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Abstract. Dissolved organic carbon (DOC) constitutes the most active carbon pool in soils and plays critical
roles in soil carbon cycling, plant productivity, and global climate change. Accurately assessing soil DOC quan-
tity is essential to elucidate ecosystem functions and services. However, global driving factors and the spatial
distribution of soil DOC remain poorly quantified, largely due to limited large-scale data. Here, we compile a
comprehensive global database of soil DOC concentrations, encompassing 12 807 observations extracted from
975 scientific publications published between 1984 and 2020. We also record detailed geographic locations,
climatic variables, and soil properties as predictors. Machine learning techniques were employed, including 10-
fold cross-validation and evaluating model performance by R2 and root mean square error values, to predict the
relative importance of various predictors and the global distribution of soil DOC concentrations. Worldwide soil
DOC concentrations ranged from 0.04 to 7859 mg kg−1, averaging 222.78 mg kg−1. The 14 selected predictors,
including elevation, soil properties, and climate, explained 63 % of the variance in soil DOC concentrations.
Elevation played the most important predictor for soil DOC prediction, followed by soil organic carbon, sea-
sonal variability of temperature, and soil clay content. Soil DOC decreases initially but increases when soil clay
content exceeds 20 % and seasonal variability of temperature exceeds 0.7. Using these findings, a global map of
predicted soil DOC concentrations was produced at a 0.05° by 0.05° resolution. Global soil DOC concentrations
generally increased from the Equator to the poles wherein the topsoil layer (0–30 cm) holds 13.47 Pg of soil
DOC with substantial variations across continents. These results inform soil management practices strategies,
ecosystem services evaluations, and climate change mitigation efforts. Furthermore, we envision integrating our
database with other carbon pools to advance understanding of total soil carbon turnover and to refine Earth
system models. The dataset is publicly available at https://doi.org/10.6084/m9.figshare.28574183 (Ren and Cai,
2025).

1 Introduction

With global changes over the last few decades, terrestrial
ecosystems, which serve as the fundamental safeguard for
biodiversity and function as a carbon sink, have become in-
creasingly vital in mitigating global climate warming (Lee
et al., 2023). Soils anchor the largest dynamic carbon reser-
voir in terrestrial ecosystems, with the 0–1 m depth storing
1500–2400 Pg of carbon, which is triple the atmospheric car-

bon stock (880 Pg) and quadruple the biotic carbon pools
(450–650 Pg) (Lal, 2004; Zhou et al., 2024a). Sub-decadal
perturbations as small as ±1 % in soil carbon stocks could
release 15–24 Pg C, which is equivalent to 1.5–2.4 years of
anthropogenic emissions and could trigger nonlinear climate
feedbacks (Schlesinger and Bernhardt, 2020). Dissolved or-
ganic carbon (DOC), a molecular continuum spanning labile
metabolites (e.g., glucose, citrate) to mineral-stabilized col-
loids, is recognized as the most active carbon pool in soil
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(Ren et al., 2024a). Currently, the portion of organic carbon
that is water-soluble and able to pass through a 0.45 µm mi-
croporous filter membrane is referred to as DOC (Gmach et
al., 2020; Guo et al., 2020a). Despite constituting 0.1–2 % of
total soil organic carbon, DOC mediates three disproportion-
ately critical processes: fueling 65 %–80 % of heterotrophic
respiration via rapid turnover, controlling mineral-organic
complexation that stabilizes 40 %–60 % of persistent car-
bon, and exporting 0.25–0.75 Pg C yr−1 to aquatic systems
– a flux comparable to land use change emissions (Drake et
al., 2018; Nakhavali et al., 2021; Ren et al., 2024b). Lateral
DOC fluxes create a terrestrial – aquatic carbon conveyor belt
equivalent to 50 % of the Amazonian carbon sink, while also
modifying water chemistry through pH buffering and metal
complexation (Fichot et al., 2023). Thus, an accurate assess-
ment of soil DOC concentrations is vital, given its unique
properties, roles, and broad variability, which can span up to
three orders of magnitude (Nakhavali et al., 2020; Ren et al.,
2024b). Despite significant variations in soil DOC concentra-
tions, their global distribution has not yet been systematically
quantified. Bridging this knowledge gap is essential for more
accurate representations of the carbon cycle in Earth system
models.

Soil DOC concentration is regulated by a kinetic equi-
librium between production processes (plant litter leaching,
rhizodeposition, and microbial necromass release) and re-
moval pathways (microbial mineralization, mineral adsorp-
tion, and hydrological leaching). Disruption of this equilib-
rium, whether caused by altered substrate inputs or shifted
microbial metabolic demands, reshapes DOC pool dynam-
ics (Sokol et al., 2022). Hierarchical controls shape DOC
dynamics: climatic drivers set thermal-hydrological bound-
aries, vegetation types modulate organic matter stoichiom-
etry, and soil properties dictate mineral-mediated stabiliza-
tion (Fichot et al., 2023; Ren et al., 2024b; Smreczak and
Ukalska-Jaruga, 2021). Climate, often characterized by an-
nual mean temperature and precipitation, is recognized as a
primary driver of soil DOC concentrations (Lønborg et al.,
2020). Temperature and precipitation directly influence soil
DOC through effects on microbial activity, organic matter
decomposition rates, solubility, and mobility, and indirectly
shape DOC dynamics by influencing vegetation growth and
soil structure (Ren et al., 2023; Andersson and Nilsson,
2001). Vegetation type affects soil DOC primarily by alter-
ing the quantity and quality of organic matter inputs (Zhao et
al., 2022). Together, climate and vegetation type profoundly
affect soil biological, chemical, and physical properties, all
of which are closely connected to the formation and decom-
position of soil DOC (Camino-Serrano et al., 2014; Cotrufo
and Lavallee, 2022). Some studies have reported large tem-
poral variations in soil DOC concentrations at certain field
sites (Ding et al., 2022; Zhao et al., 2022), with significantly
higher DOC concentrations in summer and autumn than in
winter and spring. Seasonal effects on soil DOC concentra-
tions are closely associated with factors such as precipitation,

soil moisture, and substrate availability (Ren et al., 2023). In
warmer seasons, soil DOC production can increase due to
active organic matter decomposition, driven by higher mi-
crobial activity, as well as greater DOC contributions from
root exudation during periods of more active plant photosyn-
thesis. Although relationships between soil DOC concentra-
tions and environmental factors have been observed at local
and regional scales, the relative importance of these factors
at the global scale remains unclear. This lack of understand-
ing hinders the development of effective strategies for soil
carbon management and climate change mitigation.

Accurate mapping of soil DOC provides critical base-
line data for addressing global challenges spanning climate-
carbon feedbacks, agricultural sustainability, and aquatic
ecosystem management (Guo et al., 2020b; Langeveld et
al., 2020). Current global soil DOC inventories remain lim-
ited in both spatial resolution and mechanistic representa-
tion. Existing maps derived from conventional geostatisti-
cal approaches, such as those by Guo et al. (2020b) and
Langeveld et al. (2020), exhibit three fundamental limitations
that constrain their utility for process-based modeling. First,
the global soil DOC maps produced by Guo et al. (2020b)
and Langeveld et al. (2020) rely on relatively few observa-
tional data points (2890 and 762 pairs, respectively), with
over 80 % of training data clustered in North America and
Western Europe, while tropical regions and continental in-
teriors remain under sampled. Africa, South America, East-
ern Europe, and Central Asia collectively contribute less than
5 % of the global calibration datasets in these studies. Sec-
ond, they employ static representations of DOC dynamics,
neglecting well-documented seasonal fluctuations driven by
plant phenology and hydrologic pulses. Field observations
demonstrate that temperate forest soils can exhibit 2–3 fold
increases in DOC concentrations during autumn litterfall pe-
riods compared to spring thaw events. Third, current models
oversimplify vertical DOC gradients by treating topsoil (0–
30 cm) as homogeneous layers, despite empirical evidence
showing exponential decreases in DOC with depth. In real-
ity, soil DOC concentrations are higher in surface soils (0–
10 cm) and decline with depth, exhibiting a clear vertical gra-
dient. Finally, traditional linear regression methods used in
these studies capture only 30 %–40 % of observed soil DOC
variability, as they fail to account for threshold responses to
environmental drivers such as soil pH transitions below 5.2
that trigger dissolved organic matter flocculation. Recent ad-
vancements in machine learning has enabled researchers to
apply such techniques because of their capacities to auto-
mate feature extraction, handle large datasets, and identify
complex patterns, ultimately offering significant advantages
in predictive accuracy and adaptive learning.

To advance our knowledge of global soil DOC patterns
and drivers, we developed a global database of soil DOC con-
centrations, comprising 12 807 samples from 975 published
studies. Using random forest algorithms, we quantified the
relative importance of environmental factors and predicted
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soil DOC concentrations on a global scale. The specific aims
of this study were: (1) to determine global patterns of soil
DOC concentrations, and (2) to identify the primary factors
controlling soil DOC concentrations on a global scale and to
estimate total global soil DOC storage.

2 Material and method

2.1 Data sources and processing

We searched for publications up to December 2022 us-
ing Google Scholar (https://scholar.google.com, last ac-
cess: 30 December 2022), the Web of Science (http://apps.
webofknowledge.com, last access: 30 December 2022), and
the China Knowledge Resource Integrated Database (http://
www.cnki.net/, last access: 30 December 2022) using the fol-
lowing search terms: (dissolved organic carbon OR dissolved
organic matter OR “DOC” OR “DOM”) and soil, up to De-
cember 2022. The data flow through the selection phases is
shown in Fig. S1 in the Supplement. To ensure a standardized
and minimally biased dataset, we applied the following in-
clusion criteria: First, we included only data from terrestrial
ecosystems (excluding oceans and rivers) to maintain con-
sistency in environmental factors and ecological interactions.
Second, we used only topsoil data (0–30 cm) to ensure data
representativeness and quantity. Third, we recorded duplicate
results from different articles only once to avoid overrepre-
sentation of certain research groups or locations. Finally, we
included agricultural soils affected by human activities such
as tilling and fertilization but excluded industrial and urban
soils to avoid complexity introduced by industrial and urban
settings. We extracted data presented solely in figures us-
ing the digitizer function of Origin 2019. Before extracting
the target data, we employed the Isolation Forest method for
anomaly detection. The algorithm constructs random binary
trees where anomalies are typically isolated more rapidly and
normal points require more splitting steps.

Based on these criteria, we compiled a total of 12 807 DOC
observations based on 1610 sites from 975 publications
(Fig. 1a). We also collected data on experimental sites (lon-
gitude, latitude, and altitude), climate (mean annual temper-
ature [MAT] and mean annual precipitation [MAP]), biomes
(wetland, forest, shrubland, tundra, grassland, and cropland)
and soil properties (soil organic carbon, texture, and pH)
(Table 1). These environmental factors are used as predic-
tors. When environmental factors were not reported in the
original publication, the missing data were extracted from
grid datasets according to the geographic coordinates of
each observed site (Table S1). We extracted elevation, MAT,
MAP, monthly evaporation (ETM), seasonal variability of
precipitation (SVP), and seasonal variability of tempera-
ture (SVT) data from WorldClim version 2 (https://www.
worldclim.com/, last access: 10 March 2025) with resolu-
tion of 1 km× 1 km, ecosystem data from NASA’s Socioe-
conomic Data and Applications Center (https://sedac.ciesin.

columbia.edu, last access: 10 March 2025) with resolution
of 1 km× 1 km, soil properties from OpenLandMap ver-
sion 2.0.0 (https://openlandmap.org, last access: 10 March
2025) with resolution of 0.25 km× 0.25 km, and micro-
bial biomass carbon data from the open database of
figshare (https://doi.org/10.6084/m9.figshare.19556419, Ren
and Cai, 2025) with resolution of 1 km× 1 km. Despite bias,
there is a significant linear relationship between the measured
values and the corresponding extracted values (Fig. S2).
Noteworthy, this bias could introduce some uncertainty to
the results. Overall, our study sites spanned a wide range
of latitudes (−64.81 to 78.85°) and longitudes (−159.66 to
175.95°) (Table 1), encompassing a large climate gradient
with MAT from −11.16 to 28.00°C and MAP from 30 to
4200 mm.

2.2 Data standardization

For our database, the DOC concentrations were quantified
using a mix of physical and chemical techniques. Physical
methods included soil solution collection using lysimeters or
ceramic suction. Chemical methods employed various sol-
vents like distilled water, potassium chloride (KCl), or potas-
sium sulfate (K2SO4) as described by Li et al. (2018). Over
74.32 % of the DOC was determined using chemical tech-
niques, which highlighted their reliability. For consistency,
the DOC values derived from physical approaches was con-
verted to chemical method values using the following equa-
tion:

DOCsoil =
DOCsolution×V × 1000

W
×[1/(V × (1−W )

×BD× 1000000], (1)

where, DOCsoil represents soil DOC concentration deter-
mined by chemical methods (mg g−1); DOCsolution is the
concentration measured by physical methods (mg L−1); W

denotes the volumetric soil moisture (m3 m−3); V is the vol-
ume of the soil column for solution extraction (m3); and BD
is the soil bulk density (g cm−3). The factor 1000 converts
m3 to L, and 1 000 000 converts m3 to cm3 following estab-
lished by Guo et al. (2020b). This standardization allowed for
a consistent comparison and analysis of the DOC data across
various studies.

2.3 Predictive modeling

The driving factors of soil DOC concentrations were divided
into four categories: elevation, climate, ecosystem, and soil
properties. Soil properties included physical attributes (clay,
sand, bulk density, and depth), chemical attributes (SOC,
pH), and a biological attributes (microbial biomass carbon)
attributes. Climate comprised MAT, MAP, ETM, SVP, and
SVT. Ecosystems encompassed wetland, forest, shrubland,
tundra, grassland, and cropland. In our predictive models,
correlated predictors could substitute for each other, causing
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Table 1. Variables information of the soil dissolved organic carbon dataset in global terrestrial ecosystems. n/a refers to values that are not
applicable.

Variables Description Unit Number Range Mean

No. Unique identification number of each record n/a 12 807 1 to 12 807 6404
Latitude Latitude of study site ° 12 807 −64.81 to 78.85 34.89
Longitude Longitude of study site ° 12 807 −159.66 to 175.95 107.05
MAT Mean annual temperature °C 9948 −11.16 to 28.00 11.84
MAP Mean annual precipitation mm 10 325 30 to 4200 1071
Elevation Altitude of study site m 5578 4 to 4730 881
Ecosystems Community by the dominant plant species 7 n/a n/a
Soil sand Soil sand content % 4062 1 to 98 45
Soil silt Soil silt content % 4025 1 to 95 33
Soil clay Soil clay content % 4316 0 to 89 22
Soil depth Mean depth of soil sample cm 12 807 0.53 to 30.00 11.36
SOC Soil organic carbon g kg−1 9136 0.23 to 598.50 38.74
TN Soil total nitrogen g kg−1 7089 0.00 to 33.30 2.57
Soil pH Measure by 1 : 2.5 H2O n/a 8266 2.30 to 9.59 6.16
BD Soil bulk density kg m−3 4380 0.07 to 2.52 1.29
MBC Soil microbial biomass carbon mg kg−1 4218 5.93 to 2986 413
Date Observation month of DOC month 12 807 1 to 12 6.50
DOCphy Measure by physical method mg kg−1 3289 0.28 to 3181 155.99
DOCche Measure by chemical process mg kg−1 9518 0.04 to 7859 245.83
DOC Soil dissolved organic carbon mg kg−1 12 807 0.04 to 7859 222.78

Figure 1. Global distribution of soil dissolved organic carbon (DOC) concentration according to our site-level dataset. The dataset contains
12 807 sets of data (a, b), which covers major wetland (1106), forest (4867), shrubland (385), tundra (130), grassland (1192), and cropland
(5125) terrestrial biomes (c). The dashed red line within the subplot (b) signifies the average soil DOC concentration, which is 223 mg kg−1.
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their importance to be shared and thus potentially underes-
timated. Consequently, we excluded soil silt because it was
correlated with soil sand (Fig. S3). Further, we did not in-
clude some variables (e.g., soil moisture, soil porosity, fer-
roaluminum oxide, microbial structures, microbial diversity,
and carbon cycling enzymes) because they were rarely re-
ported in the target papers.

To develop and optimize a predictive model for soil DOC,
we employed an array of regression methods which encom-
passed three linear and four nonlinear approaches (Table S2).
The linear methods included a least absolute shrinkage and
selection operator (LEAPS), elastic net (ENET), and stan-
dard linear modeling (LM) to identify the most important
predictor variables while minimizing overfitting. The non-
linear methods included the random forest (RF) algorithm,
boosted tree (BOOSTED), bagged tree (Bagged), and cubist
(CUBIST) models. Each model had intrinsic feature selec-
tion processes that we fine-tuned to improve accuracy and
control complexity. During the optimization phase, various
actions were implemented. LEAPS models were educated to
accommodate the largest number of variables. We applied
penalties for feature condensation (diminishing the role of
less impactful variables in the resultant linear formula) be-
tween 0 and 0.1, incremented by 0.01, to discipline the mod-
els. RF growth was restricted at a maximum of 1000 trees and
we limited the number of predictors to one-third of the max-
imum possible, ensuring a balance between complexity and
manageability. BOOSTED models underwent training with
10 to 100 trees, of which each had between 1 to 7 nodes. We
incorporated shrinkage rates of 0.01 or 0.1, with a maximum
tree size of 5. For the CUBIST model, we explored neighbor-
ing values from 1 to 9 in increments of 2 and varied commu-
nity sizes from 1 to 100, refining predictive accuracy. In ev-
ery instance, the models were evaluated using Monte Carlo
cross-validation with 100 iterations, employing a 70/15/15
split between training, validation, and testing sets (Figs. 2b,
S7 and 8). The root mean square error (RMSE) and R2 val-
ues were calculated to evaluate model accuracy and resid-
ual variance, which served as criteria for ranking model per-
formance (Table S2). A 10-fold cross-validation method was
used to evaluate model performance. A flowchart for model
selection process is shown in Fig. S5. Finally, the RF model
was used to predict soil DOC concentrations. The factor of
ecosystems was excluded based on the IncNodePurity of RF
model (Fig. S6).

To evaluate the effects of independent variables on soil
DOC, a variable importance analysis was conducted using
permutation variable importance measurements. This anal-
ysis was performed with the variable importance tool inte-
grated into the R packages for the RF model that exhib-
ited the highest predictive quality. In essence, this method
assessed prediction errors within the model by calculating
mean square errors for each regression tree. The models’
variable importance scores assessed the influence of predic-
tor variables on the outcomes. For enhanced comparability

of all model inputs, the independent environmental variables
were scaled to a 0 %–100 % range to facilitate comparisons
of their proportional contribution to the model’s predictions.
To evaluate the sensitivity analysis of model predictions, the
Sobol index, a variance of based global sensitivity analysis
method, was used to assesses how model input parameters
impact output results (Fig. S9). This method breaks down
the system’s total variance into contributions from individual
inputs and their combinations.

Partial dependence analyses were employed to examine
the relationships between predicted soil DOC and indepen-
dent variables across their entire value ranges in the RF
model. These analyses allowed us to isolate the effects of
specific independent variables by removing the influence of
the others. Partial dependence plots offered insights into the
average marginal effects of one or more independent vari-
ables on model predictions. For instance, these plots could
reveal whether relationships were linear, monotonic, or more
complex. By examining curvature and inflection points, we
could identify where variable exerted strong, immediate ef-
fects or where their influences were more subtle and possibly
mediated by other variables. We reported the x axis as a stan-
dardized value, ensuring a clear progression from low to high
values. When we generated partial dependence with RF, sev-
eral uncertainties arose. The high model complexity some-
times slowed predictions, especially in situations with many
trees. The limited interpretability of the RF models could
complicate the understanding of partial dependence. Sensi-
tivity to noise potentially led to overfitting and reduced accu-
racy. Variable importance measurements could also be biased
by varying feature scales or categories, potentially skewing
interpretations of feature-outcome relationships. To explore
the interaction effects between key drivers of derived soil
DOC concentration, SHapley Additive exPlanations (SHAP)
was used to interpret machine learning model predictions by
calculating the contribution of features to the model’s predic-
tions (Fig. 4). SHAP values can be further decomposed into
main effects and interaction effects, where interaction effects
reveal the interactions between features. SHAP interaction
values are obtained by first defining an explainer using the
TreeExplainer function (by passing the model to it), and then
deriving the interaction values from this explainer. These val-
ues can be interpreted similarly to standard SHAP values,
explicitly quantifying how individual features and their pair-
wise interactions contribute to specific predictions.

2.4 Global soil DOC mapping

The global distribution of soil DOC and the relative uncer-
tainties of our predictions were generated by combining our
DOC dataset with the RF model, which incorporated global
climate and soil-rasterized datasets (Figs. 5, S11 and Ta-
ble S1). We first produced factor maps from the key input
variables, focusing on the 14 distinct variables associated
with each raster cell. Subsequently, the factor maps were em-
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Figure 2. Result of the random forest model predicting soil dissolved organic carbon (DOC) concentration. (a) The relative importance of
predictors in the random forest model. (b) Predicted vs. observed soil DOC concentration. The dashed line indicates the 1 : 1 line and the blue
line indicates the regression line between predicted and observed values. MAT, mean annual temperature; MAP, mean annual precipitation;
SVP, seasonal variability of precipitation; SVT, seasonal variability of temperature; ETM, monthly evaporation; SOC, soil organic carbon;
BD, bulk density; MBC, microbial biomass carbon content; and C : N, ratio of carbon to nitrogen.

Figure 3. Partial dependence of predictors from random forest algorithm. Soil dissolved organic carbon (DOC) concentration in relation to
mean annual temperature (MAT), mean annual precipitation (MAP), elevation, seasonal variability of precipitation (SVP), seasonal variability
of temperature (SVT), monthly evaporation (ETM), elevation, soil sand content, soil clay content, soil depth, soil organic carbon (SOC)
content, soil pH, bulk density, microbial biomass carbon content (MBC), and ratio of soil carbon to nitrogen (C : N) (a, b, c, d, e, f, g, h, i, j,
k, l, m, and n respectively). The histogram in each plot represents the data distribution of the x axis indicator.
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Figure 4. Interaction effects between key drivers of derived soil dissolved organic carbon concentration. Key drivers included mean annual
temperature (MAT), mean annual precipitation (MAP), elevation, seasonal variability of precipitation (SVP), seasonal variability of temper-
ature (SVT), monthly evaporation (ETM), elevation, soil sand content, soil clay content, soil depth, soil organic carbon (SOC) content, soil
pH, bulk density, microbial biomass carbon content (MBC), and ratio of soil carbon to nitrogen (C : N).

ployed to derive a spatially detailed global map of soil DOC.
To achieve global-scale mapping, we processed the driving
factors at a 0.05° resolution to calculate soil DOC values.
Areas that did not meet the following criteria were excluded
from our prediction: (1) absence of data for any essential pre-
dictors, (2) soil order and biomes not aligning with the pre-
viously discussed aggregated land use systems, or (3) loca-
tions in climate zones outside the scope of our model’s fo-
cus. Due to the different spatial resolution of input variables
data, resampling techniques enabled the conversion of raster
data between spatial resolutions to facilitate spatial analysis
and modeling. The core principle of resampling involves esti-
mating pixel values at new resolutions through interpolation
or other mathematical methods. Specifically, down-sampling
(high-to-low resolution conversion) requires aggregating val-
ues from multiple high-resolution pixels into a single low-
resolution pixel. Up-sampling (low-to-high resolution con-
version) necessitates generating new pixel values through in-
terpolation algorithms. To evaluate uncertainty due to data
resampling and unexplained variability not accounted for
by the independent variables, we analyzed finer-resolution
(5 km2) grids where driving factors were available. This anal-
ysis clarified the overall uncertainty inherent in our global

soil DOC estimation. The corresponding map of relative un-
certainty of prediction was built by displaying the standard
deviation divided by the mean prediction, based on our final
random forest RF model. The standard deviation reflected
the range of possible predictions derived from the iterative
build-up of decision trees after 500 model runs.

Soil DOC concentration varied significantly with ecosys-
tems (Table 2) and soil depth (Fig. 3). Ecosystems were
divided into wetland, forest, shrubland, tundra, grassland,
and cropland (Fig. S10). Soil DOC concentration decreased
with soil depth and reached a turning point at approximately
10 cm (Fig. 3). Therefore, when extrapolating the RF model
to the entire globe, we used a month range from 1 to 12 and
depths of 5 (0–10 cm) and 20 (10–30 cm). From this, we gen-
erated a total of 12 maps of global soil DOC concentration.
We combined these 12 maps into a single map representing
the global distribution of soil DOC concentration based on
soil depth. Finally, we calculated the global soil DOC stock
using the following equation applied to the combined map of
global soil DOC concentration:

SOCs =
∑

SOCi ×BDi × (1− f )× T ×Mi, (2)
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Figure 5. Prediction of soil dissolved organic carbon (DOC) concentration in global ecosystems. (a) Global map of predicted soil DOC
concentration. (b) Latitudinal patterns of soil DOC concentration. Blue line indicates the locally weighted regressions between latitude and
soil DOC concentration in the predicted global map. Values in the predicted map reflect soil DOC concentration within a grid cell resolution
of 0.05°× 0.05°. A value in the grid is the averaged result from the random forest model.

where SOCs is SOC stock and SOCi is SOC concentration.
The subscript i is the number of global grid. BD, f , and T are
soil bulk density, the volumetric percentage of coarse fraction
(> 2 mm), and the depth of soil layer, respectively. M is the
effective area of each grid.

3 Results

3.1 Soil DOC concentrations in different ecosystems
globally

A total of 12 807 soil DOC observations were compiled
from 975 publications that spanned six continents and
all major biomes and terrestrial ecosystems (Fig. 1). We
found that the natural logarithm of soil DOC concentra-
tions conformed to a normal distribution (Fig. 1b). Global
soil DOC concentrations ranged from 0.04 to 7859 mg kg−1.
The global average, median, and standard deviation were
222.78, 101.01, and 445.78 mg kg−1, respectively (Table 2).
We observed that soil DOC concentrations varied across
ecosystems. Tundra had the highest average and median soil
DOC concentrations at 470.78 and 241.90 mg kg−1, respec-
tively. Grassland averaged 327.77 mg kg−1 with a median
of 126.48 mg kg−1, while forest averaged 256.18 mg kg−1

with a median of 115.51 mg kg−1. Wetland averaged
218.53 mg kg−1 with a median of 107.11 mg kg−1, cropland
averaged 165.98 mg kg−1 with a median of 83.00 mg kg−1,
and shrubland averaged 160.24 mg kg−1 with a median of
127.84 mg kg−1 (Table 2).

3.2 Model performance and drivers of soil DOC
concentrations

We estimated RMSE and R2 for all tuned models and used
these statistics to analyze residual variance and accuracy,
as well as to rank model performance (Table S2). To fa-
cilitate interpretation of uncertainty, we also calculated rel-
ative RMSE by dividing the absolute error by the global

mean soil DOC concentration. The RF model resulted in
the best performance within 1 standard error of the minimal
RMSE and was thus used for further analyses of variable
importance. The residual plots of training, validation, and
test data for the RF model were randomly distributed near
zero (Fig. S8). Overall, nonlinear models (R2

= 0.41–0.63;
RMSE= 248–327) outperformed linear models (R2

= 0.10–
0.11; RMSE= 401–411) (Table S2). The RF model yielded
the lowest RMSE, within one standard deviation range, and
was therefore selected for subsequent analyses of variable
importance (Table S2). The relative importance of soil DOC
drivers and the global map of soil DOC distribution were de-
rived from the RF model outputs (Figs. 4 and S11).

The RF model explained 63 % of the variability in soil
DOC concentrations across all sites and achieved the low-
est RMSE compared with other models (Fig. 2 and Ta-
ble S2). Elevation played the most important predictor for
soil DOC prediction among the selected 14 variables, fol-
lowed by SOC, SVT, and soil clay. The relative importance of
MAP, SVP, MBC, soil pH, soil sand, and soil C : N gradually
diminished. Meanwhile, elevation, SOC, SVT, soil sand, and
soil clay were the more sensitive factors of the RF model than
the other predictors (Fig. S9). Partial dependence analysis
produced results (Fig. 3) similar to Pearson correlation anal-
yses (Fig. S4). We found a positive correlation between soil
DOC and both elevation and soil organic carbon, although
there were fewer data points corresponding to higher eleva-
tions and greater soil organic carbon values (Fig. 3f). Soil
DOC showed a trend of decreasing first and then increasing
with the increase of MAT (0–30°), SVT (0–1.5), and soil clay
(0 %–50 %) (Fig. 3a, d and h). Soil DOC showed a trend of
decreasing first and then stabilizing with the increase of soil
depth and soil pH (4–8.5). The inflection point of soil depth
and soil pH was 10 cm and 5.8, respectively (Fig. 3i and k).
Elevation, SOC, SVT, and soil clay had strong negative inter-
actions with MAT (Fig. 4). This means as the MAT variable
increased, the influence of the other variables weakened. Ele-
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Table 2. Global soil dissolved organic carbon concentration (mg kg−1) for major ecosystems. 25 % and 75 % represent the 25th and 75th
percentiles of one group, respectively. SD, Standard deviation; SE, Standard error.

Ecosystems Mean SD SE Skewness Kurtosis 25 % Median 75 %

Wetland 218.53 340.35 10.23 5.15 39.41 46.40 107.11 266.51
Forest 256.18 531.72 7.62 7.09 69.72 47.60 115.51 246.55
Shrubland 160.24 131.51 6.70 3.40 22.58 76.53 127.84 205.50
Tundra 470.78 721.70 63.30 4.67 29.59 86.91 241.09 577.00
Grassland 327.77 674.43 19.53 4.16 18.03 54.62 126.48 303.63
Cropland 165.98 272.51 3.81 6.53 73.25 40.51 83.00 178.81
Global 222.78 445.78 3.93 7.16 73.67 45.86 101.01 226.47

vation had a positive interaction with bulk density, suggesting
they work together to affect soil DOC.

3.3 Global soil DOC patterns

The RF model has the ability to predict soil DOC in wet-
land (R2

= 0.87), forest (R2
= 0.85), shrubland (R2

= 0.85),
tundra (R2

= 0.77), grassland (R2
= 0.96), and cropland

(R2
= 0.90) (Fig. S10). We observed significant spatial het-

erogeneity in predicted global soil DOC concentrations
(Fig. 5a). Soil DOC concentrations increased from the Equa-
tor toward the poles (Fig. 5b). High soil DOC concen-
trations were found in high-altitude plateaus and moun-
tain ranges at low latitudes, including the Andes, African
Highlands, and West Indies (Fig. 5a). The global average
soil DOC concentration was 224.72 mg kg−1 (Table 3), and
the topsoil (0–30 cm) DOC stock was 13.74 Pg. Asia had
the highest soil DOC concentration (259.03 mg kg−1), fol-
lowed by North America (250.66 mg kg−1), South America
(219.83 mg kg−1), Europe (208.28 mg kg−1), and Oceania
(206.36 mg kg−1). Africa had the lowest soil DOC concen-
trations (166.73 mg kg−1). For predicted soil DOC stocks,
Asia and North America remained ranked first and second
at 4.93 and 2.93 Pg, respectively. Despite its relatively low
predicted soil DOC concentrations, Africa ranked third in to-
tal DOC stock (2.37 Pg) because of its large land area. South
America followed at 1.76 Pg, while Europe and Oceania had
the lowest stocks at 0.98 and 0.76 Pg, respectively.

4 Discussions

4.1 Effects of elevation and soil properties on soil DOC
concentrations

The most critical predictors of soil DOC concentrations
among the selected 14 variables were elevation (Fig. 2), with
soil DOC concentrations exhibiting a significant positive cor-
relation with elevation after controlling for confounding vari-
ables (Fig. 3f). This finding contrasted with several previ-
ous studies that prioritized precipitation regimes (Guo et al.,
2020b) or soil texture (Angst et al., 2021) as primary soil
DOC drivers, suggesting that elevation effects may have been

Table 3. Analysis of the predicted global map of soil dissolved or-
ganic carbon. The area-weighted average soil dissolved organic car-
bon concentration was calculated based on our predicted map. Con-
verting soil dissolved organic carbon concentration to soil dissolved
organic carbon content and stock used the soil bulk density and land
area.

Continent Soil DOC Soil DOC Soil DOC
concentration content stock

(mg kg−1) (g m−2) (Pg)

Asia 259.03 103.26 4.93
North America 250.66 111.29 2.93
Europe 208.28 89.97 0.98
South America 219.83 92.33 1.76
Oceania 206.36 91.62 0.76
Africa 166.73 72.77 2.37
Global 224.72 97.75 13.74

obscured in large-scale analyses lacking environmental strat-
ification. Three interconnected mechanisms may explain this
pattern of elevation effects. First, decreasing temperatures in
high-altitude regions (0.6 °C 100 m−1 adiabatic lapse rate)
limit the metabolic activity of microorganisms (Davidson
and Janssens, 2006), slowing the decomposition of soil DOC
and favoring soil DOC accumulation through reduced miner-
alization. Additionally, these regions typically receive more
precipitation, which increases soil moisture and helps pro-
tect soil DOC from rapid breakdown. High-altitude regions
often experience distinct precipitation patterns and soil mois-
ture conditions compared with lower elevations (Li et al.,
2023). Higher precipitation and lower evaporation rates may
promote greater dissolution and leaching of organic matter,
thereby increasing soil DOC concentrations (He et al., 2021;
Lu et al., 2019). Second, the altitudinal shift in vegetation
communities, particularly the transition to coniferous species
and ericaceous shrubs at higher elevations, enhances labile
carbon inputs through distinct litter chemistry (higher phe-
nolic compounds and lower C : N ratios), which created a
positive feedback loop for DOC production (Pesántez et al.,
2018; Wei et al., 2024). Third, the orographic precipitation
effect and persistent cloud immersion at higher elevations
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maintain soil moisture conditions that simultaneously stim-
ulate DOC release from organic matter while limiting its lat-
eral export through reduced drainage flux (Michalzik et al.,
2001). Moreover, high-altitude areas are generally less dis-
turbed by humans activities, which may help preserve soil
DOC. Our results also indicated that soils in low-latitude
plateaus and mountain ranges (e.g., Tibetan Plateau, Andes,
African Highlands, and West Indies) exhibited higher DOC
concentrations (Fig. 5a). These results fundamentally recali-
brated our understanding of topographic controls on soil car-
bon cycling, which provided a mechanistic basis for predict-
ing climate feedbacks in vertically stratified landscapes.

The effects of soil clay content on DOC concentrations
are complex, involving adsorption, water retention, microbial
activities, and organic matter protection mechanisms (Kaiser
and Zech, 2000; Singh et al., 2017). Generally, high clay con-
tent fosters DOC accumulation through the adsorption and
stabilization of organic matter (Gmach et al., 2019; Kalb-
itz et al., 2000). Our findings revealed a nonlinear thresh-
old control of soil clay content on soil DOC with mini-
mum DOC concentrations occurring at 20 % clay (Fig. 3h),
which was a pedogenic tipping point where the dominant
regulatory mechanisms shift from physicochemical stabiliza-
tion to biogeochemical accumulation. In soils with clay con-
tent below this threshold, increasing clay promotes organo-
mineral association through Fe/Al-oxide bridging and ex-
ponential growth of specific surface area (Sanders et al.,
2021), which effectively sequester labile organic carbon into
micro-aggregates while suppressing soil DOC release. Be-
yond 20 % clay, however, the emergence of impermeable mi-
crostructures reduces oxygen diffusion, establishing anaero-
bic microsites that inhibit phenol oxidase activity and accu-
mulate phenolic metabolites (Awedat et al., 2021). This shift
coincides with clay-organic co-precipitation dynamics: high-
clay soils (> 25 %) exhibit stronger preferential dissolution
of Fe–OM complexes during redox oscillations (Awedat et
al., 2021). Furthermore, SOC serves as the main source of
DOC, so higher SOC results in more DOC release through
microbial metabolism (Kalbitz et al., 2000; Neff and Asner,
2001).

4.2 Effects of climate on soil DOC concentrations

Seasonal temperature variability (SVT) was the predominant
climatic driver of soil DOC, exhibiting a nonlinear threshold
response where soil DOC concentrations initially decline but
shift to an increasing trend beyond an SVT threshold of 0.7
after accounting for confounding factors (Fig. 3d). This con-
trasts sharply with previous studies that primarily attributed
soil DOC fluctuations to mean annual temperature or pre-
cipitation (Guo et al., 2020b) or emphasized moisture vari-
ability over thermal regimes (Li et al., 2018). This makes our
work the first study to identify SVT-driven biphasic DOC be-
havior in global terrestrial ecosystem. Three interconnected
mechanisms could explain this pattern. First, moderate SVT

levels (< 0.7) likely enhance microbial carbon use efficiency
by promoting enzymatic acclimation to predictable thermal
fluctuations, which reduce soil DOC accumulation through
efficient mineralization (Ren et al., 2024b). Second, surpass-
ing the 0.7 SVT threshold destabilizes microbial communi-
ties through repeated thermal shocks, which increase cell ly-
sis and releasing labile organic compounds into the soil ma-
trix (Zhou et al., 2024b). Third, extreme temperature vari-
ability alters soil physical structure by disrupting aggregate
stability and exposes previously protected organic matter
to solubilization during thermal contraction-expansion cy-
cles (Six et al., 2004). The observed DOC rebound at high
SVT aligns with plant root exudation strategies under ther-
mal stress, which suggested that vegetation may compen-
sate for microbial carbon loss by releasing soluble metabo-
lites to maintain rhizosphere functionality (Kruthika et al.,
2024). Overall, the identified SVT threshold (0.7) serves as
an early warning indicator for ecosystems approaching criti-
cal thermal instability, particularly in climate transition zones
where seasonal temperature swings are intensifying. Practi-
cally, this threshold could guide land management strategies.
For instance, prioritizing organic amendments or shade crops
in regions with SVT > 0.7 may mitigate soil DOC leaching
risks.

4.3 Global patterns of soil DOC

Using our soil DOC concentration dataset, we quantified the
soil DOC concentrations (0–30 cm) in terrestrial ecosystems,
identified their key driving factors, and produced global pre-
dictions. Global DOC stocks in the topsoil are estimated at
13.74 Pg C, accounting for 0.87 % of global soil organic car-
bon, which is significantly higher than previous estimates
(Guo et al., 2020b). Our predictions indicated that soil DOC
concentrations decreased markedly toward lower latitudes,
particularly in the Northern Hemisphere. Previous global
maps of soil DOC concentrations failed to capture this lat-
itudinal trend, likely due to limited spatial coverage (Guo et
al., 2020b; Langeveld et al., 2020). Our predicted map shows
that soil DOC concentrations increase with latitude. In high-
latitude regions, low temperatures limit microbial activity,
which slows the decomposition of organic matter and leads
to more organic carbon being retained in dissolved form (Pa-
toine et al., 2022), thereby increasing soil DOC concentra-
tions. In addition, soils in high-latitude areas are often moist
or frozen due to low temperatures, limiting oxygen supply
and further inhibiting microbial decomposition (Zhou et al.,
2024b). These moist or frozen conditions also help protect
organic matter, reducing its decomposition and contributing
to DOC accumulation. Thus, low temperatures and specific
moisture conditions in high-latitude regions jointly result in
relatively high soil DOC concentrations. However, substan-
tial heterogeneity exists at regional and local scales. For in-
stance, despite their similar latitudes, soil DOC concentra-
tions in Northern Europe were significantly lower than in

Earth Syst. Sci. Data, 17, 2873–2885, 2025 https://doi.org/10.5194/essd-17-2873-2025



T. Ren and A. Cai: Global patterns and drivers of soil dissolved organic carbon concentrations 2883

Siberia, primarily due to differences in climatic conditions.
Northern Europe’s maritime climate, with mild temperatures
and evenly distributed precipitation, promotes higher micro-
bial activity and accelerates organic matter decomposition. In
contrast, Siberia’s cold subarctic climate results in lower soil
temperatures that limit microbial activity and slow organic
matter decomposition, leading to greater DOC retention (Jin
and Ma, 2021). Furthermore, soils in Siberia are often frozen,
restricting oxygen supply and further inhibiting decomposi-
tion, thereby contributing to DOC accumulation (Raudina et
al., 2022). Climatic conditions thus play a key role in ex-
plaining the significant differences in soil DOC concentra-
tions between these regions. Regional variations may also be
related to topographic conditions. Higher soil DOC concen-
trations on the Tibetan Plateau compared with Eastern China
may result from high elevation and low MAT in the plateau
(Fig. 5a). In contrast, other studies reported lower DOC lev-
els in Arctic regions, which may have been due to omit-
ting DOC concentration measurements in dry or frozen soils
(Langeveld et al., 2020). Our predictive model offered higher
accuracy in estimating global soil DOC storage because our
comprehensive dataset included DOC concentrations in both
dry soil and soil solutions, providing a robust data founda-
tion. In addition, we used the optimal model by comparing
various linear and nonlinear models to predict global soil
DOC.

4.4 Limitations and predictive uncertainties

Although we compiled a comprehensive global soil DOC
concentration dataset, identified key drivers, and made a
global prediction, our study has certain limitations. First,
certain ecosystems remained underrepresented. For instance,
tundra accounted for only 1 % of our database, while shrub-
lands, grasslands, and wetlands collectively constituted only
21 %. This underrepresentation may reduce the accuracy of
predictions for different ecosystems. Second, although we
considered the subsoil at the beginning of dataset, we did
not explore this further due to the limited availability of
data and considerations of predictive accuracy. We intend
to continue expanding the subsoil DOC database in future
work. Third, there was a deficiency in some predictive vari-
ables: although we had extracted missing data through grid-
ded datasets, this inevitably introduced uncertainty in pre-
dictions, particularly for soil variables. Fourth, although data
standardization enabled consistent comparison and analysis
of soil DOC across different measurement methods, there
were potential issues such as the possible loss of original data
characteristics, dependence on accurate parameters, overgen-
eralization, increasing the complexity of data interpretation,
and introducing bias. Finally, despite employing advanced
machine learning methods with multiple predictors to predict
the global soil DOC, 35 % of soil DOC concentration vari-
ability remains unexplained. However, these limitations also
highlighted areas for future soil DOC research. Future re-

search should enhance the collection of deep soil samples to
address the current data scarcity and more accurately quan-
tify the DOC reserves across the entire soil profile. There is
a particular need to increase sample collection in key regions
such as Siberia and Africa.

5 Data availability

The global soil DOC database in this study and the
raw dataset of driving factors can be downloaded at
https://doi.org/10.6084/m9.figshare.28574183 (Ren and Cai,
2025).

6 Conclusions

Through the development of a comprehensive soil DOC
dataset, we quantified soil DOC concentrations in terres-
trial ecosystems, identified their driving factors, and made
global predictions. After comparing multiple predictive mod-
els, we selected the random forest model as the best per-
former for mapping soil DOC concentrations. The results
indicated that tundra exhibited the highest DOC concentra-
tions, while shrubland and cropland soils had relatively lower
concentrations. Elevation played the most important predic-
tor for soil DOC prediction, followed by SOC, SVT, and soil
clay. There was a nonlinear threshold response of soil DOC
to soil clay and SVT, which initially decline but shift to an
increasing trend beyond an soil clay threshold of 20 % and
SVT threshold of 0.7 after accounting for confounding fac-
tors. We predicted that the soil DOC concentration increased
significantly from the Equator to the poles and estimated that
the DOC stocks in the topsoil of terrestrial ecosystems were
13.74 Pg. The global soil DOC database we created serves
as a critical resource for future research and enhances our
understanding of the roles of soil in the global carbon cy-
cle. This database provides valuable data support for climate
change research, ecosystem management, agricultural sus-
tainability, environmental policymaking, and the improve-
ment of biogeochemical models. It aids in addressing soil
degradation, improving food security, and tackling global en-
vironmental challenges.
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