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Abstract. The turnover time (τ ) of global soil organic carbon is central to the functioning of terrestrial ecosys-
tems. Yet our spatially explicit understanding of the depth-dependent variations and environmental controls of
τ at a global scale remains incomplete. In this study, we combine multiple state-of-the-art observation-based
datasets, including over 90 000 geo-referenced soil profiles, the latest root observations distributed globally, and
large numbers of satellite-derived environmental variables, to generate global maps of apparent τ in topsoil (0–
0.3 m) and subsoil (0.3–1 m) layers, with a spatial resolution of 30 arcsec (∼ 1 km at the Equator). We show that
subsoil τ (3853485

20 years (mean, with a variation range from the 2.5th to 97.5th percentile)) is over 8 times longer
than topsoil τ (15137

11 years). The cross-validation shows that the fitted machine learning models effectively cap-
tured the variabilities in τ , with R2 values of 0.87 and 0.70 for topsoil and subsoil τ mapping, respectively. The
prediction uncertainties of the τ maps were quantified for better user applications. The environmental controls
on topsoil and subsoil τ were investigated at global, biome, and local scales. Our analyses illustrate the ways in
which temperature, water availability, physio-chemical properties, and depth jointly exert impacts on τ . The data-
driven approaches allow us to identify their interactions, thereby enriching our comprehension of mechanisms
driving nonlinear τ–environment relationships at global to local scales. The distributions of dominating factors
of τ at local scales were mapped for purposes of identifying context-dependent controls on τ across different re-
gions. We further reveal that the current Earth system models may underestimate τ by comparing model-derived
maps with our observation-derived τ maps. The resulting maps, with new insights, as demonstrated in this study,
will facilitate future modelling efforts relating to carbon cycle–climate feedbacks and support effective carbon
management. The dataset is archived and freely available at https://doi.org/10.5281/zenodo.14560239 (Zhang,
2025a).
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1 Introduction

As the largest active reservoir of organic carbon in terres-
trial ecosystems, soils are integral to the global carbon cycle
(Schimel, 1995; Batjes, 1996; Smith et al., 2024). Plants cap-
ture CO2 from the atmosphere through photosynthesis and
transfer carbon into soils through litterfall and root exudates.
This carbon is then cycled back to the atmosphere through
heterotrophic respiration by organic matter decomposers, a
process governed by decomposition rates (Balesdent et al.,
2018). The turnover time of soil organic carbon (SOC), de-
noted as τ (in years), is the average time that organic carbon
molecules remain in the soil (Six and Jastrow, 2002; Sierra
et al., 2017). This turnover time is a critical factor in de-
termining the size of soil carbon pools (Sierra et al., 2017;
Crowther et al., 2019b). Understanding the spatial variation
in τ and the underlying environmental drivers is therefore
crucial for comprehending the scale and dynamics of terres-
trial carbon storage under current and future climate change
scenarios (Torn et al., 1997, 2009; Field et al., 2014).

Several studies have estimated the global apparent carbon
turnover times in whole terrestrial ecosystems (Carvalhais et
al., 2014; Fan et al., 2020). Nevertheless, the detailed patterns
of τ in soil systems at the global scale remain to be eluci-
dated. Much work has focused on shallow soil horizons due
to the higher carbon content and the greater availability of
data in topsoils (e.g. Crowther et al., 2016; Luo et al., 2017;
Viscarra Rossel et al., 2019; Wu et al., 2021). However, cap-
turing the biogeographic variability of carbon dynamics in
deeper soil layers is emerging as a critical area of research
(Hicks Pries et al., 2023) as, there, the environmental sensi-
tivities of SOC can differ substantially from those in surface
layers (Rumpel and Kögel-Knabner, 2011; Hicks Pries et al.,
2017; Luo et al., 2019; Soong et al., 2021; Zosso et al., 2023).
To enhance our understanding of soil carbon turnover and to
address these issues, there is a clear need for a global anal-
ysis of τ that considers both topsoil and subsoil layers and
for the provision of spatially explicit τ maps. Such an analy-
sis should leverage the latest and most comprehensive global
soil profile datasets available, enabling more reliable assess-
ments of and insights into terrestrial carbon sink potential.

The ensemble of the latest datasets also supports a more
nuanced understanding of the environmental controls on τ ,
particularly with regard to their potentially nonlinear or dis-
tinct effects across different spatial scales and soil depths.
Previous studies have shown evidence that the turnover time
of SOC is negatively correlated with temperature and pre-
cipitation (Davidson and Janssens, 2006; Chen et al., 2013;
Wang et al., 2018) and that subsoil carbon may be particu-
larly sensitive to temperature fluctuations (Jia et al., 2019;
Soong et al., 2021; Chen et al., 2023). Yet, other studies
could not confirm this strong climatic dependency (Giar-
dina and Ryan, 2000; Doetterl et al., 2015), suggesting a

predominant influence of soil properties on subsoil carbon
turnover times in certain regions or over decadal timescales
(Luo et al., 2019). This inconsistency underscores the need
for a multifaceted approach to quantify the effects of multi-
ple factors on τ , particularly the interactions between climate
and edaphic factors across different spatial scales and soil
depths (Schmidt et al., 2011). Comprehensive assessments at
the global, biome, and local levels will be crucial to identify
the primary controls of τ in both topsoil and subsoil layers.
Moreover, observation-based global estimates of τ are essen-
tial for simulating the global carbon cycle (Todd-Brown et
al., 2013; Friend et al., 2014; Varney et al., 2022). An accu-
rate representation and deeper understanding of the environ-
mental controls of τ – spanning diverse spatial scales and soil
depths – will be integral to benchmarking current Earth sys-
tem models (ESMs) and reducing bias in future carbon cycle
projections.

This study aims to develop a global estimation of τ by in-
tegrating the state-of-the-art soil and root profile databases
with satellite-derived environmental observations. The col-
lected datasets allowed us, firstly, to estimate τ at over 90 000
global sampling sites, and then we used machine learning
methods to generate a spatially explicit understanding of
global SOC turnover times in the topsoil (0–0.3 m) and sub-
soil (0.3–1 m). To comprehend the interactive mechanisms
among multiple environmental drivers that have shaped vari-
ations in topsoil and subsoil τ at the global, biome, and local
scales, we used data-driven approaches to characterize the di-
rectional contributions of climate, topography, and the phys-
ical and chemical properties of soil to explain τ patterns. We
further quantified the uncertainty maps for better user appli-
cations and compared our observation-derived τ with ESM-
derived τ in terms of both spatial variabilities and climatic
dependencies.

2 Materials and methods

2.1 Estimation of τ in topsoil and subsoil layers

The SOC turnover time (τ ) we estimated in this study is the
mean transit time of carbon (i.e. the time that the newly en-
tered carbon spends in soils until it leaves) (Six and Jastrow,
2002; Sierra et al., 2017). When assuming a steady state and
homogeneity of the system, in which all particles have the
same probability of leaving at any time, τ can be defined
as the ratio between SOC stock (SOCS) to the input or out-
put flux of carbon (τ = SOCS/flux), which can be called the
apparent turnover time (Carvalhais et al., 2014; Fan et al.,
2020). We estimated the SOC stock (see Sect. 2.1.1) and
vertical allocation of carbon input in two soil layers (see
Sect. 2.1.2) and then combined them to calculate topsoil and
subsoil τ at all soil profile locations. We then adopted the
point-level estimates to map τ variation across the globe.
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2.1.1 Estimation of SOC stocks based on soil sample
databases

Soil sample data were mainly collected from the standard-
ized soil profile database provided by the World Soil Infor-
mation Service (WoSIS) (Batjes et al., 2020). The Northern
Circumpolar Soil Carbon Database (NCSCD) (Hugelius et
al., 2013) was incorporated to supplement samples across the
high latitudes of the Northern Hemisphere. In addition, the
soil sample data from the project of the National Soil Survey
of China were incorporated (Zhang et al., 2013; Liu et al.,
2022). To minimize bias due to erroneous and/or uncertain
measurements, we removed samples (i) with low accuracy
of the geographical coordinates (i.e. the information of de-
gree, minute, and second is not fully provided in the source),
(ii) located in areas with exceptionally low NPP (net primary
productivity) estimates (below 10 gCm−2 yr−1), (iii) with
low-quality NPP estimates (if the quality control value is
larger than 50 %), and (iv) with layer observations flagged
as surficial litter. Finally, a total number of 95 200 and 66 807
geo-referenced sampling locations providing topsoil and sub-
soil information were collected for this study (Fig. 1). The es-
timation of SOC stock (SOCS, kgCm−2) for each soil sam-
ple site at a certain depth interval between the upper depth
(Du, m) and lower depth (Dl, m) can be computed as fol-
lows:

SOCSDu−Dl = SOCDu−Dl ·BD ·
(

1−
CF
100

)
· (Du−Dl), (1)

where SOCDu−Dl is the SOC content (gkg−1) in a certain
range of soil depths, BD is the soil bulk density (gcm−3), and
CF is the percentage of coarse fragments in the entirety of the
soil (%). We adopted an approach described in Sect. S1 in the
Supplement to fill the missing values by using a specific pe-
dotransfer function depending on the SOC content and the
considered layer. When CF was missing, we extracted the
corresponding data from their respective locations on the lat-
est version of the SoilGrids maps (Poggio et al., 2021). The
equal-area spline algorithm was employed to fit observations
along depths (Bishop et al., 1999; Malone et al., 2009). The
average of fitted values was adopted to estimate the SOCS
in the topsoil and subsoil layers for each profile (Fig. S1 in
the Supplement). The probability distributions of SOCS, BD,
and CF in different biomes are shown in Figs. S2–S4.

2.1.2 Estimation of carbon allocation belowground

Carbon influx at each soil layer comes from vertical alloca-
tion of the amount of net primary productivity (NPP). This
involves the estimation of aboveground and belowground
NPP and NPP allocation into different soil layers. The annual
NPP (kgCm−2 yr−1) produced by the Moderate Resolution
Imaging Spectroradiometer (MODIS) was collected at each
sample location (Running and Zhao, 2019). The MOD17 ver-
sion 6 product (https://ladsweb.modaps.eosdis.nasa.gov, last

access: 1 January 2025) was used in this study. The mean of
annual NPP from 2001 to 2019 was computed to represent
the general status of each sample location. Then, we used the
biomass ratio between roots and shoots (root-to-shoot ratio,
RSR) as a proxy to estimate the amount of NPP allocated to
soils as this is generally a realistic estimation for the mean
long-term NPP partitioning (Gower et al., 1999). The frac-
tion of belowground NPP can be estimated as the root mass
fraction (RMF):

RMF=
RSR

RSR+ 1
. (2)

The RSR value at each sample location was collected from
the harmonized global maps of aboveground and below-
ground biomass carbon density (Spawn et al., 2020). The
biome-specific variabilities of RMF are shown in Fig. S5.

We used the vertical root biomass distribution to represent
the belowground NPP partitioned into different soil depths
(Luo et al., 2019; Xiao et al., 2022, 2023). The root distri-
bution information was obtained from the 564 global root
profiles compiled by Schenk and Jackson (2002). The logis-
tic dose–response curve function was used to estimate the
cumulative amount of root mass r(D) above a certain soil
depth D (m):

r(D)=
Rmax

1+
(
D
D50

)c , (3)

where Rmax represents the total root mass, D50 is the depth
at which r(D) equals half of Rmax, and c is a dimensionless
shape parameter; regarding the latter, the reader can refer to
Schenk and Jackson (2002) for details. The fraction of roots
in a certain soil layer between Du and Dl (frDu−Dl ) can be
estimated as follows:

frDu−Dl =
rDl

Rmax
−
rDu

Rmax

=
1

1+
(
Dl
D50

)c − 1

1+
(
Du
D50

)c . (4)

This root profile dataset has been used to analyse the be-
lowground NPP allocation in several previous studies (Luo
et al., 2019; Shi et al., 2021). In our study, we extended
these data by using the latest Root Systems of Individual
Plants (RSIP) database and the Global Root Traits (GRooT)
database, which include information regarding the maximum
belowground extents of terrestrial plants (Guerrero-Ramírez
et al., 2021; Tumber-Dávila et al., 2022). Assuming that the
root distribution is proportional to its morphological distri-
bution (Bardgett et al., 2014; Tumber-Dávila et al., 2022),
we used the form trait of roots, the maximum rooting depth
(Dmax), to generate an alternative representation of the root
distribution. A total of 1732 geo-referenced measurements
were collected, with descriptions of rooting depth from the

https://doi.org/10.5194/essd-17-2605-2025 Earth Syst. Sci. Data, 17, 2605–2623, 2025

https://ladsweb.modaps.eosdis.nasa.gov


2608 L. Zhang et al.: Mapping global distributions of apparent topsoil and subsoil organic carbon turnover times

Figure 1. Spatial distributions of geo-referenced soil samples used in the study across global biomes. A total of 95 200 (a) (for topsoil) and
66 807 (b) (for subsoil) sampling sites were collected from multiple soil profile databases. The bar plots show the sample size within each
biome.

above two databases. The vertical root distribution can be es-
timated according to a commonly used asymptotic equation
(Gale and Grigal, 1987; Jackson et al., 1996; Zeng, 2001):

CRF(D)= 1−βD, (5)

where CRF is the cumulative root fraction from the surface to
soil depthD in centimetres, and β is the estimated parameter
which controls the decreasing rate of root mass with increas-
ing soil depth (Gale and Grigal, 1987; Zeng, 2001). Finally,
the fraction of roots in a certain soil layer between the up-
per and lower depths (frDu−Dl ) can be quantified as follows:
CRF(Dl)−CRF(Du). An illustration of the root distribution
estimation using the above approach is shown in Fig. S6.

Hence, the global distributions of all root profiles that
characterize the fraction of roots in the two layers were cal-
culated and are shown in Fig. S7. Given that root distribution
is generally related to the biome, vegetation type, and soil
conditions (Jackson et al., 1996; Schenk and Jackson, 2005),
we apply the arithmetic mean of frDu−Dl from root profile
observations within the same terrestrial ecoregions (Diner-
stein et al., 2017) and soil types (FAO–UNESCO, 1990) as
the soil sample (Figs. S8 and S9).

It is also necessary to consider the vertical physical
transportation of organic carbon, such as through leaching
and/or bioturbation. We followed the function designed in
a previous model that includes vertical transport of SOC
(Braakhekke et al., 2011; Koven et al., 2013; Sierra et al.,
2024):

V (D)= Diff
∂2C

∂D2 , (6)

where V is the transported SOC stock (V ) in a certain layer;
C is the organic carbon content, which is defined volumet-
rically (kgm−3), at the depth D; and Diff is the diffusivity,
which is constant and set to be 1× 10−4 m2 yr−1 in accor-
dance with previous studies (Koven et al., 2013; Sierra et al.,
2024). Thus, the belowground NPP (BNPP) in a certain soil
layer can be estimated as follows:

BNPPDu−Dl = NPP ·RMF · frDu−Dl +VDu−Dl . (7)

For topsoil, carbon inputs also contain a portion of carbon
from surface litterfall, which should also be considered. First,
the RSR dataset was adopted to support us in obtaining the
aboveground NPP (ANPP). As a decent fraction of NPP was
removed as the harvest product in croplands, we performed
a specific calculation procedure to estimate the aboveground
carbon input in this region, as described in Sect. S2. Second,
we used two databases including measurements of above-
ground litterfall across the globe (Holland et al., 2015; Jia
et al., 2016) to estimate the fraction of aboveground NPP
(ANPP) converted into litterfall. Then, we determined the
fraction of litterfall allocated as the carbon input into top-
soil according to the decomposition processes described in
the Community Land Model (Oleson et al., 2013). The de-
tails of the calculations related to the fraction of ANPP that
was transferred as carbon input into the topsoil (denoted as
fra) are described in Sect. S3.

Therefore, the carbon input flux between upper (Du) and
lower depths (Dl) can be estimated as follows (the biome-
specific variabilities of this variable are shown in Fig. S10):

fluxDu−Dl = BNPPDu−Dl + fra ·ANPP. (8)

Combining the estimated SOC stock (Eq. 1) and carbon al-
location belowground (Eq. 8) with the equation of apparent
τ , the values of τ in the topsoil and subsoil layers were calcu-
lated at all sample locations across the globe and are shown
in Fig. S11. Table S1 in the Supplement shows the details of
the datasets used to calculate τ for all samples.

2.2 Geospatial mapping of τ

The machine-learning-based method was adopted to gener-
ate the spatially explicit maps of τ in the two soil layers. For
the procedure of geospatial predictive mapping illustrated in
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Fig. S12, we used the random forest (RF) model to establish
the relationship between τ and potentially related geograph-
ical variables (i.e. environmental covariates) for mapping the
global distribution of τ with a quantification of uncertainty.
The advantage of RF is the incorporation of randomized fea-
ture selection and training sample selection (Breiman, 2001),
such that it can reduce the overfitting risk and lead to a good
ability in terms of generalization. This model has been effec-
tively applied to large datasets for geospatial mapping tasks
at large scales (van den Hoogen et al., 2019; Ma et al., 2021;
Poggio et al., 2021; Guo et al., 2025). There are two impor-
tant user-defined parameters when using the RF model. The
first is the number of covariates that are randomly selected
for each tree-building process. We used the rounded-down
square root of the total number of covariates as this parameter
value by default. The second parameter is the number of trees
to be learned in RF. We set this value to be 200 considering
the fact that previous soil mapping studies have shown that
a number of trees larger than 150 is sufficient to obtain sta-
ble results (Wadoux, 2019; Zhang et al., 2021). The covari-
ates, including climate, soil physical properties, soil chemi-
cal properties, and topography, were collected (Table S2 and
Figs. S13–S18). These covariate maps were overlaid and thus
allowed us to predict τ at the global scale with a spatial res-
olution of 30 arcsec (∼ 1 km2 at the Equator). Considering
the fact that some regions covered by organic soils cannot be
well represented when using our method to generate estima-
tions, we masked these regions according to the definition of
organic soil in Brady and Weil (1999).

2.3 Analysis of environmental controls

To investigate the environmental controls of the spatial dis-
tribution of τ in the two layers, the RF model was adopted
based on all soil sample data to quantify the relative im-
portance (RI) of each covariate at the global scale. We used
permutation-based feature importance as the metric to assess
RI (Altmann et al., 2010) (see Sect. S4).

The directional effects of important environmental fac-
tors on τ were investigated by using the partial-regression
model to calculate the partial correlations of topsoil and sub-
soil τ with the six top-ranked environmental variables from
RF modelling, as mentioned above. The analysed variables
are the mean annual temperature (MAT) and precipitation
(MAP), the fine-particle size fraction (CLAY+SILT), the ra-
tio of organic carbon to total nitrogen (C : N), the cation ex-
change capacity of the soil (CEC), and the soil pH. The par-
tial correlation of each influencing factor was calculated at
the mean level while controlling for other factors.

The potential for non-significant effects of a variable (e.g.
the global impact of precipitation) on τ in a global-level lin-
ear model does not necessarily imply that the respective vari-
able has no influence on τ . Instead, this lack of significance
may arise from its divergent effects when interacting with
other factors. This has led to an interest in exploring the rea-

sons behind such nonlinear and incoherent driving mecha-
nisms. Considering the fact that the extrinsic climate effects
on soil carbon turnover can interact with regionally intrin-
sic soil characteristics (Doetterl et al., 2015), we used the
approach outlined in Sect. S5 to exemplify the interactive ef-
fects of MAT and MAP on topsoil and subsoil τ in response
to the changes in other factors (namely interactive factors). In
addition to the overall importance of covariates analysed at
the large scale, the local-level importance for four categories
of variables was also assessed (see Sect. S6).

2.4 Evaluation of mapping results

2.4.1 Assessment of accuracy by cross-validation

The mapping accuracy was assessed by using a 10-fold cross-
validation. The total sample data were divided into 10 equally
sized subsets, and samples of each biome in each subset had
the same proportion as in the whole dataset. Nine folds were
used as the training data to fit the model, and the prediction
was validated based on the one remaining fold. This proce-
dure was carried out 10 times, each time using a different
fold for validation. The mean values of the coefficient of de-
termination (R2) and the root mean squared error (RMSE)
for all folds were computed as the final accuracy metrics for
the assessment of mapping results.

2.4.2 Quantification of uncertainty

To evaluate the uncertainty of predictive maps of τ , we con-
sidered two sources of error. One is the model error, which
refers to the covariates that do not fully explain the variations
in τ and the error in the estimation of the model parameters.
Another is the measurement error, which represents the dif-
ference between the actual and recorded values of input vari-
ables related to τ calculation. To account for the modelling
uncertainty, we adopted quantile regression forests (QRFs)
(Meinshausen, 2006; Hengl et al., 2018) to derive prediction
intervals. QRFs first construct an RF model in the usual way,
namely by developing multiple decision trees that use sub-
sets of the training data, whereby the prediction of each tree
equals the average of the observations in the end node of the
tree in which the prediction point sits. The RF prediction is
the average of all tree predictions. Since averaging is a lin-
ear process, the RF prediction boils down to a weighted sum
over the n observations of the response variable:

ŷ(x)=
n∑
i=1

wi(x) · yi . (9)

In QRFs, the weights wi(x) are used to estimate the cu-
mulative distribution F (y|x)= P (Y ≤ y|x) of the response
variable Y , given the covariate data x, as follows:

F̂ (y|x)=
n∑
i=1

wi(x) · 1{yi≤y}, (10)
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where 1{yi≤y} is the indicator function (i.e. it is 1 if the con-
dition is true and 0 otherwise). Any quantile q of the distri-
bution can then be derived by iterating towards the value of
y for which F̂ (y|x)= q.

We used the R package ranger (Wright and Ziegler, 2017)
with the function quantreg to build the QRF models. Using
this function, the prediction values at each location can be ob-
tained, and the 0.05th quantile (q0.05), 0.50th quantile (q0.50),
and 0.95th quantile (q0.95) can also be computed to derive
the lower limit, median, and upper limit of a symmetric 90 %
prediction interval. This interval has also been adopted for
uncertainty assessment in GlobalSoilMap specifications (Ar-
rouays et al., 2014) and the SoilGrids product (Poggio et al.,
2021).

The uncertainty from the input data in the calculation of
τ was also considered. When calculating τ for each sample,
four input variables (SOCS, NPP, RMF, and frDu−Dl ) intro-
duced uncertainty due to errors in the soil measurements and
in the estimation of carbon allocation belowground. Errors
in these input variables will propagate into the output of τ
estimation. To incorporate the error propagation from these
inputs into the uncertainty evaluation, the standard deviation
(SD) of each input at each sample location needs to be quan-
tified. Here, as the calculation of τ is a simple arithmetic
function, the SD of the estimated τ for each sample can be
calculated as follows, ignoring the cross-correlation among
those inputs (Heuvelink, 1998):

SDf =

√√√√√√
(
∂f
∂I1

)2
SD2

I1
+

(
∂f
∂I2

)2
SD2

I2

+. . .+
(
∂f
∂Im

)2
SD2

Im

, (11)

where SDf represents the SD of the output value calcu-
lated by the function f , and I1, I2, and Im represent the
first, second, andmth input variables, respectively. For RMF,
we directly used the uncertainty maps provided by Spawn
et al. (2020). The SD of SOCS was obtained from Poggio
et al. (2021) when SOCS was supplemented by extracting
values from the SoilGrids maps. For quantifying the SD of
frDu−Dl , the SD of all selected root profile observation val-
ues for each soil sample site was adopted to represent its un-
certainty. For NPP, most MODIS NPP values are within the
mean ±1 SD of the respective values observed from the flux
tower (Reichstein et al., 2002), based on which we define
the uncertainty of NPP values. The relationships between the
estimated values of τ and their corresponding SD for all sam-
ples are shown in Fig. S19. After quantifying the SD of the
estimated τ at each sample location, a Monte Carlo approach
was adopted to incorporate the SD into the estimated τ for
each sample. That is, the value of τ at each sample location
was randomly drawn 100 times from a normal distribution
given the known mean and SD. Then, all generated samples
were used to fit a QRF model and to produce the uncertainty
maps.

To visualize the spatial distribution of the prediction un-
certainty, we calculated the prediction interval ratio (PIR),
defined as the ratio of the range between lower and upper
limits over the median:

PIR=
q0.95− q0.05

q0.50
. (12)

A lower PIR indicates higher confidence in the predictions,
while a higher PIR suggests greater uncertainty.

We further assessed the quality of the estimated predic-
tion uncertainty through an accuracy plot approach by cal-
culating the prediction interval coverage probability (PICP)
(Goovaerts, 2001). PICP is a metric used for evaluating the
reliability of uncertainty quantifications by measuring the
proportion of observed values that fall within a given pre-
diction interval. It can effectively evaluate whether the prob-
ability assigned to the prediction intervals is equal to the fre-
quency of empirical test data within the prediction intervals
(Malone et al., 2011; Schmidinger and Heuvelink, 2023).

3 Results and discussion

3.1 Accuracy assessment

The cross-validation demonstrated that the machine learning
models can effectively capture a substantial proportion of τ
variations, achieving R2 values of 0.87 and 0.70 and RMSE
values of 14.60 and 175.05 for the topsoil and subsoil τ
predictions, respectively (Fig. 2). More accuracy metrics are
shown in Table S3. Relatively higher model performance was
found in boreal and tundra areas for topsoil and in grasslands
and shrublands in warm regions for subsoil, while low model
performance was found in temperate forests, croplands and
wetland areas for the subsoil layer (Figs. S20 and S21). This
is probably because soils in these regions constitute some of
the most diverse soil landscapes compared to the pedogenet-
ically similar and more climate-driven soils in high-latitude
regions and the more weathered homogenous soils dominat-
ing many tropical lowland areas.

3.2 Global distributions of τ in topsoil and subsoil

The spatially continuous maps of global topsoil and subsoil
τ are shown in Fig. 3. On average, the global τ in the top-
soil was 45 years, ranging from 11 years (2.5th percentile)
to 137 years (97.5th percentile). The average subsoil τ was
385 years, ranging from 20 to 3485 years (Table 1). On a
global scale, subsoil SOC turnover time was over 8 times
longer than that in topsoil. The values of τ generally in-
creased from low to high latitudes, and this latitudinal pat-
tern was more pronounced in the Northern Hemisphere than
in the Southern Hemisphere, and it was more evident in the
subsoil than in the topsoil layer (Fig. 3b and d). In tropi-
cal forests, the average turnover times were shortest, with
approximately 25 and 74 years in the topsoil and subsoil,
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Figure 2. Validation plots for predictions of soil organic carbon turnover time (τ , years) in topsoil (a) and subsoil (b) layers. Predictions
were generated using random forest regression models. Grey dots are the estimated τ values based on observations for soil profiles and the
predicted values for all validation samples using 10-fold cross-validation. Coloured points represent the biome-level validation plot. Error
bars show 95 % confidence intervals of τ in each biome. Black lines indicate the regression lines between predicted and measured values.
Axes are log10-transformed to account for high skewness of τ .

Table 1. Global- and biome-level statistics of the soil organic carbon turnover time (τ , years) in topsoil (0–0.3 m) and subsoil (0.3–1 m)
layers.

Biome type Topsoil τ Subsoil τ

P 2.5 Mean P 97.5 P 2.5 Mean P 97.5

Global 11 45 137 20 385 3485
Tropical forests 12 25 46 27 74 155
Temperate forests 15 36 69 17 95 322
Boreal forests 27 58 123 47 530 2569
Tropical savannahs and grasslands 8 31 116 14 101 628
Temperate grasslands and shrublands 10 43 130 18 120 403
Deserts and xeric shrublands 16 43 100 30 170 1250
Tundra 44 91 220 117 1920 7505
Croplands 4 29 64 8 78 204
Wetlands 12 50 187 22 510 5304
Non-permafrost 9 33 82 17 98 377
Permafrost 33 75 188 63 1111 5836

Note that P 2.5 and P 97.5 represent the range of τ between the 2.5th and 97.5th percentiles in each biome based on the
aggregation of all estimated τ at the pixel level.

respectively. The turnover times in temperate, desert, and
cropland areas for topsoil and subsoil layers were around
29–43 years and 78–170 years, respectively. The longest
turnover times were found for tundra regions, with averages
of longer than 90 and 1900 years for the topsoil and subsoil
layers, respectively. Boreal forests and wetlands also show
long carbon turnover times, with average values of over 50
and 500 years, respectively. As such, the differences in aver-
age turnover times between the warmest and coldest biomes
were more than 60 and 1800 years for topsoil and subsoil
layers, respectively.

The uncertainty maps quantified for the topsoil and subsoil
are shown in Fig. 4. Uncertainties in subsoil τ predictions
were generally higher than those in topsoil τ predictions,
likely due to the fewer horizontal observations in the deep
layers. Wide prediction intervals were mostly found in areas

with low sampling density, such as deserts and permafrost
regions. According to the PICP calculation results, the accu-
racy plots (Fig. S22) show that the proportion of observed
τ values in the validation set as covered in a certain predic-
tion interval approximately equal the size of that probability
interval, which validates the unbiased quantification of un-
certainty.

3.3 Environmental controls of topsoil and subsoil τ

3.3.1 Global- and biome-level analyses

The relative importance and directional effects of climate,
soil (divided into physical and chemical properties), and to-
pographic factors in relation to τ variation at global and
biome scales were analysed (Figs. 5, S23, and S24). The re-
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Figure 3. Global patterns of topsoil and subsoil organic carbon turnover times (τ , years). Global distributions of τ in topsoil (0–0.3 m) (a)
and subsoil (0.3–1 m) (c) layers. The predicted maps, with a spatial resolution of 30 arcsec (∼ 1 km at the Equator), were generated with
τ–environment relationships using a machine learning model trained on global soil profile observations and their environmental covariates.
(b, d) Latitudinal patterns of topsoil and subsoil τ . Orange and blue lines represent the average τ in topsoil and subsoil, respectively, with
latitude. The shaded grey areas represent the variations in τ between the 2.5th and 97.5th percentiles with latitude. (e, f) Average τ of the
two layers in different main biomes. Error bars show the 95 % confidence intervals of the spatial predictions within each biome.
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Figure 4. Uncertainty maps of predicted soil organic carbon turnover time (τ ) in topsoil (a) and subsoil (b) layers. The uncertainty was
quantified by using quantile regression forests. The values shown in the maps represent the prediction interval ratio (PIR), which is the ratio
of the range between the lower and upper limits (90 % prediction interval bounded by the lower (0.05th quantile) and upper (0.95th quantile)
limits) over the median (0.50th quantile) of the predictions.

sults suggest scale and depth dependency in the drivers of soil
turnover times. While climate was found to be the primary
driver (explaining nearly half of the total variation) of topsoil
τ at the global scale, the intrinsic soil characteristics (61 %)
were more important than climate (32 %) for the subsoil τ
(Figs. S23a and S24a). This supports recent studies suggest-
ing that soil turnover in deeper layers is less controlled by cli-
matic factors (Luo et al., 2019; Chen et al., 2021; Han et al.,
2022) and more controlled by soil properties (Mathieu et al.,
2015; Luo et al., 2019). Importantly, by separating soil fac-
tors into soil physical (represented by the fine-particle size
fraction (CLAY+SILT)) and chemical categories (including
C : N, CEC, and soil pH), our study revealed that the topsoil τ
is more influenced by soil physical properties than by chem-
ical properties (33 % versus 15 %). However, for subsoil τ ,
soil physical properties are less important than soil chemi-
cal properties (27 % versus 39 %). These results support the
finding that, in addition to the direct control of climate, the
pedologic traits and geochemistry of soils exert an equivalent
or even stronger control on τ at the global scale (Davidson
and Janssens, 2006; Doetterl et al., 2015, 2016).

In different biomes and at different soil depths, the effects
of MAT and MAP show different magnitudes or even op-
posite directions (Fig. 5a and b). Although a general nega-
tive effect of MAT on τ has been found in a previous meta-
analysis (Chen et al., 2013), our results show that such an
effect was reduced and even changed to be positive in trop-
ical regions (Fig. 5a). This can be attributed to the contrast-
ing relationships of NPP with temperature between tropical
and extratropical regions, stemming from their distinct lim-
iting factors affecting plant growth (Fig. S25) (Chapin et al.,
2011; Slot and Winter, 2016). In addition, the effect of MAP
on τ was not significantly linear at the global scale. This
is inconsistent with a previously detected negative relation-
ship (Schimel et al., 1994; Chen et al., 2013) but supports
a recent global study that detected a nonlinear relationship
between τ and hydrometeorological conditions (Fan et al.,

2022). Such previous discrepancies can be explained by con-
trasting the effects of MAP across different biomes (Fig. 5b).
While warm forests and croplands exhibit significant posi-
tive effects, notable negative effects are shown in tropical sa-
vannahs and grasslands and in arid regions. Additionally, it
is shown that MAP negatively impacts subsoil τ in both bo-
real forests and temperate grasslands and shrublands, but this
effect was not significant for topsoil. These τ–climate pat-
terns highlight the nonlinear effects of temperature and wa-
ter availability on τ globally and the different driving mech-
anisms across biomes.

Our analyses further revealed that soil physical and chem-
ical properties have comparable or greater effects on τ than
climatic effects at global and biome scales (Fig. 5c–f). For
soil physical properties, as represented by CLAY+SILT, the
fine-particle size fraction in soils was positively related to τ
in general (Fig. 5c). This is mainly because soils dominated
by finer particles tend to stabilize SOC by means of physi-
cal and organo-mineral stabilization mechanisms, while the
well-drained sandy soils generally provide limited protection
of SOC against microbial decomposition (Krull et al., 2003;
Lützow et al., 2006; Cotrufo et al., 2019). The relatively
higher effects of CLAY+SILT on subsoil τ than on topsoil τ
(except in croplands) further indicate that mineral-associated
and physically protected SOC in deep layers may play a cru-
cial role in stabilizing SOC stocks and, consequently, may
decrease climate sensitivity (Gillabel et al., 2010; Qin et al.,
2019).

Among the effects of soil chemical properties, the C : N
ratio plays a key role in regulating subsoil τ , ranking as the
most influential soil factor (Fig. S24a). The positive impact
of C : N was observed in all biomes for subsoil and specifi-
cally in boreal forests, temperate grasslands, deserts, and tun-
dra for topsoil (Fig. 5d). However, the effects of C : N were
not found to be significant for topsoil τ , and it is even shown
that there is a negative impact in tropical and cropland re-
gions. This finding implies that, in general, nutrient limita-
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Figure 5. Relationships between environmental variables and soil organic carbon turnover time (τ ) in topsoil and subsoil layers. Effects of
six important variables on τ are shown for the global and biome levels. Values in the bar plots represent coefficients between τ and each
variable from the partial-regression model, where positive or negative values indicate a positive or negative effect on τ , respectively. MAT
denotes mean annual temperature, MAP denotes mean annual precipitation, CLAY+SILT denotes fine-particle size fraction (the sum of clay
and silt content), C : N denotes ratio of organic carbon to total nitrogen, CEC denotes cation exchange capacity of the soil, and pH denotes
soil pH. *P < 0.001.

tions decrease soil respiration and extend carbon residence
times by favouring the establishment of slow-decomposing
organisms or reducing organic matter quality (Crowther et
al., 2019b; Li et al., 2012; Zhou et al., 2007). Whilst this ef-
fect is pronounced in the subsoil layer, it cannot be straight-
forwardly generalized to the topsoil in the tropics and in
human-impacted regions. The factor of CEC showed a gen-
erally positive impact on τ in forests and croplands, but its
effect was weaker in other biomes (Fig. 5e). Soil pH shows
a non-significant linear correlation with τ globally, yet it ex-
hibits divergent influences across different biomes and soil
depths (Fig. 5f). It has a positive impact on τ in warm forests
and on subsoil τ in temperate grasslands and croplands. Con-
versely, in boreal forests, tropical grasslands, and arid re-
gions, it more negatively impacts τ in topsoil.

In addition to the climate and soil factors, topogra-
phy can influence τ by affecting soil moisture distribution,
drainage conditions, and permafrost dynamics. Our analy-
sis (Figs. S23h and S24h) indicates that topographic vari-

ables contribute significantly to τ variability in tundra re-
gions. This might be related to previous studies that found
that terrain-driven hydrological differences strongly influ-
ence permafrost carbon stability (Schuur et al., 2008; Mishra
et al., 2021). This also aligns with research showing that mi-
crotopographic variations, such as polygonal tundra struc-
tures, create distinct carbon accumulation and decomposition
regimes, further influencing SOC turnover times (Jorgenson
et al., 2010; Liljedahl et al., 2016).

3.3.2 Interactive effects of climatic and edaphic factors
on τ

The detected relationships between environmental factors
and τ prompted us to delve deeper into the nonlinear driv-
ing mechanisms. We aimed to uncover potential interactions
among the primary climatic and edaphic drivers that might
be masked by analysing the directional effects of only a sin-
gle variable. We illustrate how fluctuations in one climatic
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Figure 6. The climatic effects on topsoil and subsoil organic carbon turnover time (τ ) interacting with other factors. The lines show the
mean annual temperature (MAT) effect and the mean annual precipitation (MAP) effect on τ in response to another climatic variable and
four important soil physio-chemical (including the fine-particle size fraction (CLAY+SILT), carbon-to-nitrogen ratio (C : N), cation exchange
capacity (CEC), and soil pH) variables. The variables on the x axis can be considered to be interactive factors, which influence the MAT and
MAP effects on τ . The values on the lines above or below the dashed horizontal lines indicate the positive or negative climatic effects on
topsoil or subsoil τ (the MAT and MAP effects were calculated by means of the partial-regression coefficient between MAT and/or MAP and
τ ) in response to the corresponding values of interactive factors. The shaded areas on the lines represent confidence intervals for the results
of partial-correlation analysis.

variable (MAT or MAP) related to changes in another cli-
matic variable (Fig. 6a and f) and four key soil properties
(Fig. 6b–e and g–j). We found that the negative effect of
MAT on τ was magnified with decreasing MAP (when MAP
< 1500 mm). Meanwhile, it was also shown that the MAT ef-
fect on τ changed to be smaller and could even be positive
for subsoil with increasing MAP (when MAP> 2000 mm)
(Fig. 6a). Notably, the MAP effect transitioned from nega-
tive to positive with increasing MAT in colder environments.
This effect then diminished after a critical point around 15 °C
(Fig. 6f).

Beyond the interplay of climatic factors, soil property val-
ues significantly modulated the effects of MAT and MAP on
τ . For instance, as CLAY+SILT content decreased, the nega-
tive impact of MAT was pronounced (Fig. 6b). The MAP ef-
fect was also accentuated in sandy soils but was restricted to
the topsoil layer (Fig. 6g). This result suggests that the finer
soil texture may reduce carbon turnover sensitivity to tem-
perature or water fluctuations (Krull et al., 2003). Among the
interactions of soil chemical properties with climatic impacts
on τ , it is evident that extremely low or high C : N ratios in
soils lead to smaller climatic effects on τ (Fig. 6c and h),
suggesting that the sensitivity of τ to climate is strongly in-
fluenced by whether the C : N ratio falls within an optimal
range. The negative impacts of temperature were intensi-
fied with rising CEC (when CEC< 40 cmolc kg−1) (Fig. 6d),
mainly because higher CEC typically enhances the nutrient-
supplying capacity of soils, thus quickening carbon turnover
in warm conditions (Crowther et al., 2019a). The different

responses of topsoil and subsoil temperature sensitivity to
CEC (Fig. 6d) may result from interactive and combined in-
fluencing factors. Higher CEC enhances nutrient availability
for microbes and promotes mineral–organic compound for-
mation, potentially increasing SOC temperature sensitivity.
Concurrently, elevated CEC can promote plant productivity,
leading to greater carbon inputs and influencing NPP sensi-
tivity to temperature. The observed patterns are likely to re-
flect the combined effects of these processes. The influence
of soil pH on MAT effects on τ demonstrated a strong non-
linear trend. A more pronounced negative MAT effect was
found when soil pH was neutral for topsoil and mildly alka-
line for subsoil (Fig. 6e). This is related to microorganisms
having a physiologic optimum pH (Rousk et al., 2010; Don
et al., 2017) and results in the warmer temperature signifi-
cantly accelerating SOC turnover rates when pH is within an
optimum range (Frostegård et al., 2022; Xiang et al., 2023).
Nevertheless, there is currently a need to further explore the
reasons for why these pH ranges are different with soil depth,
as well as for their species specificity (Bahram et al., 2018).
The impact of MAP appears to be more positive in acidic
soils but becomes negative when soil pH exceeds 8 and 9
for topsoil and subsoil, respectively (Fig. 6j). The positive
MAP effect on turnover time under acidic conditions could
be partly explained by the enhanced effect of increased mois-
ture on soil weathering processes (Porras et al., 2017). Un-
der alkaline conditions, which are mostly seen in dry cli-
mates (Slessarev et al., 2016), the negative MAP effect may
arise from the intensified microbial transformation of plant-
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derived organic matter as these soils provide pH and moisture
that are favourable to microorganisms (Yang et al., 2022).

3.3.3 Distributions of dominating factors of τ at local
scales across the world

We further analysed the effects of these covariates by gener-
ating τ–environment models using data from sampling lo-
cations within different local areas to assess the deviation
of regional patterns from those at the large scale. Overall,
we find that the dominant factors controlling τ vary across
different local areas (Fig. 7a and b). Across approximately
41 % of the land surface area, climatic factors are the pre-
dominant controller of topsoil τ (Table 2). However, for sub-
soil τ , climatic factors predominantly mediate the variation
in τ in only 29 % of the global area. It is noteworthy that,
in 57 % of the global area, soil characteristics were the domi-
nant driver of subsoil τ . Overall, soil chemical properties had
a larger effect than soil physical properties. This is particu-
larly notable in parts of the tropical forests of the Amazon;
the broadleaf forests spanning from eastern Indian to South-
east Asia; most parts of North America; central Europe; and
the grasslands, deserts, and xeric shrublands scattered across
Africa and Australia (Fig. 7b). This phenomenon is related to
previous studies suggesting that nutrient availability for soils
and vegetation greatly affects τ (Cleveland and Townsend,
2006; Carvalhais et al., 2014). The contributions of four cat-
egories of environmental factors in the local-scale analysis
differed less in subsoil compared to in topsoil (Fig. 7c and d
and Table 2).

3.4 Comparison with τ from Earth system models

Our observation-based τ estimates can help constrain ESM
simulations and improve predictions of current and future
carbon cycle dynamics. We analysed historical simulation
outputs of selected ESMs from CMIP6 (Table S4). While
the comparison of our empirical estimates with τ estimates
from ESM outputs based on CMIP6 showed broad agree-
ment in terms of the spatial patterns of τ (Pearson’s r = 0.53,
P < 0.001), it highlighted that ESMs are likely to underesti-
mate τ across the majority of the globe (Fig. 8a). The soil
carbon turnover times estimated from ESMs were, on av-
erage, more than 2 times shorter than our data-derived (us-
ing ground-sourced samples integrated with remote sensing
observations) τ estimates (Table S4). This discrepancy was
particularly pronounced in tropical forests, grasslands, and
tundra areas (Table S5). In ∼ 30 % of the global land grids,
the τ estimates from ESMs did not fall into the 90 % esti-
mation intervals of our data-driven estimates, and ∼ 92 % of
global land area showed a mean underestimation bias (ESM-
derived τ < data-derived τ ) (Fig. 8a, Table S4).

The discrepancies between τ from observations and from
ESMs are also reflected in their associations with climate
variables. The ESMs predicted stronger correlations with

temperature and precipitation compared to our τ estimates
(Fig. 8b and c). Additionally, there were notable differences
in terms of the climate correlations between topsoil and sub-
soil, which ESMs do not yet capture. These findings empha-
size that other factors, such as soil physico-chemical prop-
erties and soil depth, need to be accounted for in models to
accurately project global soil carbon dynamics.

3.5 Implications and future perspective

Our quantitative maps of SOC turnover times in topsoil and
subsoil layers based on an extensive soil profile dataset rep-
resent a key step towards a better understanding of global
soil carbon stocks and dynamics. Our research illustrates how
global variations in τ in both topsoil and subsoil layers are
influenced by the interplay of climatic and edaphic factors
and demonstrates their pronounced heterogeneity within and
across biogeographic zones. These analyses revealed com-
plex interactions between temperature, water availability, and
soil physio-chemical properties, thereby enriching our com-
prehension of the complex mechanisms driving spatial vari-
ability and nonlinearity in τ–environment relationships from
global to local scales. The distinct factors driving τ in top-
soil versus subsoil underscore the importance of incorporat-
ing soil depth when assessing large-scale τ patterns.

The findings in this study also have the potential to im-
prove the parameterization and future projections of ESMs
by integrating more accurate global τ data. Our results sup-
port several previous studies that also identified an underes-
timation of SOC turnover times in ESMs through 14C obser-
vations (He et al., 2016; Shi et al., 2020). This discrepancy
between data- and model-derived τ emphasizes the need to
incorporate more detailed edaphic- and climate-dependent
and depth-specific τ estimates into biogeochemical models
to enhance predictive accuracy. Furthermore, there is evi-
dence that the greatest exchange of soil carbon with the at-
mosphere occurs through relatively small and fast soil carbon
pools on a short timescale, which can result in a “leaky-sink”
response when carbon input is elevated (Bradford, 2017;
van Groenigen et al., 2017). This response may conceal the
longer turnover times in inert pools that are not precisely cap-
tured by models. Adjusting turnover rates and carbon trans-
fer parameters in ESMs to align with the longer τ values we
report here may extend the turnover time of “slow” or “pas-
sive” pools in models (especially for deep layers) that consti-
tute the majority of soil carbon (Torn et al., 2009; He et al.,
2016).

To improve the accuracy of carbon cycle models and to en-
hance the projections of future soil carbon sequestration rates
and magnitudes, it is essential to incorporate edaphic- and
climate-dependent and depth-resolved estimates of turnover
times into these models. These insights across various cli-
mate zones, biomes, terrains, and soil properties contribute
to reducing uncertainties related to context-dependent effects
governing soil carbon stocks and dynamics, thus helping to
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Table 2. Statistical summary of the local-scale analytical results of variable (classified into four categories) importance in terms of influence
on topsoil and subsoil organic carbon turnover time (τ ) at the local scale.

Category of variables influencing τ Mean importance of Percentage of global
a certain category of areas in which τ was dominated

variable influencing τ by a certain category of
at the local scale variable at the local scale

Topsoil Subsoil Topsoil Subsoil

Climate 0.37 0.20 41 % 29 %
Soil physical properties 0.21 0.29 18 % 16 %
Soil chemical properties 0.28 0.17 29 % 41 %
Topography 0.17 0.18 12 % 14 %

Figure 7. Local-level analysis of dominating factors of topsoil and subsoil organic carbon turnover time (τ ). Global maps of dominant
factors controlling τ in topsoil (a) and subsoil (b) at the local scale. Maps were created by interpolating all results of factor importance from
modelling using the sample data within each local area stratified by the ecoregion map. The lighter colours show that the reliability of the
local result is low, with a smaller number of available samples for analysis. Histograms of the local-level percentage contribution of each
variable category in controlling topsoil (c) and subsoil (d) τ across all local areas. Dashed lines represent the mean values.

inform strategies that enhance sustainable soil management
and mitigate the impacts of climate change.

4 Data availability

The global maps of topsoil and subsoil organic
carbon turnover times are available online at
https://doi.org/10.5281/zenodo.14560239 (Zhang, 2025a).

5 Code availability

The code used for this study is publicly available at
https://github.com/leizhang-geo/global_soil_carbon_

turnover_time.git and is permanently deposited in a Zenodo
repository at https://doi.org/10.5281/zenodo.15636310
(Zhang, 2025b).

6 Conclusions

This study provides a comprehensive assessment of global
apparent SOC turnover times in both topsoil and subsoil lay-
ers. By integrating state-of-the-art datasets of soil profiles,
plant roots, and satellite observations, we employed machine
learning models to produce the spatially explicit maps of τ
with quantified uncertainties. The results reveal pronounced
spatial heterogeneity and nonlinearity in τ–environment re-
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Figure 8. Comparisons of soil organic carbon turnover times (τ ) from our data-derived estimates and from Earth system models (ESMs).
(a) Biases in τ represented by ratios of data-derived to model-derived values across the global grid cells. Black points indicate locations
where τ values from ESMs are outside of the 0.05th and 0.95th quantiles of the prediction uncertainty in our data-derived estimations.
(b, c) Comparisons of associations of data- and model-derived (ESMs) τ to mean annual temperature (MAT) (b) and mean annual precipita-
tion (MAP) (c) along latitudinal gradients. The y axis shows partial correlations (r) of τ with two climate factors, controlling for precipitation
when calculating the correlation between τ and temperature (and vice versa).

lationships within and among different biomes and climatic
zones. Our findings demonstrate the context-dependent ef-
fects of temperature and water availability on τ , which vary
depending on soil attributes, mainly including soil texture,
carbon-to-nitrogen ratio, cation exchange capacity, and soil
pH. Considering the potentially large differences in the driv-
ing factors of τ from large to small scales, we further mapped
the dominating factors of τ in two soil layers at local scales.
Overall, this study synthesizes the multiple observation-
based datasets that are currently available and provides new
global maps of topsoil and subsoil organic carbon turnover
times. The dataset and new insights of this study are expected
to serve as a foundation for benchmarking biogeochemical
models and supporting effective carbon management.
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