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Abstract. Vegetation optical depth (VOD) products provide information on vegetation water content and cor-
relate with vegetation growth status; these are closely related to the global water and carbon cycles. The L-band
signal penetrates deeper into the vegetation canopy than the higher-frequency bands used for many previous
VOD retrievals. Currently, there are only two operational L-band sensors aboard satellites, i.e., the Soil Moisture
and Ocean Salinity (SMOS) satellite launched in 2010 and the Soil Moisture Active Passive (SMAP) satellite
launched in 2015. The former has the limitation of a low spatial resolution of only 25 km, while the latter has im-
proved this resolution to 9 km but has a shorter usable time range. Due to the influence of sensor and atmospheric
conditions as well as the observation methods of polar-orbiting satellites (such as scan gaps and observation re-
visit times), the daily data provided by both satellites suffer from varying degrees of missing data. In summary,
the existing L-band VOD (L-VOD) products suffer from the defects of missing data and coarse resolution of his-
torical data. There is little research on filling gaps and reconstructing 9 km long-term data for L-VOD products.
To solve this problem, our study depends on a penalized least-square regression based on a three-dimensional
discrete cosine transform to firstly generate the seamless global daily L-VOD products. Subsequently, the nonlo-
cal filtering idea is applied to spatiotemporal fusion between high-resolution and low-resolution data, resulting
in a global daily seamless 9 km L-VOD product from 1 January 2010 to 31 July 2021. In order to validate the
quality of the products, time series validation and simulated missing-region validation are used for the recon-
structed data. The fusion products are validated both temporally and spatially and are also compared numerically
with the original 9 km data during the overlapping period. Results show that the seamless SMOS (SMAP) dataset
is evaluated with a coefficient of determination (R2) of 0.855 (0.947) and a root mean squared error (RMSE)
of 0.094 (0.073) for the simulated real missing masks. The temporal consistency of the reconstructed daily L-
VOD products is ensured with the original time series distribution of valid values. The spatial information of
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the fusion product and the original 9 km data in the overlapping period is basically consistent (R2: 0.926–0.958,
RMSE: 0.072–0.093, and mean absolute error MAE: 0.047–0.064). The temporal variations between the fusion
product and the original product are largely synchronized. Our dataset can provide timely vegetation information
during natural disasters (e.g., floods, droughts, and forest fires), supporting early disaster warning and real-time
responses. This dataset can be downloaded at https://doi.org/10.5281/zenodo.13334757 (Hu et al., 2024).

1 Introduction

Vegetation is a key factor in the energy, water, and car-
bon balance of the terrestrial surface, and it is significantly
affected by climate change and human activities (Frappart
et al., 2020). Remote sensing observations are commonly
used to monitor vegetation dynamics and their temporal
changes from regional to global scales. Unlike traditional op-
tically based technologies, microwave-frequency sensors are
almost unaffected by cloud cover (Moesinger et al., 2020).
Microwave radiation passing through the vegetation canopy
undergoes an extinction effect, and the extent of this attenu-
ation can be observed by passive or active microwave satel-
lites and is commonly referred to as vegetation optical depth
(VOD) (Wigneron et al., 2017). It is increasingly used to
monitor various ecological vegetation variables, which can
provide frequent observations that are independent of atmo-
spheric conditions and cloud pollution. Soil moisture con-
tribution is coupled to the effects of vegetation in terms
of absorption and scattering (Zhao et al., 2021; Liu et al.,
2012), and water within the vegetation attenuates the mi-
crowave signal (Yao et al., 2024). Thus, VOD is directly
related to the vegetation water content (VWC) (Fan et al.,
2019; Konings et al., 2016; Dou et al., 2023; Holtzman et al.,
2021). VOD has been widely used in biomass monitoring,
drought early warning, phenology analysis, and other fields
(Wigneron et al., 2020; Vreugdenhil et al., 2022; Moesinger
et al., 2022; Kumar et al., 2021; Van Dijk et al., 2013; Fer-
razzoli et al., 2002; Vaglio Laurin et al., 2020; Mialon et al.,
2020; Fan et al., 2023). VOD is affected by a number of fac-
tors, including density, type of vegetation, and microwave
frequency. Many microwave remote sensing satellites pro-
vide VOD products in different microwave bands (X, Ku,
and C). However, as the frequency of the microwave sig-
nal decreases, resulting in longer wavelengths, its ability
to penetrate vegetation canopies increases (Frappart et al.,
2020; Zhang et al., 2021a). Compared to VOD products in
other bands, the low-frequency L-band microwave product
(L-VOD) correlates better with VWC and biomass (Brandt
et al., 2018; Unterholzner, 2023; Cui et al., 2023). Currently,
only the Soil Moisture and Ocean Salinity (SMOS) and Soil
Moisture Active Passive (SMAP) satellites provide VOD
data based on the L-band, and both are satellites targeting
the monitoring of soil moisture (SM) and VWC (Wigneron
et al., 2017).

The SMOS satellite’s mission is to monitor the bright-
ness temperature of microwave radiation at Earth’s surface,
as launched by the European Space Agency (ESA) in 2009
(Kerr et al., 2010, 2001). SMOS carries a passive microwave
radiometer that can acquire data without emitting microwave
signals by using microwave signals naturally radiated from
Earth’s surface. Currently, there are three main physically
based SMOS L-VOD retrieval methods (Wigneron et al.,
2021), i.e., SMOS L2 (Kerr et al., 2012), SMOS L3 (Al Bitar
et al., 2017), and SMOS-IC (Fernandez-Moran et al., 2017).
These algorithms are all based on the L-band Microwave
Emission of the Biosphere (L-MEB) model (Wigneron et al.,
2007), which uses the Tau–Omega (τ–ω) radiative transfer
equation to simulate surface microwave emissions (Cui et al.,
2015; Mo et al., 1982). SMOS-IC is the latest algorithm in
this series, which does not rely on auxiliary vegetation infor-
mation as initial inputs but uses the annual average of previ-
ously retrieved vegetation τ during the retrieval process (Li
et al., 2022a). The latest release of SMOS-IC, v2, further im-
proves upon this by incorporating a first-order modeling ap-
proach (2-Stream) instead of the zero-order τ–ω model (Li
et al., 2020).

The SMAP satellite’s mission is to monitor the dynam-
ics of soil moisture and vegetation moisture content globally,
as launched by the National Aeronautics and Space Admin-
istration (NASA) in 2015 (Le Vine et al., 2010; Entekhabi
et al., 2010). SMAP carries an active microwave radiometer
that emits microwave signals and then uses the reflection and
scattering data from the signals to calculate parameters such
as SM and VWC. Currently, SMAP retrieval algorithms are
primarily categorized as single-channel algorithms (SCAs)
(Jackson, 1993) and dual-channel algorithms (DCAs) (Njoku
et al., 2003) based on polarization. In contrast, DCAs utilize
both H and V polarization channels and employ a nonlinear
least-squares optimization process to simultaneously retrieve
SM and L-VOD (Crow et al., 2005; O’Neill et al., 2018).
Due to the correlated brightness temperature observations in
dual-polarization channels, which cannot independently re-
trieve two unknowns, Konings et al. (2016, 2017) proposed
the Multi-Temporal Dual Channel Algorithm (MT-DCA) to
enhance the robustness of retrievals.

In summary, the L-VOD retrieval algorithms for both
SMOS and SMAP have reached a relatively mature stage.
Both sensors operate in fully polarized mode and have
demonstrated strong capability in monitoring surface soil
and vegetation characteristics globally. However, due to lim-
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itations such as satellite scanning gaps and retrieval meth-
ods, the daily data provided by the two satellites are spa-
tially incomplete. This missing-data phenomenon affects the
seamless monitoring of VWC and aboveground biomass
(AGB). The seamless daily L-VOD data enhance the pre-
cision and timeliness of vegetation change monitoring, en-
abling the capture of short-term environmental changes and
sudden-event (e.g., extreme weather and natural disasters)
impacts on vegetation. Currently, most applications of VOD
use multi-temporal data averaging. Incomplete VOD prod-
ucts are typically averaged on monthly, quarterly, and an-
nual scales to generate global coverage products (Olivares-
Cabello et al., 2022; Wild et al., 2022). The drawbacks of the
multi-temporal data-averaging method are evident. It com-
promises high temporal resolution, reducing the data utiliza-
tion. Additionally, the unique spatial distribution of the daily
data is overlooked, leading to the loss of dense time series
variation information. In other words, averaging VOD data
over different timescales compromises the original informa-
tion in both the spatial and temporal dimensions.

In order to overcome the missing-data difficulties, recent
studies have proposed reconstruction methods of other prod-
ucts on a global or regional scale. Yang and Wang (2023)
used the HCTSA method to extract the temporal features
from surface SM time series data and then reconstructed the
data with the random forest model. Llamas et al. (2020) used
auxiliary data such as precipitation in combination with a
multi-regression model to fill in the blank portions of the
CCI data. Zhang et al. (2021b) developed a novel spatiotem-
poral partial convolutional neural network for AMSR2 soil
moisture product gap-filling. Building on this work, Zhang
et al. (2022) proposed an integrated long short-term memory
convolutional neural network (LSTM-CNN), in which global
daily precipitation datasets were fused into the proposed re-
construction model to further improve gap-filling in daily soil
moisture products. So far, there have been few works on L-
VOD reconstruction at both the global and daily scales.

In addition, SMOS satellite products are limited by coarse
spatial resolution (25 km), which cannot capture fine-scale
phenological changes in surface vegetation. Although the
SMAP satellite improves the spatial resolution, providing
global L-VOD data at 9 km resolution, it was launched in
2015 and therefore cannot provide historical data. To address
the limitations of different sensors, the recently released Veg-
etation Optical Depth Climate Archive (VODCA) version 2
(Zotta et al., 2024) combines VOD data from multiple sen-
sors (SSM/I, TMI, AMSR-E, WindSat, and AMSR2) to gen-
erate a long-term VOD product. Compared to version 1 (My-
neni et al., 2015), the main improvement is the addition of L-
band products (VODCA L) based on the SMOS and SMAP
missions, which are theoretically more sensitive to the entire
canopy (including branches and trunks). However, over ex-
tended periods such as 2010–2021, the spatial resolution of
the existing L-VOD data remains limited to 25 km. Currently,
there are few studies that perform spatiotemporal fusion of

the L-VOD products from the two satellites to compensate
for their spatiotemporal limitations.

In summary, the current VOD products from different
sources suffer from data gaps and coarse resolution of his-
torical data, hence the need to integrate multi-temporal and
multisource L-VOD products. Enhancing VOD quality by in-
corporating auxiliary data introduces more uncertainty. Inde-
pendent retrieval of VOD products from microwave observa-
tions would be a more effective way of improving data qual-
ity. From these perspectives, our study begins with the re-
construction of missing data. Subsequently, a spatiotemporal
fusion model is developed to generate seamless, long-term,
and 9 km global daily L-VOD products. The main contribu-
tions are below:

1. Based on the three-dimensionality (2-D spatial+ 1-D
time) of the spatiotemporal dataset, we reconstruct the
missing parts of the SMOS L-VOD data from 1 Jan-
uary 2010 to 31 December 2017 and the SMAP L-VOD
data from 1 April 2015 to 31 July 2021, filling a gap in
the research field regarding global daily L-VOD product
reconstruction.

2. The spatiotemporal fusion model is based on the non-
local filtering approach to generate a long-term 9 km
L-VOD dataset. The fusion product is validated tempo-
rally and spatially and is compared numerically with the
original 9 km data during the overlapping period. Based
on the availability of existing data, we ultimately obtain
a global daily seamless L-VOD dataset with a spatial
resolution of 9 km for the period from 1 January 2010
to 31 July 2021.

3. The gap-filling accuracy is assessed using time series
validation and simulated missing-region validation. For
the fusion products, temporal and spatial verification
strategies are employed and numerical comparisons are
made with the original 9 km data from the overlap pe-
riod. Evaluation indexes demonstrate that the global
daily seamless L-VOD dataset shows high accuracy, re-
liability, and robustness.

The structure of the rest of this paper is as follows: Sect. 2
describes the L-VOD data and the auxiliary data used in
the study. Section 3 introduces the methods for gap-filling
and spatiotemporal fusion as well as the experimental setup
and accuracy validation metrics. Section 4 presents the ex-
perimental results and the relevant validation results. Finally,
Sect. 5 provides the conclusions of this study and suggestions
for future work.
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2 Data description

2.1 L-VOD data

The SMOS IC L-VOD dataset is published by the Euro-
pean Space Agency (ESA) and has a satellite revisit pe-
riod of 8 d, a spatial resolution of 25 km, and a global
spatial coverage. This study uses the latest improved ver-
sion 2 of L-VOD data for the period from 1 January 2010
to 31 December 2017, which does not require the use of
the optical vegetation index as auxiliary data to drive the
model, enhancing the independence and stability of the prod-
uct. These data are derived from https://ib.remote-sensing.
inrae.fr/index.php/smos-ic-v2-product-documentation/ (last
access: 6 June 2024; Wigneron et al., 2021). Due to the long-
term advantage of the SMOS L-VOD data, they are used as
the low-spatial-resolution data for both the reference and tar-
get periods in the spatiotemporal fusion experiments. These
data help in constructing the baseline data and generating the
9 km L-VOD data for the target moments.

The SMAP MT-DCA L-VOD dataset covers the global
surface with a satellite revisit period of 3 d and a spatial
resolution of 9 km. This study uses the latest SMAP MT-
DCA version-5 L-VOD data released by Feldman and En-
tekhabi (2019), which update the data from 1 April 2015 to
31 July 2021. These data are derived from https://doi.org/
10.5281/zenodo.5619583 (Feldman et al., 2021). The MT-
DCA algorithm combines microwave radiometer data from
the SMAP satellite and vegetation index data from MODIS
while also considering the temporal autocorrelation of VOD.
Similar to the SMOS IC algorithm, MT-DCA does not re-
quire optical auxiliary data to provide initial VOD values
due to its consideration of VOD’s temporal autocorrelation.
SMAP L-VOD data have the advantage of high spatial reso-
lution, which is used in this study as the high-resolution base-
line data in the spatiotemporal fusion model to provide fine
spatial detail information for the VOD fusion product. A spe-
cific description of the L-VOD data is given in Table 1.

2.2 Auxiliary data

To carry out the relevant analysis more comprehensively and
accurately, we use two important auxiliary datasets, i.e., land
cover type data and Normalized Difference Vegetation Index
(NDVI) data.

This study selected pixel points in different land cover
types for accuracy validation. The data are based on the
MODIS MCD12C1 V061 (Friedl and Sulla-Menashe, 2022),
which provides global land cover types at annual intervals
with a time span from 2001 to 2022 and a spatial reso-
lution of 0.05° (approximately 5.6 km). This dataset uses
multiple classification schemes, including the International
Geosphere-Biosphere Programme (IGBP), the University of
Maryland (UMD), and the Leaf Area Index (LAI) (Loveland
et al., 1999; Hansen et al., 2000; Chen and Black, 1992). In

this study, land cover data for 2017 and 2018 are used. The
data are accessed and processed through the Google Earth
Engine platform.

In this study, we choose long-term NDVI data to further
evaluate the final product VOD_st. The data are based on the
MODIS MYD13C1 V061 (Didan, 2021), which has a spa-
tial resolution of 0.05° (approximately 5.6 km) and is syn-
thesized over 16 d. This product provides a Vegetation Index
(VI) value for each pixel, i.e., the Enhanced Vegetation In-
dex (EVI) and the NDVI. We use the NDVI data from 2010
to 2021, which maintains continuity with the existing Na-
tional Oceanic and Atmospheric Administration-Advanced
Very High Resolution Radiometer (NOAA-AVHRR)-derived
NDVI.

Considering the availability of the dataset, the study pe-
riod for this research is from 1 January 2010 to 31 July 2021.
For convenience, the original SMOS IC L-VOD product
is referred to as VOD_smos, the original SMAP MT-DCA
L-VOD product as VOD_smap, the gap-filling products as
VOD_resmos and VOD_resmap, respectively, and the spa-
tiotemporal fusion product as VOD_st.

3 Methodology

3.1 Data preprocessing

For the selected VOD_smos and VOD_smap datasets, pre-
processing steps such as reprojection, anomaly handling,
and resampling are required. Due to differences in the ge-
ographic coverage and projection methods of the SMOS
and SMAP data products, reprojection is necessary. Ad-
ditionally, considering that VOD typically ranges from 0
to 1.5, with higher values often observed in densely veg-
etated tropical regions, reaching up to approximately 1.2,
there are occasional outliers exceeding 1.5 in specific ar-
eas like the Amazon and Congo river basins, accounting
for approximately 1 % of the total (Fernandez-Moran et al.,
2017; Li et al., 2022a). To minimize the potential accumu-
lation of uncertainty in subsequent experiments caused by
abnormal values, these data need to be removed. Further-
more, some regions may have negative VOD values due
to unreliable retrieval caused by sensor limitations or land
types such as permafrost or deserts. VOD values of less
than 0 cannot be explained by physical properties. Fol-
lowing the guidelines of Wigneron et al. (2021) for the
SMOS IC L-VOD data (https://ib.remote-sensing.inrae.fr/
index.php/smos-ic-v2-product-documentation/, last access:
28 July 2024), negative VOD values will be set to 0 in this
study to ensure result accuracy. Lastly, the low-resolution
product VOD_smos will be preliminarily resampled to 9 km
using nearest-neighbor interpolation to maintain consistency
in the spatial resolution across all of the datasets. Our data
utilize a global grid of 2000× 4000 cells.

We consider that VOD has continuity over long temporal
sequences but faces a significant proportion of spatial data
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Table 1. Description of the L-VOD data used in this study.

Product Source Version Temporal and spatial resolution Period

L-VOD SMOS IC V2 25 km/daily 1 January 2010–31 December 2017
L-VOD SMAP MT-DCA V5 9 km/daily 1 April 2015–31 July 2021

gaps. Moreover, in the spatiotemporal fusion model, higher
spatial coverage of input data, represented by a larger ef-
fective number N , leads to better spatiotemporal fusion ef-
fects. Therefore, our study initially proposes using a penal-
ized least-square regression based on a three-dimensional
discrete cosine transform (DCT–PLS) method to leverage
spatiotemporal variation information to repair L-VOD data
from the SMOS and SMAP satellites. Subsequently, seam-
less data will be input into a nonlocal filter-based spatiotem-
poral fusion model (STFM) to reconstruct historical 9 km
data, aiming to maximize error reduction and enhance prod-
uct quality.

3.2 Gap-filling

Given the significant spatial data gaps in the VOD_smos and
VOD_smap datasets, and considering that frequency domain
signal distribution is more concentrated and contains more
comprehensive information, DCT is an effective algorithm
for transforming signals into the frequency domain for com-
putation (Wang et al., 2023). Additionally, PLS regression
is a thin-plate spline smoothing method suitable for one-
dimensional arrays and aims to balance data fidelity and the
roughness of the mean function. Garcia (2010) demonstrated
that DCT achieves PLS regression by expressing data as a
sum of cosine functions oscillating at different frequencies.
Due to the multidimensional characteristics of DCT, DCT-
based PLS regression can be extended directly to multidi-
mensional datasets (Wang et al., 2012). For large spatiotem-
poral datasets, utilizing spatiotemporal variation informa-
tion to predict missing parts is highly effective. Furthermore,
VOD data show significant temporal and spatial correlations,
and DCT can capture this spatiotemporal correlation well.
Therefore, this study uses the three-dimensional DCT–PLS
method to fill the gaps in the global daily L-VOD data. The
following section will briefly introduce the principles of the
DCT–PLS algorithm for data repair.

Let x represent the spatiotemporal dataset with missing
values. The solution formula for the filled data matrix y is as
follows:

F (y)=
∥∥∥Q1/2

· (y− x)
∥∥∥2
+ λ

∥∥∥∇2y

∥∥∥ , (1)

where ‖ · ‖ denotes the Euclidean norm. Q is a binary ma-
trix indicating the missing values in the original data, with
the square root used for weight adjustment. ∇2 is the Lapla-
cian operator. λ is the smoothness factor, which measures the

smoothness of the data y. The iterative solution for y can be
transformed into the following formula:

y = DCT−1(G ·DCT(Q · (x− y)+ y)). (2)

In this context, DCT is used to transform the data from the
spatial domain to the frequency domain, where the data are
then reconstructed. Finally, the inverse transform (DCT−1)
is applied to convert the reconstructed results back from
the frequency domain to the spatial domain. G is a three-
dimensional filtering tensor:

G(k1,k2,k3) =
1

1+ λ

(
3∑

m=1
(2− cos (km−1)π

Nm
)

)2 , (3)

where km represents the kth element in the mth dimension
(where m= 1,2,3), and Nm denotes the size of the data in
the mth dimension of the matrix x.

In DCT–PLS modeling, the selection of the smoothing pa-
rameter λ is crucial. A higher value of the smoothing param-
eter will result in the loss of high-frequency components. To
effectively fill the data gaps, λ should be as close to 0 as pos-
sible to minimize the smoothing effect. By calculating the
normalized error between the original and reconstructed val-
ues, we can determine whether the model accurately captures
the characteristics of the data. Thus, the smoothing parame-
ter λ can be adjusted based on the error evaluation results to
optimize model performance. The error ε is defined as fol-
lows:

ε =

∥∥Q1/2
· (y− x)

∥∥∥∥Q1/2 · x
∥∥ . (4)

3.3 Spatiotemporal fusion

Spatiotemporal fusion of remote sensing data is the process
of integrating multisource remote sensing data into products
that have spatiotemporal consistency and higher accuracy. Of
these methods, both transformation-based and pixel-based
reconstruction methods are commonly used approaches (Zhu
et al., 2018; Belgiu and Stein, 2019). Transformation-based
methods include techniques such as Fourier transform and
wavelet transform (Fanelli et al., 2001; Gharbia et al., 2014).
These methods fuse data by combining transform coeffi-
cients from different sources, offering simplicity and ease of
implementation. However, they often suffer from lower accu-
racy and are prone to introducing noticeable artifacts into the
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fusion images. On the other hand, pixel-based reconstruction
methods involve weighted averaging or other operations on
pixel values from different source data to achieve fusion. This
approach has become the mainstream method in current spa-
tiotemporal fusion research due to its ability to preserve spa-
tial details and improve overall accuracy. Within these meth-
ods, a spatial and temporal adaptive reflectance fusion model
(STARFM) has been widely applied (Gao et al., 2006). An
improved approach to the STARFM is used in this study.

This study aims to extend the SMAP 9 km VOD by de-
veloping a nonlocal filter-based STFM (Cheng et al., 2017).
This model employs the transformation relationships be-
tween high-resolution spatial data and low-resolution tempo-
ral data over different time periods to effectively utilize the
high spatiotemporal correlation in remote sensing image se-
quences and predict high-spatial-resolution data at the target
time. For convenience, in this study, we refer to images with
high spatial resolution and low temporal resolution as high-
resolution images and conversely as low-resolution images,
based on spatial resolution as the criterion.

As mentioned above, this experiment performs spatiotem-
poral fusion on the reconstructed data VOD_resmos and
VOD_resmap to obtain the VOD_st product. Assuming that
the changes in VOD are linear over a short period, the rela-
tionship between the data at different times tk and t0 within a
pixel can be expressed as follows:

VOD_resmos(x,y, tk)=

a(x,y,1t) ·VOD_resmos (x,y, t0)+ b(x,y,1t), (5)

where (x,y) denotes a given pixel location in the low-
resolution data, 1t = tk − t0, and a and b are the coeffi-
cients of the linear regression model describing the change
in VOD_resmos between the two time points.

We assume that the high-resolution and low-resolution
data obtained by different sensors in the same spectral band
exhibit similar temporal variations. Thus, the linear rela-
tionship between low-resolution remote sensing images, as
shown in Eq. (5), also applies to high-resolution remote sens-
ing images. The high-resolution data at time tk can be calcu-
lated as

VOD_st(x,y, tk)=

a(x,y,1t) ·VOD_resmap(x,y, t0)+ b(x,y,1t). (6)

It should be noted that the regression coefficients are de-
rived locally and may vary with location. Hence, they cannot
be applied globally. Additionally, the condition of the sur-
face cover might undergo significant and complex changes
during the prediction period. Therefore, the STFM algorithm
incorporates a new nonlocal filtering method to minimize the
impact of these factors on the fusion outcome.

The nonlocal filtering method seeks to make full use of
the highly redundant information within the image, thus con-
tributing to the estimation of the target pixel (Buades et al.,

2005a, b; Su et al., 2012; Gilboa and Osher, 2009). Within
the search window�, the similarity between the neighboring
pixels and the central pixel will influence the determination
of the weights. The weight calculation method is as follows:

W (xi ,yi )=
1

C(x,y)
· exp

−
G ·

∥∥VOD_resmos(P (xi ,yi ))

−VOD_resmos(P (x,y))
∥∥2

h2

 , (7)

where C(x,y) is the normalization factor, G is the Gaussian
kernel, and h is the filtering parameter. The term (xi,yi) ∈�
represents the coordinates of neighboring pixels within the
search window, and P(xi ,yi ) is the nonlocal similarity patch
centered at (xi,yi). Once similar pixels are determined glob-
ally, their information is used to estimate the target pixel
through weighted averaging. The final spatiotemporal fusion
prediction model can be expressed as follows:

VOD_st(xi,yi, tk)=
n∑
i=1

W (xi,yi, t0)

×
[
a(xi,yi,1t)×VOD_resmap(xi,yi, t0)

+ b(xi,yi,1t)
]
, (8)

where n represents the number of similar pixels globally.
VOD_smos data are available from 1 January 2010 to

the present, while VOD_smap data cover the period from
1 April 2015 to 31 July 2021. To fill the temporal blank in
high-spatial-resolution L-VOD products before the launch of
the SMAP satellite, we use 1 April 2015, the initial date pro-
vided by the VOD_smap product, as the time node. The time
range to be predicted by the VOD_st product is defined as
the T1 period, spanning the period from 1 January 2010 to
31 March 2015. To construct the baseline data required for
the spatiotemporal fusion model, and considering the tem-
poral correlation, we extend 1 year beyond the fusion input
period, defining the T2 period as being from 1 April 2015 to
1 April 2016. To validate the quality of the fusion product
VOD_st, we define the remaining period from 2 April 2016
to 31 December 2017 as the T3 period. For specific details,
please refer to Fig. 1.

Figure 2 illustrates that the spatiotemporal fusion model
requires paired high-resolution and low-resolution data to
construct the baseline data. To achieve a more tempo-
rally correlated fusion product, we use the monthly aver-
aged VOD_resmos and VOD_resmap from April 2015 to
April 2016 to generate baseline data, which is a key step
in learning the transformation relationships between high-
resolution and low-resolution data across different periods.
Subsequent experiments utilize these baseline data, inputting
daily low-resolution VOD_resmos data for each correspond-
ing month to obtain the daily high-resolution spatiotemporal
fusion product VOD_st.

In summary, this study first utilizes the DCT–PLS method
to fill gaps in the original missing data, obtaining the recon-
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Figure 1. Spatiotemporal fusion experiment time segment division explanation.

Figure 2. The spatiotemporal fusion process.

structed products (VOD_resmos and VOD_resmap). Subse-
quently, the reconstructed global seamless daily data are in-
put into the STFM, generating the 9 km VOD_st product for
unreleased periods of the SMAP satellite. The main experi-
mental process is illustrated in Fig. 3. The accuracy valida-
tion part is detailed in Sect. 4.

3.4 Experimental setup

In this study, a three-dimensional dataset is constructed with
a monthly time series length. The DCT–PLS method is an
iterative algorithm designed to fill missing values in multi-
dimensional data. In this experiment, the number of itera-
tions is set to 100, with the initial prediction of the original
data made using the nearest-neighbor interpolation method.
The smoothing parameter (λ) follows a logarithmic sequence
from 10−3 to 10−6. During the imputation process, the algo-
rithm gradually reduces the smoothing parameter to achieve
a transition from coarse to fine imputation.

The STFM algorithm processes data in batches, using the
high-resolution and low-resolution monthly average baseline
data constructed for the T2 period, along with the daily low-
resolution data for the corresponding month at the target
time. After multiple adjustments, the optimal combination of
parameters for the L-VOD data is determined. Table 2 de-
scribes the meaning and specific values of these parameters.

The quantitative evaluation metrics used in the experimen-
tal section of this study include five indicators: the correlation

Table 2. Parameterization of the STFM algorithm in this study.

Parameters Description Values

Search window Search range of similar pixels 3
Spectral parameter Filter similar pixels 0.01
High-resolution error High-resolution data observation error 0.005
Low-resolution error Low-resolution data observation error 0.005
Filter parameters Calculate individual weights 0.15
Weight block Calculate individual weights 1

coefficient (R), the coefficient of determination (R2), the root
mean square error (RMSE), the bias, and the mean absolute
error (MAE).

4 Experiment results and discussions

4.1 Gap-filling

4.1.1 Reconstructed results

The gap-filling results for 1 June 2016 are illustrated in
Fig. 4. We observe that the reconstructed results not only re-
tain the existing values of the original data but also reason-
ably fill in the missing parts. The filled areas show no obvious
discontinuities or gaps in the surrounding data. Additionally,
the reconstruction results maintain the details of the original
image, such as topographic features and boundaries.
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Figure 3. General flowchart of the experiment.

Figure 4. Comparison results of SMOS (a, c) and SMAP (b, d) L-VOD before and after reconstruction on 1 June 2016.

To investigate the detail recovery capability of the DCT–
PLS model further, Fig. 5 presents the comparison results of
the magnified data in a local area. It can be seen that, whether
in high-value or low-value situations, the reconstruction re-
sults still exhibit reasonable spatial variations in the missing
areas, without clear boundaries.

4.1.2 Time series validation

Apart from maintaining spatial continuity as described in
Sect. 4.1.1, temporal consistency is crucial for the recon-
structed L-VOD products. In this section, we analyze the
time series of representative pixels with different missing
proportions and different land surface types before and after
reconstruction.
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Figure 5. Four localized regions are selected to compare the reconstruction effects of SMOS and SMAP in the same localized region on
1 June 2016.

Take the SMAP L-VOD data in 2018 as an example.
In Fig. 6, we show three time series with varying propor-
tions of data gaps and their corresponding model outputs.
The three pixel points are from western Canada (52.155° N,
64.755° W), southern Russia (55.215° N, 95.355° E), and the
northeastern Democratic Republic of the Congo (1.215° N,
26.325° E). In Fig. 6, the red line represents the original val-
ues, overlaid on the blue line representing the reconstructed
values. In other words, the DCT–PLS model does not alter
the original pixel values themselves, preserving the original
characteristics of the data and maintaining continuity in the
reconstructed results. Notably, the boxes in Fig. 6 indicate
that the model effectively captures the extreme values present
in the original dataset. These findings suggest that the DCT–
PLS model used in this study reliably predicts the missing
portions.

Combining Sentinel-2 satellite imagery with MODIS
MCD12C1 V061 land cover classification data, Fig. 7 shows
the temporal variation results across different land cover
types. Four land types are selected for study: forest, shrub-
land, cropland, and grassland. To ensure consistency, we se-
lect pixels with 52 % missing data throughout the year for
analysis. The time series illustrates the seasonal variations in
the different land types. For instance, forests and grasslands
exhibit significant vegetation changes during certain seasons,

such as periods of vigorous growth and dormancy. Croplands
show distinct cyclic fluctuations in VOD, reflecting the plant-
ing and harvesting cycles of crops. Typically, VOD is lower
during the sowing season, peaks during the growth period,
and decreases again after harvest.

4.1.3 Simulated missing-region validation

To quantitatively analyze the performance of the DCT–PLS
method in spatiotemporal data reconstruction, we design a
series of experiments. Considering the current lack of site
data for L-VOD products, we simulate missing data by re-
moving original values.

Taking the original SMAP L-VOD data from 20 July 2020
as an example, we create four simulated square missing areas
(80× 80 pixel) in North America, South America, Africa,
and Asia, as shown in Fig. 8. This allows us to easily com-
pare the reconstructed VOD areas with the original VOD
areas to validate the spatial continuity of the gap-filling
products. Figure 8a and b, respectively, depict the original
and reconstructed results of the simulated missing areas on
20 July 2020. It can be seen that the output data are continu-
ous within the original valid areas. In the simulated missing
patches, the spatial texture information is also continuous,
without noticeable boundary reconstruction effects.
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Figure 6. Results of the temporal variation in selected pixels of different missing-data ratios in 2018, with red representing original values,
blue representing model-reconstructed values, and rectangles representing some extreme value reconstruction results.

To better analyze the spatial details of the reconstructed
VOD data, we magnify the results of the four simulated
regions in Fig. 8. Figure 9 shows the detailed original
and reconstructed spatial information for the four simulated
patches on 20 July 2020. It can be clearly seen that the re-
constructed patches have high consistency with the original
patches.

Figure 10 shows scatterplots of the original and recon-
structed data for the four simulated regions mentioned above.
The results indicate that the VOD in the simulated missing ar-
eas has a high reconstruction accuracy, with R2 values rang-
ing from 0.883 to 0.978. The RMSE does not exceed 0.05,
and the MAE does not exceed 0.04.

Additionally, to better simulate the missing patterns of the
original data and make the validation results more realistic,
we create missing data by applying real missing masks from
the original data, as shown in Fig. 11. This method randomly
applies the missing mask from one day to data from other
days, avoiding the influence of fixed missing-data patterns on
the validation results. It is suitable for time series data and
can simulate missing-data patterns at different time points.
The DCT–PLS method is then used to reconstruct the miss-
ing data, with the original values serving as the reference to
compare the accuracy of the reconstruction.

By simulating real missing masks, we validate the effec-
tiveness of the DCT–PLS reconstruction method. We ana-

lyze the overlapping period of SMOS and SMAP data, and
Fig. 12 shows the results of missing-value reconstruction for
the SMOS and SMAP L-VOD datasets for 2016 and 2017.
The results indicate that the proposed method performs ex-
cellently in reconstructing missing values. Specifically, for
the SMOS L-VOD data, the R2 exceeds 0.8, the RMSE is
less than 0.1, and the biases are only−0.008 and−0.006, re-
spectively. The SMAP L-VOD data, likely due to their more
complete original data distribution and smaller proportion of
missing values, show even better reconstruction results, with
an R2 of 0.948 and an RMSE of 0.073. These metrics indi-
cate a high degree of consistency between the predicted and
original values, with minimal errors and no significant sys-
tematic bias.

4.2 Spatiotemporal fusion

4.2.1 Comparison of VOD_st and VOD_resmap values
in the overlapping period

This experiment aims to use a spatiotemporal fusion model
to generate 9 km L-VOD products, making the fusion prod-
uct (VOD_st) an effective substitute for the high-resolution
VOD_resmap product before its release. The closer the val-
ues of VOD_st are to those of VOD_resmap, the higher the
quality of the fusion product. We first validate the accuracy
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Figure 7. The red dots in the figure indicate the pixel points selected to characterize the temporal variation of L-VOD under different
vegetation conditions. Four different surface types are selected here, i.e., (a) scrub, (b) forest, (c) cropland, and (d) grassland. Panels (1)–(4)
are the time series variation maps of the corresponding pixels under the above surface types.

Figure 8. Original and reconstructed results with simulated missing regions on 20 July 2020: (a) original data with four simulated missing
patches and (b) reconstructed data. The gray background represents the ocean.

of VOD_st by comparing it with VOD_resmap in the T3 pe-
riod. Figure 13 shows boxplots that integrate the daily accu-
racy assessment results on a monthly basis. Three different
metrics (R2, RMSE, and bias) evaluate the differences be-
tween VOD_st and VOD_resmap. Overall, R2 remains be-
tween 0.88 and 0.96, indicating a high correlation between
the fusion product and the 9 km product. Notably, the ac-
curacy is highest during the summer due to the largest spa-
tial coverage, resulting in more valid data input into the spa-
tiotemporal fusion model.

This experiment also conducts multiple validations on
three different timescales: daily, monthly, and yearly. Table 3

presents representative evaluation results. The accuracy as-
sessment covers these three timescales and the four seasons,
which essentially represents the quality of the fusion product.
We observe that the results during the T2 period show higher
accuracy, which can be attributed to the baseline data used in
constructing the spatiotemporal fusion model being sourced
from the T2 period. Furthermore, the accuracy is highest on a
global scale, aligning with the principle of the spatiotemporal
fusion model that the fusion effect improves with higher spa-
tial coverage, i.e., a larger effective number (N ). Overall, R2

consistently remains above 0.8, RMSE around 0.1, and MAE
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Figure 9. Detailed original and reconstructed spatial information
of the four simulated missing patches. The four simulated miss-
ing patches (80× 80 pixels) are from the original SMAP L-VOD
data from 20 July 2020 taken from North America, South America,
Africa, and Asia.

Table 3. Evaluation results of VOD_resmap and VOD_st at three
timescales.

Timescale Date Number R2 RMSE MAE

Daily

15 Jan 2016 1 064 320 0.958 0.072 0.047
15 Jul 2016 1 477 263 0.948 0.075 0.052
15 Apr 2017 1 289 649 0.934 0.084 0.059
15 Oct 2017 1 476 562 0.926 0.093 0.064

Monthly average
May 2017 1 425 487 0.970 0.055 0.038
Nov 2017 1 356 799 0.959 0.070 0.046

Yearly average
2016 1 488 668 0.983 0.042 0.026
2017 1 488 659 0.978 0.049 0.031

below 0.1, indicating a high correlation between VOD_st and
VOD_resmap in terms of values.

Considering that the input data of the fusion model are
reconstructed, some errors may be introduced. The original
daily data are closest to the real situation, so comparing them
with the fusion result can verify the authenticity and relia-
bility of the fusion results. Figure 14 shows the scatter den-
sity plot between the fusion product VOD_st and the original
9 km data VOD_smap, allowing us to more intuitively visu-
alize the excellent correlation between the two.

Despite the large number of data in the model
(N ≥ 441 767), the results indicate that the fusion product
and the original data still achieve excellent convergence,
maintaining a high degree of linear correlation. There is a
clear tendency for the fusion results to underestimate higher
values and overestimate lower ones. This might be due to the
original data handling of outliers (negative values and values
greater than 1.5). Additionally, the weight distribution dur-
ing the fusion process may lead to data smoothing, reducing
data volatility and thus weakening extreme values. However,
in the high-value range of 1–1.5, VOD_st shows partial un-
derestimation, which is considered a positive phenomenon in
this study. The VOD_smos and VOD_smap products use dif-
ferent algorithms and have differences in their data ranges. It
is believed that VOD_smap tends to overestimate data in the
high-value range. The fusion product obtained through the

spatiotemporal fusion process is closer to VOD_smos in this
range, effectively complementing the two products.

Through comprehensive accuracy assessment of the fusion
data, we easily observe that the fusion data not only max-
imally align with the characteristics of the original obser-
vational data but also maintain consistency with the recon-
structed data in the missing regions.

4.2.2 Long-term comparison

Since the input data for the spatiotemporal fusion model are
low-resolution VOD products from the T1 period, we ex-
pect the fusion product to not only maintain high numerical
consistency with VOD_resmap but also show a synchronized
temporal trend with VOD_resmos. We compute the monthly
averages of effective pixels for VOD_resmos, VOD_resmap,
and VOD_st from 2010 to 2017, analyzing their temporal
variations, as shown in Fig. 15. The results indicate that, from
2010 to 2017, VOD_st shows a generally synchronized trend
with VOD_resmos, demonstrating effective learning of the
temporal characteristics of the SMOS satellite product. The
temporal trend lines of VOD_st and VOD_resmap generally
align, with VOD_st values falling between the original data,
indicating that it has effectively captured the numerical char-
acteristics of both the SMOS and SMAP satellites, making it
a suitable complement for VOD_resmap during missing pe-
riods.

4.2.3 Spatial distribution comparison

After analyzing the temporal characteristics of the three
products, it is also necessary to discuss the spatial distri-
bution of VOD_st. In this experiment, VOD_resmos and
VOD_st from the T1 period in 2011 are selected for spa-
tial distribution comparison to represent the mid-season L-
VOD products, demonstrating spatial distribution changes
across the different seasons. As shown in Fig. 16, corre-
sponding to the conclusion that VOD_st numerically ex-
ceeds VOD_resmos, it can be observed that VOD_st and
VOD_resmos exhibit similar spatial distribution patterns
across the different seasons. With the warming of spring,
vegetation begins to grow, especially in the polar regions
where snow and ice melt, expanding the spatial coverage of
VOD. As temperatures rise in summer and fall, the cover-
age area of VOD increases and VOD values rise significantly,
which is particularly noticeable in summer. The consistency
in the spatial distribution changes once again demonstrates
the reliability of the spatiotemporal fusion results.

4.2.4 Comparison of spatial details

To visually compare the spatiotemporal fusion results,
Fig. 17 selects the mid-summer season of 2017 for a com-
parison of the three products. Due to the lack of 9 km
L-VOD data from 2010 to 2015, we use VOD_resmos
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Figure 10. Scatterplots of the original and reconstructed data for the four simulated missing regions on 20 July 2020. The colors and the
color bar indicate the density of the data points in the scatterplot.

Figure 11. Simulation of real missing data on 9 September 2011: (a) original striped data, (b) simulated real missing mask data, and (c) the
reconstructed result for the missing parts.

from this period to correct the spatiotemporal fusion re-
sults. Therefore, VOD_st maintains consistent spatial cover-
age with VOD_resmos. Additionally, because the spatiotem-
poral fusion model incorporates the characteristics of the
VOD_resmap baseline data, it can be observed that VOD_st
improves the underestimation seen in the original SMOS
satellite product.

We expect the VOD fusion product (VOD_st) to cap-
ture detailed information comparable to the spatial resolu-
tion of the 9 km L-VOD product from the SMAP satellite.
Therefore, we further analyze the spatial detail representa-

tion capability of VOD_st. During the T1 period, only the
coarse-resolution VOD_resmos and VOD_st are available,
and during the T2 period, VOD_resmos and VOD_resmap
contribute to the spatiotemporal fusion baseline data. Hence,
in this experiment, we select the mid-summer season of
the T3 period to compare VOD_resmos, VOD_resmap, and
VOD_st, evaluating the spatial detail quality of the fusion
product. Based on the MODIS MCD12C1 V061 land cover
category data, we choose four representative regions, as in-
dicated by the red boxes in Fig. 17c.
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Figure 12. Scatterplots of the accuracy for the simulated missing parts, i.e., the accuracy assessment results for Fig. 11a and c. Here, we take
the overlapping period of SMOS and SMAP in 2016 and 2017 as examples.

Figure 13. Boxplots of R2, RMSE, and bias for VOD_resmap and VOD_st during the T3 period. The x axis represents the months, and each
box represents the accuracy metrics for all of the days in the current month. The shading of the boxes is divided by the median line.
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Figure 14. Scatter density plot between VOD_st and VOD_smap, selected from mid-season data for the corresponding season during the
T3 period.

Figure 15. Temporal variation of monthly averages of valid VOD_resmos, VOD_resmap, and VOD_st pixels from 2010 to 2017. Green
represents VOD_resmos, blue represents VOD_resmap, and red represents VOD_st.

Figure 18 compares the spatial details of three L-VOD
products. We find that the spatial details of VOD_st are
significantly better than VOD_resmos and very close to
VOD_resmap. This is because VOD_st effectively learns the
characteristics of the VOD_resmap baseline data through
the spatiotemporal fusion model, adequately considering
the spatiotemporal correlations of VOD in the neighbor-
hood. For example, it captures patchy features in region 2

and high-value boundary areas in region 4. Compared to
VOD_resmap, VOD_st exhibits some gaps, primarily due
to missing information from the original coarse-resolution
VOD_resmos dataset.
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Figure 16. Comparison of the spatial distribution between VOD_resmos and VOD_st, using mid-season data from 2011 for the respective
seasons.

5 Discussion

5.1 Comparisons with time series averaging

Currently, there is a lack of seamless daily L-VOD data.
Therefore, we attempt to synthesize monthly averages of
VOD_resmos and VOD_resmap data for a comprehensive
comparison. Taking July 2015 data as an example, we con-
sider the monthly average of the original strip data to be the
benchmark for qualitative analysis of the corresponding re-
constructed results.

Figure 19 compares the overall and local monthly aver-
age data before and after reconstruction. We believe that the
daily variations in L-VOD values are not significant. Con-
sequently, whether the missing data are filled or not, the
overall spatial coverage remains largely consistent, without
noticeable blocky patterns. We select a relatively represen-
tative area, Kalimantan (5° S–8° N, 108–120° E). The VOD
signals on Kalimantan are higher, and the missing-data pro-
portion mainly ranges from 50 % to 80 %, which can better

reflect the reconstruction ability. Kalimantan is characterized
by a large area and diverse tropical rainforests. Located in
the tropical climate zone, it has complex climatic conditions,
abundant precipitation, and extreme weather events that can
impact vegetation. With diverse landforms and a special ge-
ographical location as well as social and economic activities
such as agricultural development and ecotourism, this island
has become a typical area for testing the effectiveness and
reliability of the reconstruction method in complex environ-
ments. In local areas, the monthly average data after recon-
struction are smoother, almost without the striped distribu-
tion phenomenon.

Figure 20 compares more representative regions. For
SMOS data, the original data in certain regions (such as re-
gion1 and region2) show significant stripe-like gaps or dis-
continuities. These issues are resolved well in the recon-
structed data, resulting in smoother and more continuous
data. For SMAP data, the original data in region2 show sig-
nificant missing blocks (white areas), where the nearby data
may have large monthly average changes due to numerous
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Figure 17. To visually compare the spatiotemporal fusion re-
sults, we select the mid-summer season of 2017 to compare the
model inputs and outputs: (a) VOD_resmos, (b) VOD_resmap, and
(c) VOD_st. Based on the MODIS MCD12C1 V061 data, the red
boxes in panel (c) are the four representative regions.

missing days. The filled data effectively improve this situa-
tion, appearing more complete and smooth overall compared
to the original data. Overall, in all three regions, the recon-
structed data show significantly better performance in local
areas, eliminating the striped distribution caused by missing
original data and demonstrating a more uniform spatial dis-
tribution.

5.2 Evaluating VOD against a vegetation-related
parameter

To enhance clarity, we evaluate VOD against the vegetation-
related parameter NDVI. The results of the monthly aver-

age comparison between VOD_st and NDVI are shown in
Fig. 21. We can observe that the seasonal trends of VOD_st
and NDVI are highly consistent, showing obvious periodic
characteristics. During the summer months corresponding to
the period of maximum vegetation growth and leaf produc-
tion, the values of these parameters increase significantly,
and they decline as the vegetation ages. This consistency in-
dicates that VOD_st can effectively capture the changes in
vegetation growth, similar to traditional optically based in-
dices like NDVI. Notably, VOD_st exhibits a slight lag in its
seasonal changes compared to NDVI, but this lag is not due
to the quality of VOD_st. Our findings are in line with pre-
vious studies (Lawrence et al., 2014; Li et al., 2021), which
also reported that VOD data have a slight lag when compared
with optical vegetation indices.

5.3 The bias between the SMOS and SMAP products

SMOS and SMAP sensors have different observational capa-
bilities, and the differences in instrumentation result in dif-
ferent ways of sensing and measuring VOD. In addition, the
two have different VOD retrieval algorithms, which can also
cause bias. The bias between the SMOS and SMAP VOD
products may introduce errors during the data fusion process,
thereby affecting the accuracy and reliability of the fused
product (Li et al., 2022b).

In the context of our study, we focus on the overall tempo-
ral and spatial trends of VOD rather than eliminating the bias
between the two sensors’ products. This is based on the as-
sumption that, within the same spectral band, high-resolution
and low-resolution data obtained from different sensors have
similar temporal changes. We believe that these similar tem-
poral variations can still provide valuable information for our
research objectives. For instance, when analyzing the long-
term trends of vegetation dynamics or the response of vege-
tation to environmental changes, the common temporal pat-
terns in SMOS and SMAP VOD data can be used to draw
meaningful conclusions. In addition, our study is more con-
cerned with the general performance and usability of the
fused product. We believe that the bias does not significantly
distort the overall patterns and relationships.

We understand the importance of the bias issue and ac-
knowledge that it may be necessary to further explore ways
of mitigating bias in future studies for more accurate and re-
fined results. However, in the scope of this current study, our
approach based on the assumption of similar temporal varia-
tions is a valid strategy.

5.4 Uncertainty analysis of the 9 km VOD products

We demonstrate the superior performance of this method in
addressing VOD data gaps. With conventional methods, the
most challenging part is to fill the continuous gaps. In spa-
tiotemporal datasets, missing data are not necessarily consis-
tent. They may alternate across spatial and temporal dimen-
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Figure 18. VOD_resmos, VOD_resmap, and VOD_st in the summer season of the T3 period are selected for comparison to evaluate the
quality of the spatial details of the fusion products. Based on the MODIS MCD12C1 V061 land cover category data, four representative
regions are selected, as indicated by the red boxes in Fig. 17c.

Figure 19. Original (a) and reconstructed (b) results for the July 2015 SMOS VOD monthly average. At a global scale, the overall coverage
remains consistent. The red boxes highlight local areas, indicating that the monthly average spatial variations in the reconstructed data are
smoother and free of striping.
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Figure 20. Here three regions are selected for each type of satellite product to compare the monthly average results of the original and
reconstructed data under different factors.

Figure 21. Long-term monthly average trend comparison between VOD and NDVI.

sions, adding complexity to the gap-filling process. For ex-
ample, a sensor failure might result in no data being recorded
during a specific period, with these gaps being spatially con-
tinuous. As a fully three-dimensional technique, the DCT–
PLS method can easily cope with data gaps of this type. It
explicitly utilizes both spatial and temporal information to
predict missing values. However, while this method shows
clear advantages, it is still subject to certain limitations. The
uncertainties in the generated VOD product can be classified
into three types, as detailed below:

1. The errors of the original VOD products. The proposed
9 km VOD product is generated based on the original
VOD products, which contain errors due to satellite sen-
sor imaging and retrieval algorithms. By filling in miss-
ing data, low-frequency components are typically used
to predict the missing values because they capture the
main trends in the data. However, when there is a large
number of missing data (e.g., in tropical rainforest re-
gions with dense vegetation), the reliability of the filled-
in high-frequency components may be reduced. It is
worth noting that a significant portion of the data gaps
in this VOD dataset is caused by frozen soil, in which
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case the reconstructed VOD values are physically unre-
alistic.

2. The selection of parameters. The statistical modeling
process is controlled entirely by a single smoothing pa-
rameter, making it straightforward to set without re-
quiring complex model parameter tuning. Additionally,
when the smoothing parameter is small, the DCT–PLS
method has the potential to effectively fill in high-
frequency components in the data. However, the choice
of smoothing parameter must be adjusted based on the
specific characteristics of the dataset. If there are large
spatial differences in the data, using an extremely small
smoothing parameter (e.g., less than 10−7) can lead to
overfitting, resulting in poor prediction performance.

In the estimation of 9 km VOD, the STFM demonstrates
strong fusion performance by effectively integrating the ad-
vantages of the original VOD products: the temporal avail-
ability of VOD_resmos (2010–2015) and the spatial resolu-
tion of VOD_resmap (9 km). The STFM fully considers the
spatiotemporal correlation of VOD, and only VOD_resmos
and VOD_resmap are used. This approach does not re-
quire the VOD retrieval process or additional auxiliary data,
thus minimizing potential errors in the estimation process
(Hongtao et al., 2019). Unlike traditional spatiotemporal fu-
sion models that only establish relationships between high-
resolution and low-resolution imagery, the STFM constructs
baseline data for the corresponding months. This approach
mitigates the instability in fusion results caused by fixed
baseline data, thereby enhancing reliability.

Since the data fusion is performed sequentially by month,
it is essential to discuss the temporal impact on the fusion re-
sults. Figure 13 presents a boxplot of the monthly aggregated
daily accuracy evaluation results for the T3 period. The find-
ings indicate that the accuracy is highest in summer, likely
due to the broad spatial coverage providing more valid input
data for the spatiotemporal fusion model. In contrast, accu-
racy decreases in winter as vegetation growth slows down
due to lower temperatures and reduced sunlight, leading to
a decline in surface vegetation coverage. Additionally, the
presence of snow and frozen soil under low-temperature con-
ditions can interfere with accurate VOD signal capture, ex-
acerbating model errors and uncertainties. R2 gradually in-
creases in spring, particularly in April and May. It indicates
that the explanatory power of the model improves with the
gradual recovery of vegetation. In fall, vegetation decline re-
duces data coverage, thereby affecting the model’s perfor-
mance. In summary, the fusion accuracy is affected by the
amount of valid data. In the future, adjusting the approach to
constructing the baseline data could reduce this impact.

6 Data availability

This dataset can be downloaded at https://doi.org/10.5281/
zenodo.13334757 (Hu et al., 2024). The global daily seam-

less 9 km VOD datasets from 2010 to 2021 are stored in sep-
arate folders for the corresponding years, with each folder
containing daily files in MAT-File format.

7 Conclusions

In this study, aiming at the spatial incompleteness and coarse
resolution of historical data, we generate a global daily
seamless 9 km L-VOD product from 1 January 2010 to
31 July 2021. Considering the spatiotemporal characteristics
of the data, we begin by employing the DCT–PLS method
to reconstruct global daily seamless L-VOD data. Thereafter,
we integrate the complementary spatiotemporal information
of the SMOS and SMAP satellite L-VOD products by devel-
oping the STFM.

Due to the lack of in situ L-VOD data, three valida-
tion strategies are employed to assess the precision of our
seamless global daily 9 km products, as follows: (1) time
series validation, (2) simulated missing-region validation,
and (3) data comparison validation. Through quantitative
and qualitative assessments, we find that the fusion prod-
uct VOD_st effectively maintains the stable long-term char-
acteristics of VOD_resmos and achieves good spatial con-
sistency. It closely approximates VOD_resmap numerically,
thus mitigating the underestimation issues associated with
SMOS satellite-derived L-VOD products.

We also identify limitations in our study. To begin with, the
lack of in situ L-VOD data limits comprehensive accuracy
validation. Additionally, SMAP MT-DCA L-VOD data are
no longer updated, making it necessary to consider the use
of additional real-time data sources in future studies to im-
prove timeliness and accuracy. Another significant limitation
is that the current level of detail in our data products may not
sufficiently support studies of local-scale forest disturbance
events (e.g., droughts and fires). The resolution constraints
may lead to inaccuracies in detail processing and small-scale
event identification. Future research should consider down-
scaling methods to enhance L-VOD data resolution (Zhong
et al., 2024), thereby providing better support for local-scale
analysis. Through these improvements, we aim to enhance
the reliability and applicability of research results to bet-
ter support forest ecosystem management and environmental
conservation needs.
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