Flood Awareness System (GLOFAS). OS LIS-
FLOOD has also been used in drought monitoring (Cam-
malleri et al., 2020a, 2017) to assess the effect of flood
adaptation measures, environmental flow protection, or cli-
mate change (Mentaschi et al., 2020; Vanham et al., 2022).
Since 2019, the model has been open-source and available
on GitHub along with a set of auxiliary tools (https://github.
com/ec-jrc/lisflood-code, last access: 2 December 2024). OS
LISFLOOD is composed of the following main components:

– three soil layers (superficial, upper, lower) for water bal-
ance modelling;

– sub-models for the simulation of groundwater and sub-
surface flow (using two parallel interconnected reser-
voirs);

– a sub-model for the routing of surface runoff to the near-
est river channel; and

– a sub-model for the routing of channel flow.

Other processes, e.g. snowmelt, infiltration, rainfall inter-
ception, leaf drainage, evaporation and water uptake by veg-
etation, surface runoff, and exchange of soil moisture be-
tween soil layers, are also simulated by the model (European
Commission, Joint Research Centre (JRC), 2025a). OS LIS-
FLOOD is also able to model lakes and reservoirs.

In this work, we use the latest version of OS LISFLOOD
(v4.1.2, January 2023), which includes upgrades compared
to previous versions in the hydrological routines and im-
provements in the modelling of water abstraction for anthro-
pogenic use. Moreover, OS LISFLOOD v4.1.2 benefits from
improvements in the management of large inputs and compu-
tational performance. Figure 2 displays the domain for which
data were retained in HERA. This comprises 42 European
countries and excludes non-EU countries of the former So-
viet Union, countries in northern Africa and the Middle East,
and Türkiye, which are included in the EFAS domain. More-
over, HERA uses the same domain as the Historical Analysis
of Natural Hazards in Europe (HANZE) database (Paprotny
and Mengel, 2023; Paprotny et al., 2023). We run the model
using the 1′ grid in EFAS v5.0 (Decremer et al., 2023). The
temporal resolution of the simulation is 6-hourly, which has
been the standard for EFAS since 2020. Due to the size and
spatial resolution of our domain, combined with the 6-hourly
time steps, we divide the simulations into 71-year chunks
based on calendar year starting on 3 January 1950. To esti-
mate the initial model state, we performed a 71-year pre-run.
In particular, we used the pre-run to initialize the soil and
upper groundwater zone storages and to derive the average
inflow into the lower zone and discharge, which represent
the theoretical steady-state storage. Due to the rapidly evolv-
ing socio-economic conditions in catchments of Europe, we
change the input socio-economic maps at the start of every
new calendar year of the simulation (Sect. 2.4). This differs
from the standard EFAS settings, which assume static land
use and a reservoir network, and only varies the water de-
mand values. At the start of every calendar year, the model is
initialized with the state variables from the last time step of
the previous year (warm start). As water volumes at the first
time step in the channels are not known, the model sets a con-
ventional initial volume (OS LISFLOOD uses half-bankfull),
leading to unrealistic initial discharge in some catchments.
We therefore removed the first simulation year (1950) from
the final dataset. Further, we only retained simulations for
river pixels with an upstream area greater than 100 km2, re-
sulting in simulations in the 282 521 river pixels displayed in
Fig. 2.
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Figure 1. Flowchart of the framework employed in the generation of HERA. The numbers relate to the section in which each component of
the framework is presented.

2.1.2 Model calibration

In this work, we also take advantage of the new EFAS
v5.0 calibration that was completed in December 2022 by
ECMWF. The calibration was performed using the EMO-1
meteorological dataset (Thiemig et al., 2022) over the pe-
riod 1990–2021, with a focus on high flows. The modified
Kling–Gupta efficiency (KGE′; Gupta et al., 2009; Kling
et al., 2012) was used as a skill metric. Discharge data at
1903 stations, identified through a selection process based on
several criteria (CEMS-Flood online documentation, 2023),
were used to calibrate the OS LISFLOOD model over Eu-
rope. Sub-daily data are always preferred when available
(994 of the 1903 stations). For stations where only daily
observations were available, the 6-hourly discharge simula-
tions were first aggregated to daily steps (daily mean) before
evaluating the objective function. The calibration was per-
formed at the catchment level, with the 1903 selected sta-
tions covering 69.6 % of the HERA domain. A map showing
the calibrated catchments is provided in Fig. S1 in the Sup-
plement. The calibration was performed on 14 parameters
that influence the modelling of snowmelt, water infiltration
into the soil, surface water flow, groundwater flow, and lake
and reservoir dynamics. A list of the calibration parameters
is provided in Table S1 in the Supplement. Parameter values
were identified using the Distributed Evolutionary Algorithm
for Python (DEAP, Fortin et al., 2012) within a physically re-
alistic range. The calibration protocol went from head catch-

ments to downstream catchments in a top–down manner, pre-
scribing physical dependencies between upstream and down-
stream catchments within the same basin.

Coastal and endorheic catchments with drainage areas
smaller than 150 km2, representing 6.5 % of the HERA do-
main, are modelled with default parameter values. Parameter
values for the other ungauged catchments were estimated by
parameter regionalization. These catchments are mostly lo-
cated near the coastlines, with a high concentration in south-
ern Italy and Greece, and represent 23.9 % of the HERA do-
main. The parameter regionalization here consists of trans-
ferring parameter values (except for the ones linked to reser-
voirs and lakes) from a calibrated catchment to an ungauged
catchment. Catchments are matched according to climatic
and geographical similarities (Beck et al., 2016). We discuss
the impact of calibration on the skill of HERA in Sect. 3.1.1.
For more information on the calibration of EFAS v5.0, we
refer the reader to the online documentation of the Coper-
nicus Emergency Management Service for floods (CEMS-
Flood online documentation, 2023).

2.2 Climate inputs: bias-adjusted climate reanalysis
data

To force the OS LISFLOOD hydrological model, we used a
bias-adjusted and downscaled climate dataset based on the
ERA5-Land climate reanalysis (Muñoz-Sabater et al., 2021).
The main steps involved in the preparation of the climate in-
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Figure 2. River network (rivers with an upstream area > 100 km2) on which discharge data have been generated. The HERA domain (in
which data are provided) is confined by the red-bordered area.

puts are summarized in Fig. 3. The following variables are
retrieved from ERA5-Land at an hourly temporal resolution
for 1950–2020:

– total precipitation (tp);

– mean temperature (ta);

– mean zonal and meridional wind speeds (u,v);

– mean dew point temperature (td); and

– total surface solar radiation downwards (ssrd).

Precipitation and temperature data were aggregated to 6-
hourly resolution and the other variables to daily resolution
(Fig. 3). All the variables were averaged, except for precipi-
tation, which was summed to reach the target temporal reso-
lution. Minimum and maximum daily temperatures were also
calculated, while dew point temperature was converted into
relative humidity and actual vapour pressure.

Our setting of OS LISFLOOD requires meteorologi-
cal data with a 1′ resolution. To downscale ERA5-Land
data from 0.1°= 6′ to 1′, we performed statistical down-
scaling and bias adjustment using ISIMIP3BASD v3.0.0

(Lange, 2019; Lange et al., 2024; Frieler et al., 2024). The
ISIMIP3BASD method was initially developed for phase 3
of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) and aims to provide robust bias adjustment of ex-
treme values, preservation of trends across quantiles, and a
clearer separation of bias adjustment and statistical down-
scaling compared to its predecessors (Lange, 2019). We used
the new EMO-1 gridded observational dataset (1′ version of
EMO-5; Thiemig et al., 2022) developed for the operational
EFAS v5.0 as the high-resolution reference dataset. EMO-
1 covers the period 1990–2020 and has also been used di-
rectly as a climate input in the calibration (Sect. 2.1.2). We
used 1990–2020 as the training period for the algorithm since
both datasets overlap for this period. The trained algorithm
is then applied to ERA5-Land to produce high-resolution
data for both the training period and 1950–1989, when high-
resolution data comparable to EMO-1 are not available. The
resulting climate data consistently cover 1950–2020. The
ISIMIP3BASD method is applied to the following variables:

– daily mean near-surface relative humidity (hurs), ob-
tained from actual vapour pressure (vp);
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Figure 3. Climate input pre-processing scheme, including temporal aggregation, bias adjustment, statistical downscaling, and processing of
evapotranspiration.

– daily and 6-hourly total precipitation (pr);

– daily total surface downwelling short-wave radiation
(rsds);

– daily mean near-surface wind speed (ws);

– daily and 6-hourly mean near-surface air temperature
(tas);

– diurnal near-surface air temperature range (tasrange=
tasmax− tasmin); and

– diurnal near-surface air temperature skewness
(tasskew= (tas− tasmin)/tasrange).

Here, tasmin and tasmax are the daily near-surface air tem-
perature minimum and maximum, respectively.

Version 3.0.0 of ISIMIP3BASD differs technically from
version 2.5.0, which was used to produce the climate forc-
ing data for phase 3b of the Inter-Sectoral Impact Model In-
tercomparison Project (ISIMIP3b; Frieler et al., 2024), yet
both versions produce the same results, and we apply ver-
sion 3.0.0 using the same climate-variable-specific parame-
ter settings as for the ISIMIP3b data production (Lange et al.,
2024; Frieler et al., 2024). ISIMIP3BASD was designed for
daily data, but it is applied here to bias-adjust and statisti-
cally downscale sub-daily (6-hourly pr and tas) data as if
these are daily values. For the bias adjustment, a paramet-
ric trend-preserving quantile mapping method was applied

to pr, sfcwind, tas, and tasrange, while non-parametric quan-
tile mapping was applied to hurs, rsds, and tasskew. The bias
adjustment was done at the spatial resolution of ERA5-Land,
6′, using spatially aggregated EMO-1 data (spatial averag-
ing). Data resulting from the bias-adjustment were then sta-
tistically downscaled to 1′ spatial resolution by using an al-
gorithm based on the multivariate bias correction (MBCn)
bias-adjustment method (Cannon, 2018) (Fig. 3). The down-
scaling method is conservative in the sense that the 1′ output
data would be identical to the 6′ input data in case the former
are spatially aggregated back to 6′ resolution.

Finally, potential evapotranspiration (et0), potential open-
water evapotranspiration (e0), and potential bare soil evap-
otranspiration (es0) are computed with bias-adjusted and
downscaled data at the pixel level using an approach based
on the Penman–Monteith equation with the LISVAP model
(LISVAP online documentation, 2023).

2.3 Surface field maps

OS LISFLOOD requires a set of surface field maps. Depend-
ing on the model set-up, it can ingest up to 108 surface fields
divided in six categories:

(i) catchment morphology and river networks;

(ii) vegetation cover types and properties;

(iii) soil properties;

(iv) land use;
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(v) water demand; and

(vi) lake and reservoir information.

The first three categories, hereafter referred
to as static maps, were taken directly from the
CEMS_SurfaceFields_2022 open-source dataset of the
Copernicus Emergency Management Service developed
for the European domain at 1 arcmin resolution, which
can be found in the JRC Data Catalogue (Choulga
et al., 2024). The last three categories were derived from
CEMS_SurfaceFields_2022 and modified to take into
account socio-economic changes (hereafter referred to
as dynamic socio-economic maps). This section briefly
presents each of the map categories, with an emphasis on
dynamic socio-economic maps, which are original to this
work.

2.3.1 Static maps

Static maps include surface fields of morphology and channel
shapes (14 maps), vegetation properties (18 maps), and soil
properties (29 maps).

Morphology and river network information were used di-
rectly for the computation of snowmelt, temperature scal-
ing, river routing, and open-water evapotranspiration. Mor-
phological information was derived from elevation and in-
cludes the elevation gradient, the within-grid standard devia-
tion of elevation, and Manning’s roughness coefficient. Maps
representing channel shapes and river networks provide in-
formation on the grid cell area (which varies with latitude
as the grid projection is WGS84), local drainage direction,
upstream area, and channel dimensions. All the morpholo-
gies and river network maps were derived from Multi-Error-
Removed Improved-Terrain Digital Elevation Model v.1.0.3
(MERIT DEM) (Yamazaki et al., 2019) and Catchment-
based Macro-scale Floodplain (CaMa-Flood) Global River
Hydrodynamics Model v4.0 maps (Yamazaki, 2023).

Vegetation cover types and property maps are involved in
the computation of precipitation interception, evaporation,
transpiration, surface runoff, and root water uptake. These
properties are described by four variables: crop coefficients
(transpiration), crop groups (water uptake), Manning rough-
ness (surface runoff), and leaf area index (interception and
evaporation). Each of these variables was mapped for three
different land cover types: forest, irrigated, and other. Fur-
ther, maps of planting and harvesting days for rice, which
has specific water demands, are also available. Vegetation
properties were derived from several data sources, including
the Copernicus Global Land Service (CGLS) leaf area in-
dex (LAI) at 1 km (Copernicus, 2021), the Spatial Production
Allocation Model (SPAM) Global Spatially-Disaggregated
Crop Production Statistics Data for 2010 (Yu et al., 2020;
International Food Policy Research Institute, 2019), and the
Food and Agriculture Organization (FAO) of the United Na-

tions Irrigation and Drainage Paper No. 56 (Allen et al.,
1998).

Soil properties refer to physical characteristics of the soil
and aim to describe the water dynamics through a vertical
soil profile. In OS LISFLOOD, the soil profile is composed
of three layers: superficial (0–5 cm), upper (5–varying (30–
50) cm), and lower soil layers. For each layer, variables rep-
resenting soil hydraulic properties (e.g. soil moisture con-
tent or pore size index) are provided. Similarly to vegetation
property maps, variables were mapped for two categories of
land cover, “forest” and “other”. Soil properties were derived
from the International Soil Reference and Information Cen-
tre (ISRIC) global gridded SoilGrids dataset (release 2017)
available at 250 m (Hengl et al., 2014), which is based on
more than 150 000 observation sites and covariate data.

A table summarizing all the static and dynamic surface
field maps used to produce HERA is provided in Table S2
in the Supplement. For more details on these surface field
maps, their production, and the input datasets used, we refer
the reader to Choulga et al. (2024).

2.3.2 Dynamic land use

OS LISFLOOD includes six land use classes as inputs: rice,
other irrigated land, forest, sealed surfaces, open water, and
other (non-irrigated agriculture, non-forest natural, pervious
artificial); these land use classes are mostly based on the
CLC-Refined 2006 dataset of Batista e Silva et al. (2013) in
the default setting. Of the hydrological processes, intercep-
tion, evapotranspiration, infiltration, and surface runoff re-
spond differently to each land use type. With the aim of bet-
ter representing complex rainfall-runoff processes, OS LIS-
FLOOD accounts for the sub-grid variability in land use.
Therefore, the spatial distribution of each land use class is
defined as a percentage of the whole represented area of a
given pixel (European Commission, Joint Research Centre
(JRC), 2025a). The magnitude of the variation of hydrologi-
cal responses is tied to the magnitudes of the changes in land
cover. De Roo et al. (2001), for instance, investigated the ef-
fects of land use changes on floods in two European catch-
ments and identified different results depending on the mag-
nitude of the land cover change. While such changes tend
to have a limited impact on river discharge, they can locally
increase flood magnitude (Merz et al., 2021; Sajikumar and
Remya, 2015; Van Lanen et al., 2013; Van Loon, 2015). Here
we modified the grid cell fractions of each land use class
using HANZE-Exposure land use maps at 100 m resolution
(Paprotny and Mengel, 2023) for 42 countries in the study
area. In the remaining part of the domain, we used coarser,
5′ resolution maps from HYDE 3.2 (Klein Goldewijk et al.,
2017) to modify the 2006 values. The temporal evolution of
the land area of each class is displayed in Fig. 5a. There has
been a strong increase in sealed surfaces (+40 %), while for
the other relevant land use classes the changes are less than
10 %, with more land occupied by irrigated agriculture (ex-
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cept rice), water surfaces (due to reservoir construction), and
forests.

2.3.3 Dynamic water abstraction

Human water use, representing water withdrawal from the
natural environment (e.g. rivers, reservoirs, or groundwater)
for human needs, is grouped into four main sectors: livestock,
domestic, manufacturing industry, and energy production.
In OS LISFLOOD, water use is supplied by surface water
bodies and groundwater, depending on the sector (Choulga
et al., 2024). A considerable increase in water abstraction
in a region can diminish surface water resources within the
same area. The model also accounts for groundwater abstrac-
tion for human use, except for flooded irrigation and cool-
ing processes. Increased groundwater abstraction can locally
reduce (or halt) baseflow. To derive monthly historic sec-
toral water withdrawal maps, we followed the methodology
of Huang et al. (2018) and used the FAO AQUASTAT sec-
toral water withdrawal data (Food and Agriculture Organisa-
tion, 2023) as a starting point. These data were subsequently
spatially and temporally disaggregated using a variety of
datasets. These include the Global Human Settlement Layer
(Schiavina et al., 2019; Florczyk et al., 2019) for popula-
tion estimates, the Global Change Analysis Model (GCAM;
Calvin et al., 2019) for regional water withdrawal and elec-
tricity consumption, and the Gridded Livestock of the World
(GLW; Gilbert et al., 2018) for livestock distribution. Ad-
ditional datasets included Multi-Source Weather (MSWX;
Beck et al., 2022) for air temperature data, United States
Geological Survey (USGS) water withdrawal estimates, and
Vassolo and Döll (2005) industrial and thermoelectric with-
drawal maps. More information on the water demand and
input datasets used is provided in Choulga et al. (2024).

We extrapolated the water withdrawal maps to the period
1950–1978 using annual gridded 0.5° data from ISIMIP 3a
(Frieler et al., 2024; Wada et al., 2016) that were down-
scaled to 1′ resolution using historical population data from
HANZE (Paprotny and Mengel, 2023) and HYDE 3.2 (Klein
Goldewijk et al., 2017) for the other parts of the domain.
More precisely, the ratio between EFAS high-resolution wa-
ter demand maps and the ISIMIP 3a dataset for 1979 was
used to adjust the water withdrawal data in each grid cell.
Intra-annual (monthly) cycling of water use in the energy
and domestic sectors was estimated for 1950–1978 using
the same approach as for 1979–2020, informed by tempera-
ture data from our input meteorological dataset (Sect. 2.3.1).
Livestock water use was assumed to be constant before 1979.
Water demand and use for irrigation were computed directly
by the hydrological model based on land use data and avail-
able water. The evolution of water use by sectors between
1950 and 2020 is displayed in Fig. 5c and Table S4 in the
Supplement. The total water use peaked in 1990 after more
than doubling since the 1950s and before declining due to a
drop in demand from the manufacturing and energy sectors.

Nonetheless, there are usually much stronger trends at the
country or catchment levels.

2.3.4 Dynamic reservoir maps

Reservoir maps contain locations and identifiers of reser-
voirs and are linked to tables containing metadata on stor-
age capacity, construction year, and a set of values associ-
ated with reservoir operation rules. Normal reservoir outflow
rates were further adjusted through the model calibration
(Sect. 2.1.2). The year of construction for each reservoir was
taken from the EFAS reservoir database HANZE (Paprotny
and Mengel, 2023), the Global Reservoir and Dam Database
(GRanD) v1.3 (Lehner et al., 2011), or additional manual re-
search for reservoirs not covered by the three datasets. The
reservoir maps are updated every simulation year (1 January)
by adding newly built reservoirs. When a reservoir is added,
it is considered empty and fills up according to its associated
metadata. Figure 5b shows the evolution of the number of
reservoirs in Europe during the period 1950–2020. The num-
ber of reservoirs in the model increased 6-fold from 244 in
1950 to 1419 in 2020, though few were built after the late
1980s.

3 Results

3.1 Technical validation

We evaluated our hydrological reanalysis by comparison
against a dataset of daily river discharge observations from
3442 stations across Europe. Of the data obtained, 60 % were
from the Global Runoff Data Centre (GRDC) and 40 % from
national public datasets of France, Norway, Poland, Spain,
Sweden, and the UK. Furthermore, this dataset was com-
piled independently of the one used in the EFAS calibration
(Sect. 2.1.2). The stations’ record durations vary between 1
and 71 years. The selection of the stations used for validation
is based on several criteria:

– Spatial matching. To link stations to their correspond-
ing river pixel, we scanned the nine modelled pixels
around the river gauge location. When information on
the upstream area was available (for 60 % of the sta-
tions), we retained the pixel with the upstream area clos-
est to the reported one. For pixels without information
on the upstream area, we retained the one with the sim-
ulated mean discharge (Qmean) closest to the observed
one. For more accurate spatial matching, we used the
available OS LISFLOOD coordinates from the EFAS
calibration (1026 stations). A total of 546 stations did
not match OS LISFLOOD river pixels, mostly due to
their upstream area being lower than 100 km2.

– Upstream area verification. The spatial matching se-
lected the closest upstream area for stations where we
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Figure 4. Variation in socio-economic inputs in the hydrological model, averaged over the entire EFAS domain: (a) land area by use category,
1950= 100; (b) number of existing reservoirs; (c) water demand by sector in millimetres per grid cell per year; and (d) shares of land use
between the different classes in 2020.

have information on catchment area. It is however pos-
sible that the reported catchment differs greatly from
its matched pixel upstream area. We removed stations
where the difference between the pixel and observed up-
stream areas was larger than 50 % (51 stations).

– Mean discharge comparison. For some stations, the ratio
between the observed and simulated Qmean was suspi-
cious. This could be due to an erroneous spatial match
(i.e. matching of a river with a station on a tributary). As
uncertainty grows with smaller streams, we decided to
remove those with a suspiciousQmean ratio (rQmean > 6
or rQmean > 3 if Qmean,obs > 10 m3 s−1) (49 stations).

– Manual check. A manual verification was performed on
66 stations with KGE′ <−0.41. Each station and its
matching pixel were checked individually, resulting in
the removal of 13 more stations due to wrong spatial
matching, erroneous station location, and doubtful ob-
servations. The corresponding river pixel was set man-

ually for eight stations. Manually checked stations and
the reason for their exclusion or inclusion are provided
in Table S5 in the Supplement.

– Finally, we removed stations with a record length
shorter than 30 years (334 stations). This enabled a
meaningful comparison between different locations in
the validation process.

This procedure resulted in the selection of 2448 river sta-
tions across Europe, with an upstream area ranging from 100
to 785 421 km2. Of these stations, more than half (1507) have
an upstream area of less than 1000 km2, and one-fifth (498)
have an upstream area of less than 200 km2.

HERA comes at a sub-daily resolution (6-hourly), but the
performance could only be evaluated at the daily time step of
the observational dataset. Discharge data from HERA were
therefore aggregated (daily mean) for the technical valida-
tion. We expect the performance to be slightly higher at the
daily scale, as the temporal aggregation tends to increase the
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Figure 5. HERA hydrological skill for the 2448 selected stations in terms of (a) KGE′ and its three components: (b) Pearson correlation,
(c) bias ratio, and (d) variability ratio. In panel (a), the green dashed vertical line represents the benchmark KGE′ value (−0.41). The red
vertical line represents the ideal values and the blue dot represents the median for all the stations.

correlation between observed and modelled discharge. The
performance was assessed using the KGE′ on discharge data
(Gupta et al., 2009; Kling et al., 2012). KGE′ was used as the
standard performance metric in EFAS and GLOFAS (Harri-
gan et al., 2020; Cammalleri et al., 2020a) as well as in other
hydrological model assessments (Lin et al., 2019; Harrigan
et al., 2020; Beck et al., 2017) and has three components:
correlation, bias errors, and variability errors:

KGE′ = 1−
√

(r − 1)2+ (β − 1)2+ (γ − 1)2, (1)

β =
µs

µo
, (2)

γ =

σs
µs
σo
µo

, (3)

where r is the Pearson correlation coefficient between the
simulated (s) and observed (o) flow, β is the bias ratio, γ
is the variability ratio, µ is the mean discharge, and σ is
the discharge standard deviation. KGE′ and its three com-

ponents are dimensionless, with an optimal value of 1. It is
important to note here that KGE′ values should not be in-
terpreted like the more traditional Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe, 1970). Indeed, for KGE′ the mean
flow benchmark has a value of KGE′ = 1−

√
2=−0.41.

Any value above −0.41 therefore exceeds the benchmark
(Knoben et al., 2019), meaning that the model performs bet-
ter than simply taking the mean.

In Sect. 3.1.1, we assessed the model performance across
space, time (1951–2020), and catchment size in order to
identify the strengths and weaknesses of HERA. Despite
covering many aspects of the performance of hydrological
models, KGE′ mainly focuses on mean values and gives a
higher weight to high extremes compared to low ones. As this
dataset also aims for use in long-term analysis of hydrologi-
cal extremes, we evaluated how well high and low extremes
are reproduced, including their timing and seasonality.
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3.1.1 Hydrological performance

Here we quantified the overall performance of HERA in
terms of KGE′ as well as the decomposition of this indica-
tor into its three components: correlation, bias, and variabil-
ity. Figure 5 displays the distribution of KGE′ and its three
components across the 2448 validation stations. We obtained
KGE′ >−0.41 for 2411 (98.5 %) of them, meaning that the
reanalysis is skilful for these stations (Fig. 5a). The median
KGE′ across all the catchments is 0.55, while the mean is
0.46, although this value varies widely across the catchments
(Figs. 5a and 6a). The mean correlation value is relatively
high (r̄ = 0.69), with 90 % of the stations having r > 0.5
(Fig. 5b). From Fig. 5c and d, we can observe that there is a
tendency to slightly underestimate flows (β̄ =−13.1 %) and
flow variability (γ̄ =−14.2 %). The bias ranges between 0.8
and 1.2 (0.5–1.5) in 50 % (91 %) of the river gauges, which
is considered very good for hydrological reanalysis (Harri-
gan et al., 2020; Alfieri et al., 2020; Lin et al., 2019; Yang
et al., 2021).

Figure 6 shows the spatial performance of the model in
terms of KGE′ and its components. The highest skill can be
observed in central and north-western Europe. The vast ma-
jority of stations in the UK, Germany, France, Austria, and
Switzerland (which together account for 51 % of all 2448
stations) exhibit a good (> 0.5) to very good (> 0.75) KGE′.
On the other hand, performance is relatively poor in Spain,
Cyprus, Scandinavia, and northern Poland. Factors that can
explain the poor performances in southern Europe include
the combination of arid climates and the strong influence of
lakes and reservoirs (Fig. 7c). Dry catchments where precip-
itation events are separated by long dry spells are in gen-
eral very difficult to model (Cantoni et al., 2022). In Scan-
dinavia, the negative bias (Fig. 6c) could be linked to an
underestimation of precipitation and snowmelt in Scandina-
vian mountains (Beck et al., 2017, 2020). Figure 6d presents
the variability ratio of simulated to observed flow. Overall,
our reanalysis exhibits lower variability than observations,
with 83 % of the catchments having a variability ratio below
1. The underestimation of variability was also found in the
EFAS v5.0 run, although it is more pronounced in HERA.
This could be explained by the different meteorological forc-
ings used in the two runs.

We validate HERA on stations with a wide range of catch-
ment areas (mean upstream area of 7615 km2), which has
an impact on OS LISFLOOD performance (Harrigan et al.,
2020). The set of 2448 validation stations includes stations
that were used in the calibration process (596) as well as
stations in uncalibrated catchments (36) (Fig. S1). In Fig. 7,
we break down the performance of the reanalysis according
to the different attributes of each catchment: time (Fig. 7a),
catchment area (Fig. 7b), reservoir impact (Fig. 7c), and cal-
ibration status (Fig. 7d).

Overall, the skill of HERA shows a slight increase through
time of 21 % in KGE′med between the 1950s and the 2010s.

The skill increases between 1951 and 1980 and then stabi-
lizes from 1981 to 2020, though the results are influenced by
changes in the gauge data availability over time. This could
also be driven by improved climate inputs. Figure 7b shows
that the model skill increases with catchment size, from
KGE′med values of 0.44 (inter-quartile range IQR 0.25–0.59)
for the 498 smallest catchments (< 200 km2) to 0.77 (IQR
0.68–0.84) for the 28 largest catchments (> 100 000 km2).
Such patterns have already been observed at global scales
(Harrigan et al., 2020). It is important to note here that the
majority of stations used in this validation (62 %) have an up-
stream area below 1000 km2, and the median upstream area
of the 2448 stations is 583 km2. This is half of the median
upstream area of the 1903 stations used in the calibration of
EFAS v5.0 (CEMS-Flood online documentation, 2023).

We also divided stations according to reservoir influence.
From the 1420 reservoirs active in 2020 (which represent the
maximum amount over the considered time window), we es-
timated the impact of reservoirs on streamflow at the grid
cell level. This was done by computing the ratio (c; –) of
reservoir volume to mean discharge (Nilsson et al., 2005) at
every grid cell. The ratio has been computed with the ac-
cuflux function from PCRaster and compares the upstream
cumulative reservoir capacity (m3) and the cell-specific an-
nual volume of annual streamflow (m3) (Zajac et al., 2017).
This ratio varies between 0 and 1608 downstream of Em-
balse de Finisterre in central Spain. Most of the river grid
cells highly impacted by reservoirs are found in southern Eu-
rope, particularly in Spain and Bulgaria. Figure 7c highlights
the influence of reservoirs on the skill of the reanalysis. The
river cells affected (medium and high, c > 0.5) only repre-
sent 6 % of the stations and grid cells in the domain (Fig. 2).
The median skill is lowest for highly impacted (c > 1) sta-
tions with KGE′med = 0.24, whereas minimally impacted sta-
tions have a KGE′med of 0.55. This highlights the difficulty of
large-scale hydrological models such as OS LISFLOOD in
accurately simulating reservoir outflows (Zajac et al., 2017).

Finally, we investigated the influence of calibration on
model skill. In Fig. 7d, river gauges are divided into four
groups according to their calibration status. As displayed in
Fig. S1, 83 % of the stations considered in the validation
fall into the domain calibrated for EFAS v5.0. We find bet-
ter performance for calibrated stations (KGE′med = 0.64) and
comparable skill for stations within the calibrated domain
(KGE′med = 0.52) and stations benefitting from the param-
eter regionalization (KGE′med = 0.47). The performance is
much worse for catchments with default parameters, which
here are limited to small (< 150 km2) coastal and endorheic
catchments.

3.1.2 Reproduction of extremes

Large-scale hydrological models forced by climate reanaly-
sis often fail to reproduce extreme hydrological event charac-
teristics, in part due to the coarse spatial and temporal reso-
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Figure 6. KGE′ and its three components: (b) Pearson correlation, (c), bias ratio, and (d) variability ratio at the 2448 river gauges considered
in the validation of HERA. Point sizes are proportional to catchment sizes.

lution (Brunner et al., 2021; McClean et al., 2023). Here, we
analyse how well HERA reproduces different flow quantiles
(q05, median, and q95) through the Pearson correlation coef-
ficient and the coefficient of determination (R2) (Fig. 8) for
the 2448 considered catchments. The ability to capture an-
nual maxima and minima as well as their seasonality is also
assessed (Fig. 9).

Figure 8 displays scatterplots of observed and simulated
quantiles. Each point represents 1 of the 2448 stations. We
observe that low (5th quantile: Q05) and median (Q50)
flows are generally well represented with R2 > 0.99 (Fig. 8a
and b), especially for higher discharge values. However, de-
spite this generally good agreement, there is a more pro-
nounced deviation of simulated values from observations for
lower flow values, expressed by a higher dispersion for Q05.

These deviations can be attributed to bias in climate inputs
(McClean et al., 2023), the hydrological model (Feyen and
Dankers, 2009), errors in flow measurements (especially for
Q05) (Despax, 2016; Tomkins, 2014), and anthropogenic im-
pacts on low- and median-flow regimes (Brunner, 2021) that
are not accurately represented in the model (Fig. 8c). The
number of stations with large deviations in the reproduction
of high-flow statistics (Q95) is minor compared to Q05 and
Q50. Nonetheless, despite a relatively highR2 (0.99), there is
a general underestimation in the simulated values (Fig. 8c),
which is common for large-scale hydrological models. Sim-
ilarly to low and median flows, errors in high-flow statistics
can be due to biases and smoothing of extremes in climate
inputs and errors in the hydrological modelling. Uncertainty
associated with flow measurements also plays a major role
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Figure 7. Boxplot of the HERA KGE′ according to different classifications of the 2448 river stations used in the validation: (a) time, (b)
catchment area, and (c) reservoir impacts. The numbers inside the boxplot represent the number of river gauges for each category, while the
colours of the boxplot represent the median performance of the group from low (light blue) to high (dark blue).

in high flows, as river discharges are usually not measured
directly during floods (Despax, 2016). Finally, the spatial
and temporal resolution of the model can affect its ability
to reproduce high flows, particularly for flash floods in small
catchments.

We also assessed the ability of the reanalysis to repro-
duce the timing of annual maxima and minima of discharge
as well as their overall seasonality. As the daily tempo-
ral scale is not the most relevant factor when it comes to
drought analysis with discharge data (Hannaford and Marsh,
2006; Kohn et al., 2019), annual minima were computed
from 30 d moving average flows. Figure 9a displays the mis-
match in the mean day of occurrence computed with circu-
lar statistics following Berghuijs et al. (2019). We observe
that the median error in the mean day is very close to 0
for both maxima (median= 0.1, IQR=−12–18) and min-
ima (median=−1, IQR=−28–41) but with a much higher
dispersion for annual minima compared to annual maxima.
The higher dispersion for low flows is due to the slow-onset

nature of these events (Brunner, 2021). Figure 9b shows the
difference in timing between simulated and observed annual
maxima across the 2448 considered stations. Differences in
timing are smaller over the Atlantic coast, though a partic-
ularly high lag (simulated maxima delayed by 30 d or more
in HERA) is observed over Poland and central Spain. For
low flows (Fig. 9c), delays in central Europe are more than
30 d, while in Scandinavia the timing can be up to several
months too early. This can be explained by the high hybrid-
ity of river regimes (several high- and low-flow seasons) in
these regions, which may be captured with varying accuracy
in HERA.

In addition to the validation protocol presented in this sec-
tion, we compared the reported performances of HERA with
other recent hydrological datasets and carried out a compari-
son between HERA and another recent hydrological simula-
tion done with the grid-based conceptual mesoscale Hydro-
logical Model (mHM) (Kumar et al., 2013; Samaniego et al.,
2010, 2019; Thober et al., 2019) for Europe for the period
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Figure 8. Scatterplot of observed and simulated river flow quantiles
(m3 s−1): (a) 5th quantile, (b) median (q50), and (c) 95th quantile
(q95) for the 2448 river gauges.

1960–2010. More details on the comparison are provided in
Figs. S3–S6 in the Supplement.

3.2 Usage notes

HERA brings together several improvements (climate, scale,
and socio-economic dynamics) to better simulate river dis-
charge in catchments of Europe over the past 70 years. De-
spite still covering a relatively short period of time compared
to human history on Earth, these 70 years capture a very in-
tense period of climate and socio-economic change, often
called the Anthropocene, and offers multiple research oppor-
tunities:

– assessment of long-term trends in European river
regimes;

– provision of benchmark data for “data-poor” areas;

– generation of catalogues of flood and drought events;

– identification of spatial and temporal correlations be-
tween European catchments;

– identification of changes in hydrological extreme char-
acteristics (frequency, magnitude, and timing);

– combination with other data products for compound
hazard analysis; and

– provision of scenarios for flood inundation simulations.

In this section, we briefly present possible usage of the
data, addressing changes in regime for diverse rivers across
Europe (Fig. 10).

Figure 10 displays hydrological regimes, represented here
as the mean of a 30 d average moving window over a given
period, for six European rivers. These rivers differ in terms of
hydrological regimes, with three main regimes represented:

– a Mediterranean pluvial regime for the Ardèche (a),
with its recognizable high flows in autumn;

– a pluvial or oceanic regime for the Schelde in Ghent (b)
and the Ebro in Zaragoza (c); and

– a nival regime for the upper Rhône in Lyon (d), the
Danube in Vienna (e), and the Vistula in Warsaw (f).

These six rivers also vary in terms of catchment area,
geographical location (France, Austria, Poland, Belgium,
or Spain), climate (Mediterranean, continental, oceanic, or
alpine), and geomorphological conditions. For each river, the
flow regimes for 1951–1981 (in blue, first 30 years of HERA)
and 1990–2020 (in red, last 30 years of HERA) are shown.
By comparing the two regimes, one can observe diverging
patterns of changes between these rivers. For the two plu-
vial rivers, the Schelde and the Ebro (Fig. 10b and c), we
observe opposite patterns of change: the Schelde saw an in-
crease in its average discharge throughout the year, while the
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Figure 9. Assessment of the ability of HERA to reproduce the timing of annual maximum and minimum flows. (a) Violin plot of errors
in the mean day of occurrence of annual maxima (daily discharge) and minima (30 d averaged discharge) computed with circular statistics.
Inside each violin plot, boxplots display the median and 1st and 3rd quantiles. (b) Difference between the modelled and observed mean
annual maximum dates (a positive value means a later occurrence in HERA). (c) Difference between the modelled and observed mean
annual minimum dates (a positive value means a later occurrence in HERA).

Ebro experienced a downward shift in its regime. For the up-
per Rhône and Danube (Fig. 10d and e), which are influenced
by snowmelt in their upper catchments, we see lower and ear-
lier flow peaks in spring and summer. The Vistula (Fig. 10f)
saw an overall increase in flow throughout the year. Finally,
the Ardèche (Fig. 10a) has seen reduced flow throughout
the year, with a notable decrease in late winter which can
be associated with the reduction in snowfall in the Massif
Central, where the Ardèche has its upper waters (François
et al., 2023). The timing of the autumn peak seems to have
shifted slightly towards earlier dates, in agreement with a re-
cent study on trends in Mediterranean floods (Tramblay et al.,
2023).

4 Discussion

Recent developments in diverse fields, including climate, hy-
drology, remote sensing, and computational sciences, have
made the generation of high-resolution reanalysis products

possible (Aerts et al., 2022; Hanasaki et al., 2022; Hoch
et al., 2023). In this context, HERA brings discharge data for
all European rivers with upstream areas larger than 100 km2

for the period 1951–2020. With its refined spatial and tem-
poral resolution, HERA represents hydrological processes
in Europe with more detail than previous publicly avail-
able hydrological reanalysis products (Harrigan et al., 2020;
Schellekens et al., 2017). Calibrating hydrological models
can significantly improve river flow simulation (Beck et al.,
2017; Kauffeldt et al., 2016). Parameters in 93.5 % of the
HERA domain were adjusted with a calibration process
(Sect. 2.1.2) or by parameter regionalization (Beck et al.,
2016). This is a very high calibration coverage for a GHM
(Beck et al., 2017), which can be explained by the relatively
high coverage in river gauging stations in Europe.

It is difficult to compare HERA with other recent hydro-
logical reanalyses such as GLOFAS-ERA5 (Harrigan et al.,
2020) and GRFR (Yang et al., 2021), for several reasons:
(i) spatial coverage (global vs. continental), (ii) spatial res-
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Figure 10. Changes in flow regime between 1951–1981 (blue) and 1990–2020 (red) for six diverse European rivers: (a) Ardèche, (b) Schelde,
(c) Ebro, (d) Rhône, (e) Danube, and (f) Vistula. The regime is computed here as the 30 d moving average. Shaded coloured areas represent the
IQR of discharge for every day of the year. The grey-shaded area represents the absolute difference between the two regimes corresponding
to different periods.
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Table 1. Description of the HERA dataset.

Dataset Description

Data type Gridded
Projection WGS1984 – EPSG:4326
Spatial coverage EU27, UK, Switzerland, Iceland, Norway, Serbia, Montenegro, Bosnia-Herzegovina, Kosovo,

North Macedonia, Albania
Temporal coverage 1 January 1951 to 31 December 2020
Temporal resolution Six-hourly data
File format NetCDF

olution (0.25°, 0.05°, 0.0167°), (iii) temporal coverage, and
(iv) dynamic vs. static socio-economic conditions. However,
we provide a short summary of the reported performances of
HERA, GLOFAS-ERA5, GRFR, and a European-scale hy-
drological simulation with the mHM model (EUmHM) in Ta-
ble S6 in the Supplement. While the reported performances
of HERA are higher than its global counterparts, they are
very close to the performance of EUmHM. In a more detailed
comparison with EUmHM over 515 European river gauges
(Figs. S3–S6), we show that HERA generally outperforms
the EUmHM run in terms of KGE′ (Fig. S4), but both mod-
els exhibit strengths and weaknesses, spatially (Fig. S5) and
in terms of the components of KGE′ (Fig. S6). Differences in
performances between the HERA and EUmHM runs can be
attributed to the many different features in the two runs, such
as meteorological forcing, resolution, calibration, and flow
routing within the hydrological model. Conversely, HERA
shares a great number of features with the EFAS v5.0 reanal-
ysis (Decremer et al., 2023), with a slightly lower perfor-
mance (not shown here). Nonetheless, EFAS v5.0 only cov-
ers the period 1990–2022 and assumes static socio-economic
conditions (land use, water abstraction, and reservoirs).

Similarly to the other aforementioned hydrological reanal-
yses, HERA exhibits reduced performance in cold and semi-
arid catchments. This could be related to deficiencies in
the representation of snow processes within OS LISFLOOD
or the underestimation of precipitation at northern latitudes
(Beck et al., 2017, 2020). Semi-arid environments are noto-
riously challenging areas for hydrological models due to the
highly non-linear rainfall-runoff response and lower precipi-
tation data quality (Cantoni et al., 2022). GHMs tend to rep-
resent runoff poorly in small- to medium-sized catchments
(10–10 000 km2) (Harrigan et al., 2020; Sood and Smakhtin,
2015), and nearly 90 % of the catchments used in the valida-
tion of HERA (Sect. 3.1) are small- to medium-sized catch-
ments. The drop in performance with smaller catchment ar-
eas in HERA remains, however, moderate compared to that
of the GLOFAS-ERA5 global hydrological reanalysis (Har-
rigan et al., 2020). The presence of reservoirs also influ-
ences the performances of the reanalyses. While including
reservoirs in the hydrological modelling has a positive im-
pact on model performance (Zajac et al., 2017), there is still

a high level of uncertainty regarding the operating rules of
each reservoir. Moreover, the 1422 reservoirs used to gen-
erate HERA most likely represent just fractions, mainly the
largest ones, of all the operational reservoirs in the mod-
elled domain (Speckhann et al., 2021). In summary, the main
strength of HERA lies in its relatively low bias in comparison
to the other hydrological datasets considered here (Table S6
and Fig. S6), while its performances are hampered by its un-
derestimation of variability.

HERA is generated through hydrological modelling,
which brings a range of uncertainties that can be divided
into four categories: (i) model inputs, (ii) model structure,
(iii) parameter values, and (iv) observations. It remains chal-
lenging to quantify these uncertainties. However, the qual-
ity of the inputs and in particular the climate inputs is often
an important factor in uncertainty (Beck et al., 2017; Sood
and Smakhtin, 2015). Despite efforts in bias correction and
downscaling of the climate input, it seems that, on average,
HERA slightly underestimates river discharges, with a more
pronounced bias for high flows. As reported in other stud-
ies, negative biases can be related to an underestimation of
precipitation in the climate inputs, in particular for extreme
events (McClean et al., 2023; Mahto and Mishra, 2019), at
high latitudes, and in (semi-)arid catchments (Beck et al.,
2016; Sood and Smakhtin, 2015; Hirpa et al., 2018). Model
structure can also play an important role, as shown in Fig. S6,
where EUmHM is the best model in terms of correlation,
while HERA exhibits a smaller bias ratio. This can be the re-
sult of different choices made in the main equation behind the
two models, resulting in different responses to forcings and
calibration. The large impact of model selection on stream-
flow and trend estimates is now increasingly acknowledged
(Karlsson et al., 2016; Clark et al., 2016). Calibration gen-
erally improves streamflow simulations (Hirpa et al., 2018),
and HERA also shows better performance for the stations
used in the calibration process (Fig. 7d). The negative biases
and variability ratios can be related to the different meteo-
rological forcing (EMO-1) used in the calibration, although
an underestimation of the variability was also found in the
EFAS v5.0 run (which is forced by EMO-1). The method,
parameters, and skill metrics used for calibration further af-
fect the uncertainties. Despite its qualities, the skill metric
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Table 2. List of inputs and outputs of OS LISFLOOD provided in the HERA database (link here).

Sub-folder File Resolutions Variable/content Unit

area_hera_01min.nc 1′ Mask of the HERA domain

climate_inputs/ e0 e0_yyyy.nc 1′, daily Potential evaporation computed with LISVAP
from downscaled and bias-corrected actual
vapour pressure, solar radiations, minimum/-
maximum daily temperature, and 10 m wind
speed

mm d−1

climate_inputs/ et0 et0_yyyy.nc 1′, daily Potential evapotranspiration computed with
LISVAP from downscaled and bias-corrected
actual vapour pressure, solar radiations, min-
imum/maximum daily temperature, and 10 m
wind speed

mm d−1

climate_inputs/ es0 es_yyyy.nc 1′, daily Potential evaporation from bare soil com-
puted with LISVAP from downscaled and bias-
corrected actual vapour pressure, solar radia-
tions, minimum/maximum daily temperature,
and 10 m wind speed

mm d−1

climate_inputs/ pr6 pr6_yyyy.nc 1′, 6-hourly Downscaled and bias-corrected 6-hourly pre-
cipitation

mm d−1

climate_inputs/ tp6 ta6_yyyy.nc 1′, 6-hourly Downscaled and bias-corrected 6-hourly aver-
age temperature

°C

socioeconomic_maps/landuse fracforest_european_01min_yyyy.nc 1′, yearly Fraction of the pixel area covered by evergreen
and deciduous needleleaf and broadleaf tree ar-
eas

socioeconomic_maps/landuse fracsealed_european_01min_yyyy.nc 1′, yearly Fraction of the pixel area covered by urban ar-
eas, characterizing the human impact on the en-
vironment

socioeconomic_maps/landuse fracirrigated_european_01min_yyyy.nc 1′, yearly Fraction of the pixel area covered by irrigated
areas of all possible crops, excluding rice

socioeconomic_maps/landuse fracwater_european_01min_yyyy.nc 1′, yearly Fraction of the pixel area covered by rivers,
freshwater and saline lakes, ponds, and other
permanent water bodies over the continent

socioeconomic_maps/landuse fracrice_european_01min_yyyy.nc 1′, yearly Fraction of the pixel area covered by irrigated
areas of rice

socioeconomic_maps/landuse fracother_european_01min_yyyy 1′, yearly Fraction of the pixel area covered by agricul-
tural areas, non-forested natural areas, and per-
vious surfaces of urban areas

socioeconomic_maps/reservoirs res_european_01min_yyyy.nc 1′, yearly Location and identifier of each reservoir

socioeconomic_maps/water_demand dom_1950_2020.nc 1′, monthly Daily supply of the water volume for indoor
and outdoor household purposes and for all uses
that are connected to the municipal system (e.g.
water used by shops, schools, and public build-
ings)

mm d−1

socioeconomic_maps/water_demand ene_1950_2020.nc 1′, monthly Daily supply of the water volume for fabricat-
ing, processing, washing and sanitation, cooling
or transporting a product, or incorporating wa-
ter into a product

mm d−1

socioeconomic_maps/water_demand ind_1950_2020.nc 1′, monthly Daily supply of the water volume for cooling of
thermoelectric and nuclear power plants

mm d−1

socioeconomic_maps/water_demand liv_1950_2020.nc 1′, monthly Daily supply of the water volume for domestic
animal needs

mm d−1

river_discharge dis.herayyyy.nc 1′, 6-hourly River discharge for river pixels with upstream
areas > 100 km2

m3 s−1
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used for the calibration presented in Sect. 2.1.2 (KGE′) is
known to result in an underestimation of variability (Brunner
et al., 2021) and to place more weight on high values (Garcia
et al., 2017).

This could partly explain the reduced performances in
reproducing the extreme low flows observed in Figs. 8
and 9. Other uncertainties can arise from surface field maps
(Sect. 2.3) and measurement of river discharges (instruments
and rating curves). With sparser gauging and more complex
hydraulic conditions for high and low flows, uncertainty rises
(Despax, 2016).

5 Code and data availability

The HERA hydrological reanalysis and its climate and
dynamic socio-economic inputs are available in the
JRC data catalogue: https://doi.org/10.2905/a605a675-9444-
4017-8b34-d66be5b18c95 (Tilloy et al., 2024). Table 1 pro-
vides a brief description of the dataset, and Table 2 gives a
general overview of the content of the dataset.

The dataset consists of three distinct folders that are de-
scribed here and in Table 2:

– Climate inputs. This is a folder containing the climate
forcing for the OS LISFLOOD hydrological model. Out
of the five variables provided, three are at daily tem-
poral resolution, i.e. potential evapotranspiration, po-
tential evaporation, and potential evaporation from bare
soil (obtained with LISVAP; LISVAP online documen-
tation, 2023), while two have a 6-hourly time step, pre-
cipitation, and temperature. The spatial resolution of the
climate inputs is 1′. The files are in NetCDF format,
with one file per year per variable for a total of 355 files
(2.3 TB of data).

– Socio-economic inputs. This is a folder containing the
dynamic surface field maps (Sect. 2.3), divided into
three categories: land use, reservoirs, and water de-
mand. The land use sub-folder contains 426 yearly files
(4.6 GB) of land use fraction maps for all six land use
classes. The reservoir sub-folder contains 71 yearly files
(3.6 GB) of reservoir locations and identifiers. Reser-
voirs are added or discarded from the simulation every
year according to their construction or destruction data.
Finally, the water demand sub-folders contain four files
(3.9 GB) representing water demand for the considered
sectors (Sect. 2.3.3). Each file contains monthly maps of
water abstraction for a given sector. All socio-economic
inputs are provided in NetCDF format.

– River discharge. This folder contains river discharge
NetCDF files for each year at a 6-hourly time step for
all European rivers with an upstream area greater than
100 km2 (2.3 GB per file, 166 GB total).

All the data share the same projection (WGS84) of grid
and spatial resolution (1′). Static surface field maps were re-

trieved directly from the OS LISFLOOD static and parame-
ter maps for Europe (2024) dataset, which were developed in
the context of the new EFAS deployment (Decremer et al.,
2023). It is important to note that HERA simulates discharge
in a slightly smaller domain than the original EFAS domain,
and the mask used for HERA is also provided in the dataset.

The LISFLOOD OS hydrological model used in this re-
search is released as open-source software and is avail-
able at https://ec-jrc.github.io/lisflood/ (European Commis-
sion, Joint Research Centre (JRC), 2025a). Version 4.1.2 of
the code was used in this study (https://github.com/ec-jrc/
lisflood-code/tree/v4.1.2; European Commission, Joint Re-
search Centre (JRC), 2025b). The R and Python scripts used
to assess the performances of HERA against observed dis-
charge and to generate the figures of this article are avail-
able in this GitHub repository (https://github.com/Alowis/
HERA, last access: 20 January 2025) or from the fol-
lowing Zenodo repository: https://doi.org/10.5281/zenodo.
14718275 (Alowis, 2025).

6 Conclusions

Despite the limitations discussed above, HERA represents
a state-of-the-art, high-resolution, and long-term hydrolog-
ical reanalysis for Europe in the form of homogeneous river
flow data generated with the OS LISFLOOD model. To our
knowledge, no other publicly available hydrological reanal-
ysis currently provides discharge data at similar scales and
spatio-temporal coverage for Europe. The inclusion of dy-
namic socio-economic conditions provides a more realis-
tic reanalysis of river flows in heavily managed European
catchments. The increased spatial resolution improves the
performance due to a better representation of hydrologi-
cal processes and inputs required to simulate them, includ-
ing the river network (Hoch et al., 2023; Thober et al.,
2019). HERA advances the reanalysis of extreme hydrologi-
cal events, notably by the sub-daily temporal resolution and
high-resolution bias-corrected climate input. The magnitude
and seasonality of extremes are fairly reproduced, even if bi-
ases exist in some regions (e.g. central Poland or southern
Spain). The dataset covers 70 years and is therefore suited
for the analysis of long-term trends of several hydrological
signatures. The modelling framework developed here further
forms a basis for creating alternative (counter-factual) time
series of river discharges where climatic or socio-economic
conditions can be kept static, enabling the attribution of
changes in hydrological regimes across Europe (Kreibich
et al., 2019; Sauer et al., 2021; Scussolini et al., 2024).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-17-293-2025-supplement.
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vac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N.,
Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harri-
gan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S.,
Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-
Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Monta-
nari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I.,
Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wil-
son, D., Zaimi, K., and Živković, N.: Changing climate both in-
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