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Abstract. The recent surge in reservoir construction has increased global surface water storage, with Mainland
Southeast Asia (MSEA) being a significant hotspot. Such infrastructural evolution demands updates in water
management strategies and hydrological models. However, information on actual reservoir storage is hard to
acquire, especially for transboundary river basins. To date, no high-resolution spatiotemporal dataset on absolute
storage time series is available for reservoirs in MSEA. To address this gap, we present (1) a comprehensive open-
access database of absolute storage time series (sub-monthly) for 186 reservoirs (larger than 0.1 km3) in MSEA
spanning the period 1985–2023 and (2) an analysis of the reservoir storage dynamics. This dataset is derived
from remote sensing observations, integrating satellite-based water surface area extraction from high-resolution
(30 m) images and area–elevation–storage (A–E–S) relationships to estimate reservoir level and storage dynam-
ics. The MSEA database includes static (area–elevation–storage curves, water frequency, and reservoir extent)
and dynamic (area, water level, and absolute storage time series) components for each reservoir. The 186 reser-
voirs collectively store around 175 km3 of water, with a minimum of 140 km3 and a maximum of 210 km3. They
cover an average area of 8700 km2, ranging from a minimum of 6500 km2 to a maximum of 10 000 km2. We
show that the combined average reservoir storage increased from 70 to 160 km3 (+130 %) from 2008 to 2017,
primarily contributed by reservoirs in the Irrawaddy, Red, Upper Mekong, and Lower Mekong basins. Our in
situ validation provides a good match between estimated storage and in situ observations, with 50 % of the vali-
dation sites (10 out of 20) showing an R2 > 0.7 and an average nRMSE < 14 %. The indirect validation (based
on altimetry-converted storage) shows even better results, with an R2 > 0.7 and an average nRMSE < 12 % for
70 % (14 out of 20) of the reservoirs. Furthermore, the analysis of the 2019–2020 drought event in the MSEA
region reveals that nearly 30 %–40 % of the region experienced more than 5 months of drought, with the most
significant impact on reservoirs in Cambodia and Thailand. As a result, storage departures ranged by up to−40 %
in some reservoirs, highlighting significant impacts on water availability. Overall, this analysis demonstrates the
potential of the inferred storage time series for assessing real-life water-related problems in Mainland South-
east Asia, with the possibility of applying the method to estimate reservoir storage time series in other parts of
the world. The reservoir storage database in Mainland Southeast Asia (MSEA-Res database) and the associated
Python code are publicly available on Zenodo at https://doi.org/10.5281/zenodo.14844580 (Mahto et al., 2025).
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1 Introduction

Water reservoirs cause some of the most significant human-
induced alterations of the hydrological cycle, influencing the
distribution of water in space and time (Chao et al., 2008;
Cooley et al., 2021; Haddeland et al., 2014; Lehner et al.,
2011). The construction of reservoirs can also lead to sig-
nificant environmental and socioeconomic impacts, includ-
ing biodiversity loss, alterations of geochemical cycles, and
changes in land use patterns (Degu et al., 2011; Kirchherr
et al., 2016; Maavara et al., 2020; Vörösmarty et al., 2010;
Winemiller et al., 2016). Despite these impacts, reservoirs re-
main pivotal in generating renewable energy and supporting
water management, thus driving the demand for new reser-
voirs (Chao et al., 2008; Wada et al., 2017), especially in
the Global South. Accurate information on reservoir opera-
tions is thus crucial for practitioners, policymakers, and sci-
entists in order to estimate water budgets, assess hydrological
and nutrient fluxes, project water availability for hydropower
generation, and mitigate flood and drought risks (Bakken et
al., 2014; Chao et al., 2008). Information on the temporal
evolution of absolute reservoir storage, or level, is particu-
larly useful, since it provides a direct measurement of the
total volume of water stored in a reservoir at any given time
– this contrasts with relative storage time series, which only
track changes in storage across a given time interval.

Currently, information on long-term absolute reservoir
storage is limited across most of the globe, with consoli-
dated datasets available only for a handful of countries (Li
et al., 2023; Steyaert et al., 2022; Steyaert and Condon,
2024). Such information is particularly needed in regions
like Mainland Southeast Asia that are experiencing rapid hy-
dropower development. Laos, for instance, is realizing its vi-
sion of becoming the “battery of Asia” by constructing new
hydropower reservoirs and exporting electricity to neighbor-
ing countries. It is expected, moreover, that several additional
reservoirs will become operational in the years to come (Ang
et al., 2024). Similarly, other Southeast Asian countries, such
as Vietnam and Cambodia, have also built most of their reser-
voirs in the past 2 decades (Ang et al., 2024; Zhang and
Gu, 2023a), altering the flow of transboundary rivers and
raising tensions between the countries. With this concern
in mind, we focus on the reservoirs of Mainland Southeast
Asia, including Myanmar, Thailand, Laos, Vietnam, Cam-
bodia, Malaysia, Singapore, and parts of southern China –
where several major rivers originate and flow through the re-
gion.

The problem of inferring reservoir storage time series can
only be partially addressed with the aid of hydrological mod-
els, since some basic information on operational strategies
– typically not available – is needed to set up and vali-
date models (Dang et al., 2020, p. 2; Galelli et al., 2022;
Hanasaki et al., 2006; Nazemi and Wheater, 2015a, b; Vu
et al., 2022; Wada et al., 2017). Fortunately, advances in re-
mote sensing provide a viable opportunity to estimate stor-

age by relating information on reservoir surface area and el-
evation (Busker et al., 2019; Gao et al., 2012; Tortini et al.,
2020; Vu et al., 2022). For this task, information on reservoir
bathymetry – synthesized by area–elevation–storage (A–E–
S) curves – becomes crucial. It is indeed common practice
to derive A–E–S curves from remotely sensed digital ele-
vation models (DEMs) (Zhang and Gao, 2020); their time
of acquisition, however, may limit the available information.
When the DEM captures the reservoir’s topography before
its filling begins, absolute storage estimation is possible us-
ing these remotely sensed data (Li et al., 2023). For reser-
voirs constructed before the DEM was made available, the
problem lies in the fact that satellite-based DEMs do not pro-
vide information below the reservoir water surface, leading
to a partially unknown bathymetry. However, even in such
cases, the remotely sensed water surface area from sensors
like Landsat, Sentinel, and MODIS or water level data from
satellite altimeters such as Jason, Sentinel-6, and SARAL-
Altika can still be used to estimate storage changes (Das et
al., 2022; Minocha et al., 2024; Zhang et al., 2014). There-
fore, while recent studies have quantified long-term surface
area and storage changes in reservoirs at global (Busker et
al., 2019; Hou et al., 2024; Tortini et al., 2020) and regional
scales (Shen et al., 2023; Song et al., 2022), absolute stor-
age estimations – especially for those reservoirs built before
2000 (acquisition year of the Shuttle Radar Topography Mis-
sion – SRTM – DEM) – are still uncertain in space and time
because of the lack of detailed bathymetry information (Hao
et al., 2024; Li et al., 2023; Zhang and Gao, 2020).

One potential approach to improving such estimates is
radar altimetry, which has proven useful for measuring water
levels in lakes and reservoirs (Markert et al., 2019; Schwatke
et al., 2015; Vu et al., 2022). However, limited coverage is a
major constraint in popular altimetry-based datasets, such as
Hydroweb (Crétaux et al., 2011), G-REALM (Birkett et al.,
2011), and the Database for Hydrological Time Series of In-
land Waters (DAHITI) (Schwatke et al., 2015). For Mainland
Southeast Asia, altimetry-based water level data are avail-
able for only a few (20–30) reservoir overpasses. On top
of that, the available water level datasets are not continu-
ous in time. Although time series datasets are available for
the reservoir storage anomaly (Shen et al., 2022, 2023), none
of them provides long-term time series for absolute reser-
voir storage. Some studies modeled total storage – only for
a few reservoirs – using lidar data (Bacalhau et al., 2022;
Chen et al., 2022; Li et al., 2020), surrounding topographi-
cal information (Fang et al., 2023; Liu et al., 2020; Liu and
Song, 2022), or simplified modeling approaches (Khazaei et
al., 2022; Yigzaw et al., 2018). However, they show inac-
curacies in storage estimates for reservoirs that were built
before 2000 because of the (necessary) assumptions about
reservoir bathymetry (Hao et al., 2024; Li et al., 2023; Zhang
and Gao, 2020). Other studies relied on field surveys to cre-
ate three-dimensional (3D) bathymetry maps to estimate ab-

Earth Syst. Sci. Data, 17, 2693–2712, 2025 https://doi.org/10.5194/essd-17-2693-2025



S. S. Mahto et al.: A 1985–2023 time series dataset of absolute reservoir storage 2695

solute storage, but these are limited to very few reservoirs
(Busker et al., 2019; Weekley and Li, 2019).

Recently, the GloLakes database was produced by Hou et
al. (2024), providing absolute water storage dynamics for
lakes from 1984 to the present, i.e., 27 000 global lakes
and reservoirs, using the geostatistical model described in
Messager et al. (2016). Although Hou et al. (2024) cov-
ered the entire globe by providing a comprehensive dataset
for large-scale assessments, this has a few limitations for
the reservoirs located in Mainland Southeast Asia. First, the
model parameters (used in the storage estimation) strongly
depend on the mean depth (extrapolating the surrounding
topographical slope towards the center of the lake to esti-
mate the lake depth), the surface area of the lake (derived
from the Landsat satellite images), and the average slope
(derived from the DEM). Therefore, uncertainties in the es-
timates of reservoir storage may be generated by the esti-
mation of the depth and slope and through other model co-
efficients. Second, GloLakes does not include some of the
largest reservoirs in Mainland Southeast Asia (MSEA), in-
cluding Nuozhadu (22 km3), Xiaowan (15 km3), Xe Kaman
1 (4 km3), and Lower Seasan 2 (6 km3), which play a signif-
icant role in water redistribution and hydropower generation
(Ang et al., 2024; Galelli et al., 2022; Vu et al., 2022).

Here, we address these gaps by presenting a robust and
comprehensive sub-monthly time series dataset of absolute
reservoir storage for Mainland Southeast Asia (hereafter
the “MSEA-Res database”), whose reservoir network is de-
scribed in Sect. 2. Specifically, our open-access database in-
cludes sub-monthly time series data on absolute storage for
186 reservoirs (larger than 0.1 km3) in MSEA, covering the
period from 1985 to 2023. The creation of this database is fa-
cilitated by two technical advances (Sect. 3), i.e., (1) the con-
comitant use of Landsat and Sentinel-2 images and (2) the
creation of hypsometric curves based on the new database
introduced by Hao et al. (2024), which provides bathymetry
information for all of the reservoirs in the GRanD database.
The first advance is aimed at increasing the temporal resolu-
tion of our time series, while the latter allows us to address
the (aforementioned) challenges concerning the estimation
of hypsometric curves for reservoirs that were not built re-
cently. To demonstrate the usefulness of MSEA-Res, we con-
duct a multi-basin analysis of the dynamics and trends of
reservoir (absolute) storage, offering insights into how stor-
age patterns have evolved over the years and across differ-
ent basins (Sect. 4). Finally, we analyze the impact of the
2019–2020 drought in Mainland Southeast Asia on surface
water storage, highlighting the significant effects of extreme
dry weather events on water resources in Mainland South-
east Asia. Through these examples, we show that MSEA-Res
can be used for a variety of applications, such as hydrologi-
cal modeling, drought analyses, and regional water resource
planning.

2 Water reservoirs in Mainland Southeast Asia

2.1 Dam design attributes

We first analyzed global and regional reservoir databases to
compile a list of reservoirs (with storage larger than 0.1 km3)
built in Mainland Southeast Asia until 2023. As shown in
Table 1, we used two global databases (GRanD v1.3 in
Lehner et al., 2011, and Global Dam Tracker (GDAT) in
Zhang and Gu, 2023a) and one regional database for the
Mekong River (Ang et al., 2024). The most popular global
dam database – GRanD – was used to get the list of georef-
erenced reservoirs that were built until 2016. Unfortunately,
the GRanD database has not been updated for post-2017
reservoirs in our study region. Therefore, we collected the
list of georeferenced reservoirs built between 2017 and 2023
from more recent databases. For the Mekong River basin, we
used the reservoir database prepared by Ang et al. (2024),
whereas the GDAT database was used for the other basins
(i.e., the Chao Phraya, Red, Salween, Irrawaddy, and remain-
ing smaller river basins). Information on each reservoir in the
final list of 186 elements was verified and validated against
high-resolution Google Earth images. Among the reservoir
attributes, we collected four main ones: name of the reser-
voir, spatial coordinates of the reservoir (i.e., longitude and
latitude), storage capacity, and year of commission.

2.2 Distribution and evolution of the reservoirs

Based on the acquired information, we first present the dis-
tribution and temporal evolution of reservoirs in Mainland
Southeast Asia (Fig. 1). Of the 186 large reservoirs in MSEA,
125 (∼ 68 %) were built in the 21st century. As a result, a
dense network of newly constructed reservoirs has spread
across all of the basins, with the exception of the Chao
Phraya, western Lower Mekong, and southern coastal basins
(Fig. 1a). The first big reservoirs (Srinagarind – 18 km3,
Kenyi – 13.6 km3, Bhumibol – 13.5 km3, Sirikit – 9.5 km3,
Khao Laem – 8.8 km3, and Nam Ngum – 7.0 km3) were built
between 1964 and 1985, increasing the aggregated storage
capacity from 0 to∼ 75 km3 in about 20 years (Fig. 1c). Dur-
ing the following 15 years (1986–2000), mostly small reser-
voirs were constructed, except for Rajjaprabha (5.6 km3),
which started operation in 1987. Until 2000, the cumula-
tive storage from 60 reservoirs in Mainland Southeast Asia
was thus ∼ 85 km3. The construction of 125 new reservoirs
in the post-2000 period sharply increased the aggregated wa-
ter storage more than 2-fold, reaching a storage capacity of
∼ 180 km3 at the end of 2023 (Fig. 1c). During this time, a
few mega-reservoirs were built, such as Xiaowan (∼ 15 km3)
and Nuozhadu (∼ 22 km3) in the Upper Mekong basin, con-
tributing significantly to the aggregated storage capacity of
Mainland Southeast Asia. At present, the largest number of
reservoirs is in the Lower Mekong River basin (54), followed
by the Irrawaddy (29), Red (21), Upper Mekong (20), Chao
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Table 1. List of the global and regional reservoir databases used to collect the dam design attributes.

Category Database Region Number of
reservoirs

Period Source

Global GRanD v1.3
(https://ln.sync.com/dl/bd47eb6b0/
anhxaikr-62pmrgtq-k44xf84f-pyz4atkm/view/
default/447819520013/, last access: 27
September 2024)

Mainland
Southeast Asia

126 Until 2016 Lehner et al. (2011)

Global Dam Tracker (GDAT)
(https://doi.org/10.1038/s41597-023-02008-2)

Mainland
Southeast Asia,
except the Mekong

22 2017–2023 Zhang and Gu
(2023a)

Regional Reservoirs in the Mekong
(https://doi.org/10.5194/essd-16-1209-2024)

Mekong River
basin

38 2017–2023 Ang et al. (2024)

Phraya (7), and Salween (3) (Fig. 1b, d) river basins. Fifty-
one reservoirs are located in the remaining river basins (indi-
cated as “Others” in Fig. 1b, d). Although, based on the de-
sign specifications, we know how much water the reservoirs
can hold, when full, we need a database containing time se-
ries of reservoir storage to better support hydrological stud-
ies and water resource management. Our MSEA-Res fills this
gap.

3 Methodological framework

The procedure adopted to produce the MSEA-Res database
is illustrated in Fig. 2 and can be divided into three main
steps. For each reservoir, we first derive the area–elevation–
storage relationship (i.e., A–E curve, E–S curve, and A–S
curve). We then calculate the time series of the water sur-
face area, and finally we derive the absolute reservoir stor-
age by combining information on the reservoir surface area
(or water level, if available) with the hypsometric curves.
Although water levels from satellite altimetry observations
can also be used to estimate storage volume (Zhang et al.,
2014), they are only available for a few reservoirs, and they
are neither consistent nor continuous in time, thus creating
missing data issues (Birkett et al., 2011; Busker et al., 2019;
Schwatke et al., 2015). Therefore, we worked with satellite-
based water surface area, which can be produced at a higher
frequency (e.g., at 10 d intervals) by Earth observation satel-
lites, such as Landsat-5, Landsat-7, Landsat-8, Landsat-9,
and Sentinel-2, to retrieve the reservoir’s area time series.
Despite Landsat having a 16 d revisit time, we were able to
achieve 10 d interval data because more than one Landsat
mission has been active in the time domain (except for the
pre-1999 period). For instance, 2013 has active sensors from
the Landsat-7 ETM+ and Landsat-8 series of satellites, mak-
ing it possible to achieve image composites at an interval of
10 d. Please note that there could be some months without
any satellite data, resulting in storage unavailability in those
months, which we filled by interpolation.

In the following subsections, we discuss each step
in detail, i.e., acquiring the raw satellite data, obtain-
ing the hypsometric curves for different reservoirs, esti-
mating the water surface area, improving the area esti-
mates, and finally inferring the storage time series. All
of the steps are implemented in a Python package called
InfeRes (publicly available on GitHub at https://github.
com/Critical-Infrastructure-Systems-Lab/InfeRes/, last ac-
cess: 27 September 2024).

3.1 Acquiring input data

The process starts by obtaining the input datasets, mainly the
DEM, Normalized Difference Water Index (NDWI) images,
water frequency raster (FREQ), and maximum water extent
raster (EXT). We used the Google Earth Engine (GEE) cod-
ing platform to derive the necessary input dataset. Please
note that the maximum water extent, frequency map, and
NDWI images are the derived data, whereas the DEM is ac-
quired using the GEE Python application programming inter-
face (API). For each reservoir, rectangular bounding boxes
are used to fix the dimension of the dataset in GEE. As for
the digital elevation model, we used the SRTM (Farr et al.,
2007) DEM V3, an international research effort that obtained
digital elevation models on a near-global scale. NASA JPL
provides the SRTM V3 product at a resolution of 1 arcsec
(∼ 30 m). Unlike the DEM, the other maps (NDWI, FREQ,
and EXT) were estimated from the Landsat-5 TM, Landsat-7
ETM+, Landsat-8 OLI/TIRS, Landsat-9 OLI-2/TIRS-2, and
Sentinel-2 images (see Table 2 for details).

The green (G) and near-infrared (NIR) bands from the
satellite sensors (Landsat and Sentinel) are used to calcu-
late the NDWI (i.e., (G−NIR)/(G+NIR)) – as proposed
by McFeeters (1996) – for the available scenes, collectively
covering the study period 1985–2023. Shorter wavelength
bands such as G and NIR can be affected by the presence
of clouds – especially on rainy days – and thus the NDWI.
Therefore, getting a complete view of reservoir extent from
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Figure 1. Spatial distribution and evolution of reservoirs in Mainland Southeast Asia. (a) Map showing the reservoir storage volume (km3),
where the size of the circle is proportional to the reservoir capacity and the color represents the year of commission of the reservoirs.
(b) Basin-wise distribution of the reservoir locations (red dots), stream networks in the respective catchments, and stream orders. (c) Number
of reservoirs built per year and their corresponding cumulative storage capacity. (d) Basin-wise total number of reservoirs built until 2023.

Figure 2. Flowchart showing the methodological framework and steps taken to estimate reservoir storage from a series of satellite images
during the 1985–2023 period. The DEM is the 30 m digital elevation model from the SRTM, acquired in February 2000. The Normalized Dif-
ference Water Index (NDWI) is the normalized ratio between reflectances in the green and NIR bands, given by (green−NIR)/(green+NIR),
and is generally used to classify water and non-water pixels. Please note that the maximum water extent, frequency map, and NDWI images
are the derived data, whereas the DEM is acquired using the Google Earth Engine (GEE) Python API.
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Table 2. List of the input satellite data and their specifications.

Category Database Availability Resolution Google Earth Engine snippet

DEM SRTM DEM V3 2000 30 m ee.Image(“USGS/SRTMGL1_003”)

Landsat Landsat-5 TM 1984–2012 30 m USGS Landsat-5 Level 2, Collection 2, Tier 1
ee.ImageCollection(“LANDSAT/LT05/C02/T1_L2”)

Landsat-7 ETM+ 1999–present 30 m USGS Landsat-7 Level 2, Collection 2, Tier 1
ee.ImageCollection(“LANDSAT/LE07/C02/T1_L2”)

Landsat-8
OLI/TIRS

2013–present 30 m USGS Landsat-8 Level 2, Collection 2, Tier 1
ee.ImageCollection(“LANDSAT/LC08/C02/T1_L2”)

Landsat-9
OLI-2/TIRS-2

2021–present 30 m USGS Landsat-9 Level 2, Collection 2, Tier 1
ee.ImageCollection(“LANDSAT/LC09/C02/T1_L2”)

Sentinel Sentinel-2 2016–present 30 m
(resampled)

Harmonized Sentinel-2 MSI: MultiSpectral Instrument,
Level 1C
ee.ImageCollection(“COPERNICUS/S2_HARMONIZED”)

a cloud-affected NDWI image becomes significantly chal-
lenging (Hou et al., 2024; Vu et al., 2022). To address this
issue, we first filtered the Earth Engine Image Collection
based on cloud threshold (band quality, BQ) and only se-
lected those images that have less than 80 % cloud cover-
age. We also made NDWI composites from available Land-
sat (1985–2023) and Sentinel (2016–2023) images at 10 d
intervals, which is the average of NDWI images in a given
time interval (10 d in our case). For example, if we have three
NDWI images with grid cell values of 0, 1, and 0, the NDWI
value in the composite image is 0.33. Please note that there
can be a maximum of three composite images in each month
(i.e., only from Landsat) during the period 1985–2015. On
the other hand, it can have a maximum of six images per
month (three from Landsat and three from Sentinel) in 2016–
2023. Making a composite of NDWI images maximizes the
chances of getting more cloud-free pixels than individual
NDWI images.

To obtain the FREQ and EXT raster maps, we first create
the binary NDWI images available between 2013 and 2023
from the Landsat and Sentinel image collection in the GEE
environment. Positive NDWI values are considered an ap-
proximation for water pixels (with a value of 1), while neg-
ative NDWI values are non-water pixels (with a value of 0).
More specifically, we use a threshold that is slightly above 0
(e.g., 0.1) to classify water and non-water pixels in the NDWI
image. In general, a positive value (> 0) indicates a water
pixel, and using a higher threshold (e.g., 0.1) increases the
likelihood of identifying water pixels accurately. While some
water pixels with NDWI values between 0 and 0.1 might
be misclassified as non-water pixels, this effect is negligi-
ble when creating composites. The FREQ layer is created
by making a composite of all binary NDWI images (more
than 200 images from the Landsat and Sentinel collections)
whose cloud percentage is less than 20 % (i.e., clear-sky con-

ditions) and dividing this by the total number of selected
images (cloud percentage < 20 %). We multiply the FREQ
layer by 100 to get the percentage of water present in each
pixel. For example, if three NDWI images make a composite
image of value 0.33 in any grid, the FREQ value for that grid
cell will be 33.3 %. Please note that there can only be one
FREQ raster (image), which is derived by averaging all the
binary NDWI images (cloud percentage < 20 %) available
over the reservoir. Subsequently, the EXT layer is created by
simply taking the largest extent of ones in all binary NDWI
images available between 2013 and 2023. For example, if we
have three NDWI images with grid cell values of 0, 1, and 0,
the EXT value will be 1 for that grid.

To make the estimates more reliable and robust, we also
validated our maps with that of the Global Surface Water
Dataset (GSWD) (Pekel et al., 2016), which showed excel-
lent agreement (R2

= 0.98) between the EXT and GSWD
maximum extent maps across the 186 reservoirs (Fig. S1
in the Supplement). We also compared the EXT and FREQ
maps spatially for two randomly selected reservoirs, i.e.,
Sirikit and Shringarind, which confirmed the reliability of
the FREQ and EXT raster maps that we derived from GEE
(Figs. S2 and S3). Overall, we assemble three raster layers
(DEM, FREQ, and EXT) and scene-based NDWI images for
each of the 186 reservoirs, which we process further to esti-
mate the absolute reservoir storage time series.

3.2 Area–elevation–storage curves

Deriving the relationship between the area, elevation (or
water level), and storage (A–E–S relationship) of a reser-
voir is crucial. This step relies on the bathymetry informa-
tion, which further depends on the time of acquisition of
the DEM. Considering that the SRTM DEM was acquired
in February 2000, reservoirs built after 2000 have complete
bathymetry information. Thus, the A–E–S relationship af-
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ter the year 2000 can be derived easily. Since the majority
of the reservoirs (∼ 70 %) in Mainland Southeast Asia were
built after 2000, we obtained the A–E–S curves from the
DEM. For each reservoir, the elevation range for the A–E–
S curves was defined by the minimum and maximum DEM
values within the reservoir’s extent. The area at each ele-
vation level was determined by contouring, while the cor-
responding absolute storage was estimated by cumulatively
summing the areas across the elevation range. For the re-
maining 30 % of the reservoirs built before 2000, the DEM
cannot be applied directly to estimate A–E–S curves. This
is a common problem in the existing studies when estimat-
ing absolute storage for reservoirs built before 2000 (Busker
et al., 2019; Gao et al., 2012; Hou et al., 2024; Khazaei et
al., 2022; Yigzaw et al., 2018). Although previous studies
have used various modeling approaches based on simplified
geometric assumptions to overcome this limitation (Fang et
al., 2023; Hou et al., 2024; Khazaei et al., 2022; Yigzaw et
al., 2018), the results often do not meet the level of accu-
racy required for basin-scale water management modeling
and decision-making. To address this problem, we banked on
a recently released database of global reservoir area, storage,
and depth derived through deep-learning-based bathymetry
reconstruction (GRDL; Hao et al., 2024), which provides
reliable bathymetry information for the 7250 GRanD reser-
voirs across the globe. We thus utilized the GRDL database
to obtain A–E–S curves for the remaining 60 reservoirs
(Fig. 2).

3.3 Water surface area estimation

We used the Landsat and Sentinel NDWI images downloaded
from the Google Earth Engine platform (see Sect. 3.1 for
details) to estimate the reservoir water surface area. A lo-
cally adjusted contrast-limited adaptive histogram equaliza-
tion (CLAHE) was applied to enhance the NDWI images
before classification. CLAHE (Reza, 2004) is a variant of
adaptive histogram equalization (AHE), which takes care of
over-amplification of the contrast of an image. CLAHE op-
erates on small regions in the image (an 8× 8-pixel window
in our case) rather than on the entire image. The size of its
operational window (8× 8 pixels) is based on the literature
(Asghar et al., 2023), which suggests that CLAHE enhances
the contrast and textural features of water, thereby improving
the visualization of satellite images. This enhancement facil-
itates the classification of water and non-water pixels. We
then applied the k-means clustering-based algorithm to clas-
sify the water pixels. We assigned a number of clusters (k)
equal to three clusters to classify each NDWI image in order
to represent three different classes, i.e., water, non-water, and
no data. Because of the presence of clouds and other distur-
bances, using the same NDWI threshold (equal to 0) in all
satellite images may lead to overestimation or underestima-
tion errors of the water surface area (Vu et al., 2022). Thus,
to find NDWI thresholds for each satellite image, we resort

to k-means clustering. Eventually, the preliminary water pix-
els were identified by selecting the cluster corresponding to
the maximum centroid value of the NDWI. The water surface
area estimated from the preliminary water pixels is referred
to as “Before_area” for any given reservoir (Table 3).

We further improved the water surface area estimates by
filling the cloud-contaminated pixels, which were assigned a
“No data” value in the previous steps. For this purpose, we
used the algorithm for water surface area estimation devel-
oped by Vu et al. (2022), which was initially introduced by
Gao et al. (2012) and Zhang et al. (2014) to extract the wa-
ter surface area. The algorithm uses a water frequency raster
(FREQ) to fill the cloud-affected pixels over the reservoir
area. We add the clear-water pixels (k-means clustering) and
cloud-filled water pixels (Vu et al., 2022) to get a complete
picture of the reservoir water surface area for each NDWI
image, called “After_area” (Table 3). Finally, we adjust the
boundary water pixels of the complete reservoir water sur-
face area, called “Final_area”. Notably, if no adjustments are
detected by the algorithm, “Final_area” remains equal to “Af-
ter_area” (Table 3).

3.4 Absolute storage estimation and postprocessing

Once we had estimated the water surface area, we subse-
quently used the hypsometric curves to derive the corre-
sponding absolute reservoir storage volume. Based on the
different processing stages, we post-processed the storage
time series into three levels (Level 0, Level 1, and Level 2).
For each reservoir, Level 0 corresponds to the scene-based
(instantaneous) raw outputs of absolute reservoir storage,
which have been derived from the available satellite images.
We then performed a simple boxplot analysis of Level-0 data
to remove outliers, creating the so-called Level-1 data. The
Level-0 data are provided to give users the flexibility to gen-
erate their own Level-1 data using alternative outlier removal
algorithms, if needed. Note that, in our case, Level-1 data
are created using a generalized boxplot framework for qual-
ity control that is not specifically designed for each reservoir.
Therefore, on a case-by-case basis, some values in the stor-
age time series may still be considered outliers – they can
be removed manually or with the aid of other data analysis
algorithms. Therefore, the improvement in Level-1 data com-
pared to Level-0 data varies between the reservoirs. To quan-
tify it, we calculated the coefficient of determination (R2)
and the normalized (by reservoir total storage) root mean
square error (nRMSE) for the Level-0 and Level-1 data of
the 20 reservoirs for which we have the observed storage.
The detailed analysis of the 20 selected reservoirs is pre-
sented below in Sect. 4.4 (Fig. 7 and Table S2 in the Sup-
plement). We found that the nRMSE decreased and the R2

increased from Level 0 to Level 1, suggesting that the outlier
removal process can further enhance the quality of the data
(Fig. S4). Considering the demand for ready-to-use data for
several applications (e.g., hydrological modeling), we further
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processed the Level-1 data to create continuous daily time
series of absolute reservoir storage (called Level-2 data) us-
ing a nonlinear (i.e., spline) interpolation technique, followed
by data smoothing (moving-mean method). It is important to
note that the interpolation technique incorporates all avail-
able data points, including a few outliers, which introduces
a higher level of uncertainty into the Level-2 data. Despite
this, we undertook validation of the storage time series to
strengthen confidence in our estimations.

3.5 Validation of reservoir storage

We adopted two validation approaches. The first approach
is direct validation, where we compare and validate our es-
timated storage volume against the observed reservoir stor-
age. The second approach is indirect validation, where we
use altimetry-converted storage to validate our time series
of reservoir storage. Acquiring observed reservoir storage
is challenging in MSEA because of the institutional and
organizational data-sharing policies and restrictions, lead-
ing to a poor network of public data repositories for reser-
voir data. The only exception is the Thailand National Hy-
droinformatics Data Center, which releases daily reservoir
storage information to the public domain (National Water
Database (NWD) – https://www.thaiwater.net/, last access:
12 May 2024). We took the opportunity to download ob-
served storage data from the NWD portal for 20 reservoirs
in Thailand and then compared these data with our storage
estimates.

For indirect validation, we used reservoir water level data
measured by satellite-based altimeters such as TOPEX/-
Poseidon; Jason-1, Jason-2, and Jason-3; ENVISAT; ERS-
1 and ERS-2; and Sentinel-3 and Sentinel-6. These have
proven useful in measuring water levels in lakes and
reservoirs (Birkett, 1998; Frappart et al., 2006; Santos da
Silva et al., 2010). Specifically, we acquired the com-
piled time series of radar-altimetry-derived surface wa-
ter elevation from DAHITI (https://dahiti.dgfi.tum.de/, last
access: 12 May 2024) (Schwatke et al., 2015) and the
Global Reservoirs and Lakes Monitor (GREALM – https:
//ipad.fas.usda.gov/cropexplorer/global_reservoir/, last ac-
cess: 12 May 2024) (Birkett et al., 2011). We took 20 reser-
voirs across Mainland Southeast Asia – for which altimetry
observations are available – to indirectly validate our esti-
mated storage time series. Before carrying out the compari-
son, the altimetry-derived surface water levels were first con-
verted into their corresponding storage time series based on
the elevation–storage relationship.

4 Results

4.1 Structure of the MSEA-Res database

A reservoir’s information in the database is divided into static
and dynamic components (Fig. 3 and Table 3). For each

reservoir, static information is further divided into four cat-
egories: (i) the area–elevation–storage relationship (hypso-
metric curves); (ii) reservoir extent; (iii) water frequency (the
mean inundation frequency for each pixel); and (iv) reser-
voir characteristics such as location (longitude and latitude),
year of commission, area (km2), water level (m), and storage
(million cubic meters). Note that, for area, level, and stor-
age, static information includes minimum, mean, and maxi-
mum. On the other hand, dynamic information consists pri-
marily of the sub-monthly time series of absolute reservoir
storage. We did not provide the water level and surface area
time series separately, as they can be derived easily from the
area–elevation–storage curve for any given storage volume.
In the subsequent sections, we use Level-1 and Level-2 data
to analyze and validate the storage time series. Note that, for
each reservoir, the data are processed within the period 1985–
2023. If the year of commission of a reservoir is 2015, the
storage time series is estimated between the years 2010 and
2023, assuming a maximum of 5 years as the filling period.
All of the storage time series and other related information
are publicly available in the MSEA-Res database at https:
//doi.org/10.5281/zenodo.14844580 (Mahto et al., 2025).

4.2 Hypsometric curves and storage time series

In this section, we illustrate one of the static components
of the MSEA-Res database, i.e., the area–elevation–storage
relationship (see Table 3 for details), where elevation cor-
responds to the reservoir’s water level relative to the mean
sea level in meters (m a.s.l.). In our database, we provide
the hypsometric curves for each of the 186 reservoirs. Here,
we further illustrate seven curves (Fig. 4), with one reser-
voir for each major river basin. The seven selected reser-
voirs (basins) are Longjiang (Irrawaddy), Nuozhadu (Upper
Mekong), Son La (Red), Mobye (Salween), Sirikit (Chao
Phraya), Sringarind (other basins), and Xe Kaman1 (Lower
Mekong). The A–E curve and S–E curve relationships are
shown (Fig. 4). These hypsometric curves represent the vari-
ability in the reservoir’s storage and area, which results pri-
marily from the diverse topography characterizing the basin
and reservoir locations.

For the same seven reservoirs, we then illustrate the dy-
namic components of the MSEA-Res database – time series
of reservoir storage at different processing levels, i.e., Level
0 (raw outputs), Level 1 (removal of outliers from Level 0),
and Level 2 (smooth interpolation of Level 1) (Fig. 5). The
storage time series data can be used to infer meaningful in-
formation on the storage dynamics, including filling patterns,
fluctuations, and responses to wet and dry years. Looking at
the filling patterns, for instance, Xe Kaman1 (2016) took al-
most 4 years to store more than 3 km3 of water and reach its
normal operating conditions (Fig. 5g). The Longjing (2010)
reservoir was filled in roughly 1 year (Fig. 5a). By combining
this information with inflow data, one could easily estimate
the impact of reservoir-filling strategies on downstream wa-
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Table 3. Reservoir attributes in the MSEA-Res database.

Category Data type Attribute Description

Static components Area–elevation–storage
relationship

Level_m Water level

Area_sq_km Water surface area

Storage_cubic_km Absolute storage

Reservoir extent Georeferenced image (.TIFF)

Water frequency Georeferenced image (.TIFF)

Reservoir
characteristics

Sl_No Serial number as per the MSEA-Res database

GRAND_ID Identification number in the GRanD database
(Lehner et al., 2011). For a non-GRanD reservoir,
the value is 9999.

Longitude Longitude in decimal degrees

Latitude Latitude in decimal degrees

Year_of_commission Year of commission of the reservoir

Area_min_sqkm Minimum water surface area (km2)

Area_avg_sqkm Average water surface area (km2)

Area_max_sqkm Maximum water surface area (km2)

WL_min_m Minimum surface water level (m)

WL_min_m Average surface water level (m)

WL_min_m Maximum surface water level (m)

Storage_min_cubic_km Minimum water storage (km3)

Storage_min_cubic_km Average water storage (km3)

Storage_min_cubic_km Maximum water storage (km3)

Dynamic components
(storage time series)

Level 0 ID Satellite data identification number (L0: Landsat;
S2: Sentinel)

Date Image collection data

Cloud_percentage Percentage of cloud cover over the reservoir

Quality Quality control indicator (1: good; 0: bad)

Before_area Instantaneous water surface area before
improvement (km2)

After_area Instantaneous water surface area after
improvement (km2)

Final_area Instantaneous water surface area after a final check
(km2)

dem_value_m Instantaneous surface water level (m)

Tot_res_volume_km3 Instantaneous water storage after a final check
(km3)

Level 1 Same as Level 0 Same as Level 0

Level 2 Date Daily dates

Storage_km3 Interpolated instantaneous water storage (km3)
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Figure 3. Catalog of the MSEA-Res database. Please note that the dynamic components (storage time series) are available from the 5 years
before the year of commission.

ter availability – a rather contentious matter in transboundary
river basins (Vu et al., 2022; Wheeler et al., 2016; Zaniolo et
al., 2021). The time series also reveal the “typical” behavior
of reservoir storage in Southeast Asia, with seasonal fluc-
tuations between minimum and maximum operating levels
driven by the drastic changes in the intra-annual water avail-
ability characterizing this region (i.e., a wet season between
June and November, followed by a drier period between De-
cember and May) (Nguyen et al., 2020). Importantly, the
time series also reveal interannual changes in water storage,
which are largely caused by hydrological regime variability
– a point discussed further in Sect. 4.5.

4.3 Basin-wise reservoir storage analysis

We used all of the Level-1 data to analyze the basin-wise evo-
lution and dynamics of reservoir storage in Mainland South-
east Asia. Specifically, we calculated the total volume of
water (km3) stored in all reservoirs for each of the seven
main river basins, i.e., the Irrawaddy, Upper Mekong, Red,
Salween, Chao Phraya, Lower Mekong, and “other basins”
lumped together (Fig. 6). We found that the aggregated stor-
age of all reservoirs in the Upper Mekong basin increased by
more than 8 times (a 800 % increase) in just 5 years (between
2010 and 2015) (Fig. 6b). Nuozhadu (22 km3) and Xiaowan
(15 km3) are the main contributors to such an increase, as
they account for approximately 95 % of the basins’ total stor-
age, whereas the remaining 18 reservoirs contribute just 5 %
(Fig. 6b). Since the construction of Nuozhadu and Xiaowan,
more reservoirs have been built in the Upper Mekong; how-
ever, their capacity is smaller than those of these two mega-
reservoirs (e.g., Miaowei, 0.66 km3). A seasonal fluctuation
of storage is common across all of the basins, as the monsoon

season has a similar precipitation pattern across the MSEA
region (Ha et al., 2023; Skliris et al., 2022).

Results further illustrate the spatiotemporal variability in
reservoir construction across Mainland Southeast Asia. Af-
ter 2017, all of the basins – except for the Lower Mekong
– reached a plateau, with no significantly increasing trends
in their aggregated reservoir storage (Fig. 6). For instance,
1998–2015 was the period in which a series of reservoirs was
constructed in the Irrawaddy basin, increasing the aggregated
storage volume from ∼ 2 to 10 km3 (a 500 % increase). Sim-
ilarly, it was in 2005–2015 and 2010–2017, respectively, that
the largest reservoirs were built on the Red River (a 300 %
increase) and in the other coastal basins (a 35 % increase)
(Fig. 6c, f). The aggregated reservoir storage in the Lower
Mekong basin has increased since 2009 (Fig. 6g). Two river
basins – the Salween and Chao Phraya – show no signifi-
cant changes in the aggregated reservoir storage in the last
4 decades (Fig. 6d, e). In fact, the storage volume in Chao
Phraya has been found to be substantially reduced by∼ 15 %
after 2010 (Fig. 6e), due to persisting drought conditions un-
der which both the Bhumibol and Sirikit reservoirs showed
a continuous decline in storage (Figs. S6b, 5e). Putting all
186 reservoirs together, we find that the aggregated average
reservoir storage in Mainland Southeast Asia increased sig-
nificantly, from 70 to 160 km3 (a 130 % increase), during
the period 2008–2017. Presently, it is approximately 175 km3

(Fig. 6h). Additional details regarding the temporal evolution
of reservoir storage in MSEA are reported in Fig. S5.

4.4 Validation

We validated the generated storage time series – Level-1 data
– with the observed reservoir storage (direct validation) and
the altimetry-converted storage (indirect validation). As ex-
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Figure 4. Illustration of the static components of the MSEA-Res database (A–E–S relationship) for seven reservoirs, one in each of the
major river basins. In each panel, E–A and E–S curves are shown in green and blue, respectively. The dates refer to the years of commission
of the reservoirs.

plained in Sect. 3.4, we first collected the observed stor-
age for 20 reservoirs in Thailand from the National Water
Database, the only publicly available storage database in the
MSEA region. We then compared the estimated and observed
storages based on two metrics – R2 and nRMSE.

Despite the lack of actual bathymetry for most reser-
voirs in Thailand (since they were built before 2000), we
found good agreement between estimated and directly ob-
served storage in most reservoirs (Fig. 7a, b). Sirikit and
Shringarind showed very good agreement, with R2 > 0.8 and
nRMSE < 9.5 % for both reservoirs (Fig. 7c, d). Notably,
10 out of the 20 reservoirs show an R2 of greater than 0.7
(average R2

= 0.77 and average nRMSE= 14.2 %) (Fig. 7a,
b; Table S1). Excluding three reservoirs with lower perfor-
mance (Bang Lang, Rajjaprabha, and Bhumibol), the average
R2 and nRMSE of the remaining 17 reservoirs are 0.68 and
17 %, respectively (Table S1), suggesting that the framework
works well for reservoirs characterized by varying A–E–S
curves and sizes. For instance, the validation shows strong
agreement for both Khao Laem (∼ 8 km3) and Lamphraphlo-
eng (∼ 0.1 km3), with R2 > 0.77 and nRMSE < 18 % for
both reservoirs (Fig. S6 and Table S1). As expected, the av-

erage R2 and nRMSE across all 20 reservoirs are approxi-
mately 0.6 and 18.6 %, respectively (Table S1).

To make the evaluation more robust, we indirectly vali-
dated our storage time series using altimeter observations
collected from the DAHITI and G-REALM databases. The
water level time series acquired from various altimeters was
converted into the corresponding storage time series using
the E–S curve (see Sect. 3.4). We collected water level ob-
servations for 20 reservoirs across the MSEA region for
which the altimetry passes were available for at least 5
years. The comparison between the time series shows that
14 of the 20 reservoirs have an R2 larger than 0.7 (aver-
age R2

= 0.80 and average nRMSE= 11.7 %), suggesting a
good match between the estimated and altimetry-converted
storage time series (Fig. 8a, b). The average R2 and nRMSE
are 0.63 and 13.3 %, respectively, when considering all 20
reservoirs together (Fig. S7 and Table S2). The storage time
series comparisons for two of the largest reservoirs (Sirikit,
R2
= 0.70 and nRMSE= 17 %; Nuozhadu, R2

= 0.96 and
nRMSE= 6.4 %) are shown in Fig. 8c and d, respectively.

The underperformance of certain reservoirs can likely be
attributed to two key factors. First, potential inaccuracies in
the hypsometric curves may introduce errors when convert-
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Figure 5. Illustration of the reservoir storage time series, i.e., the dynamic components of the MSEA-Res database, for the seven selected
reservoirs. Each panel (a–g) corresponds to a reservoir. For each panel, we report the scene-based reservoir storage (km3) time series at Level
0 and the storage time series at Level 1 (after removing the outliers) overlapped with Level 2 (after interpolation and smoothing).

ing inferred water surface area into absolute reservoir stor-
age. Second, the quality of the satellite-derived NDWI data,
particularly cloud-free image availability and gap-filling, can
significantly impact accuracy. Enhancing satellite image pre-
processing through techniques such as contrast stretching
and histogram equalization could improve data quality and,
in turn, refine reservoir storage estimations. Addressing these
challenges will be crucial in further optimizing the frame-

work’s reliability across diverse hydrological settings. De-
spite these challenges, the direct and indirect validation met-
rics suggest that the InfeRes-derived storage data can be re-
liably used for water-storage-related analysis on a weekly to
yearly timescale.

Earth Syst. Sci. Data, 17, 2693–2712, 2025 https://doi.org/10.5194/essd-17-2693-2025



S. S. Mahto et al.: A 1985–2023 time series dataset of absolute reservoir storage 2705

Figure 6. (a–g) Aggregated storage time series in the Irrawaddy, Upper Mekong, Red, Salween, Chao Phraya, Lower Mekong, and other
minor river basins during the 1985–2023 period. (h) Aggregated storage time series of all 186 reservoirs in Mainland Southeast Asia. The
color gradient in each panel represents the average storage with a 5-year interval. Please note that the aggregated storage is the total volume
of water (km3) stored in all of the reservoirs at a given time in each river basin.

Figure 7. Direct validation of the inferred storage time series against local observations. (a–b) Spatial distribution of R2 and nRMSE,
respectively. (c) Comparison of the absolute storage time series for the Sirikit reservoir during the period 2010–2023. (d) Same as (c) but for
the Shringarind reservoir.
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Figure 8. Indirect validation of the inferred storage time series against the altimetry-converted storage (water level is converted into the
corresponding storage using the elevation–storage curve). (a–b) Spatial distribution of R2 and nRMSE, respectively. (c) Comparison of the
absolute storage time series for the Sirikit reservoir during the period 2010–2023. (d) Same as (c) but for the Nuozhadu reservoir.

4.5 Example application: the 2019–2020 drought’s
impact on water storage

We finally used the estimated storage time series (Level-1
data) to showcase an example application of the MSEA-Res
database. Studies reported that the 2019–2020 drought in
the MSEA region seriously impacted agriculture, water re-
sources, and hydropower generation (Ha et al., 2022, 2023).
Banking on the newly developed data, we analyzed the im-
pact of the 2019–2020 drought on surface water storage
across the region by utilizing precipitation data from the
Climate Hazards group Infrared Precipitation with Stations
(CHIRPS; Funk et al., 2015) and storage anomalies for all
186 reservoirs.

The precipitation anomalies (%) in 2019 and 2020 with
respect to the reference period 1981–2023 are very pro-
nounced (Fig. 9a, b). In 2019, Mainland Southeast Asia expe-
rienced widespread below-average precipitation conditions,
with rainfall significantly lower than the historical average
in most areas and some regions facing a decrease as high as
−40 % (Fig. 9a). Nearly 30 % of the MSEA region suffered
from more than 5 months of drought, impacting, in particular,
Cambodia and Thailand (Fig. 9a). In contrast, 2020 showed a
more mixed pattern, with several areas experiencing above-
average precipitation and others continuing to have below-
average levels (Fig. 9b). Overall, these severe drought condi-
tions damaged nearly 40 % of the rainfed rice area (Ha et al.,
2023) and also threatened the surface water storage in lakes
and reservoirs (Ha et al., 2022).

To quantify the impact of the drought on the reservoir stor-
age volume, we estimated the reservoir storage anomalies in
2019 and 2020 against the reference period 2017–2023. The
anomalies in the storage volume of the selected reservoirs for
2019 and 2020 are mostly negative (Fig. 9c, d). In 2019, 120
of the 186 reservoirs (65 %) exhibited negative storage de-
partures, reflecting reduced water levels consistent with the

observed precipitation deficit (Fig. 9c). These storage depar-
tures ranged up to −40 %, highlighting significant impacts
on water availability in the region. Many lakes in Cambodia
and Thailand were indeed severely hit by the drought condi-
tions, resulting in below-average levels. Reservoirs situated
in the eastern basins (e.g., the Mekong and Red rivers) were
affected most compared to the reservoirs in the western part,
where some showed positive storage anomalies (Fig. 9c).
Storage conditions worsened in 2020, with 144 of the 186
reservoirs (78 %) exhibiting negative storage departures, pri-
marily due to the combined effects of precipitation deficits in
both 2019 and 2020 (Fig. 9d). Interestingly, we noticed some
discrepancy between the spatial distribution of the precipi-
tation and the water storage anomalies (Fig. 9), likely due
to the topology of the cascading reservoir system. In other
words, some reservoirs are located in regions characterized
by positive precipitation anomalies but may receive limited
inflow from upstream reservoirs located in regions affected
by droughts. Except for the reservoirs in the Upper Mekong
basin, all the other reservoirs experienced storage anomalies
ranging between −5 % and −40 % (Fig. 9d). This is in line
with direct observations, as the reservoirs in nine provinces
of Thailand – Chiang Mai, Uthai Thani, Chaiyaphum, Khon
Kaen, Nakhon Ratchasima, Buri Ram, Suphan Buri, Lop
Buri, and Chachoengsao – were reported to reach low stor-
age values (Danial, 2021). As a result, Thailand experienced
its worst water crisis in the past 40 years, with 25 provinces
declaring drought disaster zones (Danial, 2021). Moreover,
the 2019–2020 water shortage increased political tensions
between the countries, particularly in the Upper Mekong re-
gion, thus exacerbating the impact of the drought in the lower
basins. Overall, analyses like this one illustrate the impor-
tance of working with detailed information on reservoir oper-
ations when analyzing the impact of droughts: aside from the
preliminary analysis reported here, one could, e.g., combine
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Figure 9. Precipitation and water storage anomalies during the
2019–2020 drought in Mainland Southeast Asia. (a–b) Spatial vari-
ability in the precipitation anomalies (%) in 2019 and 2020. (c–
d) Same as panels (a–b) but for the reservoir storage anomalies. The
anomalies of precipitation were estimated against the reference pe-
riod 1985–2023, whereas, for the storage anomalies, the reference
period is 2017–2023.

the storage data with a hydrological model to investigate the
drought impact on the Mekong’s level, which was reported
to have reached its lowest value in almost 100 years (MRC
report, 2020).

5 Code and data availability

The raw satellite data used in this study were ac-
quired from Google Earth Engine (https://developers.google.
com/earth-engine/datasets/catalog/landsat, Google Earth En-
gine, 2025). The reservoir location information was col-
lected from the GRanD database (Lehner et al., 2011
– https://www.globaldamwatch.org/directory), the Mekong
database (Ang et al., 2024 – https://researchdata.ntu.edu.sg/
dataset.xhtml?persistentId=doi:10.21979/N9/ACZIJN), and

the GDAT database (Zhang and Gu, 2023b – https://doi.org/
10.5281/zenodo.7616852), which are all publicly available.
The supporting data – the reconstructed reservoir bathymetry
– were collected from the GRDL database (Hao et al., 2023)
and are publicly available at https://doi.org/10.5281/zenodo.
7726763. The MSEA-Res database containing the absolute
reservoir storage time series and the Python code is avail-
able at https://doi.org/10.5281/zenodo.14844580 (Mahto et
al., 2025).

6 Discussion and conclusions

We produced time series of absolute storage for 186 reser-
voirs (with capacities larger than 0.1 km3) in Mainland
Southeast Asia for the period 1985–2023 with an aggregated
storage capacity of nearly 175 km3 by the year 2023, which
corresponds to about 60 mm of water storage over the en-
tire Mainland Southeast Asia region. The reservoir time se-
ries were reconstructed using optical remote sensing data
(NDWI) from Landsat composite images and Sentinel-2 im-
ages with a 10 d temporal resolution. The reservoir locations
and other attributes, such as design capacity, year of com-
mission, and maximum surface area, were retrieved by com-
bining GRanD v1.3, the Mekong Dam database (Ang et al.,
2024), and the Global Dam Tracker (GDAT) database. For
each reservoir, we generated (i) a scene-based NDWI raster
image, (ii) a water frequency raster, (iii) a maximum wa-
ter extent raster, and (iv) an elevation raster (i.e., DEM). A
Python package called InfeRes was created to automatically
download and process all satellite images using the Google
Earth Engine Python API. The water area from the satellite
data was then translated into storage values using hypsomet-
ric curves (the area–elevation–storage relationship) derived
from the Shuttle Radar Topography Mission (SRTM) digi-
tal elevation model (DEM) and bathymetry reconstructions
from the GRDL database, wherever necessary.

The reconstructed database of the absolute storage time
series – unlike storage change metrics – offers a detailed
view of the reservoir status at any given time, thus provid-
ing a comprehensive and contextualized understanding of
reservoir dynamics. This approach is particularly valuable
for long-term monitoring (Gao et al., 2012) and planning of
water resources in the region (Galelli et al., 2022; Minocha et
al., 2024). Accurate absolute storage estimates allow for de-
tection of subtle trends and shifts in water availability that
could be masked by focusing solely on changes (Hou et
al., 2024; Li et al., 2023). This is particularly crucial for
transboundary rivers like the Mekong, where the availabil-
ity of data on reservoir operations could help alleviate the
water governance issues that have emerged in the past few
years (Danial, 2021). Another important downstream appli-
cation of MSEA-Res is hydrological modeling: integrating
the estimated absolute reservoir storage data into hydrologi-
cal models can offer significant advances in the understand-
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ing of human–water interactions and resource management
in Mainland Southeast Asia. This integration allows for re-
finement of models that simulate water management strate-
gies (Chang et al., 2019; Chowdhury et al., 2020; Galelli et
al., 2022) and flood control (Shin et al., 2020; Wang et al.,
2021).

Importantly, the developed code (available at https://
doi.org/10.5281/zenodo.14844580, Mahto et al., 2025) and
framework are not tailored to Southeast Asia, therefore en-
abling their application to individual studies or other re-
gions as well as further enrichment of this inventory with
new reservoirs. The publicly available reservoir time series
dataset can be used directly to assess storage trends and vari-
ability under climate change; to infer reservoir operations,
agricultural water management, and hydrological model in-
puts; and for comparison with previous studies. The overall
outcome of our study will hopefully facilitate reservoir man-
agement and related research in hydrology, the environmen-
tal sciences, and climate studies.

Although the extraction of the water surface area using
optical images from Landsat and Sentinel-2 has provided
valuable insights, there remains scope for further improve-
ments. For example, other image processing techniques can
be applied to further enhance the water surface estimates.
This includes band normalization, adaptive filtering, and
edge enhancement filters other than AHE. Please note that
AHE applied to NDWI images does not specifically cor-
rect for high turbidity, shadows, aquatic vegetation, mixed
land–water pixels, or seasonal vegetation effects – this re-
mains a limitation of our study. However, AHE (and sim-
ilar techniques) aims to standardize reflectance values and
reduce noise in NDWI-based water detection, thus helping
address challenges like varying illumination conditions and
subtle spectral differences that can lead to partial misclassi-
fication of water pixels, especially at the reservoir boundary.

Another area for improvement is the development of hyp-
sometric curves using DEM data, which is limited by the ac-
quisition date of the DEM – with the earliest widely avail-
able dataset being the SRTM DEM (30 m) from the year
2000. Consequently, for approximately 30 % of the reser-
voirs (constructed before 2000), we utilized the recently re-
leased GRDL database (Hao et al., 2024), which provides
a deep-learning-based bathymetry reconstruction for 7250
GRanD reservoirs (Lehner et al., 2011), offering an alterna-
tive to traditional methods based on simplified geometric as-
sumptions (Hou et al., 2024; Khazaei et al., 2022; Yigzaw
et al., 2018). While GRDL demonstrates superior perfor-
mance compared to earlier hypsometric curve methods, its
accuracy depends heavily on the size and quality of the train-
ing dataset, introducing potential uncertainties in storage es-
timation. Furthermore, the reproducibility of GRDL’s deep-
learning-based results remains a challenge, limiting opportu-
nities for further refinement and development. In contrast,
geometric assumption-based methods, though less precise,
offer greater flexibility and transparency for modification

and advances. While reconstructing reservoir bathymetry re-
mains a significant challenge, a hybrid approach that inte-
grates geometric assumption-based methods, deep-learning
techniques, and field observations can yield innovative re-
sults.

Opportunity for further improvement also lies in the in-
tegration of Sentinel-1 synthetic aperture radar (SAR) data.
Unlike optical sensors, Sentinel-1 SAR can penetrate clouds
and operate under all weather conditions, offering consistent
and reliable observations. The higher spatial resolution of
Sentinel data (10 m) compared to Landsat (30 m) also enables
more accurate classification of water and non-water pixels.
Looking ahead, storage estimates can be improved further by
combining Sentinel-1’s microwave SAR data with observa-
tions from the recently operational Surface Water and Ocean
Topography (SWOT) mission (https://swot.jpl.nasa.gov/, last
access: 20 January 2025) of NASA, which provides wide
coverage of water height measurements (Altenau et al., 2021;
Hausman et al., 2021; Hossain et al., 2022). This integration
would not only enhance the detection and classification of
water bodies but also allow for a more precise estimation of
reservoir storage by linking surface area to accurate water
height data.
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