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S1. Context 1 

The IPCC Special Report on Global Warming of 1.5°C (SR1.5), published in 2018, provided an assessment of the level of 2 

human-induced warming and cumulative emissions to date (Allen et al., 2018) and the remaining carbon budget (Rogelj et al., 3 

2018) to support the evidence base on how the world is progressing in terms of meeting aspects of the Paris Agreement. The 4 

AR6 WGI Report, published in 2021, assessed past, current and future changes of these and other key global climate indicators, 5 

as well as undertaking an assessment of the Earth’s energy budget. It also updated its approach for estimating human-induced 6 

warming and global warming level. In AR6 WGI and here, reaching a level of global warming is defined as the global surface 7 

temperature change, averaged over a 20-year period, exceeding a particular level of global warming, e.g. 1.5°C global 8 

warming. Given the current rates of change and the likelihood of reaching 1.5°C of global warming in the first half of the 9 

2030s (Lee J.-Y. et al., 2021; Lee et al., 2023; Riahi et al., 2022), it is important to have robust, trusted, and also timely climate 10 

indicators in the public domain to form an evidence base for effective science-based decision making.  11 

S2. Emissions  12 

 13 

Table S1 The three GHG emissions estimates and their underlying datasets. 14 

Estimate Source Datasets Reference 

WGIII update CO2-FFI and CO2-LULUCF GCB v2024 Friedlingstein et al., 2025 

CH4, N2O PRIMAP Hist-TP v2.6.1 Gütschow et al., 2025 

UNFCCC F-gases CIP v2025: Climate Indicators 

Project (this article), with 

underlying data from NOAA 

and AGAGE inversions (see 

Sect. 3 main manuscript) 

Main paper; Lan et al., 

2025; Dutton et al., 2024; 

Prinn et al., 2018 

WGIII update + 
additional sources 

CO2-FFI, CO2-LULUCF, CH4, 
N2O and UNFCCC F-gases 

As for WGIII update Friedlingstein et al., 2025, 

Gütschow et al., 2025, Lan 
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et al., 2025; Dutton et al., 

2024; Prinn et al., 2018 

Biomass fires (CH4 and N2O) GFED v4.1 van der Werf et al., 2017 

ODS F-gases CIP v2025: Climate Indicators 

Project (this article), with 

underlying data from NOAA 

and AGAGE inversions (see 

Sect. 3 main manuscript) 

Lan et al., 2025; Dutton et 

al., 2024; Prinn et al., 2018 

Cement carbonation GCB v2024 Friedlingstein et al., 2025 

Inventory aligned CO2-FFI, CH4, N2O and 
UNFCCC F-gases 
 

PRIMAP Hist-CR v2.6.1 Gütschow et al., 2025 

 CO2-LULUCF Grassi NGHGI v2024 Grassi et al., 2024 

 15 
S2.1 Calculation of uncertainties and CO2 equivalent emissions in Section 2 16 

We follow the same approach for estimating uncertainties and CO2-equivalent emissions as in AR6: CO2-equivalent emissions 17 

were calculated using global warming potentials with a 100-year time horizon (GWP100 henceforth) from AR6 WGI Chap. 7 18 

(Forster et al., 2021). Uncertainty ranges were based on a comparative assessment of available data and expert judgment, 19 

corresponding to a 90 % confidence interval (Minx et al., 2021): ±8 % for CO2-FFI, ±70 % for CO2-LULUCF, ±30 % for CH4 20 

and F-gases, and ±60 % for N2O (note that the GCB assesses 1 standard deviation uncertainty for CO2-FFI as ±5 % and for 21 

CO2-LULUCF as ±2.6 GtCO2; Friedlingstein et al., 2025). The total uncertainty was summed in quadrature, assuming 22 

independence of estimates per species/source. Reflecting these uncertainties, AR6 WGIII reported emissions to two significant 23 

figures only. Uncertainties in GWP100 metrics of roughly ±10 % were not applied (Minx et al., 2021).  24 

 25 

 26 
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S3. Greenhouse gas concentrations  27 

Naming conventions and details for Sect. 3 of the main paper and herein follow AR6 WGI Chapter 2 (Gulev et al., 2021). 28 
Table S2 Annual mean concentrations of well-mixed greenhouse gases in 2023, 2022, 2019, 1850 and 1750. Except for CO2, CH4 and 29 
N2O, concentrations all are in parts per trillion by volume [ppt]. For halogenated gases, concentrations are stated for each gas, with 30 
equivalents for HFCs, PFCs and Montreal gases given as the radiative equivalent of the most abundant gas in each category. 31 

Greenhouse gas 1750 1850 2019 2023 2024 
CO2 [ppm] 278.4 285.6 410.1 419.4 422.8 
CH4 [ppb] 729.2 807.6 1866.5 1922.1 1929.7 
N2O [ppb] 270.1 272.1 332.1 336.9 337.9 
NF3 0 0 2.1 3.1 3.4 
SF6 0 0 10 11.4 11.8 
SO2F2 0 0 2.5 2.9 3 
HFCs as HFC-134a-eq 0 0 237.1 302.7 321.4      
HFC-134a 0 0 107.6 129.5 134.7 
HFC-23 0 0 32.4 36.7 37.3 
HFC-32 0 0 19.5 32.5 35.7 
HFC-125 0 0 29.6 44.2      50.1 
HFC-143a 0 0 24 31.1 3     2.7 
HFC-152a 0 0 7.1 7.5 7.9 
HFC-227ea 0 0 1.6 2.3 2.4 
HFC-236fa 0 0 0.2 0.2 0.3 
HFC-245fa 0 0 3.1 3.8 3.9 
HFC-365mfc 0 0 1.1 1.2 1.1 
HFC-43-10mee 0 0 0.3 0.3 0.3 
PFCs as CF4-eq 34.1 34.1 109.7 115.8 117.4 
  CF4 34 34 85.5 89.4 90.4 
  C2F6 0 0 4.8 5.2 5.3 
  C3F8 0 0 0.7 0.8 0.8 
  c-C4F8 0 0 1.8 2 2.1 
  n-C4F10 0 0 0.2 0.2 0.2 
  n-C5F12 0 0 0.1 0.2 0.2 
  n-C6F14 0 0 0.2 0.2 0.2 
  i-C6F14 0 0 0.1 0.1 0.1 
  C7F16 0 0 0.1 0.1 0.1 
  C8F18 0 0 0.1 0.1 0.1 
Montreal gases as CFC-12-eq 8.5 8.5 1031.9 1005 995.4      
CFC-12 0 0 503 487.2 482.9 
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CFC-11 0 0 226.2 216.8 214.5 
CFC-113 0 0 69.8 67.2 66.6 
CFC-114 0 0 16 16 16 
CFC-115 0 0 8.7 8.9 8.9 
CFC-13 0 0 3.3 3.4 3.4 
CFC-112 0 0 0.4 0.4 0.4 
CFC-112a 0 0 0.1 0.1 0.1 
CFC-113a 0 0 0.9 1.3 1.4 
CFC-114a 0 0 1 1 1 
HCFC-22 0 0 246.8 248.1 24     

4.9 
HCFC-141b 0 0 24.4 24.6 24.5 
HCFC-142b 0 0 22.3 21.5 21.2 
HCFC-133a 0 0 0.4 0.4 0.4 
HCFC-31 0 0 0.1 0.1 0.1 
HCFC-124 0 0 1 0.9 0.9 
CH3CCl3 0 0 1.6 0.9 0.8 
CCl4 0 0 78 73.9 72.9 
CH3Cl 457 457 540.8 542.8 542.7 
CH3Br 5.3 5.3 6.5 6.5 6.5 
CH2Cl2 6.9 6.9 40.6 48.1 49.9 
CHCl3 4.8 4.8 8.8 7.6 7.3 
Halon-1211 0 0 3.3 2.9 2.8 
Halon-1301 0 0 3.3 3.3 3.     3 
Halon-2402 0 0 0.4 0.4 0.4 

 32 

S4. Short-Lived Climate Forcers (SLCFs) 33 

Table S3 Emissions of the major SLCFs in 1750, 2019, 2022, 2023 and 2024 from a combination of CEDS and GFED and CAMS for 34 
the 2024 trend. Provisional estimates used in Forster et al. (2023) and Forster et al. (2024) are shown. Emissions of SO2+SO4 use SO2 35 
molecular weights. Emissions of NOx use NO2 molecular weights. VOCs are for the total mass. 36 
 37 

 
Compound 

1750 2019  
(WGI) 

2019 
(updated 
with 
CEDS v 
2025_03-
18 and 
GFEDv4) 

2022 
(Forster et 
al., 2023) 

2022 
(updated 
with 
CEDS v 
2025_03-
18 and 
GFEDv4) 

2023 
(Forster et 
al., 2024) 

2023 
(updated 
with 
CEDS v 
2025_03-
18 and 
GFEDv4) 

2024 
(CEDS v 
2025_03-
18 and 
GFEDv4) 
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Sulphur 
dioxide 
(SO2) + 
sulphate 
(SO42-) 

2.8 84.2 80.9 75.3 70.6 79.1 72.7 
 

71.2 

Black 
carbon 
(BC) 

2.1 7.5 7.3 6.8 6.7 7.3 7.6 
 

7.5 

Organic 
carbon 
(OC) 

15.5 34.2 33.0 25.8 25.6 40.7 41.0 36.1 

Ammonia 
(NH3) 

6.6 67.6 66.3 67.3 66.8 71.1 72.7 70.6 

Oxides of 
nitrogen 
(NOx) 

19.4 141.7 133.6 130.4 123.2 139.4 128.4 130.4 

Volatile 
organic 
compound
s (VOCs) 

60.9 217.3 204.8 183.9 176.4 228.1 224.1 212.7 

Carbon 
monoxide 
(CO) 

348.4 853.8 816.1 686.4 665.4 917.5 896.0 845.3 

 38 

 39 
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Figure S1 Comparison of short-lived climate forcer emissions from Forster et al. (2024) (blue) and the most recent update of CEDS 40 
and GFED through 2023, with 2024 trend from CAMS (orange). (Granier et al., 2019; Jalkanen et al. 2012, 2016; Johansson et al., 41 
2017). 42 

 43 
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S5. Effective radiative forcing (ERF) 44 

S5.1 Well-mixed greenhouse gas ERF methods 45 

Radiative forcing (RF) from CO2, CH4 and N2O use the simplified formulas from concentrations in Meinshausen et al. (2020), 46 

derived from an updated functional fit to Etminan et al. (2016) line-by-line radiative transfer results. These formulas are, to 47 

first order, logarithmic with CO2 concentrations and a square-root dependence for CH4 and N2O, with additional corrections 48 

and radiative band overlaps between gases. RF is converted to ERF using scaling factors (1.05, 0.86 and 1.07 for CO2, CH4, 49 

N2O respectively) that account for tropospheric and land-surface rapid adjustments (Smith et al., 2018a; Hodnebrog et al., 50 

2020a). ERF from other GHGs is assumed to scale linearly with their concentration based on their radiative efficiencies 51 

expressed in W m-2 ppb-1 (Hodnebrog et al., 2020b, Smith et al., 2021b). A scaling factor translating RF to ERF is implemented 52 

for CFC-11 (1.13) and CFC-12 (1.12) (Hodnebrog et al., 2020a), whereas no model evidence exists to treat ERF differently to 53 

RF for other halogenated gases. 54 

 55 

Relative uncertainties in the ERF for CO2 (± 12%), CH4 (± 20%) and N2O (± 14%) are unchanged from AR6. These stem from 56 

a combination of spectroscopic uncertainties and uncertainties in the adjustment terms converting RF to ERF; uncertainties in 57 

the volume mixing concentrations themselves are assessed to be small (Sect. 2). Uncertainties in the ERF from halogenated 58 

gases are treated individually and are assessed as ±19% for gases with a lifetime of 5 or more years and ±26% for shorter 59 

lifetime gases. In AR6, a ±19% uncertainty was applied to the sum of the ERF from all halogenated gases. To maintain a 60 

consistent uncertainty range across the sum of ERF from halogenated gases with AR6, we inflate the uncertainty in each 61 

individual gas by a factor of 2.05. Uncertainties are applied by scaling the full ERF time series for each gas. 62 

S5.2 Aerosol ERF methods 63 

Aerosol ERF is a combination of contributions from aerosol-radiation interactions (ERFari) and aerosol-cloud interactions 64 

(ERFaci).  65 

S5.2.1 Aerosol-radiation interactions 66 

Contributions to ERFari are assumed to scale linearly with certain SLCF emissions in Sect. 3 (SO2, BC, OC, NH3, NOx and 67 

VOC) or concentrations (CH4, N2O and ozone-depleting halocarbons) of primary aerosols and chemically active precursor 68 

species. The coefficients converting emissions or concentrations of each SLCF into ERF and its uncertainty come from Chapter 69 

6 of AR6 WGI (Szopa et al., 2021), originally from CMIP6 AerChemMIP models (Thornhill et al., 2021a). We scale these 70 
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coefficients to reproduce the headline AR6 WGI ERFari assessment of -0.3 W m-2 from 1750 to 2005-2014. Uncertainties are 71 

applied as a scale factor for each species and applied to the whole time series. 72 

 73 

The inclusion of more species that affect ERFari differs from the AR6 WGI calculation of ERFari in Chapter 7, which only 74 

used SO2, BC, OC and NH3 (Smith et al., 2021b). In the update, these four species remain the dominant aerosol and aerosol 75 

precursors. Additionally, these coefficients have changed slightly due to switching to CMIP6 era data.  In AR6, the coefficients 76 

scaling emissions to ERF for SO2, BC, OC and NH3 were provided by CMIP5-era models (Myhre et al., 2013a). The additional 77 

coefficients and slight changes to their magnitude had an imperceptible effect on the results but have been included to align 78 

with current best practice. This might be important in future years as NOx and VOC precursors might make up a larger fraction 79 

of ERFari. 80 

S5.2.2 Aerosol-cloud interactions 81 

ERFaci is estimated by assuming a logarithmic relationship with the change in cloud droplet number concentration (CDNC) 82 

as 83 

 84 

ERFaci = β log (1 + ΔCDNC)          (S1) 85 

 86 

ΔCDNC = sSO2ΔESO2 + sBCΔEBC + sOCΔEOC        (S2) 87 

 88 

where sSO2, sBC and sOC are sensitivities of the change in CDNC with the change in emissions of SO2, BC and OC respectively 89 

(ΔE). This relationship is fit to estimates of ERFaci in 13 CMIP6 models contributing results to the piClim-histaer and histSST-90 

piAer experiments of RFMIP and AerChemMIP, respectively, to CMIP6 (Smith et al., 2024). The ERFaci in these 13 models 91 

is estimated using the Approximate Partial Radiative Perturbation (APRP) method (Taylor et al., 2007; Zelinka et al., 2014; 92 

Zelinka et al., 2023a). 93 

 94 

The sSO2, sBC and sOC values from each model are combined into a kernel density estimate and sampled 100,000 times to 95 

provide a CMIP6-informed distribution of these parameters. To obtain β for each sample given (sSO2, sBC, sOC) a target ERFaci 96 

value for 1750 to 2005-2014 is drawn from the headline AR6 distribution of -1.0 [-1.7 to -0.3] W m-2 and eq. (S1) rearranged. 97 

This follows a very similar procedure to AR6 and is based on Smith et al. (2021a) with three updates. Firstly, the relationships 98 

in eqs. (S1) and (S2) are slightly updated and simplified (Smith et al., 2024). Secondly, an additional two CMIP6 models have 99 

become available since the AR6 WG1 assessment which expands the sampling pool for coefficients from 11 to 13. Thirdly, a 100 
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slight error in computing ERFaci from APRP from the CMIP6 models in Smith et al. (2021a) has been corrected (Zelinka et 101 

al., 2023b). 102 

 103 

S5.3 Ozone ERF methods 104 

In AR6 WGI Chapter 7, the ozone ERF is derived from CMIP6 model-based estimates (Skeie et al., 2020) from 1850 to 2014, 105 

to infer the sensitivity of ozone RF to emissions of NOx, VOC and CO, concentrations of CH4, N2O and ozone-depleting 106 

halogens, and global mean surface temperature (GMST) anomaly. These factors can be found in Table 7.SM.3 of AR6. In 107 

CMIP6, experimental results that vary CO and VOC emissions separately are not available, so individual contributions from 108 

CO and VOC to the CO+VOC total are based on their fractional contributions from ACCMIP (CMIP5-era) models in 109 

Stevenson et al. (2013). To compute the ozone ERF we thus use the radiative efficiencies for ozone ERF and the scale factor 110 

to CH4, N2O and ozone-depleting halogens concentration changes discussed in the paper and CO, NMVOC and NOx emission 111 

changes discussed in the paper.  For the global mean temperature contribution to ozone forcing (in terms of W m-2 K-1), we 112 

use the model responses to ozone forcing per degree warming in chemistry-enabled models in abrupt-4xCO2 experiments 113 

(Thornhill et al., 2021b), and apply this factor to the observed GMST anomaly from Sect. 7. Following AR6, we do not 114 

differentiate between stratospheric and tropospheric ozone, and we also assume that ERF is the same as RF as there is limited 115 

model evidence to suggest otherwise.  116 

 117 

S5.4 ERF from land use change and irrigation 118 

In Forster et al., (2024), ERF from land use and irrigation was scaled with cumulative CO2 emissions from AFOLU from 1750, 119 

as the IPCC AR6 assessment from Ghimire et al. (2014) did not extend beyond 2005, and the IPCC assessment used cumulative 120 

AFOLU CO2 emissions to estimate land use and irrigation ERF from 2005 to 2019. In IGCC 2024, we use land use transitions 121 

from the Land Use Harmonization v2 (LUH2) dataset (Hurtt et al., 2020) updated for the Global Carbon Budget (GCB) 2024 122 

(Chini et al., 2021; Friedlingstein et al., 2025) using cropland and grazing land data from HYDE3.4 (Klein Goldewijk et al., 123 

2017) that itself merges the latest FAO state-level data with MapBiomas satellite-based estimates for Brazil and Indonesia 124 

(Souza et al., 2020) and another recent estimate for China (Yu et al., 2022). This constitutes an update to the Ghimire et al. 125 

(2014) data that used LUH1, using the satellite-derived albedo-related parameters of Ouyang et al. (2022) and providing data 126 

for 1750-2023, which we extrapolate one year to 2024. The resulting global ERF is scaled by a factor of 1.28 to recover the 127 

Ghimire et al. (2014) surface reflectance assessment of -0.15 W m-2 in 2005 relative to 1750 to ensure consistency with the 128 

AR6. For irrigation, we assume the forcing scales with the area of land irrigated. We create a timeseries of this irrigated land 129 
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area, using FAOSTAT (FAO, 2024) from 1961-2022, and Angelakis et al. (2021) to extend back to 1750. Angelakis et al. 130 

(2021) provide data points from 1900 in their Figure 21, and give a value for 1800 in the text. We assume the 1800 value (8 131 

megahectares as compared to 354 megahectares in 2022) applies to 1750 and apply a cubic spline fit to produce a time series 132 

of irrigated area from 1750 to 1961 which is scaled to match the 1961 FAOSTAT irrigated area. The irrigated area in 2019 is 133 

assumed to result in the AR6 assessment of irrigation forcing of -0.05 W m-2 in 2019 (having its roots in Sherwood et al., 134 

2018), and irrigation forcing is linear with irrigated area relative to this benchmark. We note that since the publication of AR6, 135 

more Earth System models incorporating transient historical irrigation are available (Yao et al., 2025), and could be used to 136 

provide an assessment of the ERF of irrigation in future. 137 

S5.5 ERF from other anthropogenic forcers 138 

Minor categories of anthropogenic forcers include contributions from land use and land use change other than via GHG 139 

emissions, aviation contrails and contrail-induced cirrus, stratospheric water vapour from methane oxidation, and light 140 

absorbing particles on snow and ice. 141 

 142 

The methodology to estimate ERF from land use and land-use change, including irrigation, has been updated to be more 143 

consistent with AR6 (Sect. 5)  We anchor the 1750-2019 assessment to be the same as AR6 at -0.15 [-0.25 to -0.05] W m-2 for 144 

the ERF from surface albedo changes and -0.05 [-0.10 to +0.05] W m-2 for irrigation under this updated methodology. 145 

Stratospheric water vapour from methane oxidation was assessed to be 0.05 [0.00 to 0.10] W m-2 in AR6 for 1750-2019, and 146 

is assumed to change linearly with changes in methane concentration.  147 

 148 

The ERF from light absorbing particles on snow and ice (LAPSI) is assumed to scale with emissions of black carbon. As in 149 

AR6, the contribution from brown carbon is assumed to be negligible. We align the coefficient that converts BC emissions to 150 

ERF from LAPSI to match the 0.08 [0.00 to 0.18] W m-2 assessment in AR6 for 1750-2019. 151 

 152 

To estimate ERF from aviation contrails and contrail-induced cirrus in AR6, emissions of NOx from the aviation sector in 153 

CEDS were scaled to reproduce an ERF of 0.0574 [0.019 to 0.098] W m-2 for 1750-2018 as assessed in Lee D. S. et al. (2021). 154 

We more closely follow the original methods of Lee D. S. et al. (2021) in this update to base our ERF estimates as closely as 155 

possible on aviation activity data. The Lee D.S. et al. (2021) ERF time series is extended to 2022 based on aviation fuel 156 

consumption from the International Energy Agency’s (IEA) World Oil Statistics (2024). For 2023 and 2024, we use fuel 157 

consumption data from the International Air Transport Association (IATA, 2024). 158 
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S5.6 Methods for estimating natural forcing 159 

Natural forcing is composed of solar irradiance and volcanic eruptions.  160 

S5.6.1 Solar irradiance 161 

The method to compute solar forcing is unchanged from AR6, using a composite time series prepared for PMIP4 (Jungclaus 162 

et al., 2017) and CMIP6 (Matthes et al., 2017). The headline assessment of solar ERF is based on the most recent solar cycle 163 

(2009-2019), which is unchanged from AR6. Solar ERF estimates are computed relative to complete solar cycles encompassing 164 

the full “pre-industrial” period where proxy data exists (6754 BCE to 1745 CE). The CMIP7 solar forcing time series for the 165 

historical period (1850‒2023) is now available (Funke et al., 2024). However, it has changed from the CMIP6 time series and 166 

does not seamlessly transition to the pre-1850 period including the last several thousand years, nor does it extend forward to 167 

include 2024. In future editions of IGCC, the CMIP7 solar forcing product could be used if the data spans the appropriate 168 

periods. 169 

S5.6.2 Volcanic 170 

Volcanic ERF consists of contributions from stratospheric sulphate aerosol optical depth (sAOD; a negative forcing) and 171 

stratospheric water vapour (sWV, a positive forcing). The sAOD time series (at a nominal wavelength of 550 nm) is constructed 172 

from a combination of four datasets which have temporal overlap. We use ice-core deposition data from HolVol v1.0 (Sigl et 173 

al., 2022) for 9500 BCE to 1749 CE. For 1750 to 2023 we use the CMIP7 volcanic sAOD dataset (Durack et al., 2025) using 174 

the 550 nm spectral band, which is an update from IGCC 2023 that used the CMIP6 volcanic sAOD dataset. There is a seamless 175 

transition between HolVol and CMIP7 in 1750, so no blending of datasets was required. In previous editions of IGCC, we 176 

used the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) product of sAOD which provided data until the 177 

penultimate year (Thomason et al., 2018), however, with the availability of the CMIP7 dataset to 2023, GloSSAC is not 178 

required directly in this year’s IGCC.  Additionally, the CMIP7 dataset incorporates GloSSAC from 1979 to 2023. For 2024, 179 

we use the Ozone Mapping and Profiling Limb Profiler (OMPS LP) Level 3 aerosol optical depth at 745 nm, which is scaled 180 

to achieve the same time mean sAOD as GloSSAC v2.22 (Kovilakam et al., 2020) in the overlapping 2013-2023 period as a 181 

single Ångstrom exponent is not suggested for this conversion. The 745 nm band from OMPS-LP is used as this is reported to 182 

be more stable than the bands closer to 550 nm from OMPS LP (Taha et al., 2021). For comparison we estimate the 550 nm 183 

sAOD from GloSSAC v2.22 using the 525 nm band and an Ångstrom exponent of -2.33, and we find good correspondence to 184 

the CMIP7 sAOD time series for the 1979-2023 common period. Therefore, while GloSSAC is not used directly this year, it 185 

is used as an anchor and reference for both the CMIP7 and OMPS-LP datasets.  sAOD is converted to a radiative effect using 186 

a scaling factor of -20 ± 5 as in AR6 (Smith et al., 2021b) that is representative of CMIP5 and CMIP6 models. ERF is calculated 187 
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with reference to the change in this radiative effect since “pre-industrial”, defined as the mean of all available years before 188 

1750 CE. In other words, the mean of the pre-1750 period is defined as zero forcing.  189 

 190 

The January 2022 eruption of Hunga Tonga-Hunga Ha’apai (HTHH) was an exceptional episode in that it emitted large 191 

amounts of water vapour into the stratosphere (Millán et al., 2022; Sellitto et al., 2022). Jenkins et al. (2023) determined the 192 

HTHH eruption increased volcanic ERF in 2022 by +0.12 W m-2 due to sWV.  In IGCC 2024 we update this value from 193 

Jenkins et al. (2023), which used an idealised injection of water vapour, to use direct satellite retrievals of water vapour from 194 

the Microwave Limb Sounder (MLS) data on board the Aura platform. Using the MLS data in place of the Jenkins et al. (2023) 195 

spatial distribution, we update the 2022 volcanic sWV ERF to +0.14 W m-2, and find that in the MLS data the stratospheric 196 

water vapour plume persists into 2023 (+0.18 W m-2) and 2024 (+0.15 W m-2) (Fig. S2). These water vapour forcings are 197 

calculated in a similar fashion to in Jenkins et al. (2023), by implementing the stratospheric water vapour in 2022, 2023 and 198 

2024 from MLS against a climatology derived from MLS using the 2004-2021 years. The instantaneous radiative forcing at 199 

the tropopause is calculated using the SOCRATES radiative transfer model (Edwards and Slingo, 1996), against a background 200 

climatology (atmospheric temperatures, humidity, cloud profiles, ozone profiles, surface albedo and surface temperature) taken 201 

from ECMWF ERA5 reanalysis (Hersbach et al., 2020). From the CMIP7 and GloSSAC data the peak addition of stratospheric 202 

aerosols was around 0.007 optical depth units in the global mean, resulting in a peak volcanic aerosol forcing of ‒0.14 W m-2 203 

in mid-2022 relative to the pre-HTHH baseline that decayed away with an e-folding lifetime of around 18 months. We conclude 204 

using this analysis that the net HTHH ERF from both sAOD and sWV was positive (but small) in 2022, 2023 and 2024, and 205 

attempting to back out HTHH from other small eruptions gives a best estimate ERF for HTHH in isolation of +0.03 W m-2 in 206 

2022, +0.10 W m-2 in 2023 and +0.10 W m-2 in 2024. This is in contrast to other studies that assess a net negative (Gupta et 207 

al., 2025) or zero (Schoeberl et al., 2024) impact of HTHH, using different methods. 208 

 209 
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 210 
Figure S2 Volcanic effective radiative forcing from 1975 to present relative to the pre-1750 baseline. The impact of 211 

including stratospheric water vapour from Hunga Tonga-Hunga Ha’apai (green) can be observed in 2022, 2023 and 212 

2024 by increasing the net volcanic ERF above the background level (purple). 213 

 214 

S6. Earth energy imbalance 215 

While changes in EEI have been effectively monitored at the top of the atmosphere by satellites since the mid-2000s, we rely 216 

on estimates of OHC change to determine the absolute magnitude of EEI and its evolution on inter-annual to multi-decadal 217 

time series. The AR6 assessment of ocean heat content change for the 0–2000 m layer was based on global annual mean time 218 

series from five ocean heat content datasets: IAP (Cheng et al., 2017), Domingues et al. (2008), EN4 (Good et al., 2013), JMA 219 

(Ishii et al., 2017) and NCEI (Levitus et al., 2012). Four of these datasets routinely provide updated OHC time series for the 220 

BAMS State of the Climate report, and all are used for the GCOS Earth heat inventory (von Schuckmann et al., 2020, 2023a) 221 
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and the annual WMO State of the Global Climate report. The uncertainty assessment for the 0–2000 m layer used the ensemble 222 

method described by Palmer et al. (2021) that separately accounts for parametric (referred to in the plots below as “mapping 223 

uncertainty”) and structural uncertainty. The OHC change >2000 m and associated uncertainty were assessed based on trend 224 

analysis of the available hydrographic data following Purkey and Johnson (2010). All five of the datasets used for the 0–225 

2000 m OHC assessment are now updated at least annually and should in principle support an AR6 assessment time series 226 

update within the first few months of each year. There is potential to increase the observational ensemble used in the assessment 227 

by supplementing this set with additional data products that are also available annually for future updates. A full propagation 228 

of uncertainties across all heat inventory components depends on the specific choice of time period, and different estimates 229 

are not directly comparable. Therefore, we take a simple pragmatic approach, using the total ocean heat content uncertainty as 230 

a proxy for the total uncertainty, since this term is 2 orders of magnitude larger than the other terms (Forster et al., 2021). To 231 

provide estimates of the EEI up to the year 2024, we scale up the values of OHC change in 2021, 2022, 2023 and 2024 to 232 

reflect the ~ 90 % contribution of the ocean to changes in the Earth heat inventory. The EEI is then simply computed as the 233 

difference in global energy inventory over each period, converted to units of watts per square metre (W m−2) using the surface 234 

area of the Earth and the elapsed time. The uncertainties in the global energy inventory for the end-point years are assumed to 235 

be independent and added in quadrature, following the approach used in AR6 (Forster et al., 2021). Estimates of EEI should 236 

also account for the other elements of the Earth heat inventory, i.e. the atmospheric warming, the latent heat of global ice loss 237 

and heating of the continental land surface (Forster et al., 2021; Cuesta-Valero et al., 2021, 2023a; Steiner et al., 2020; Nitzbon 238 

et al., 2022a; Vanderkelen et al., 2020; Adusumilli et al., 2022). Some of these components of the Earth heat inventory are 239 

routinely updated by a community-based initiative reported in von Schuckmann et al. (2020, 2023a). However, in the absence 240 

of annual updates to all heat inventory components, a pragmatic approach is to use recent OHC change as a proxy for EEI, 241 

scaling the value up as required based on historical partitioning between Earth system components. 242 

 243 

 244 
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 245 
Figure S3 (Left) Ocean heat content timeseries for the 0-700 m layer with the estimate of structural uncertainty indicated by the 246 
grey shaded region and expressed as a 90% confidence interval (very likely range) in units of Zetta Joules (1 ZJ = 1021 Joules). (Right) 247 
Individual estimates of the mapping uncertainty with the ensemble mapping uncertainty (the maximum across all available 248 
estimates) shown by the dotted line and grey shaded region. Mapping uncertainty is expressed as a 90% confidence interval (very 249 
likely range) in units of Zetta Joules (1 ZJ = 1021 Joules).  250 
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 251 
Figure S4 As Figure S3 but for ocean heat content in the 700-2000 m layer.   252 

S7. Global surface temperature 253 

Surface temperature information on land and sea is available with low latency through WMO distribution channels, with 254 

monthly station data from a substantial number of stations reported within a few days of the end of the month. Sea-surface 255 

temperature data from ships and buoys are gathered from the Global Telecommunication System with a short delay. These are 256 

consolidated into global data sets by a number of institutions, making it feasible to report GMST updates within a few weeks 257 

of the end of the period of interest. The number of reporting locations on land with near-real time data available for reporting 258 

for the most recent periods is typically less than that available for historical data, as not all observation sites report recent data 259 

reliably, but this lower observation density only slightly increases the uncertainty in estimates of recent annual GMST 260 

compared with the past 20-30 years (Trewin et al., 2021). 261 

 262 

The GMST assessment in AR6 was largely based on four datasets: HadCRUT5 (Morice et al., 2021), Berkeley Earth (Rohde 263 

and Hausfather, 2020), NOAAGlobalTemp - Interim (Vose et al., 2021) and Kadow et al. (2020). The four GMST datasets 264 

were chosen by virtue of being quasi globally complete, having data back to 1850, using the most recent generation of SST 265 

analyses and using analysed (rather than climatological) values over sea ice. The first two of these are routinely updated 266 
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operationally, with data for each year becoming available in the first few weeks of the following year. NOAAGlobalTemp - 267 

Interim was not updated operationally at the time AR6 was published but became NOAA’s main operational GMST dataset 268 

(under the name NOAAGlobalTemp 5.1) as of January 2023. All three datasets are updated and published monthly. The dataset 269 

by Kadow et al. is updated on an ad hoc basis by the authors (Kadow et al., 2025). A fifth data set, China - Mean Surface 270 

Temperature (China-MST) (Sun et al., 2021), which meets all the GMST dataset criteria except for treatment of sea ice areas, 271 

is used both in AR6 and here for global temperatures over land areas only. Although the version of the Kadow et al. (2020) 272 

dataset reported in that paper used HadCRUT4 as its base, the version used in AR6 and subsequently used HadCRUT5 as its 273 

base (Kadow et al., 2025)..  274 

 275 

In 2023, there was a significant version change to NOAAGlobalTemp (now version 6.0.0). This is the current operational 276 

version and is used in this paper. This uses a new artificial neural network approach to reconstruct temperatures over land 277 

(Huang et al., 2022) in place of the empirical orthogonal teleconnection approach used in version 5.1. This change has little 278 

impact on long-term trends at global scale since the low-frequency component in the land surface air temperature (LSAT) 279 

reconstruction has not changed, but has a substantial impact on spatial and short-term temporal variability. Version 6.0.0 shows 280 

approximately 0.01 °C less warming from 1850-1900 to recent time periods (such as 2013-2022) than version 5.1, principally 281 

due to differences in the early part of the 1850-1900 baseline period. A new version of the ERSST sea surface temperature 282 

analysis (v6) has been developed (Huang et al., 2025), but as of March 2025, NOAAGlobalTemp 6.0.0 still uses ERSSTv5 as 283 

its SST component.  284 

 285 

To date, all four GMST datasets remain supported, and those version changes which have occurred since AR6 have not had a 286 

material impact on long-term temperature changes, but it is likely that more substantive version changes will occur to one or 287 

more over time, potentially leading to differences from the AR6. Version changes to date since AR6 have resulted in the 288 

warming from 1850-1900 to 2011-2020, 2010-2019 and 2001-2020 each being 0.01 °C greater in the most recent dataset 289 

versions than that reported in AR6.  290 

 291 

A new version of the China-MST dataset (v3.0) has been developed and is used as part of the land component of the assessment 292 

of this paper. The land component of this uses the C-LSAT 2.1 dataset (Xu et al., 2025). Compared with earlier versions, C-293 

LSAT 2.1 has substantially more stations and a substantially greater areal data coverage, as well as new homogenisation 294 

methods. China-MST v3.0 shows more warming over the common 1850-1900 to 2014-2023 period than the v2.0 version used 295 

in 2023 and earlier, with warming of 1.61 °C in v3.0 compared with 1.53 °C in v2.0. This change brings China-MST into 296 

closer alignment with the other four datasets although it still shows the least amount of warming of the five.   297 
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 298 

The key differences between the AR6 datasets and those used in the annual WMO and BAMS State of the Climate reports are 299 

that WMO and BAMS also incorporate reanalyses (ERA5 and JRA-3Q, which superseded JRA-55 during 2024). These reports 300 

also include the GISTEMP (Lenssen et al., 2019) dataset (excluded by AR6 because it starts in 1880) but do not include the 301 

dataset by Kadow et al. (as that is not updated operationally). 302 

 303 

The GMST values used in AR6 were calculated from the gridded data sets produced by the data providers, using a consistent 304 

methodology - calculating the mean anomaly for each of the northern and southern hemisphere as a latitude-weighted mean of 305 

available gridpoint values, then defining the global mean anomaly as the mean of the two hemispheric values. (This is 306 

equivalent to the method used by the Met Office Hadley Centre to report global values from HadCRUT5). The values thus 307 

calculated may differ from those reported by the data providers themselves, due to different averaging methodologies. 308 

Although the difference is less pronounced in the AR6 datasets than in earlier generations of datasets, there are more gridpoints 309 

with missing data in the Southern Hemisphere than the Northern (particularly before an observation network was established 310 

on Antarctica in the 1950s), and using hemispheric means ensures that the two hemispheres are equally weighted.  311 

 312 

The uncertainty assessment in AR6 combines the spread of the individual datasets with uncertainties derived from ensembles 313 

for HadCRUT5 and an earlier version of NOAAGlobalTemp, with the other two datasets assumed to have the same uncertainty 314 

as HadCRUT5. HadCRUT5 is the only one of the datasets for which regularly updated ensembles are currently produced, 315 

limiting the extent to which uncertainty assessments can be regularly updated from those used in AR6. In this update it was 316 

assumed that the width of the confidence interval for each individual dataset was the same as that used in AR6.  317 

 318 

A number of new global temperature products have been published in the last year (e.g. Chan et al., 2024; Calvert, 2024). It is 319 

anticipated that there will be a review over the coming year of the datasets used in global temperature assessment, both in 320 

forthcoming versions of this publication (and ultimately the IPCC AR7) and in WMO reporting.  321 

 322 

2023 and 2024 temperature anomalies  323 

 324 
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 325 
Figure S5 Global surface air temperature (GSAT) interannual anomalies from CMIP6 models (plain coloured dots) at 326 

anthropogenically-forced global warming (ANT_GWL) equal to 1.36oC as a function of ENSO estimated by Oct-Dec 327 

mean of SST(y-axis) and AMV (x-axis). Larger dots stand for 2022, 2023 and 2024 observed values from ERSSTv5 for 328 

the modes of variability and from WMO consolidated values for GSAT. SST Anomalies for the modes of variability 329 

are calculated from the residual of SST obtained after removing the modelled forced response estimated as model 330 

ensemble mean. 331 

 332 

While comprehensive syntheses have yet to be published, we provide a preliminary estimate of the contribution of different 333 

factors by combining the results of recent studies of their respective forcings using the FaIR climate model (Leach et al., 2021) 334 
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(Figure S6). We calculate the residuals of 0.18 ºC and 0.26 ºC for 2023 and 2024, respectively, relative to an expectation of 335 

smoothly rising temperatures calculated over the period prior through to the end of 2022 using a locally linear regression with 336 

a bandwidth of 20 years (WMO, 2025). This is not a full attribution study; the results are rather presented with associated 337 

caveats to provide a possible explanation of the anomalous temperatures in 2023 and 2024 compared to prior years. This 338 

analysis is similar to that      presented in the WMO 2024 State of the climate report,  published earlier this year 339 

(https://wmo.int/publication-series/state-of-global-climate-2024, accessed, 7 June 2025). 340 

 341 

https://wmo.int/publication-series/state-of-global-climate-2024
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Figure S6 Assessed contributions to 2023 and 2024 global surface temperature residuals relative to the expected warming approach 343 
described above. The combined bar shows the combination of individual contributions, with uncertainties added in quadrature. 344 
Note that aerosol-related factors reflect declines in aerosol emissions that were previously masking warming. Actual residuals are 345 
shown in green. 346 

 347 

The impact of ENSO on the temperatures can be estimated in multiple ways. A linear 348 

regression of the annual mean relative anomaly on the Feb/Mar Niño 3.4 index suggests an 349 

impact of −0.07 ºC, 0.01 ºC and 0.13 ºC for 2022, 2023 and 2024 respectively (95% CI, ±0.13 ºC). 350 

It is important to note that the uncertainties in the ENSO response estimated here also 351 

incorporate other sources of unforced internal (modes of variability in other basins like 352 

AMV), and potentially some forced variability, and the bar in Figure S6 is labelled “El Niño 353 

and variability” to reflect this. While some results from pre-industrial control climate 354 

model simulations (Raghuraman et al., 2024) suggest a transition from triple-dip La Niña 355 

to El Niño can produce an anomalous jump of up to 0.25 ºC in the year of transition, but it 356 

is unclear how to apply this to 2023 since one would need to condition the effect on the 357 

ENSO change that was actually experienced. 358 

 359 

The IMO regulation change in 2020 led to a quick reduction of about 8.4 TgSO2/yr and a step change of radiative forcing 360 

between 0.08 and 0.14 Wm-2, estimated from a review of seven studies to-date: Gettelman et al, 2024; Jordan and Henry, 2024; 361 

Quaglia and Visoni, 2024; Yoshioka et al, 2024; Yuan et al, 2024; Watson-Parris et al, 2024; Skeie et al, 2024. An eighth study 362 

(Hansen et al., 2025) finds a much higher forcing value of 0.5 Wm-2. The median temperature impacts across these different 363 

forcing estimates were calculated as 0.03 ºC (95% CI of 0.02 ºC to 0.14 ºC) in 2023 and 0.04 ºC (0.02 ºC to 0.15 ºC) in 2024 364 

using FaIR, with the Hansen et al. forcing estimate responsible for the high upper bound. The latter is partly taken into account 365 

in SSP scenarios used in the above-documented probability of occurrence of the 2024 event based on CMIP6 (Szopa et al., 366 

2021). 367 

 368 

Chinese sulphate aerosol emissions have fallen sharply from their peak in 2006 (38 TgSO2/yr), down 39% by 2014 (23 369 

TgSO2/yr), and an additional 56% through 2022 (10 TgSO2/yr) (CEDS 2024). On its own this would lead to additional 370 

radiative forcing of 0.14 Wm-2 and a warming of 0.06 ºC (±0.04 ºC) in 2023 compared to a world where East Asian harmful 371 

aerosol emissions remained at 2006 levels, based on FaIR calculations performed here. But some of this decline will have 372 
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already affected the long-term trends, and so the anomaly in 2023 and 2024 relative to 2020 is only 0.01 ºC (calculated using 373 

FaIR). 374 

 375 

The HTHH event added both SO2 and water vapor to the stratosphere (up to 56 km in altitude). SO2 was rapidly 376 

oxidized in sulphate aerosols, whose effects dominated the radiative forcing for the first 377 

two years after the eruption, and so the net radiative forcing at the tropopause was likely 378 

negative; the combination of HTHH and subsequent volcanism resulted in −0.04 Wm-2 and 379 

−0.15 Wm-2 in 2022 and 2023 respectively (Schoeberl et al., 2024), implying a temperature impact of -0.02 ºC (-0.01 ºC to -380 

0.03 ºC) calculated using FaIR.   381 

 382 

Solar cycle 25 was both slightly earlier and slightly stronger than prior expectations, and the impact of the Total Solar 383 

Irradiance (TSI) anomaly of 0.97 Wm-2 in 2023 relative to the mean of the prior 20 years is a radiative forcing of approximately 384 

0.17 Wm-2 and an estimated global mean surface temperatures impact of 0.03 ºC (0.01 ºC to 0.05 ºC) in 2023 and 0.04 ºC (0.02 385 

ºC to 0.07 ºC) in 2024 calculated using FaIR. 386 

 387 

In total, the additional radiative forcings in recent years and consequent warming combined with the impact of ENSO come 388 

close to explaining the residuals taking into account the uncertainties, though more so in 2024 than in 2023. While the effects 389 

of ENSO and other modes of internal variability (especially in the Atlantic where 2023 was extreme (Guinaldo et al., 2025)), 390 

changes in the solar cycle, and volcanism are likely to subside, the additional warming unmasked by declining shipping and 391 

East Asian aerosol emissions will persist. 392 

S8 Human-induced global warming 393 

S8.1 Estimates of global surface temperature: GMST and GSAT in attributed warming assessments 394 

AR6 WGI (Chap. 2 Cross-Chap. Box 2.3, Gulev et al., 2021) described how global mean surface air temperature (GSAT), as 395 

is typically diagnosed from climate models, is physically distinct from the global mean surface temperature (GMST) estimated 396 

from observations, which generally combine measurements of near-surface temperature over land     , with measurements of 397 

sea surface temperature over the ocean. Gulev et al. (2021) assessed with high confidence that long-term trends in the two 398 

indicators differ by less than 10 %. However, based on conflicting lines of evidence from climate models and direct 399 

observations, the former showing stronger warming of GSAT compared to GMST, the latter tending to show the opposite, 400 
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there is low confidence in the sign of the difference in trends. Therefore, with medium confidence, in AR6 WGI Chap. 3 401 

(Eyring et al., 2021), the best estimates and likely ranges for attributable warming expressed in terms of GMST were assessed 402 

to be equal to those for GSAT, which means that the AR6 attributable warming assessment does not distinguish between 403 

GMST and GSAT. As such, while WGI Chap. 3 (Eyring et al., 2021) treated estimates of attributable warming in GSAT and 404 

GMST from the literature together without any rescaling, we note that climate-model-based estimates of attributable warming 405 

in GSAT are expected to be systematically higher than corresponding estimates of attributable warming in GMST (see e.g. 406 

Cowtan et al., 2015; Richardson et al., 2018; Beusch et al., 2020; Gillett et al., 2021). Therefore, given an opportunity to update 407 

these analyses from AR6, it is more consistent and more comparable with observations of GMST to report attributable changes 408 

in GMST using all three methods (described in Sect. S7). The SR1.5 assessment of attributable warming was given in terms 409 

of GMST, which is continued here. Therefore, in line with Sect. 7, AR6 WGI, and SR1.5, we adopt GMST as the estimate of 410 

global surface temperature. Findings are presented in Figs. S7, S9 and S9 and Tables S4 and S5. 411 

S8.2 Methods to estimate human-induced warming 412 

Both SR1.5 and AR6 drew on evidence from a range of literature for their assessments of human-induced warming, before 413 

selecting results from a smaller subset to produce a quantified estimate. While both the SR1.5 and AR6 assessments used the 414 

latest Global Warming Index (GWI) results (Haustein et al., 2017), AR6 also incorporated results from two other methods, 415 

regularised optimal fingerprinting (ROF) (as in Gillett et al., 2021) and kriging for climate change (KCC) (as in Ribes et al., 416 

2021). In AR6, all three methods gave results consistent not only with each other but also results from AR6 WGI Chap. 7 (see 417 

WGI Chap. 7 Supplementary Material (Smith et al., 2021b), Fig. 3.8 of AR6 WGI Chap. 3 (Eyring et al., 2021), and Figs. S7, 418 

S8 and S9). Note that the results from Chap. 7 were not included in the AR6 WGI final calculation because they were not 419 

statistically independent of other methods. Of the methods used, two (Gillett et al., 2021; Ribes et al., 2021) relied on CMIP6 420 

DAMIP (Gillett et al., 2016) simulations which ended in 2020 and hence require modifications to update to the most recent 421 

years. The other two methods (Haustein et al., 2017; Smith et al., 2021b) are fully updatable and can also be made consistent 422 

with other aspects of the AR6 assessment and methods. The three methods used in the final assessment of contributions to 423 

warming in AR6 are used again with revisions for this annual update and are presented here along with any updates to their 424 

approaches. 425 

S8.2.1 Global Warming Index 426 

Introduced in Otto et al. (2015), and refined with full uncertainty assessment in Haustein et al. (2017), the Global Warming 427 

Index (GWI) quantifies anthropogenic warming by using an established “multi-fingerprinting” approach to decompose total 428 

warming into its various components; preliminary anthropogenic and natural warming time series are first estimated from 429 
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radiative forcings, and a multivariate linear regression is then taken between these preliminary GMST contributions and 430 

observed GMST, with the best fit providing the attributed anthropogenic and natural contributions to warming. As such, the 431 

GWI attribution method is directly tied to observations and therefore the resulting central estimate for human-induced warming 432 

has a relatively small dependence on the size of the uncertainties in climate sensitivity and forcing. 433 

 434 

Substantive annual updates to the GWI assessment depend on annual updates for effective radiative forcings (ERFs) and 435 

observed temperature (GMST), both of which are provided as a part of this update (Sects. 5 and 7 respectively). The remaining 436 

inputs to the GWI assessment are updated at the less-frequent CMIP cadence; however, these contributions only weakly 437 

influence the GWI results. Further, by recomputing a “historical-only” GWI time series based only on data up to a given year, 438 

it can be shown that GWI is relatively insensitive to end-date or short-term fluctuations in observed GMST, minimising 439 

potential confusion about the current level of warming, such as the perception of a hiatus or acceleration (see AR6 WGI 440 

Chapter 3 Cross-Chapter Box 3.1, Eyring et al., 2021), due to short-term internal variability. This, combined with the 441 

conceptual simplicity of the method, makes the GWI a relatively transparent and robust method for attributing anthropogenic 442 

warming and well-suited to providing reliable annual updates. 443 

 444 

Where the GWI method previously separated warming contributions into two components, “anthropogenic” and “natural”, and 445 

independently attributed them, this update further separates and independently attributes contributions within the 446 

Anthropogenic component, adopting the groupings from AR6: “well-mixed greenhouse gases”, “other human forcings” and 447 

“natural forcings”. The climate response model used to estimate (pre-regression) warming from radiative forcing is updated 448 

from the AR5 Impulse Response model (AR5-IR; from AR5 Chapter 8 Supplement (Myhre et al., 2013b)) used in Haustein et 449 

al. (2017) to the Finite-amplitude Impulse Response model (FaIR; Leach et al., 2021; Smith et al., 2018b; Millar et al., 2017), 450 

which was used in SR1.5 and AR6; climate response uncertainty is included by using around 30 sets of parameters that 451 

correspond to FaIR emulating the CMIP6 ensemble, as provided in Leach et al. (2021). The updated historical ERF input to 452 

FaIR is given in Sect. 5, with uncertainty accounted for using a representative 1000-member probabilistic ensemble. Observed 453 

GMST and its uncertainty are provided by the 200-member ensemble of the annually updated HadCRUT5 (Morice et al., 2021; 454 

see Sect. 7). Uncertainty from internal variability is accounted for by using between 100-200 realisations of internal variability 455 

sampled from the CMIP6 piControl simulations (Nicholls et al., 2021). Since some CMIP6 models may have unrealistically 456 

high decadal variability, our estimates of uncertainty may be conservative (Erying et al., 2021). Here, to partly address this, 457 

piControl timeseries are first filtered, removing simulations that drift by more than 0.15 °C per decade or exhibit unrealistic 458 

variability amplitudes. The parameters for FaIR (given in Leach et al., 2021) are tuned to GSAT outputs from CMIP6; the 459 

outputs from FaIR are not rescaled to account for the difference between GSAT and GMST in the tuning since any rescaling 460 
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would be immediately and completely regressed out in the next step of the attribution process; this lack of rescaling is 461 

additionally broadly consistent with the AR6 assessment which concluded with medium confidence that GSAT and GMST 462 

are representative of each other – see Sect. S8.1. In future, FaIR could be re-tuned to GMST estimates from CMIP6 in addition 463 

to GSAT outputs to examine potential differences in the response that cannot be accounted for through a linear rescaling, 464 

though differences in the final attribution results from such a study are expected to be minimal; the regression onto HadCRUT5 465 

provides the strongest constraint. 466 

 467 

Producing the GWI ensemble with ~1 billion members is computationally expensive; therefore an ensemble with ~20 million 468 

members is randomly subsampled to obtain results, and repeated three times. Uncertainty converges at this scale, and repeat 469 

random samplings at the same scale lead to variation in the results of on the order of 0.01 °C. 470 

 471 

Compared to Forster et al. (2024), the GWI calculation remains the same, differing only by (i) using ERFs and observed 472 

temperatures updated to 2024, and (ii) averaging results across three random ~20 million member sub-samplings instead of ~6 473 

million member sub-samplings (an increase enabled by computing cluster upgrades). 474 

S8.2.2 Kriging for climate change 475 

The kriging for climate change method was originally introduced by Ribes et al. (2021), and subsequently extended in Qasmi 476 

and Ribes (2022), to attribute past warming and constrain temperature projections over the 21st century. This statistical method 477 

is very similar to ensemble Kalman filtering or kriging. In the original publication (Ribes et al., 2021), a subset of 22 CMIP6 478 

models was considered. For each of them, a statistical procedure was applied to estimate the warming induced by GHG, ANT 479 

(temporal smoothing procedure) or NAT (using an Energy Balance Model) forcings, respectively. This subset of models was 480 

subsequently used to form an a priori distribution (in a Bayesian sense) of past attributable warming. Then the posterior 481 

distribution of past attributable warming given observations was derived. This application was based on HadCRUT4-CW 482 

GMST observations (Cowtan and Way, 2014), inflated by 6% to account for the assessment at that time of stronger warming 483 

of GSAT relative to GMST. 484 

 485 

Results from this calculation were quoted in Eyring et al. (2021). The update made here uses the same subset of 22 CMIP6 486 

models. However, HadCRUT5 observations are used, instead of previous datasets, over an extended 1850-2024 period. 487 

Consistent with the AR6 assessment about GMST to GSAT warming ratio, no scaling correction is applied; i.e. the global 488 

mean value from HadCRUT5 is assumed to be representative of GSAT changes (see Sect. S8.1). As it relies on available 489 

CMIP6 simulations, this update assumes that the world has followed a SSP2-4.5 pathway since 2015. Emissions in the SSP 490 
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scenarios are similar in the period up until 2024 and close to those which have occurred (e.g. Chen et al., 2021); therefore this 491 

is a reasonable approximation. Future updates with this method will incorporate new observations. In parallel, we will try to 492 

replace the CMIP6 models by emulators, thus allowing the latest available estimates of radiative forcings to be considered, 493 

instead of the SSP2-4.5 scenario. 494 

S8.2.3 Regularized optimal fingerprinting 495 

Optimal fingerprinting is the name given to optimal regression-based approaches to attribution, in which observed anomalies 496 

are regressed onto the simulated response to individual forcings from climate models, with the regression coefficients used to 497 

infer attributable contributions to observed changes (e.g. Allen and Stott, 2003; Eyring et al., 2021). Ribes et al. (2013) 498 

proposed an improved version of the standard total least squares regression, known as regularised optimal fingerprinting, which 499 

exhibited improved accuracy in perfect model tests. Gillett et al. (2021) applied this approach to regress observed 5-year mean 500 

observed GMST onto the simulated response to individual forcings from the DAMIP simulations (Gillett et al., 2016) of 13 501 

CMIP6 models. In order to ensure a like-for-like comparison, Gillett et al. (2021) regressed observations of GMST, derived 502 

from gridded non-infilled near-surface air temperature over land and sea ice, and sea surface temperature over oceans, onto 503 

GMST derived from CMIP6 model output in the same way (Cowtan et al., 2015). However, since globally complete GSAT is 504 

usually used in the climate impact literature which served as a basis for global warming goals, Gillett et al. (2021) used 505 

regression coefficients to infer attributable warming in globally complete GSAT. 506 

 507 

Gillett et al. (2021) used CMIP6 DAMIP simulations which generally finished in 2020 and therefore cannot directly be used 508 

to infer attributable warming in subsequent years. However, some modelling centres ran single-forcing DAMIP simulations 509 

into the future under the SSP2-4.5 scenario (Gillett et al., 2016). Data from concatenated historical and ssp245, hist-nat and 510 

ssp245-nat, and hist-GHG and ssp245-GHG were taken from CanESM5 (50, 10, 10), IPSL-CM6A-LR (11, 10, 6) and 511 

MIROC6 (3, 50, 50), where numbers in brackets indicate the respective ensemble sizes. Our approach assumes that observed 512 

drivers have evolved as in the SSP2-4.5 scenario over the period since 2015, which is a reasonable assumption to the present 513 

(e.g. Chen et al., 2021). As in Gillett et al. (2021), internal variability was estimated from intra-ensemble anomalies. Whereas 514 

the Gillett et al. (2021) results assessed by Eyring et al. (2021) were based on HadCRUT4, this dataset is no longer being 515 

updated, and therefore we use the non-infilled version of HadCRUT5 here (Morice et al., 2021). As shown by Gillett et al. 516 

(2021), using HadCRUT5 in place of HadCRUT4 results in a 7% increase in the best estimate of anthropogenic warming for 517 

2010-2019, as a result of the difference in warming between the two observation datasets . Gillett et al. (2021) regressed 34 5-518 

year means of GMST over the period 1850-2019 onto simulated GMST over the same period. Here we extend the analysis 519 

using 35 5-year means, with the latter based on observations from January 2020 to December 2024 and the model output 520 
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masked in the same way. In order to be consistent with the Global Warming Index and kriging for climate change approaches 521 

described above, and for comparison with GMST observations, we primarily report attributable warming in globally complete 522 

GMST here, rather than GSAT (see Sect. S8.1). Calculated anthropogenic warming in GSAT in 2010-2019 computed using 523 

HadCRUT5 with this approach of 1.16 (1.04-1.29) °C can be compared with the same quantity reported in Gillett et al. (2021) 524 

(their Supplementary Table 1) of 1.18 (1.09-1.27) °C, indicating good consistency. 525 

 526 

The method described above is easily updatable into the future using the same set of simulations, simply by updating 527 

observations to a later date and masking model output accordingly. As in the KCC method, a caveat to this approach is that it 528 

relies on SSP2-4.5 simulations from which actual anthropogenic forcing might be expected to gradually diverge and from 529 

which actual natural forcing could rapidly diverge, for example, were a major volcanic eruption to occur. 530 

 531 
Table S4 Estimates of global mean surface air temperature (GSAT) warming attributable to multiple influences (in °C) relative to 532 
the 1850–1900 baseline period. Values are given as the median, with the 5-95 percentile range in brackets, provided to 0.01°C 533 
precision. GSAT results here are only provided for regularised optimal fingerprinting (ROF) because the GSAT results for the other 534 
attribution methods (the Global Warming Index (GWI) and kriging for climate change (KCC)) are identical to the GMST results 535 
for those methods. 536 

variable  2010-2019 

(decade average) 

 2014-2023  

(decade average) 

 2017  

(trend-based) 

 2023 

(trend-based) 

Human-induced  1.18 (1.05 to 1.32)  1.35 (1.19 to 1.50)  1.22 (1.09 to 1.36)  1.51 (1.33 to 1.69) 

Well-mixed 

greenhouse gases  1.46 (1.25 to 1.68)  1.60 (1.37 to 1.84)  1.51 (1.29 to 1.74)  1.72 (1.47 to 1.98) 

Other human 

forcings  -0.26 (-0.46 to -0.07)  -0.25 (-0.44 to -0.06)  -0.27 (-0.48 to -0.07)  -0.23 (-0.41 to -0.05) 

Natural  0.02 (-0.02 to 0.05)  0.01 (-0.03 to 0.05)  0.02 (-0.02 to 0.05)  0.01 (-0.04 to 0.05) 

 537 

S8.3 Results from each Attribution Method 538 

Results for each attribution method, including headline results and timeseries, are available in csv form in the Climate Indicator 539 

repository: https://github.com/ClimateIndicator/anthropogenic-warming-assessment/. 540 

 541 
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Table S5 Estimates of global mean surface temperature (GMST) warming attributable to multiple influences (in °C) relative to the 542 
1850–1900 baseline period, provided for each warming attribution method and the overall multi-method assessment. Values for 543 
individual attribution methods are given as the median, with the 5-95 percentile range in brackets, provided to 0.01 °C precision. 544 
Values for the assessment are calculated as defined in Sect. S8.4 and given as best estimates with likely ranges in brackets. 545 

Variable  Method  2010-2019 

(decade 

average) 

 2015-2024 

(decade 

average) 

2017 

(single 

year 

annual 

mean     ) 

2024 

(single 

year 

annual 

mean     ) 

 2017  

(single 

year trend-

based) 

 2024 

(single 

year trend-

based) 

Human-

induced 

 GWI  1.07 (0.95 to 1.17) 
 1.19 (1.06      to 1.31     
)  1.13 (1.01 to 1.24)  1.30 (1.15      to 1.43) 

 1.12      (0.99      to 
1.23     )  1.31 (1.16      to 1.43) 

 KCC  1.06 (0.93 to 1.19)  1.20 (1.05 to 1.34)  1.13 (0.99 to 1.26)  1.32 (1.16 to 1.48)  1.12 (0.98 to 1.25)  1.32 (1.16 to 1.47) 

 ROF  1.13 (1.00 to 1.25)  1.28 (1.13 to 1.43)  1.20 (1.04 to 1.35)  1.50 (1.19 to 1.80)  1.16 (1.03 to 1.30)  1.44 (1.27 to 1.61) 

 Assessment  1.09 (0.9 to 1.3)  1.22 (1.0 to 1.5)  1.15 (0.9 to 1.4)  1.37 (1.1 to 1.8)  1.13 (0.9 to 1.3)  1.36 (1.1 to 1.7) 

Well-mixed 

greenhouse 

gases 

 GWI  1.29 (1.00 to 1.56)       1.39 (1.08 to 1.68)       1.34 (1.04 to 1.62)       1.49 (1.15 to 1.80)       1.34 (1.04 to 1.61)       1.49 (1.15 to 1.79)      

 KCC  1.50 (1.17 to 1.80)  1.61 (1.25 to 1.95)  1.56 (1.21 to 1.88)  1.72 (1.33 to 2.08)  1.56 (1.21 to 1.88)  1.72 (1.33 to 2.08) 

 ROF  1.41 (1.20 to 1.61)  1.53 (1.31 to 1.76)  1.47 (1.24 to 1.69)  1.66 (1.41 to 1.92)  1.45 (1.24 to 1.67)  1.65 (1.41 to 1.89) 

 Assessment  1.40 (1.0 to 1.9)  1.51 (1.0      to 2.0)  1.46      (1.0 to 1.9)  1.62 (1.1 to 2.1)  1.45 (1.0 to 1.9)  1.62 (1.1 to 2.1) 

Other 

human 

forcings 

 GWI  -0.22 (-0.48 to 0.04)       -0.19 (-0.46 to 0.07)       -0.21 (-0.46 to 0.05)       -0.18 (-0.48 to 0.09)       -0.22 (-0.48 to 0.05)       -0.17 (-0.45 to 0.10)      

 KCC  -0.43 (-0.72 to -0.14)  -0.42 (-0.72 to -0.11)  -0.43 (-0.72 to -0.13)  -0.40 (-0.71 to -0.08)  -0.43 (-0.72 to -0.13)  -0.40 (-0.72 to -0.08) 

 ROF  -0.26 (-0.45 to -0.07)  -0.24 (-0.43 to -0.06)  -0.25 (-0.46 to -0.05)  -0.19 (-0.42 to 0.04)  -0.27 (-0.47 to -0.07)  -0.22 (-0.40 to -0.05) 

 Assessment  -0.30 (-0.8 to 0.1     )  -0.28 (-0.8 to 0.1)  -0.29 (-0.8 to 0.1)  -0.26      (-0.8 to 0.1)  -0.31 (-0.8 to 0.1)  -0.26 (-0.8 to 0.1) 

Natural  GWI  0.08 (0.02 to 0.14)  0.08 (0.02 to 0.14)  0.08 (0.02 to 0.14)  0.09 (0.02 to 0.16)  0.08 (0.02 to 0.14)  0.08 (0.02 to 0.14) 

 KCC  0.06 (0.04 to 0.08)  0.05 (0.04 to 0.07)  0.06 (0.04 to 0.08)  0.04 (0.03 to 0.06)  0.06 (0.04 to 0.08)  0.04 (0.03 to 0.06) 

 ROF  0.02 (-0.02 to 0.05)  0.01 (-0.03 to 0.05)  0.01 (-0.03 to 0.05)  0.00 (-0.04 to 0.05)  0.02 (-0.02 to 0.05)  0.01 (-0.04 to 0.05) 

 Assessment  0.05 (-0.1 to 0.2)  0.05 (-0.1 to 0.2)  0.05 (-0.1 to 0.2)  0.04 (-0.1 to 0.2)  0.05 (-0.1 to 0.2)  0.04 (-0.1 to 0.2) 

 546 
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 548 

 549 
Figure S7 Assessed contributions to observed warming and supporting lines of evidence; see AR6 WG1 Fig. 3.8. The shaded bands 550 
show the assessed likely ranges of temperature change, relative to the 1850-1900 baseline, attributable to total anthropogenic 551 
influence (Ant), well-mixed greenhouse gases (GHGs), other human forcings (OHFs), and natural forcings (Nat). The left of each 552 
pair of bands depicts the results quoted from AR6, and the right of each pair of bands depicts a repeat calculation for the same 553 
period as the IPCC assessment, using the revised datasets and methods, to validate the updated assessment of attributable warming. 554 
Panel (a) presents decade-average warming as used in AR6, with results quoted from AR6 WGI Chapter 3 on the left and the repeat 555 
assessment on the right. The solid horizontal bar in each band shows the best estimate for each warming component; if no best 556 
estimate was provided, it was retrospectively calculated using the AR6 method and depicted using a horizontal dotted line to facilitate 557 
comparison. In AR6, Global Warming Index results were reported as GMST, kriging for climate change results were calculated as 558 
GMST and scaled by 1.06 for reporting as GSAT, and regularised optimal fingerprinting was reported as GSAT; for the repeat, all 559 
methods are reported in terms of GMST (see Sect. S8.1 for discussion). Panel (b) presents single-year warming as used in SR1.5, 560 
with results quoted from SR1.5 Chapter 1 on the left (which was based only on the Global Warming Index) and the repeat assessment 561 
on the right, which now includes all of the attribution methods and the multi-method assessment approach used in AR6, as discussed 562 
in Sect. S8.4. Both bars are reported in GMST. No assessment was provided for components other than Ant in SR1.5. 563 
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 565 
Figure S8 Time series for each attribution method used in the updated assessment of warming contributions, expressed in terms of 566 
global mean surface temperature (GMST). Coloured plumes correspond to warming contributions broken down by natural forcings 567 
(Nat), well-mixed greenhouse gases (GHGs) and other human forcings (OHFs). Total human-induced warming (Ant) is therefore 568 
the sum of contributions from GHG and OHF. The plume range is given by the 5-95% range of the Global Warming Index (GWI), 569 
with the GWI best estimate given by the solid lines. The dashed line presents the best estimate from the kriging for climate change 570 
(KCC) method, and the dotted line presents the best estimate from the regularised optimal fingerprinting (ROF) method. GWI and 571 
KCC are given as annual values based on infilled GMST from HadCRUT5; ROF is given as annual values of globally complete 572 
GMST. The CMIP6 pre-industrial control (piControl) simulations are used as a proxy for multiple samplings of internal variability 573 
and are used to account for attribution uncertainty resulting from internal variability in the GWI method (see Sect. S8.2.1). 574 

 575 
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 576 
Figure S9 Time series for each attribution method used in the updated assessment of warming contributions, expressed in terms of 577 
global mean surface temperature (GMST). Coloured plumes are given for both 17-83% and 5-95% ranges and correspond to 578 
warming contributions to observed warming broken down by natural forcings (Nat), well-mixed greenhouse gases (GHGs) and other 579 
human forcings (OHFs). Total warming (Tot) is the total attributable warming and therefore the sum of contributions from GHG, 580 
OHF and Nat. Observation data from (infilled) HadCRUT5 are presented with 9-95% uncertainty bars. Panel (a) presents results 581 
from the Global Warming Index method (Sect. S8.2.1); the CMIP6 pre-industrial control (piControl) simulations are used as a proxy 582 
for multiple samplings of internal variability and used to account for uncertainty in the attribution resulting from internal variability 583 
(see Sect. S8.2.1). Panel (b) presents results from the kriging for climate change methods (Sect. S8.2.2). Panel (c) presents results 584 
from regularised optimal fingerprinting (Sect. S8.2.3), with the time series for Tot being approximated by the sum of the Ant and 585 
Nat medians; note that this is different from GWI and KCC, where Tot is a directly attributed quantity. 586 
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 587 

Figure S10 A repeat of Fig. 9 depicting changes to the assessed levels of warming since the sixth assessment cycle. Updated assessed 588 
contributions to observed warming relative to 1850–1900; see AR6 WGI SPM.2. Results for all time periods in this figure are 589 
calculated using updated datasets and methods. To show how these updates have affected the previous assessments, the 2010–2019 590 
average assessed results repeat the AR6 2010–2019 assessment, and the 2017 assessed results repeat the SR1.5 2017 assessment. The 591 
2015–2024 average and 2024 results are this year’s updated assessments for AR6 and SR1.5, respectively. For each double bar, the 592 
lighter and darker shading refers to the earlier and later period, respectively. Panel (a) shows updated observed global warming 593 
from Sect. 7, expressed as total global mean surface temperature (GMST), due to both anthropogenic and natural influences. 594 
Whiskers give the “very likely” range. Panels (b) and (c) show updated assessed contributions to warming, expressed as global mean 595 
surface temperature (GMST), from natural forcings and total human-induced forcings, which in turn consist of contributions from 596 
well-mixed greenhouse gases and other human forcings . Whiskers give the “likely” range. 597 
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 598 

S8.4 Updated IPCC assessment approach of attributed global warming 599 

S8.4.1 Updated estimate using the AR6 WGI methodology 600 

Factoring in results from each of the three attribution methods (see Sect. S8.2), AR6 WGI Chap. 3 (Eyring et al., 2021) defined 601 

the likely range for each warming component as the smallest 0.1 °C precision range that enveloped the 5th to 95th percentile 602 

ranges of each method. In addition, a best estimate was provided for the human-induced (Ant) warming component, calculated 603 

as the mean of the 50th percentile values for each method. Best estimates were not provided in AR6 for the other components 604 

(well-mixed greenhouse gases (GHGs), other human forcings (OHFs) and natural forcings (Nat)), with their values in AR6 605 

WGI Fig. SPM.2(b) simply being given as the midpoint between the lower and upper bound of the likely range and therefore 606 

not directly comparable with the central values given for human-induced and observed warming. In order to make a meaningful 607 

and consistent comparison, and provide insight into interannual changes, an improvement is made in this update: the multi-608 

method-mean best-estimate approach is extended for all warming components. 609 

 610 

Note that in IPCC assessments, likely statements typically correspond to 66–100% probability, whereas very likely statements 611 

correspond to 90–100% probability. Despite deriving the overall multi-method uncertainty ranges from the 5-95th percentile 612 

ranges for each method, the overall uncertainty was conservatively assessed in AR6 to be likely rather than very likely, which 613 

noted that the methods may “underestimate the importance of the structural limitations of climate models, which probably do 614 

not represent all possible sources of internal variability; use too simple climate models, which may underestimate the role of 615 

internal variability; or underestimate model uncertainty, especially when using model ensembles of limited size and inter-616 

dependent models, for example through common errors in forcings across models” (Eyring et al., 2021). We maintain this 617 

choice of likely in these updates. The likely confidence of the AR6 assessment is also consistent with the likely confidence 618 

given in SR1.5 assessment - see Supplement Sect. S8.4.2. 619 

S8.4.2 Updated estimate using the SR1.5 methodology applied to the AR6 WGI datasets 620 

While a variety of literature was drawn upon for the assessment of human-induced warming in SR1.5 Chap. 1 (Allen et al., 621 

2018), only one method, the Global Warming Index (GWI), was used to provide a quantitative assessment of the 2017, 622 

“current”, level of human-induced warming. The latest results for this method were provided by Haustein et al. (2017), who 623 

gave a central estimate for human-induced warming in 2017 of 1.01 °C with a 5 %–95 % range of (0.87 to 1.22 °C). SR1.5 624 

then accounted for methodological uncertainty by rounding this value to 0.1 °C precision for its final assessment of 1.0 °C and 625 
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assessing the 0.8 to 1.2 °C range as a likely range. No assessment of the contributions from other components was provided 626 

due to limitations in the GWI approach at the time. 627 

 628 

While it is possible to continue the SR1.5 assessment approach of using a single method (GWI) rounded to 0.1 °C precision, 629 

for the purpose of providing annual updates this is insufficient; (i) 0.1 °C precision is too coarse to capture meaningful inter-630 

annual changes to the level of current warming, (ii) using different selections of methods prevents meaningful comparison 631 

between the results for decadal mean and current single-year warming calculations, and (iii) using the mean of multiple 632 

methods increases the robustness of the results. These points are simultaneously addressed in this update by adopting the latest 633 

multi-method assessment approach, as established in WGI AR6, for both the AR6 decadal mean warming update and the 634 

SR1.5 current single-year warming update. Further, where SR1.5 only provided an assessment for human-induced warming, 635 

updates in available attribution methods since SR1.5 mean that it is now also possible to provide a fully consistent assessment 636 

for all warming components. T     his update reports values in Table 6b of the main paper for the current single-year attributable 637 

warming calculated using the full SR1.5 trend-based definition       (as discussed in Sect. 8.1), with a comparison to results for 638 

the current single-year attributable warming calculated using the simple annual mean       definition      provided in           Table 639 

S5. 640 

 641 
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 642 

Figure S11 Anthropogenic warming period definitions adopted in the IPCC sixth assessment cycle. A single sampled time series of 643 
anthropogenic warming is shown in red (in this case from the GWI method – see Sect. S8.2.1). Annual-mean warming is given by 644 
the annual values of the GWI time series. The AR6 decade-average warming is given by the average of the 10 most recent annual-645 
mean anthropogenic warming values; this is depicted by the dashed green line with shading between this and the red annual-mean 646 
values. The decade-average value for 2015–2024      is given by the green dot. SR1.5 trend-based warming is given by the end point 647 
of the linear trend line through the 15 most recent annual-mean anthropogenic warming values; this is depicted by the dashed blue 648 
line with shading between this and the red annual-mean values; the trend-based value for 2024 is given by the blue dot. Reference 649 
observations of GMST are provided from HadCRUT5, with 5 %–95 % uncertainty range. In practice, the annual-mean, trend-650 
based, and decade-average calculations are applied at the level of the individual ensemble members for each of the three attribution 651 
methods; percentiles of those ensemble results provide central estimates and uncertainty ranges for each method, and the multi-652 
method assessment combines those into the final assessment results with uncertainty (as described in Sect. S8.4). For reference, the 653 
GWI results for 2024 (provided in Sect. 8.3) are annotated in the figure. 654 

S8.5 Rate of human-induced warming 655 

S8.5.1 SR1.5 and AR6 definitions of warming rate 656 

As in previous years’ assessments we use recent IPCC assessments’ definitions of anthropogenic warming rate. These follow 657 

two approaches, both of which rely to some extent on expert judgment. In SR1.5 a number of separate studies were considered, 658 
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with each study defining the rate of warming in a separate way. The SR1.5 assessment concluded that the rate of increase of 659 

anthropogenic warming in 2017 was 0.2 °C per decade, with a likely range spanning 0.1 °C to 0.3 °C per decade. In AR6 WGI 660 

the rate of anthropogenic warming utilised three methods (GWI, KCC, ROF; see definitions in Section S8.2) with the rate 661 

defined as the linear trend in the preceding decade of attributed anthropogenic warming. While best-estimate trends reported 662 

in AR6 were all higher than in SR1.5’s assessment, Eyring et al. (2021) concluded that there was insufficient evidence to 663 

change the SR1.5 assessed anthropogenic warming trend in the AR6 WGI report, which therefore remained at 0.2 °C per 664 

decade (with a likely range spanning 0.1 °C to 0.3 °C per decade). 665 

S8.5.2 Methods 666 

Following AR6’s definition, the rate of warming is defined here as the rolling 10-year linear trend in attributed anthropogenic 667 

warming, calculated using ordinary least-squares linear regression. Note that, as with the level of anthropogenic warming, this 668 

decadal approach means the rate of warming in a given year is the trend centred on the preceding decade (i.e. it is 5 years out 669 

of date). Each of the three attribution methods used to calculate the level of warming are again used here to estimate separate 670 

anthropogenic warming rates. 671 

 672 

Note that only the GWI methodology relies on the updated historical forcing timeseries presented in Sect. 5, with the other 673 

two methods (ROF and KCC) relying on CMIP6 SSP2-4.5 simulations, which are increasingly out of date (see Sect. S8.2). 674 

Very recent changes in anthropogenic forcing, for example desulphurisation of shipping fuels or the impact of COVID-19, 675 

may therefore not be captured fully in the decade-average trend. Further, the anthropogenic forcing record used for attributing 676 

warming contains small contributions from biomass burning in the natural environment, because of difficulty separating this 677 

in estimates of anthropogenic aerosol emissions. It is not expected that either of these effects substantially bias the globally-678 

averaged rate of warming estimated here. 679 

S8.5.3 Results 680 

Individual warming rate attributions are revised upwards slightly from previous years (see Table 7 in main text). For the decade 681 

2015–2024 relative to 2014–2023,      KCC      increased by 0.01 °C/decade     , GWI increased by 0.02 °C/decade, while ROF      682 

increased by 0.04 °C/decade. This increase in the ROF method’s rate principally reflects the fact that the methodology, based 683 

on a linear regression of CMIP ensemble member’s historical (plus SSP scenario projection to present day) warming onto 684 

observed GMST anomaly, is strongly influenced by residual internal variability that remains in the anthropogenic warming 685 
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signal due to the limitations in size of the CMIP ensemble, particularly given that the number of CMIP ensemble members 686 

which project ensemble members forward to 2024 is reduced compared to those running the full historical experiment.  687 

 688 
Table S6 Estimates of the rate of anthropogenic warming (in °C per decade), provided for each warming attribution method and 689 
the overall multi-method assessment. Values for individual attribution methods are calculated as defined in Sect. S8.5 (least 690 
squares fit through most recent 10-year period), with best estimates provided as the median, with the 5-95 percentile range in 691 
brackets, provided to 0.01 °C precision.  692 

Variable  Method 2010-2019 AR6 Quote  2010-2019 Repeat  2015-2024 

Rate of human-

induced 

warming 

 GWI 
0.23 [0.19 to 0.35] 0.25 [0.20      to 0.31     ] GMST 

0.26      [0.19      to 0.31     ] 
GMST 

 KCC 0.23 [0.19 to 0.29] 0.26 [0.24 to 0.32] GMST 0.27 [0.24 to 0.32] GMST 

 ROF 0.35 [0.30 to 0.41] 0.27 [0.17 to 0.38] GMST 0.42 [0.25 to 0.59] GMST 

 Assessment 0.2 [0.1 to 0.3]  0.26 [0.2 to 0.4] 0.27 [0.2 to 0.4] 

 693 
 694 
 695 
 696 

S9. Remaining carbon budget  697 

The remaining carbon budget is tabulated below for all decimals between 1.5 °C and 2 °C. In Table S7 we present results 698 

directly comparable to Table 8 of the main paper for an expanded range of probabilities and temperature limits. In Table S8 699 

we average the non-CO2 impacts as estimated by MAGICC (as in other tables) and the simple climate model FaIR. We also 700 

include an uncertainty of 0.19 °C in the post-net zero warming (ZEC) in Table S8. This corresponds to the “default update” in 701 

Lamboll et al. (2023), using the updated values for recent temperatures and emissions.  702 

Table S7 remaining carbon budgets. This is an expanded version of Table 8 in the main paper. 703 

Temperature 
(°C) 

Estimated remaining carbon budgets from the beginning of 2025 base year (GtCO2) 

Avoidance 
probability 
(TCRE 
uncertainty 

10% 17% 33% 50% 67% 83% 90% 
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only): 

1.5 460 320 200 130 80 30 10 

1.6 820 620 420 310 240 160 130 

1.7 1190 910 640 490 390 290 250 

1.8 1550 1200 860 680 550 430 370 

1.9 1920 1500 1090 860 710 560 480 

2 2290 1790 1310 1050 870 690 600 

 704 

Table S8 remaining carbon budgets, including uncertainty in ZEC and averaging results from MAGICC and FaIR for 705 

non-CO2 warming. 706 

Temperature 
(°C) 

Estimated remaining carbon budgets from the beginning of 2025 base year (GtCO2) 

Avoidance 
probability 
(TCRE and 
ZEC 
uncertainty): 

10% 17% 33% 50% 67% 83% 90% 

1.5 980 710 400 180 10 -220 -370 

1.6 1280 950 600 360 180 -50 -180 

1.7 1580 1210 800 550 350 120 -20 

1.8 1910 1470 1010 730 510 280 140 

1.9 2240 1740 1220 910 680 430 290 

2 2570 2010 1430 1090 840 580 440 

 707 

 708 
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Estimating the remaining carbon budget (RCB) requires an estimate of future non-CO2 warming. The latter estimate is derived 709 

from the emissions trajectories as modelled by internally consistent emissions scenarios. While RCB estimates are for CO2 710 

emissions only, the consideration of non-CO2 warming implies that assumptions are also made about reductions in other 711 

anthropogenic forcers (Rogelj and Lamboll, 2024). These reductions have to be kept in mind, as a shortfall in non-CO2 712 

greenhouse gas emissions would result in a smaller RCB estimate. For instance, as reported in Rogelj and Lamboll (2024), the 713 

estimate of RCBs consistent with limiting warming to 1.5 °C assumes a median reduction in CH4 emissions between 2020 and 714 

2050 of 51% (while the interquartile range across available scenarios is 47–60%), a 22% reduction between 2020 and 2050 in 715 

N2O emissions (interquartile range: 7–35%), and a 78% reduction between 2020 and 2050 in SO2 emissions (interquartile 716 

range: 74–78%). Assumed reductions consistent with other levels of warming are reproduced from Rogelj and Lamboll (2024) 717 

and provided in Table S9. The estimates reported in Table 8 of the main paper are based on the median non-CO2 emission 718 

reductions. Falling short of achieving the assumed non-CO2 greenhouse gas emissions reductions would further reduce the 719 

RCB. Sulphur dioxide emissions are more tightly co-controlled with CO2 reduction because of the phase-out of unabated fossil 720 

fuel combustion and air pollution control measures (Rogelj et al., 2014a, 2014b). A shortfall in their reductions would therefore 721 

be less conceivable in a net-zero CO2 world. 722 

Table S9 Non-CO2 reductions implied in Remaining Carbon Budget (RCB) estimates, adapted from Rogelj and Lamboll (2024). 723 
Values represent the changes in non-CO2 emissions between 2020 and 2050 consistent with the RCB estimates for 1.5°C, 1.7°C and 724 
2.0°C. The median changes are the default and marked in light blue. Any deviation from this median assumption results in an 725 
increase or decrease of the RCB estimate. 726 

Temperature level for which RCB was estimated Percentile Implied non-CO2 change between 2020 and 2050 [%] 

    CH4 N2O SO2 

1.5°C 10th -69 -47 -80 

  25th -60 -35 -78 

  50th -51 -22 -78 

  75th -47 -7 -74 

  90th -39 +2 -66 

1.7°C 10th -62 -42 -78 

  25th -53 -30 -76 
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  50th -44 -18 -73 

  75th -39 -3 -68 

  90th -31 +6 -60 

2.0°C 10th -51 -35 -75 

  25th -43 -23 -72 

  50th -34 -11 -66 

  75th -27 +2 -59 

  90th -20 +12 -51 

 727 

S10. Examples of climate and weather extremes: maximum temperature over land 728 

Land average annual maximum temperature (TXx) - Methods 729 

The choice of datasets for the analysis of land average TXx is based on a trade-off between record length, data availability, 730 

near real-time updates, and long-term support. As the indicator averages over all available land grid points, the spatial coverage 731 

should be high to obtain a meaningful average, which further limits the choice of datasets. The HadEX3 dataset (Dunn et al., 732 

2020), which is used for Fig. 11.2 in Seneviratne et al. (2021), is static and does not cover years after 2018. We therefore 733 

additionally include the Berkeley Earth Surface Temperature dataset (building off Rohde et al., 2013) and the fifth-generation 734 

ECMWF atmospheric reanalysis of the global climate (ERA5; Hersbach et al., 2020). Berkeley Earth data currently enable an 735 

analysis of annual indices up to 2023, while ERA5 covers the whole of 2024 as it is updated daily with a latency of about 5 d 736 

(and the final release occurs after 2–3 months). 737 

 738 

For HadEX3, we select the years 1961–2018, to exclude years with insufficient data coverage, and require at least 90 % 739 

temporal completeness, thus applying the same criteria as for Fig. 11.2 in Seneviratne et al. (2021). Berkeley Earth provides 740 

daily maximum temperatures, and we require more than 99 % data availability for each individual year and grid point, such 741 

that years with more than 4 missing days are removed. Based on this criterion, Berkeley Earth covers at least 95 % of the 742 

global land area from 1955 onwards. ERA5, on the other hand, has full spatio-temporal coverage by design, and hence the 743 

entire currently available period of 1950–2024 is used. The annual maximum temperature is then computed for each grid point, 744 
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and a global area-weighted average is calculated for all grid points with at least 90 % temporal completeness in the respective 745 

available period (1955–2023 and 1961–2018 for Berkeley Earth and HadEX3, while ERA5 is again not affected by this 746 

criterion). We thus enforce high data availability to adequately calculate global land averaged TXx across all three datasets, 747 

but their coverage is not identical, which introduces minor deviations in the estimated global land averages. The resulting TXx 748 

time series are then computed as anomalies with respect to a baseline period of 1961–1990. Note that the Berkeley Earth daily 749 

maximum data has been updated, with changes of several °C for individual grid points and days. These changes partially 750 

compensate such that the TXx estimates for individual years differ less than 0.1 °C. 751 

 752 

To express the TXx as anomalies with respect to 1850–1900, we add an offset to all three datasets. The offset is based on the 753 

Berkeley Earth data and is derived from the linear regression of land mean TXx to the annual mean global mean air temperature 754 

over the period 1955–2020. The offset is then calculated as the slope of the linear regression times the global mean temperature 755 

difference between the reference periods 1850–1900 and 1961–1990 (see Fig. S12). The updated Berkeley Earth data led to a 756 

change in offset of 0.01°C compared to Forster et al. (2024). 757 

 758 
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 759 
 760 
Figure S12 Calculation of relationship between land mean annual maximum temperature (TXx) and global mean temperature. This 761 
is used to determine the TXx offset between 1850–1900 and 1961–1990. A linear regression of TXx as a function of global mean 762 
temperature from Berkeley Earth is fitted to data from 1955–2020. The TXx offset of 0.51 °C is then obtained by multiplying the 763 
slope of the linear regression (1.23 °C / °C) with the global mean temperature difference between 1850–1900 and 1961–1990 (0.42°C).  764 
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